ISL8026A [RENESAS]

Compact Synchronous Buck Regulators;
ISL8026A
型号: ISL8026A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Compact Synchronous Buck Regulators

文件: 总23页 (文件大小:1411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL8026, ISL8026A  
Compact Synchronous Buck Regulators  
FN8736  
Rev 2.00  
October 28, 2016  
The ISL8026, ISL8026A are highly efficient, monolithic,  
synchronous step-down DC/DC converters that can deliver 6A of  
continuous output current from a 2.5V to 5.5V input supply. The  
devices use current mode control architecture to deliver a very low  
duty cycle operation at high frequency with fast transient  
response and excellent loop stability.  
Features  
• 2.5V to 5.5V input voltage range  
• Very low ON-resistance FETs - P-channel 36mΩ and  
N-channel 13mΩ typical values  
• High efficiency synchronous buck regulator with up to 95%  
efficiency  
The ISL8026, ISL8026A integrate a very low ON-resistance  
P-channel (36mΩ) high-side FET and N-channel (13mΩ)  
low-side FET to maximize efficiency and minimize external  
component count. The 100% duty-cycle operation allows less  
than 180mV dropout voltage at 6A output current. The  
operation frequency of the Pulse-width Modulator (PWM) is  
adjustable from 500kHz to 4MHz. The default switching  
frequency, which is set by connecting the FS pin high, is 1MHz  
for the ISL8026 and 2MHz for the ISL8026A.  
• 1.0% reference accuracy over load/line/temperature (-40°C  
to +85°C)  
• 1.5% reference accuracy over load/line/temperature (-40°C  
to +125°C)  
• Internal soft-start: 1ms or adjustable  
• Soft-stop output discharge during disable  
• Adjustable frequency from 500kHz to 4MHz - default at  
1MHz (ISL8026) or 2MHz (ISL8026A)  
The ISL8026, ISL8026A can be configured for discontinuous or  
forced continuous operation at light load. Forced continuous  
operation reduces noise and RF interference, while  
discontinuous mode provides higher efficiency by reducing  
switching losses at light loads.  
• External synchronization up to 4MHz  
• Over-temperature, overcurrent, overvoltage and negative  
overcurrent protection  
Fault protection is provided by internal hiccup mode current  
limiting during short-circuit and overcurrent conditions. Other  
protection, such as overvoltage and over-temperature, are also  
integrated into the device. A power-good output voltage  
monitor indicates when the output is in regulation.  
Applications  
• DC/DC POL modules  
μC/µP, FPGA and DSP power  
• Video processor/SOC power  
• Li-ion battery powered devices  
• Routers and switchers  
• Portable instruments  
The ISL8026, ISL8026A offer a 1ms Power-Good (PG) timer at  
power-up. When in shutdown, the ISL8026, ISL8026A  
discharge the output capacitor through an internal soft-stop  
switch. Other features include internal fixed or adjustable  
soft-start and internal/external compensation.  
• Test and measurement systems  
• Industrial PCs  
The ISL8026, ISL8026A are offered in a space saving 16 Ld  
3x3 Pb-free TQFN package with an exposed pad for improved  
thermal performance and 0.8mm maximum height. The  
Related Literature  
UG033, “ISL8026xEVAL3Z Evaluation Board User Guide”  
2
complete converter occupies less than 142mm .  
L1  
100  
+1.8V/6A  
VOUT  
GND  
1.0μH  
2 x 22μF  
C2  
3.3V  
PFM  
90  
80  
70  
60  
50  
40  
OUT  
+2.5V +5.5V  
C1  
2 x 22μF  
1
2
PGND  
PGND  
VIN  
VIN  
ISL8026  
R2  
200kꢀꢁ  
C3*  
22pF  
GND  
R1  
100kꢀꢁ  
VIN  
3.3V  
PWM  
OUT  
R3  
100kꢀꢁ  
PGND/  
SGND  
3
4
PG  
PG  
SYNC  
FB  
*C3 IS OPTIONAL. IT IS  
RECOMMENDED TO PUT A  
PLACEHOLDER FOR IT AND CHECK  
LOOP ANALYSIS BEFORE USE.  
V
O
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
------------  
R
= R  
1  
(EQ. 1)  
2
3  
VFB  
FIGURE 1. TYPICAL APPLICATION CIRCUIT CONFIGURATION (INTERNAL  
COMPENSATION OPTION)  
FIGURE 2. EFFICIENCY vs LOAD 1MHz 5V  
IN  
FN8736 Rev 2.00  
October 28, 2016  
Page 1 of 23  
ISL8026, ISL8026A  
Table of Contents  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Typical Operating Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
PWM Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SKIP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Frequency Adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Negative Current Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Soft Start-Up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Discharge Mode (Soft-Stop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Power MOSFETs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
100% Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Power Derating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Output Inductor and Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Loop Compensation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
PCB Layout Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
FN8736 Rev 2.00  
October 28, 2016  
Page 2 of 23  
ISL8026, ISL8026A  
Pin Configuration  
ISL8026, ISL8026A  
(16 LD TQFN)  
TOP VIEW  
16  
14  
15  
13  
VIN  
PGND  
PGND  
1
2
3
4
12  
11  
10  
9
VIN  
PG  
EPAD  
PGND/SGND  
FB  
SYNC  
8
7
6
5
Pin Descriptions  
PIN NUMBER  
SYMBOL  
DESCRIPTION  
1, 2, 16  
VIN  
Input supply voltage. Place a minimum of two 22µF ceramic capacitors from VIN to PGND as close as possible to the IC  
for decoupling.  
