ISL80103IRAJZ-T13 [RENESAS]

ADJUSTABLE POSITIVE LDO REGULATOR;
ISL80103IRAJZ-T13
型号: ISL80103IRAJZ-T13
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

ADJUSTABLE POSITIVE LDO REGULATOR

信息通信管理 光电二极管 输出元件 调节器
文件: 总16页 (文件大小:741K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance 2A and 3A Linear Regulators  
ISL80102, ISL80103  
The ISL80102 and ISL80103 are low voltage, high-current, single  
output LDOs specified for 2A and 3A output current, respectively.  
These LDOs operate from the input voltages of 2.2V to 6V and  
are capable of providing the output voltages of 0.8V to 5V on the  
Features  
• Stable with all capacitor types (Note 10)  
• 2A and 3A output current ratings  
• 2.2V to 6V input voltage range  
adjustable V  
versions. Fixed output voltage options are  
OUT  
• ±1.8% V  
OUT  
accuracy guaranteed over line, load and  
available in 1.8V, 2.5V, 3.3V and 5V. Other custom voltage  
options available upon request.  
T = -40°C to +125°C  
J
• Very low 120mV dropout voltage at 3A (ISL80103)  
For applications that demand in-rush current less than the  
current limit, an external capacitor on the soft-start pin provides  
adjustment. The ENABLE feature allows the part to be placed into  
a low quiescent current shutdown mode. A sub-micron BiCMOS  
process is utilized for this product family to deliver the best in  
class analog performance and overall value.  
• Fixed and adjustable V  
OUT  
versions  
• Very fast transient response  
• Excellent 62dB PSRR  
• 100µV  
output noise  
RMS  
These CMOS (LDOs) will consume significantly lower quiescent  
current as a function of load over bipolar LDOs, which translates  
into higher efficiency and the ability to consider packages with  
smaller footprints. The quiescent current has been modestly  
compromised to enable a leading class fast load transient  
response, and hence a lower total AC regulation band for an LDO  
in this category.  
• Power-good output  
• Adjustable in-rush current limiting  
• Short circuit and over-temperature protection  
• Available in a 10 Ld DFN  
• Servers  
• Telecommunications and networking  
• Medical equipment  
• Instrumentation systems  
• Routers and switchers  
ISL80102, ISL80103  
1.8V ±1.8%  
2.5V ±10%  
1
2
9
V
OUT  
V
V
V
V
V
IN  
OUT  
IN  
IN  
C
C
10  
OUT  
IN  
OUT  
10µF  
10µF  
R
PG  
100k  
ON  
3
4
SENSE  
PG  
7
6
ENABLE  
SS  
OFF  
PGOOD  
*C  
SS  
GND  
5
*CSS is optional, (see Note 11) on page 5.  
FIGURE 1. TYPICAL APPLICATION  
June 14, 2013  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2009-2012, 2013. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
FN6660.6  
ISL80102, ISL80103  
Block Diagram  
VIN  
R5  
IL/10,000  
M4  
10µA  
10µA  
M5  
M3  
M1  
POWER PMOS  
IL  
VOUT  
+
-
LEVEL  
SHIFT  
R8  
R9  
M6  
R1  
R7  
EN  
SENSE  
-
500mV  
+
EN  
R2  
R4  
EN  
ADJ  
PG  
+
EN  
-
ENABLE  
SS  
M7  
M8  
-
+
-
M2  
500mV  
+
V TO I  
+
-
*R3  
485mV  
EN  
GND  
*R3 is open for ADJ versions.  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
V
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
PKG  
DWG. #  
OUT  
VOLTAGE  
ISL80102IRAJZ  
DZJA  
DZNA  
DZPA  
DZAA  
DZEA  
DZFA  
ADJ  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
L10.3x3  
L10.3x3  
L10.3x3  
L10.3x3  
L10.3x3  
L10.3x3  
ISL80102IR18Z  
ISL80102IR25Z  
ISL80103IRAJZ  
ISL80103IR18Z  
ISL80103IR25Z  
ISL80102EVAL2Z  
ISL80103EVAL2Z  
NOTES:  
1.8V  
2.5V  
ADJ  
1.8V  
2.5V  
Evaluation Board  
Evaluation Board  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL80102, ISL80103. For more information on MSL please see tech brief  
TB363.  
FN6660.6  
June 14, 2013  
2
ISL80102, ISL80103  
Pin Configuration  
ISL80102, ISL80103  
(10 LD 3x3 DFN)  
TOP VIEW  
V
V
V
V
1
2
3
4
5
10  
9
OUT  
OUT  
IN  
IN  
SENSE/ADJ  
PG  
DNC  
8
7
ENABLE  
SS  
GND  
6
Pin Descriptions  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
1, 2  
VOUT  
Output voltage pin.  
3
4
SENSE/ADJ Remote voltage sense for internally fixed VOUT options. ADJ pin for externally set VOUT.  
PG  
GND  
SS  
VOUT in regulation signal. Logic low defines when VOUT is not in regulation. Must be grounded if not used.  
5
GND pin.  
6
External cap adjusts in-rush current.  
VIN independent chip enable. TTL and CMOS compatible.  
Do not connect this pin to ground or supply. Leave floating.  
Input supply pin.  
7
ENABLE  
DNC  
8
9, 10  
VIN  
EPAD  