3
4
PG  
Power-good is an open-drain output. Use a 10kΩ to 100kΩ pull-up resistor connected between VIN and PG. At power-up or  
EN HI, PG rising edge is delayed by 1ms once the output voltage reaches regulation.  
SYNC  
Mode Selection pin. Connect to logic high or input voltage VIN for PWM mode. Connect to logic low or ground for PFM  
mode. Connect to an external function generator for synchronization with the positive edge trigger. There is an internal  
1MΩ pull-down resistor to prevent an undefined logic state in case the SYNC pin is floating.  
5
6
EN  
FS  
Regulator enable pin. Enable the output when driven high. Shut down the chip and discharge output capacitor when driven  
low.  
This pin sets the oscillator switching frequency using a resistor, R , from the FS pin to GND. The frequency of operation  
FS  
may be programmed between 500kHz to 4MHz. The default frequency is 1MHz (ISL8026), 2MHz (ISL8026A) if FS is  
connected to VIN.  
7
SS  
SS is used to adjust the soft-start time. Connect to SGND for internal 1ms rise time. Connect a capacitor from SS to SGND to  
adjust the soft-start time. Do not use more than 33nF per IC.  
8, 9  
COMP, FB The feedback network of the regulator, FB, is the negative input to the transconductance error amplifier. The output  
voltage is set by an external resistor divider connected to FB. With a properly selected divider, the output voltage can be  
set to any voltage between the power rail (reduced by converter losses) and the 0.6V reference.  
COMP is the output of the amplifier if COMP is not tied to VIN. Otherwise, COMP is disconnected through a MOSFET for  
internal compensation. Must connect COMP to VIN in internal compensation mode to meet a typical application.  
Additional external networks across COMP and SGND might be required to improve the loop compensation of the amplifier  
operation.  
In addition, the regulator power-good and undervoltage protection circuitry use FB to monitor the regulator output voltage.  
10  
PGND/SGND Power/signal ground  
11, 12  
PGND  
Power ground  
13, 14, 15  
PHASE  
Switching node connections. Connect to one terminal of the inductor. This pin is discharged by a 100Ω resistor when the  
device is disabled. See “Block Diagram” on page 5 for more detail.  
Exposed Pad  
-
The exposed pad must be connected to the SGND pin for proper electrical performance. Place as many vias as possible  
under the pad connecting to the SGND plane for optimal thermal performance.  
FN8736 Rev 2.00  
October 28, 2016  
Page 3 of 23  
ISL8026, ISL8026A  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
OPERATION FREQUENCY  
(MHz)  
TEMP. RANGE  
(°C)  
PACKAGE  
(RoHS COMPLIANT)  
PKG.  
DWG. #  
ISL8026IRTAJZ  
026A  
26AA  
026F  
026AF  
1
2
1
2
-40 to +85  
-40 to +85  
-40 to +125  
-40 to +125  
16 Ld 3x3 TQFN  
L16.3x3D  
L16.3x3D  
L16.3x3D  
L16.3x3D  
ISL8026AIRTAJZ  
ISL8026FRTAJZ  
ISL8026AFRTAJZ  
ISL8026EVAL3Z  
ISL8026AEVAL3Z  
NOTES:  
16 Ld 3x3 TQFN  
16 Ld 3x3 TQFN  
16 Ld 3x3 TQFN  
Evaluation board for ISL8026  
Evaluation board for ISL8026A  
1. Add “-T” suffix for 6k unit or “-T7A” suffix for 250 unit Tape and Reel options. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL8026, ISL8026A. For more information on MSL please see techbrief  
TB363.  
TABLE 1. SUMMARY OF KEY DIFFERENCES  
PART  
NUMBER  
I
(MAX)  
f
RANGE  
V
RANGE  
(V)  
V
OUT  
RANGE  
(V)  
PART SIZE  
(mm)  
OUT  
(A)  
SW  
(MHz)  
IN  
ISL8026  
6
Programmable 0.5MHz to 4MHz  
Programmable 1MHz to 4MHz  
2.5 to 5.5  
0.6 to 5.5  
3x3  
ISL8026A  
TABLE 2. ISL8026 COMPONENT SELECTION  
V
0.8V  
1.2V  
2 x 22µF  
2 x 22µF  
22pF  
1.5V  
2 x 22µF  
2 x 22µF  
22pF  
1.8V  
2 x 22µF  
2 x 22µF  
22pF  
2.5V  
3.3V  
3.6V  
OUT  
C
C
C
2 x 22µF  
4 x 22µF  
22pF  
2 x 22µF  
2 x 22µF  
22pF  
2 x 22µF  
2 x 22µF  
22pF  
2 x 22µF  
2 x 22µF  
22pF  
1
2
3
1
L
0.47~1µH  
33kΩ  
0.47~1µH  
100kΩ  
0.47~1µH  
150kΩ  
0.68~1.5µH  
200kΩ  
0.68~1.5µH  
316kΩ  
1~2.2µH  
450kΩ  
100kΩ  
1~2.2µH  
500kΩ  
R
R
2
3
100kΩ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
100kΩ  
TABLE 3. ISL8026A COMPONENT SELECTION  
V
0.8V  
22µF  
1.2V  
22µF  
1.5V  
22µF  
1.8V  
22µF  
2.5V  
22µF  
3.3V  
22µF  
3.6V  
22µF  
OUT  
C
C
C
1
2
3
1
3 x 22µF  
22pF  
2 x 22µF  
22pF  
2 x 22µF  
22pF  
2 x 22µF  
22pF  
2 x 22µF  
22pF  
2 x 22µF  
22pF  
2 x 22µF  
22pF  
L
0.22~0.47µH 0.22~0.47µH  
0.22~0.47µH  
150kΩ  
0.33~0.68µH  
200kΩ  
0.33~0.68µH  
316kΩ  
0.47~1µH  
450kΩ  
100kΩ  
0.47~1µH  
500kΩ  
100kΩ  
R
R
33kΩ  
100kΩ  
100kΩ  
2
3
100kΩ  
100kΩ  
100kΩ  
100kΩ  
FN8736 Rev 2.00  
October 28, 2016  
Page 4 of 23  
ISL8026, ISL8026A  
Block Diagram  
COMP  
55pF  
FS  
SYNC  
SS  
SOFT-  
START  
SHUTDOWN  
SHUTDOWN  
100kΩ  
+
+
VIN  
EN  
OSCILLATOR  
VREF  
3pF  
BANDGAP  
+
EAMP  
COMP  
-
P
-
PWM/PFM  
LOGIC  
CONTROLLER  
PROTECTION  
HS DRIVER  
PHASE  
PGND  
LS  
DRIVER  
N
+
FB  
SLOPE
COMP  
0.8V  
6kΩ  
+
-
CSA  
-
+
-
OV  
+
OCP  
-
0.85*VREF  
ISET  
THRESHOLD  
+
UV  
+
SKIP  
-
PG  
1ms  
DELAY  
NEG CURRENT  
SENSING  
SGND  
ZERO-CROSS  
SENSING  
-
SCP  
+
0.5V  
100Ω  
SHUTDOWN  
FIGURE 3. FUNCTIONAL BLOCK DIAGRAM  
FN8736 Rev 2.00  
October 28, 2016  
Page 5 of 23  
ISL8026, ISL8026A  
Absolute Maximum Ratings (Reference to GND)  
Thermal Information  
VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 5.8V (DC) or 7V (20ms)  
EN, FS, PG, SYNC, VFB . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VIN + 0.3V  
PHASE . . . . . . . . . . . . -1.5V (100ns)/-0.3V (DC) to 6.5V (DC) or 7V (20ms)  