EPAD must be connected to copper plane with as many vias as possible for proper electrical and optimal thermal  
performance.  
Typical Application  
ISL80102, ISL80103  
1.8V  
2.5V ±10%  
1
2
9
V
V
V
V
OUT  
OUT  
OUT  
V
V
IN  
IN  
C
OUT  
C
10  
IN  
IN  
10µF  
10µF  
R
PG  
100kΩ  
R
1
10kΩ  
4
PGOOD  
PG  
7
6
ENABLE  
SS  
EN  
OPEN DRAIN COMPATIBLE  
**C  
PB  
R
3
2.61kΩ  
1500pF  
3
ADJ  
*C  
SS  
GND  
R
4
5
1.0kΩ  
*CSS is optional, (see Note 11) on page 5.  
**C is optional. See “Functional Description” on page 12 for more information.  
PB  
FIGURE 2. TYPICAL APPLICATION DIAGRAM  
FN6660.6  
June 14, 2013  
3
ISL80102, ISL80103  
Absolute Maximum Ratings (Note 6)  
Thermal Information  
V
V
Relative to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
Relative to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
Thermal Resistance (Typical)  
10 Ld 3x3 DFN Package (Notes 4, 5). . . . .  
θ
JA (°C/W)  
45  
θ
JC (°C/W)  
IN  
OUT  
4
PG, ENABLE, SENSE/ADJ, SS, Relative to GND. . . . . . . . . . . -0.3V to +6.5V  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Recommended Operating Conditions (Note 8)  
Junction Temperature Range (T ) . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
J
VIN Relative to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.2V to 6V  
V
Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800mV to 5V  
OUT  
PG, ENABLE, SENSE/ADJ, SS Relative to GND . . . . . . . . . . . . . . . . 0V to 6V  
PG Sink Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
6. ABS max voltage rating is defined as the voltage applied for a lifetime average duty cycle above 6V of 1%.  
7. Electromigration specification defined as lifetime average junction temperature of +110°C where max rated DC current = lifetime average current.  
Electrical Specifications Unless otherwise noted, all parameters are established over the following specified conditions:  
V
= V  
OUT  
+ 0.4V, V  
OUT  
= 1.8V, C = C  
IN  
= 10µF, T = +25°C, I  
= 0A. Applications must follow thermal guidelines of the package to  
IN  
OUT  
J
LOAD  
determine worst case junction temperature. Please refer to “Functional Description” on page 12 and Tech Brief TB379.  
Boldface limits apply over the operating temperature range, -40°C to +125°C. Pulse load techniques used by ATE to ensure T = T defines  
J
A
established limits.  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 8)  
TYP  
0.5  
(Note 8)  
UNITS  
DC CHARACTERISTICS  
DC Output Voltage Accuracy  
V
V
V
Options: 1.8V.  
OUT  
%
%
%
%
OUT  
=2.2V; I  
= 0A  
IN  
LOAD  
V
Options: 1.8V.  
-1.8  
1.8  
OUT  
2.2V < V < 3.6V; 0A < I  
< 3A  
LOAD  
IN  
LOAD  
= 0A  
V
V
Options: 2.5V  
0.5  
OUT  
=V  
+ 0.4V; I  
IN OUT  
LOAD  
V
V
Options: 2.5V  
-1.8  
491  
-1.8  
OUT  
OUT  
+ 0.4V < V < 6V; 0A < I  
< 3A  
IN  
Feedback Pin (ADJ Version)  
DC Input Line Regulation  
V
2.2V < V < 6V, 0A < I  
IN  
< 3A  
LOAD  
500  
0.1  
0.1  
509  
0.4  
0.8  
mV  
%
FB  
ΔV /ΔV  
OUT  
V
+ 0.4V < V < 3.6V, V = 1.8V  
IN OUT  
IN  
OUT  
OUT  
V
+ 0.4V < V < 6V, V  
= 2.5V  
%
IN OUT  
DC Output Load Regulation  
ΔV  
/ΔI  
0A < I  
0A < I  
< 3A, All voltage options  
< 2A, All voltage options  
-0.8  
-0.6  
%
OUT  
OUT  
LOAD  
LOAD  
%
Feedback Input Current  
Ground Pin Current  
V
= 0.5V  
0.01  
7.5  
1
9
µA  
mA  
mA  
µA  
µA  
mV  
mV  
A
ADJ  
I
I
I
= 0A, 2.2V < V < 6V  
IN  
Q
LOAD  
LOAD  
= 3A, 2.2V < V < 6V  
IN  
8.5  
0.4  
3.3  
120  
81  
12  
Ground Pin Current in Shutdown  
Dropout Voltage (Note 9)  
I
ENABLE Pin = 0.2V, V = 5V  
IN  
SHDN  
ENABLE Pin = 0.2V, V = 6V  
IN  
16  
V
I
I
= 3A, V  
= 2.5V, 10 LD 3x3 DFN  
= 2.5V, 10 LD 3x3 DFN  
185  
125  
DO  
LOAD  
LOAD  
OUT  
OUT  
= 2A, V  
Output Short Circuit Current  
(3A Version)  
ISC  
V
= 0V, V  
+ 0.4V < V < 6V  
IN  
5.0  
OUT  
OUT  
Output Short Circuit Current  
(2A Version)  
V
= 0V, V  
+ 0.4V < V < 6V  
IN  
2.8  
A
OUT  
OUT  
FN6660.6  
June 14, 2013  
4
ISL80102, ISL80103  
Electrical Specifications Unless otherwise noted, all parameters are established over the following specified conditions:  
V
= V  
OUT  
+ 0.4V, V  
OUT  
= 1.8V, C = C  
IN  
= 10µF, T = +25°C, I  
= 0A. Applications must follow thermal guidelines of the package to  
IN  
OUT  
J
LOAD  
determine worst case junction temperature. Please refer to “Functional Description” on page 12 and Tech Brief TB379.  
Boldface limits apply over the operating temperature range, -40°C to +125°C. Pulse load techniques used by ATE to ensure T = T defines  
J
A
established limits. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
TSD  
TEST CONDITIONS  
(Note 8)  
TYP  
160  
15  
(Note 8)  
UNITS  
°C  
Thermal Shutdown Temperature  
V
V
+ 0.4V < V < 6V  
OUT  
IN  
Thermal Shutdown Hysteresis  
(Rising Threshold)  
TSDn  
+ 0.4V < V < 6V  
°C  
OUT  
IN  
AC CHARACTERISTICS  
Input Supply Ripple Rejection  
PSRR  
f = 1kHz, I  
= 1A; V = 2.2V  
IN  
55  
62  
dB  
dB  
LOAD  
f = 120Hz, I  
= 1A; V = 2.2V  
IN  
LOAD  
Output Noise Voltage  
I
= 10mA, BW = 300Hz < f < 300kHz  
100  
µV  
RMS  
LOAD  
ENABLE PIN CHARACTERISTICS  
Turn-on Threshold  
V
2.2V < V < 6V  
IN  
0.616  
0.463  
0.8  
0.6  
0.95  
V
V
EN(HIGH)  
Turn-off Threshold  
V
2.2V < V < 6V  
IN  
EN(LOW)  
Hysteresis  
V
2.2V < V < 6V  
IN  
135  
150  
mV  
EN(HYS)  
Enable Pin Turn-on Delay  
Enable Pin Leakage Current  
SOFT-START CHARACTERISTICS  
Reset Pull-Down resistance  
Soft-Start Charge Current  
PG PIN CHARACTERISTICS  
t
C
= 10µF, I  
= 1A  
µs  
EN  
OUT  
LOAD  
V
= 6V, EN = 3V  
1
µA  
IN  
R
323  
-4.5  
Ω
PD  
I
-7  
-2  
µA  
CHG  
V
PG Flag Threshold  
PG Flag Hysteresis  
75  
84  
4
92  
%V  
OUT  
OUT  
OUT  
V
%
PG Flag Low Voltage  
PG Flag Leakage Current  
NOTES:  
I
= 500µA  
47  
100  
1
mV  
µA  
SINK  
V
= 6V, PG = 6V  
0.05  
IN  
8. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
9. Dropout is defined by the difference in supply V and V when the supply produces a 2% drop in V from its nominal value.  
IN OUT OUT  
10. Minimum cap of 10µF X5R/X7R on V and V  
IN OUT  
required for stability.  
11. If the current limit for in-rush current is acceptable in application, do not use this feature. Used only when large bulk capacitance required on V  
application.  
for  
OUT  
FN6660.6  
June 14, 2013  
5
ISL80102, ISL80103  
Typical Operating Performance  
Unless otherwise noted: V = 2.2V, V  
IN  
= 1.8V, C = C  
IN  
= 10µF, T = +25°C, I = 0A.  
OUT J L  
OUT  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.8  
1.2  
0.6  
0
+125°C  
+25°C  
-40°C  
-0.6  
-1.2  
-1.8  
0
1
2
3
4
5
6
-50 -25  
0
25  
50  
75  
100  
125  
150  
SUPPLY VOLTAGE (V)  
JUNCTION TEMPERATURE (°C)  
FIGURE 3. ΔV  
vs TEMPERATURE  
FIGURE 4. OUTPUT VOLTAGE vs SUPPLY VOLTAGE  
OUT  
9
1.8  
8
7
6
5
4
3
2
1
0
1.2  
0.6  
+25°C  
0.0  
-0.6  
-1.2  
-1.8  
-40°C  
+125°C  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
2
3
4
5
6
INPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
FIGURE 5. ΔV  
vs OUTPUT CURRENT  
FIGURE 6. GROUND CURRENT vs SUPPLY VOLTAGE  
OUT  
12.0  
11.5  
9.1  
8.9  
8.7  
8.5  
8.3  
8.1  
7.9  
7.7  
7.5  
11.0  
10.5  
10.0  
9.5  
-40°C  
-40°C  
+25°C  
9.0  
+125°C  
+125°C  
8.5  
+25°C  
2.0  
8.0  
7.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.8  
1.4  
2.6  
3.2  
3.8  
4.4  
5.0  
OUTPUT CURRENT (A)  
OUTPUT VOLTAGE (V)  
FIGURE 8. GROUND CURRENT vs OUTPUT VOLTAGE  
FIGURE 7. GROUND CURRENT vs OUTPUT CURRENT  
FN6660.6  
June 14, 2013  
6
ISL80102, ISL80103  
Typical Operating Performance  
Unless otherwise noted: V = 2.2V, V  
IN  
= 1.8V, C = C  
IN  
= 10µF, T = +25°C, I = 0A. (Continued)  
OUT J L  
OUT  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
12  
11  
10  
9
8
7
6
5
4
3
2
V
= 5V  
V
= 6V  
IN  
IN  
1
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
FIGURE 9. SHUTDOWN CURRENT vs TEMPERATURE  
FIGURE 10. SHUTDOWN CURRENT vs TEMPERATURE  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
2A  
3A  
40  
30  
20  
10  
1A  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
OUTPUT CURRENT (A)  
FIGURE 11. DROPOUT VOLTAGE vs TEMPERATURE  
FIGURE 12. DROPOUT VOLTAGE vs OUTPUT CURRENT  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
V
(1V/DIV)  
IN  
SS (1V/DIV)  
V
(1V/DIV)  
OUT  
PG (1V/DIV)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
JUNCTION TEMPERATURE (°C)  
TIME (10ms/DIV)  
FIGURE 13. ENABLE THRESHOLD VOLTAGE vs TEMPERATURE  
FIGURE 14. POWER-UP (V = 2.2V)  
IN  
FN6660.6  
June 14, 2013  
7
ISL80102, ISL80103  
Typical Operating Performance  
Unless otherwise noted: V = 2.2V, V  
IN OUT  
= 1.8V, C = C  
IN  
= 10µF, T = +25°C, I = 0A. (Continued)  
OUT J L  
EN (1V/DIV)  
SS (1V/DIV)  
V
(1V/DIV)  
IN  
SS (1V/DIV)  
V
(1V/DIV)  
V
(1V/DIV)  
OUT  
OUT  
PG (1V/DIV)  
PG (1V/DIV)  
TIME (10ms/DIV)  
TIME (50µs/DIV)  
FIGURE 15. POWER-DOWN (V = 2.2V)  
IN  
FIGURE 16. ENABLE START-UP  
300  
250  
200  
150  
100  
50  
EN (1V/DIV)  