COMP, SS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 2.7V  
ESD Ratings  
Thermal Resistance  
16 LD TQFN Package (Notes 4, 5) . . . . . . .  
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-55°C to +125°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
(°C/W)  
47  
(°C/W)  
6.5  
JA  
JC  
Human Body Model (Tested per JESD22-A114) . . . . . . . . . . . . . . . . . 3kV  
Charged Device Model (Tested per JESD22-C101E). . . . . . . . . . . . . . 2kV  
Machine Model (Tested per JESD22-A115). . . . . . . . . . . . . . . . . . . . 200V  
Latch-Up (Tested per JESD-78A; Class 2, Level A) . . . . . 100mA at +85°C  
Recommended Operating Conditions  
V
Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5V to 5.5V  
IN  
Load Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0A to 6A  
Ambient Temperature Range (Industrial) . . . . . . . . . . . . . .-40°C to +85°C  
Ambient Temperature Range (Full-Range Industrial) . . .-40°C to +125°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. , “case temperature” location is at the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Unless otherwise noted, all parameter limits are established across the recommended operating conditions  
and are measured at the following conditions: V = 3.6V, EN = V , unless otherwise noted. Typical values are at T = +25°C. Unless otherwise noted,  
IN  
IN  
A
Boldface limits apply across the operating temperature range, -40°C to +125°C  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6) TYP (Note 6)  
UNIT  
INPUT SUPPLY  
Undervoltage Lockout Threshold  
V
V
Rising, no load  
Falling, no load  
2.3  
2.25  
50  
50  
9
2.5  
V
IN  
UVLO  
2.10  
V
Quiescent Supply Current  
I
SYNC = GND, no load at the output  
µA  
µA  
mA  
mA  
µA  
VIN  
SYNC = GND, no load at the output and no switching  
62  
16  
23  
8
SYNC = V , f = 1MHz, no load at the output (ISL8026)  
IN SW  
SYNC = V , f = 2MHz, no load at the output (ISL8026A)  
IN SW  
16  
5
Shutdown Supply Current  
OUTPUT REGULATION  
Reference Voltage  
I
SYNC = GND, V = 5.5V, EN = low  
IN  
SD  
V
-40°C < T < +85°C  
0.594 0.600 0.606  
V
V
REF  
J
-40°C < T < +125°C  
J
0.591 0.600 0.606  
VFB Bias Current  
I
VFB = 0.75V  
0.1  
0.2  
1
µA  
%/V  
ms  
µA  
VFB  
Line Regulation  
V
= V + 0.5V to 5.5V (minimal 2.5V)  
O
IN  
SS = SGND  
= 0.1V  
Soft-Start Ramp Time Cycle  
Soft-Start Charging Current  
OVERCURRENT PROTECTION  
Current Limit Blanking Time  
ISS  
V
1.45  
1.85  
2.25  
SS  
t
17  
Clock  
OCON  
pulses  
Overcurrent and Auto Restart Period  
Positive Peak Current Limit  
Peak Skip Limit  
t
8
9
SS cycle  
OCOFF  
I
6A application  
7.5  
1
11  
A
A
PLIMIT  
I
6A application (See “Application Information” on page 19  
for more detail)  
1.3  
1.8  
SKIP  
Zero Cross Threshold  
Negative Current Limit  
-300  
-4.5  
300  
-1.5  
mA  
A
I
-3.0  
NLIMIT  
FN8736 Rev 2.00  
October 28, 2016  
Page 6 of 23  
ISL8026, ISL8026A  
Electrical Specifications Unless otherwise noted, all parameter limits are established across the recommended operating conditions  
and are measured at the following conditions: V = 3.6V, EN = V , unless otherwise noted. Typical values are at T = +25°C. Unless otherwise noted,  
IN  
IN  
A
Boldface limits apply across the operating temperature range, -40°C to +125°C (Continued)  
MIN  
MAX  
PARAMETER  
COMPENSATION  
SYMBOL  
TEST CONDITIONS  
(Note 6) TYP (Note 6)  
UNIT  
Error Amplifier Transconductance  
Internal compensation  
60  
µA/V  
µA/V  
External compensation  
120  
Transresistance  
Rt  
6A application (test at 3.6V)  
-40°C < T < +85°C  
0.119 0.140 0.166  
0.110 0.140 0.170  
Ω
Ω
J
6A application (test at 3.6V)  
-40°C < T < +125°C  
J
PHASE  
P-Channel MOSFET ON-Resistance  
V
V
V
V
= 5V, I = 200mA  
36  
52  
63  
89  
30  
36  
mΩ  
mΩ  
mΩ  
mΩ  
%
IN  
IN  
IN  
IN  
O
= 2.7V, I = 200mA  
O
N-Channel MOSFET ON-Resistance  
= 5V, I = 200mA  
13  
O
= 2.7V, I = 200mA  
17  
O
PHASE Maximum Duty Cycle  
PHASE Minimum On-Time  
OSCILLATOR  
100  
SYNC = High  
140  
ns  
Nominal Switching Frequency  
f
f
f
f
f
f
= V , ISL8026A. -40°C < T < +85°C  
IN  
1600 2000 2400  
1550 2000 2450  
kHz  
kHz  
kHz  
kHz  
kHz  
V
SW  
SW  
SW  
SW  
SW  
SW  
J
= V , ISL8026A. -40°C < T < +125°C  
IN  
J
= V , ISL8026  
IN  
780  
1000 1200  
490  
with RS = 402kΩ  
with RS = 42.2kΩ  
4200  
SYNC Logic LOW to HIGH Transition Range  
SYNC Hysteresis  
0.70  
0.75  
0.15  
3.6  
0.80  
5
V
SYNC Logic Input Leakage Current  
PG  
V
= 3.6V  
µA  
IN  
Output Low Voltage  
0.3  
2
V
ms  
µA  
V
Delay Time (Rising Edge)  
PG Pin Leakage Current  
OVP PG Rising Threshold  
UVP PG Rising Threshold  
UVP PG Hysteresis  
Time from V  
OUT  
reached regulation  
0.5  
80  
1
PG = V  
0.01  
0.80  
85  
0.10  
IN  
90  
%
30  
mV  
µs  
PGOOD Delay Time (Falling Edge)  
EN  
7.5  
Logic Input Low  
0.4  
1
V
Logic Input High  
0.9  
V
EN Logic Input Leakage Current  
Thermal Shutdown  
Pulled up to 3.6V  
0.1  
150  
25  
µA  
°C  
°C  
Temperature Rising  
Temperature Falling  
Thermal Shutdown Hysteresis  
NOTE:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN8736 Rev 2.00  
October 28, 2016  
Page 7 of 23  
ISL8026, ISL8026A  
Typical Operating Performance Unless otherwise noted, operating conditions are: T = +25°C, V = 5V, EN = V  
,
A
IN  
IN  
SYNC = V , L = 1.0µH, C = 22µF, C = 2 x 22µF, I  
= 0A to 6A. Resistor load is used in the test.  
IN  
100  
1
2
OUT  
100  
90  
80  
90  
80  
70  
60  
50  
40  
0.8V  
0.9V  
OUT  
OUT  
1.2V  
0.9V  
OUT  
0.8V  
OUT  
1.2V  
OUT  
1.5V  
OUT  
70  
1.5V  
OUT  
OUT  
2.5V  
OUT  
1.8V  
1.8V  
OUT  
OUT  
2.5V  
OUT  
60  
50  
40  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
FIGURE 4. EFFICIENCY vs LOAD (1MHz 3.3 V PWM)  
IN  
FIGURE 5. EFFICIENCY vs LOAD (1MHz 3.3 V PFM)  
IN  
100  
100  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
3.3V  
OUT  
3.3V  
OUT  
1.8V  
OUT  
2.5V  
OUT  
2.5V  
OUT  
1.8V  
OUT  
1.5V  
1.2V  
OUT  
1.2V  
OUT  
1.5V  
OUT  
OUT  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
FIGURE 6. EFFICIENCY vs LOAD (1MHz 5V PWM)  
IN  
FIGURE 7. EFFICIENCY vs LOAD (1MHz 5V PFM)  
IN  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
0.8V  
OUT  
0.8V  
OUT  
0.9V  
OUT  
0.9V  
OUT  
1.2V  
OUT  
1.2V  
OUT  
1.5V  
1.5V  
OUT  
OUT  
2.5V  
1.8V  
OUT  
2.5V  
1.8V  
OUT  
OUT  
OUT  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
FIGURE 9. EFFICIENCY vs LOAD (2MHz 3.3V PFM)  
IN  
FIGURE 8. EFFICIENCY vs LOAD (2MHz 3.3V PWM)  
IN  
FN8736 Rev 2.00  
October 28, 2016  
Page 8 of 23  
ISL8026, ISL8026A  
Typical Operating Performance Unless otherwise noted, operating conditions are: T = +25°C, V = 5V, EN = V  
,
A
IN  
IN  
SYNC = V , L = 1.0µH, C = 22µF, C = 2 x 22µF, I  
= 0A to 6A. Resistor load is used in the test. (Continued)  
IN  
100  
1
2
OUT  
100  
90  
80  
90  
80  
70  
60  
50  
40  
3.3V  
OUT  
3.3V  
OUT  
2.5V  
70  
60  
50  
40  
2.5V  
1.8V  
OUT 1.8V  
OUT  
OUT  
1.5V  
OUT  
1.5V  
0.9V  
0.9V  
OUT  
OUT  
1.2V  
OUT  
1.2V  
OUT  
OUT  
OUT  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
FIGURE 10. EFFICIENCY vs LOAD (2MHz 5V PWM)  
IN  
FIGURE 11. EFFICIENCY vs LOAD (2MHz 5V PFM)  
IN  
0.816  
0.813  
0.810  
0.807  
0.804  
0.801  
0.798  
0.795  
0.792  
0.789  
0.915  
0.912  
0.909  
0.906  
0.903  
0.900  
0.897  
0.894  
0.891  
5V PFM  
IN  
5V PFM  
IN  
3.3V PFM  
IN  
3.3V PFM  
IN  
5V PWM  
IN  
5V PWM  
IN  
3.3V PWM  
IN  
3.3V PWM  
IN  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
FIGURE 12. V  
REGULATION vs LOAD (1MHz, V  
= 0.8V)  
FIGURE 13. V  
REGULATION vs LOAD (1MHz, V  
= 0.9V)  
OUT  
OUT  
OUT  
OUT  
1.525  
1.520  
1.515  
1.510  
1.505  
1.500  
1.495  
1.219  
1.214  
1.209  
1.204  
1.199  
1.194  
3.3V PFM  
IN  
3.3V PFM  
IN  
5V PFM  
IN  
5V PFM  
IN  
5V PWM  
IN  
3.3V PWM  
IN  
1.189  
1.184  
1.179  
5V PWM  
IN  
3.3V PWM  
IN  
1.490  
1.485  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
FIGURE 14. V  
OUT  
REGULATION vs LOAD (1MHz, V  
= 1.2V)  
FIGURE 15. V  
REGULATION vs LOAD (1MHz, V  
= 1.5V)  
OUT  
OUT  
OUT  
FN8736 Rev 2.00  
October 28, 2016  
Page 9 of 23  
ISL8026, ISL8026A  
Typical Operating Performance Unless otherwise noted, operating conditions are: T = +25°C, V = 5V, EN = V  
,
A
IN  
IN  
SYNC = V , L = 1.0µH, C = 22µF, C = 2 x 22µF, I = 0A to 6A. Resistor load is used in the test. (Continued)  