SS (1V/DIV)  
V
(1V/DIV)  
OUT  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
PG (1V/DIV)  
INPUT VOLTAGE (V)  
TIME (5ms/DIV)  
FIGURE 18. START-UP TIME vs SUPPLY VOLTAGE  
FIGURE 17. ENABLE SHUTDOWN  
300  
250  
200  
150  
100  
50  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
ISL80103  
ISL80102  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
FIGURE 19. START-UP TIME vs TEMPERATURE  
FIGURE 20. CURRENT LIMIT vs TEMPERATURE  
FN6660.6  
June 14, 2013  
8
ISL80102, ISL80103  
Typical Operating Performance  
Unless otherwise noted: V = 2.2V, V  
IN  
= 1.8V, C = C  
IN  
= 10µF, T = +25°C, I = 0A. (Continued)  
OUT J L  
OUT  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
ISL80103  
V
(1V/DIV)  
OUT  
ISL80102  
I
(1A/DIV)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
OUT  
INPUT VOLTAGE (V)  
TIME (10ms/DIV)  
FIGURE 21. CURRENT LIMIT vs SUPPLY VOLTAGE  
FIGURE 22. CURRENT LIMIT RESPONSE (ISL80102)  
V
(1V/DIV)  
OUT  
V
(1V/DIV)  
OUT  
I
OUT  
(1A/DIV)  
I
(2A/DIV)  
OUT  
TIME (100ms/DIV)  
TIME (20ms/DIV)  
FIGURE 24. CURRENT LIMIT RESPONSE (ISL80103)  
FIGURE 23. THERMAL CYCLING (ISL80102)  
EN (1V/DIV)  
V
(1V/DIV)  
OUT  
I
(2A/DIV)  
(1V/DIV)  
OUT  
I
(2A/DIV)  
OUT  
V
OUT  
TIME (1ms/DIV)  
TIME (50ms/DIV)  
FIGURE 26. IN-RUSH CURRENT WITH NO SOFT-START  
CAPACITOR, C = 1000µF  
FIGURE 25. THERMAL CYCLING (ISL80103)  
OUT  
FN6660.6  
June 14, 2013  
9
ISL80102, ISL80103  
Typical Operating Performance  
Unless otherwise noted: V = 2.2V, V  
IN OUT  
= 1.8V, C = C  
IN  
= 10µF, T = +25°C, I = 0A. (Continued)  
OUT J L  
EN (1V/DIV)  
EN (1V/DIV)  
I
(2A/DIV)  
(1V/DIV)  
I
(2A/DIV)  
(1V/DIV)  
OUT  
OUT  
V
OUT  
V
OUT  
TIME (1ms/DIV)  
TIME (1ms/DIV)  
FIGURE 27. IN-RUSH WITH 22nF SOFT-START CAPACITOR,  
= 1000µF  
FIGURE 28. IN-RUSH WITH 47nF SOFT-START CAPACITOR,  
= 1000µF  
C
C
OUT  
OUT  
V
(50mV/DIV)  
OUT  
V
(50mV/DIV)  
OUT  
I
(2A/DIV)  
OUT  
I
(2A/DIV)  
OUT  
di/dt = 30A/µs  
di/dt = 30A/µs  
TIME (200µs/DIV)  
TIME (200µs/DIV)  
FIGURE 30. LOAD TRANSIENT 0A TO 3A, C  
+ 100µF OSCON  
= 10µF CERAMIC  
OUT  
FIGURE 29. LOAD TRANSIENT 0A TO 3A, C  
= 10µF CERAMIC  
OUT  
V
(50mV/DIV)  
OUT  
V
(50mV/DIV)  
OUT  
I
(2A/DIV)  
OUT  
I
(2A/DIV)  
OUT  
di/dt = 30A/µs  
di/dt = 30A/µs  
TIME (200µs/DIV)  
TIME (200µs/DIV)  
FIGURE 31. LOAD TRANSIENT 1A TO 3A, C  
= 10µF CERAMIC  
OUT  
FIGURE 32. LOAD TRANSIENT 1A TO 3A, C  
+ 100µF OSCON  
= 10µF CERAMIC  
OUT  
FN6660.6  
June 14, 2013  
10  
ISL80102, ISL80103  
Typical Operating Performance  
Unless otherwise noted: V = 2.2V, V  
IN OUT  
= 1.8V, C = C  
IN  
= 10µF, T = +25°C, I = 0A. (Continued)  
OUT J L  
V
(20mV/DIV)  
OUT  
V
(20mV/DIV)  
OUT  
I
(2A/DIV)  
I
(2A/DIV)  
OUT  
OUT  
di/dt = 3A/µs  
TIME (50µs/DIV)  
di/dt = 3A/µs  
TIME (50µs/DIV)  
FIGURE 33. LOAD TRANSIENT 0A TO 3A, C  
= 10µF CERAMIC,  
FIGURE 34. LOAD TRANSIENT 0A TO 3A, C  
= 10µF CERAMIC,  
OUT  
OUT  
= 1500pF (ADJ VERSION)  
NO C (ADJ VERSION)  
C
PB  
PB  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.2V  
2.2V  
V
(1V/DIV)  
IN  
1A  
100mA  
10k  
V
(10mV/DIV)  
OUT  
10  
100  
1k  
100k  
1M  
TIME (200µs/DIV)  
FREQUENCY (Hz)  
FIGURE 35. LINE TRANSIENT  
FIGURE 36. PSRR vs LOAD  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
1
100µF  
0.1  
10µF  
47µF  
100k  
I
= 100mA  
L
0.01  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 38. SPECTRAL NOISE DENSITY vs FREQUENCY  
FIGURE 37. PSRR vs C  
OUT  
FN6660.6  
June 14, 2013  
11  
ISL80102, ISL80103  
5.0  
4.5  
4.0  
Functional Description  
Input Voltage Requirements  
Despite other output voltages offered, this family of LDOs is  
optimized for a true 2.5V to 1.8V conversion where the input  
supply can have a tolerance of as much as ±10% for conditions  
noted in the “Electrical Specifications” table on page 4. Minimum  
guaranteed input voltage is 2.2V, however, due to the nature of  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
an LDO, V must be some margin higher than the output voltage  
IN  
plus dropout at the maximum rated current of the application if  
active filtering (PSRR) is expected from V to V . The dropout  
IN  
OUT  
spec of this family of LDOs has been generously specified in  
order to allow applications to design for a level of efficiency that  
can accommodate the smaller outline package.  
0
20  
40  
60  
(nF)  
80  
100  
C
SS  
FIGURE 39. IN-RUSH CURRENT vs SOFT-START CAPACITANCE  