OUT  
IN  
1.825  
1
2
2.510  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
2.505  
3.3V PFM  
IN  
3.3V PFM  
IN  
2.500  
2.495  
2.490  
2.485  
2.480  
2.475  
2.470  
5V PFM  
IN  
5V PFM  
IN  
5V PWM  
IN  
5V PWM  
IN  
3.3V PWM  
IN  
3.3V PWM  
IN  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
FIGURE 16. V  
OUT  
REGULATION vs LOAD (1MHz, V  
= 1.8V)  
FIGURE 17. V  
OUT  
REGULATION vs LOAD (1MHz, V = 2.5V)  
OUT  
OUT  
3.341  
3.333  
3.325  
3.317  
3.309  
3.301  
5V PFM  
IN  
5V PWM  
IN  
3.293  
3.285  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT LOAD (A)  
FIGURE 18. V  
OUT  
REGULATION vs LOAD (1MHz, V  
= 3.3V)  
OUT  
FN8736 Rev 2.00  
October 28, 2016  
Page 10 of 23  
ISL8026, ISL8026A  
Typical Operating Performance Unless otherwise noted, operating conditions are: T = +25°C, V = 5V, EN = V  
,
A
IN  
IN  
SYNC = V , L = 1.0µH, C = 22µF, C = 2 x 22µF, I  
= 0A to 6A. Resistor load is used in the test. (Continued)  
IN  
1
2
OUT  
PHASE 5V/DIV  
PHASE 5V/DIV  
V
1V/DIV  
5V/DIV  
V
1V/DIV  
5V/DIV  
OUT  
OUT  
V
V
EN  
EN  
PG 5V/DIV  
PG 5V/DIV  
1ms/DIV  
1ms/DIV  
FIGURE 19. START-UP AT NO LOAD (PFM)  
FIGURE 20. START-UP AT NO LOAD (PWM)  
PHASE 5V/DIV  
PHASE 5V/DIV  
V
1V/DIV  
V
1V/DIV  
OUT  
OUT  
V
5V/DIV  
V
5V/DIV  
EN  
EN  
PG 5V/DIV  
PG 5V/DIV  
500µs/DIV  
500µs/DIV  
FIGURE 21. SHUTDOWN AT NO LOAD (PFM)  
FIGURE 22. SHUTDOWN AT NO LOAD (PWM)  
PHASE 5V/DIV  
PHASE 5V/DIV  
V
1V/DIV  
5V/DIV  
OUT  
V
V
1V/DIV  
OUT  
V
EN  
5V/DIV  
EN  
PG 5V/DIV  
PG 5V/DIV  
500µs/DIV  
500µs/DIV  
FIGURE 24. SHUTDOWN AT 6A LOAD (PWM)  
FIGURE 23. START-UP AT 6A LOAD (PWM)  
FN8736 Rev 2.00  
October 28, 2016  
Page 11 of 23  
ISL8026, ISL8026A  
Typical Operating Performance Unless otherwise noted, operating conditions are: T = +25°C, V = 5V, EN = V  
,
A
IN  
IN  
SYNC = V , L = 1.0µH, C = 22µF, C = 2 x 22µF, I  
= 0A to 6A. Resistor load is used in the test. (Continued)  
IN  
1
2
OUT  
I
2A/DIV  
I
2A/DIV  
OUT  
OUT  
V
1V/DIV  
OUT  
V
1V/DIV  
OUT  
V
5V/DIV  
V
5V/DIV  
EN  
EN  
PG 5V/DIV  
PG 5V/DIV  
1ms/DIV  
200µs/DIV  
FIGURE 26. SHUTDOWN AT 6A LOAD (PFM)  
FIGURE 25. START-UP AT 6A LOAD (PFM)  
V
5V/DIV  
1V/DIV  
EN  
V
5V/DIV  
1V/DIV  
EN  
V
OUT  
V
OUT  
I
2A/DIV  
L
I
2A/DIV  
L
PG 5V/DIV  
PG 5V/DIV  
1ms/DIV  
50µs/DIV  
FIGURE 28. SHUTDOWN AT 3A LOAD (PWM)  
FIGURE 27. START-UP AT 3A LOAD (PWM)  
V
V
5V/DIV  
V
5V/DIV  
EN  
EN  
V
1V/DIV  
1V/DIV  
OUT  
OUT  
I
2A/DIV  
I
2A/DIV  
L
L
PG 5V/DIV  
PG 5V/DIV  
1ms/DIV  
50µs/DIV  
FIGURE 30. SHUTDOWN AT 3A LOAD (PFM)  
FIGURE 29. START-UP AT 3A LOAD (PFM)  
FN8736 Rev 2.00  
October 28, 2016  
Page 12 of 23  
ISL8026, ISL8026A  
Typical Operating Performance Unless otherwise noted, operating conditions are: T = +25°C, V = 5V, EN = V  
,
A
IN  
IN  
SYNC = V , L = 1.0µH, C = 22µF, C = 2 x 22µF, I  
= 0A to 6A. Resistor load is used in the test. (Continued)  
IN  
1
2
OUT  
I
2A/DIV  
OUT  
I
2A/DIV  