Enable Operation  
The Enable turn-on threshold is typically 770mV with a hysteresis of  
135mV. An internal pull-up or pull-down resistor is available upon  
request. As a result, this pin must not be left floating. This pin must  
Output Voltage Selection  
An external resistor divider is used to scale the output voltage  
relative to the internal reference voltage. This voltage is then fed  
back to the error amplifier. The output voltage can be  
be tied to V if it is not used. A 1kΩ to 10kΩ pull-up resistor is  
IN  
programmed to any level between 0.8V and 5V. An external  
required for applications that use open collector or open drain  
outputs to control the Enable pin. The Enable pin may be connected  
resistor divider, R and R , is used to set the output voltage as  
3
4
shown in Equation 1. The recommended value for R is 500Ω to  
4
directly to V for applications that are always on.  
IN  
1kΩ. R is then chosen according to Equation 2:  
3
Power-Good Operation  
R
3
(EQ. 1)  
(EQ. 2)  
------  
V
= 0.5V ×  
+ 1  
OUT  
Applications not using this feature must connect this pin to  
ground. The PGOOD flag is an open-drain NMOS that can sink up  
to 10mA during a fault condition. The PGOOD pin requires an  
external pull-up resistor, which is typically connected to the VOUT  
pin. The PGOOD pin should not be pulled up to a voltage source  
R
4
V
OUT  
0.5V  
------------  
R
= R  
×
4
1  
3
greater than V . The PGOOD fault can be caused by the output  
External Capacitor Requirements  
External capacitors are required for proper operation. To ensure  
optimal performance careful attention must be paid to the layout  
guidelines and selection of capacitor type and value.  
IN  
voltage going below 84% of the nominal output voltage, or the  
current limit fault, or low input voltage. The PGOOD does not  
function during thermal shutdown. While the PGOOD functions in  
shutdown.  
OUTPUT CAPACITOR  
Soft-Start Operation (Optional)  
The ISL80102, ISL80103 applies state-of-the-art internal  
compensation to keep selection of the output capacitor simple  
If the current limit for in-rush current is acceptable in the  
application, do not use this feature. The soft-start circuit controls  
the rate at which the output voltage comes up to regulation at  
power-up or LDO enable. A constant current charges an external  
soft-start capacitor. The external capacitor always gets  
for the customer. Stable operation over full temperature, V  
IN  
range and load extremes are guaranteed for all  
range, V  
OUT  
capacitor types and values assuming a 10µF X5R/X7R is used  
for local bypass on V . This minimum capacitor must be  
OUT  
and Ground pins of the LDO with PCB traces  
discharged to ground pin potential at the beginning of start-up or  
enabling. The discharge rate is the RC time constant of R and  
connected to V  
OUT  
PD  
no longer than 0.5cm.  
C
. See Figures 26 through 29 in the “Typical Operating  
SS  
Lower cost Y5V and Z5U type ceramic capacitors are acceptable  
if the size of the capacitor is larger to compensate for the  
significantly lower tolerance over X5R/X7R types. Additional  
capacitors of any value in Ceramic, POSCAP or Alum/Tantalum  
Electrolytic types may be placed in parallel to improve PSRR at  
higher frequencies and/or load transient AC output voltage  
tolerances.  
Performance Curves” beginning on page 6. R is the  
PD  
ON-resistance of the pull down MOSFET, M8. R is 300Ω  
PD  
typically.  
The soft-start feature effectively reduces the in-rush current at  
power-up or LDO enable until V  
reaches regulation. The  
OUT  
in-rush current can be an issue for applications that require large,  
external bulk capacitances on V where high levels of charging  
OUT  
current can be seen for a significant period of time. The in-rush  
currents can cause V to drop below minimum which could  
INPUT CAPACITOR  
IN  
to shutdown. Figure 39 shows the relationship  
The minimum input capacitor required for proper operation is  
10µF having a ceramic dielectric. This minimum capacitor must  
cause V  
OUT  
between in-rush current and C with a C  
of 1000µF.  
SS  
OUT  
be connected to V and ground pins of the LDO with PCB traces  
IN  
no longer than 0.5cm.  
FN6660.6  
June 14, 2013  
12  
ISL80102, ISL80103  
The maximum allowable junction temperature, T  
maximum expected ambient temperature, T  
A(MAX)  
maximum allowable power dissipation as shown in Equation 4:  