OUT  
V
1V/DIV  
5V/DIV  
OUT  
V
1V/DIV  
5V/DIV  
OUT  
V
V
IN  
IN  
PG 5V/DIV  
PG 5V/DIV  
1ms/DIV  
1ms/DIV  
FIGURE 31. START-UP V AT 6A LOAD (PFM)  
IN  
FIGURE 32. START-UP V AT 6A LOAD (PWM)  
IN  
I
2A/DIV  
1V/DIV  
OUT  
I
2A/DIV  
1V/DIV  
OUT  
V
OUT  
V
OUT  
V
5V/DIV  
V
5V/DIV  
IN  
IN  
PG 5V/DIV  
PG 5V/DIV  
1ms/DIV  
1ms/DIV  
FIGURE 33. SHUTDOWN V AT 6A LOAD (PFM)  
IN  
FIGURE 34. SHUTDOWN V AT 6A LOAD (PWM)  
IN  
PHASE 5V/DIV  
PHASE 5V/DIV  
V
1V/DIV  
5V/DIV  
OUT  
V
1V/DIV  
5V/DIV  
OUT  
V
IN  
V
IN  
PG 5V/DIV  
PG 5V/DIV  
1ms/DIV  
1ms/DIV  
FIGURE 35. START-UP VIN AT NO LOAD (PFM)  
FIGURE 36. START-UP VIN AT NO LOAD (PWM)  
FN8736 Rev 2.00  
October 28, 2016  
Page 13 of 23  
ISL8026, ISL8026A  
Typical Operating Performance Unless otherwise noted, operating conditions are: T = +25°C, V = 5V, EN = V  
,
A
IN  
IN  
SYNC = V , L = 1.0µH, C = 22µF, C = 2 x 22µF, I  
= 0A to 6A. Resistor load is used in the test. (Continued)  
IN  
1
2
OUT  
PHASE 5V/DIV  
PHASE 5V/DIV  
V
1V/DIV  
5V/DIV  
V
1V/DIV  
5V/DIV  
OUT  
OUT  
V
V
IN  
IN  
PG 5V/DIV  
PG 5V/DIV  
2ms/DIV  
2ms/DIV  
FIGURE 38. SHUTDOWN VIN AT NO LOAD (PWM)  
FIGURE 37. SHUTDOWN VIN AT NO LOAD (PFM)  
PHASE 1V/DIV  
PHASE 1V/DIV  
10ns/DIV  
10ns/DIV  
FIGURE 39. JITTER AT NO LOAD PWM  
FIGURE 40. JITTER AT FULL LOAD PWM  
PHASE 5V/DIV  
PHASE 5V/DIV  
V
RIPPLE 20mV/DIV  
OUT  
V
RIPPLE 20mV/DIV  
OUT  
IL 1A/DIV  
IL 1A/DIV  
20ms/DIV  
500ns/DIV  
FIGURE 42. STEADY STATE AT NO LOAD PFM  
FIGURE 41. STEADY STATE AT NO LOAD PWM  
FN8736 Rev 2.00  
October 28, 2016  
Page 14 of 23  
ISL8026, ISL8026A  
Typical Operating Performance Unless otherwise noted, operating conditions are: T = +25°C, V = 5V, EN = V  
,
A
IN  
IN  
SYNC = V , L = 1.0µH, C = 22µF, C = 2 x 22µF, I  
= 0A to 6A. Resistor load is used in the test. (Continued)  
IN  
1
2
OUT  
PHASE 5V/DIV  
PHASE 5V/DIV  
I
1A/DIV  
L
I
2A/DIV  
L
V
RIPPLE 20mV/DIV  
V
RIPPLE 20mV/DIV  
OUT  
OUT  
500ns/DIV  
500ns/DIV  
FIGURE 44. STEADY STATE AT 3A PFM  
FIGURE 43. STEADY STATE AT 6A PWM  
V
RIPPLE 100mV/DIV  
V
RIPPLE 50mV/DIV  
OUT  
OUT  
I
2A/DIV  
I 2A/DIV  
L
L
200µs/DIV  
200µs/DIV  
FIGURE 45. LOAD TRANSIENT (PWM)  
FIGURE 46. LOAD TRANSIENT (PFM)  
PHASE 5V/DIV  
V
1V/DIV  
5A/DIV  
OUT  
V
1V/DIV  
5A/DIV  
OUT  
I
L
I
L
PG 5V/DIV  
PG 5V/DIV  
20µs/DIV  
5µs/DIV  
FIGURE 48. OVERCURRENT PROTECTION  
FIGURE 47. OUTPUT SHORT-CIRCUIT  
FN8736 Rev 2.00  
October 28, 2016  
Page 15 of 23  
ISL8026, ISL8026A  
Typical Operating Performance Unless otherwise noted, operating conditions are: T = +25°C, V = 5V, EN = V  
,
A
IN  
IN  
SYNC = V , L = 1.0µH, C = 22µF, C = 2 x 22µF, I = 0A to 6A. Resistor load is used in the test. (Continued)  
OUT  
IN  
1
2
PHASE 5V/DIV  
PHASE1 5V/DIV  
BACK TO PFM AT 360mA  
600mA MODE TRANSITION,  
COMPLETELY ENTER TO PWM AT 640mA  
V
RIPPLE 20mV/DIV  
OUT1  
V
RIPPLE 20mV/DIV  
OUT1  
I
500mA/DIV  
I
500mA/DIV  
L
L
1µs/DIV  
1µs/DIV  
FIGURE 49. PFM TO PWM TRANSITION  