and the  
will determine the  
Phase Boost Capacitor (Optional)  
The ISL80102 and ISL80103 are designed to be stable with  
10µF or larger ceramic capacitor.  
J(MAX)  
(EQ. 4)  
P
= (T  
T ) ⁄ θ  
J(MAX) A JA  
D(MAX)  
Applications using the ADJ versions, may see improved  
performance with the addition of a small ceramic capacitor C  
PB  
Where θ is the junction-to-ambient thermal resistance.  
JA  
as shown in Figure 2 on page 3. The conditions where C may  
PB  
be beneficial are: (1) V  
OUT  
AC voltage regulation band.  
>1.5V, (2) C = 10µF, and (3) tight  
OUT  
For safe operation, please make sure that power dissipation  
calculated in Equation 3, P be less than the maximum  
D
allowable power dissipation P  
.
D(MAX)  
C
introduces phase lead with the product of R and C that  
PB  
3
PB  
results in increasing the bandwidth of the LDO. Typical R3 x C  
should be 4μs.  
The DFN package uses the copper area on the PCB as a heatsink.  
The EPAD of this package must be soldered to the copper plane  
PB  
(GND plane) for heat sinking. Figure 40 shows a curve for the θ  
of the DFN package for different copper area sizes.  
JA  
C
not recommended for V < 1.5V.  
OUT  
PB  
Current Limit Protection  
46  
44  
42  
40  
38  
36  
34  
The ISL80102, ISL80103 family of LDOs incorporates protection  
against overcurrent due to short, overload condition applied to  
the output and the in-rush current that occurs at start-up. The  
LDO performs as a constant current source when the output  
current exceeds the current limit threshold noted in the  
“Electrical Specifications” table on page 4. If the short or  
overload condition is removed from V , then the output returns  
OUT  
to normal voltage mode regulation. In the event of an overload  
condition, the LDO might begin to cycle on and off due to the die  
temperature exceeding the thermal fault condition. The  
TO220/TO263 package will tolerate higher levels of power  
dissipation on the die which may never thermal cycle if the  
heatsink of this larger package can keep the die temperature  
below the specified typical thermal shutdown temperature.  
2
4
6
8
10  
12  
14  
16  
18  
20  
2
22  
24  
EPAD-MOUNT COPPER LAND AREA ON PCB, mm  
FIGURE 40. 3mmx3mm-10 PIN DFN ON 4-LAYER PCB WITH  
THERMAL VIAS θ vs EPAD-MOUNT COPPER LAND  
AREA ON PCB  
JA  
Power Dissipation and Thermals  
Thermal Fault Protection  
The junction temperature must not exceed the range specified in  
the “Recommended Operating Conditions (Note 8)” on page 4.  
The power dissipation can be calculated by using Equation 3:  
In the event the die temperature exceeds typically +160°C, then  
the output of the LDO will shut down until the die temperature  
can cool down to typically +145°C. The level of power combined  
with the thermal impedance of the package (+48°C/W for DFN)  
will determine if the junction temperature exceeds the thermal  
shutdown temperature.  
P
= (V V  
) × I  
+ V × I  
OUT IN GND  
(EQ. 3)  
D
IN  
OUT  
FN6660.6  
June 14, 2013  
13  
ISL80102, ISL80103  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest Rev.  
DATE  
REVISION  
CHANGE  
May 23, 2013  
FN6660.6 Pin Descriptions on page page 3, updated EPAD section From: EPAD at ground potential. Soldering it directly to  
GND plane is optional. To: EPAD must be connected to copper plane with as many vias as possible for proper  
electrical and optimal thermal performance.  
Removed obsolete part numbers: ISL80102IR33Z, ISL80102IR50Z, ISL80103IR33Z, ISL80103IR50Z from  
ordering information table on page 2.  
Added evaluation boards to ordering information table on page 2: ISL80103IR50Z and ISL80103EVAL2Z.  
Features on page 1: Removed 5 Ld TO220 and 5 Ld TO263.  
Input Voltage Requirements on page 12: Removed the sentence “those applications that cannot accommodate  
the profile of the TO220/TO263”.  
June 14, 2012  
FN6660.5 In “Thermal Information” on page 4, corrected θ from 48 to 45.  
JA  
February 14, 2012  
FN6660.4 Increased “VEN(HIGH)” minimum limit from 0.4V to 0.616 and added the “VEN(LOW)” spec for clarity on page 5.  
December 14, 2011 FN6660.3 Increased “Turn-on Threshold” minimum limit on page 5 from 0.3V to 0.4V.  
Updated “Package Outline Drawing” on page 16 as follows:  
Removed package outline and included center to center distance between lands on recommended land pattern.  
Removed Note 4 "Dimension b applies to the metallized terminal and is measured between 0.18mm and 0.30mm  
from the terminal tip." since it is not applicable to this package. Renumbered notes accordingly.  
March 4, 2011  
March 4, 2010  
FN6660.2 Converted to new template  
On page 1 - first paragraph, changed "Fixed output voltage options are available in 1.5V, 1.8V, 2.5V, 3.3V and 5V"  
to "Fixed output voltage options are available in 1.8V, 2.5V, 3.3V and 5V"  
In “Ordering Information” table on page 2, removed ISL80102IR15Z and ISL80103IR15Z.  
In Note 3 on page 2, below the “Ordering Information” table , removed '1.5V', so it reads “The 3.3V and 5V fixed  
output voltages will be released in the future. Please contact Intersil Marketing for more details.”  
FN6660.1 Corrected Features on page 1 as follows:  
-Changed bullet "• 185mV Dropout @ 3A, 125mV Dropout @ 2A" to "• Very Low 120mV Dropout at 3A"  
-Changed bullet "• 65dB Typical PSRR" to "• 62dB Typical PSRR"  
-Deleted 0.5% Initial VOUT Accuracy  
Modified Figure 1 and placed as “TYPICAL APPLICATION” on page 1.  
Moved Pinout to page 3  
In “Block Diagram” on page 2, corrected resistor associated with M5 from R4 to R5  
Updated “Block Diagram” on page 2 as follows”  
- Added M8 from SS to ground.  
Updated Figure 1 on page 1 as follows:  
-Corrected Pin 6 from SS to IRSET  
-Removed Note 11 callout "Minimum cap on VIN and VOUT required for stability." Added Note "*CSS is optional.  
See Note 12 on Page 5." and “** CPB is optional. See “Functional Description” on page 12 for more information.”  
Added "The 1.5V, 3.3V and 5V fixed output voltages will be released in the future." to Note 3 on page 2.  
In “Thermal Information” on page 4, updated Theta JA from 45 to 48.  
In “Soft-Start Operation (Optional)” on page 12:  
-Changed "The external capacitor always gets discharged to 0V at start-up of after coming out of a chip disable.  
"The external capacitor always gets discharged to ground pin potential at start-up or enabling."  
-Changed "The soft-start function effectively limits the amount of in-rush current below the programmed current  
limit during start-up or an enable sequence to avoid an overcurrent fault condition." to "The soft-start feature  
effectively reduces the in-rush current at power-up or LDO enable until VOUT reaches regulation."  
-Added "See Figures 25 through 27 in the “Typical Operating Performance Curves” beginning on page 6."  
-Added “RPD is the on resistance of the pull-down MOSFET, M8. RPD is 300typically.”  
FN6660.6  
June 14, 2013  
14  
ISL80102, ISL80103  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest Rev. (Continued)  
DATE  
REVISION  
CHANGE  
March 4, 2010  
FN6660.1 Added “Phase Boost Capacitor (Optional)” on page 13.  
(CONTINUED)  
In “Typical Operating Performance” on page 11, revised figure "PSRR vs VIN" which had 3 curves with “SPECTRAL  
NOISE DENSITY vs FREQUENCY” which has one curve.  
Added "Figure 33. “LOAD TRANSIENT 0A TO 3A, C  
= 10µF CERAMIC, NO CPB (ADJ VERSION)” and "Figure 34.  
OUT  
= 10µF CERAMIC, CPB = 1500pF (ADJ VERSION)”  
“LOAD TRANSIENT 0A TO 3A, C  
OUT  
September 30, 2009 FN6660.0 Initial Release.  
About Intersil  
Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management  
semiconductors. The company's products address some of the largest markets within the industrial and infrastructure, personal  
computing and high-end consumer markets. For more information about Intersil, visit our website at www.intersil.com.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting  
www.intersil.com/en/support/ask-an-expert.html. Reliability reports are also available from our website at  
http://www.intersil.com/en/support/qualandreliability.html#reliability  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6660.6  
June 14, 2013  
15  
ISL80102, ISL80103  
Package Outline Drawing  
L10.3x3  
10 LEAD DUAL FLAT PACKAGE (DFN)  
Rev 7, 10/11  
5
3.00  
A
B
PIN #1 INDEX AREA  
1
2
5
PIN 1  
INDEX AREA  
10 x 0.23  
(4X)  
0.10  
1.60  
10x 0.35  
TOP VIEW  
BOTTOM VIEW  
A B  
C
M
0.10  
(4X)  
0.415  
0.23  
0.35  
SEE DETAIL "X"  
0.10  
(10 x 0.55)  
(10x 0.23)  
C
C
BASE PLANE  
0.20  
SEATING PLANE  
0.08 C  
SIDE VIEW  
(8x 0.50)  
4
0.20 REF  
0.05  
C
1.60  
2.85 TYP  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
4.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
Tiebar shown (if present) is a non-functional feature.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
5.  
FN6660.6  
June 14, 2013  
16  

相关型号:

ISL80103IRAJZ-T7A

High Performance 3A Linear Regulator; DFN10; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL80103IRAJZ-TK

High Performance 3A Linear Regulator; DFN10; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL8010IUZ

Monolithic 600mA Step-Down Regulator with Low Quiescent Current
INTERSIL

ISL8010IUZ-T13

Monolithic 600mA Step-Down Regulator with Low Quiescent Current
INTERSIL

ISL8010IUZ-T7

Monolithic 600mA Step-Down Regulator with Low Quiescent Current
INTERSIL

ISL8010_06

Monolithic 600mA Step-Down Regulator with Low Quiescent Current
INTERSIL

ISL8011

1.2A Integrated FETs, High Efficiency Synchronous Buck Regulator
INTERSIL

ISL80111

Ultra Low Dropout 1A, 2A, 3A Low Input Voltage NMOS LDOs
INTERSIL

ISL80111EVAL1Z

Ultra Low Dropout 1A, 2A, 3A Low Input Voltage NMOS LDOs
INTERSIL

ISL80111IRAJZ

Ultra Low Dropout 1A Low Input Voltage NMOS LDOs; DFN10; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL80111IRAJZ

Ultra Low Dropout 1A, 2A, 3A Low Input Voltage NMOS LDOs
INTERSIL

ISL80111IRAJZ-T

Ultra Low Dropout 1A Low Input Voltage NMOS LDOs; DFN10; Temp Range: -40&deg; to 85&deg;C
RENESAS