FIGURE 50. PWM TO PFM TRANSITION  
PHASE 5V/DIV  
V
1V/DIV  
OUT  
V
2V/DIV  
2A/DIV  
OUT  
I
L
PG 2V/DIV  
PG 5V/DIV  
2ms/DIV  
20µs/DIV  
FIGURE 51. OVERVOLTAGE PROTECTION  
FIGURE 52. OVER-TEMPERATURE PROTECTION  
FN8736 Rev 2.00  
October 28, 2016  
Page 16 of 23  
ISL8026, ISL8026A  
with the 55pF and 100kΩ RC network. The maximum EAMP  
voltage output is precisely clamped to 1.6V.  
Theory of Operation  
The ISL8026, ISL8026A are step-down switching regulators  
optimized for battery-powered applications. The regulators operate  
at a 1MHz or 2MHz fixed default switching frequency for high  
efficiency and allow smaller form factor when FS is connected to  
VIN. By connecting a resistor from FS to SGND, the operational  
frequency adjustable range is 500kHz to 4MHz. At light load, the  
regulator reduces the switching frequency, unless forced to the fixed  
frequency, to minimize the switching loss and to maximize the  
battery life. The quiescent current when the output is not loaded is  
typically only 50µA. The supply current is typically only 5µA when  
the regulator is shut down.  
V
EAMP  
V
CSA  
DUTY  
CYCLE  
I
L
V
OUT  
PWM Control Scheme  
Pulling the SYNC pin HI (>0.8V) forces the converter into PWM  
mode, regardless of output current. The ISL8026, ISL8026A  
employs the current-mode Pulse-width Modulation (PWM) control  
scheme for fast transient response and pulse-by-pulse current  
limiting. Figure 3 on page 5 shows the functional block diagram.  
The current loop consists of the oscillator, the PWM comparator,  
current sensing circuit and the slope compensation for the current  
loop stability. The slope compensation is 440mV/Ts, which changes  
with frequency. The gain for the current sensing circuit is typically  
140mV/A. The control reference for the current loops comes from  
the Error Amplifier's (EAMP) output.  
FIGURE 53. PWM OPERATION WAVEFORMS  
SKIP Mode  
Pulling the SYNC pin LOW (<0.4V) forces the converter into PFM  
mode. The ISL8026, ISL8026A enters a pulse-skipping mode at  
light load to minimize the switching loss by reducing the  
switching frequency. Figure 54 illustrates the skip mode  
operation. A zero-cross sensing circuit shown in Figure 3 on  
page 5 monitors the N-FET current for zero crossing. When 16  
consecutive cycles are detected, the regulator enters the Skip  
mode. During the sixteen detecting cycles, the current in the  
inductor is allowed to become negative. The counter is reset to  
zero when the current in any cycle does not cross zero.  
The PWM operation is initialized by the clock from the oscillator.  
The P-Channel MOSFET is turned on at the beginning of a PWM  
cycle and the current in the MOSFET starts to ramp up. When the  
sum of the current amplifier, CSA, and the slope compensation  
reaches the control reference of the current loop, the PWM  
comparator COMP sends a signal to the PWM logic to turn off the  
P-FET and turn on the N-channel MOSFET. The N-FET stays on until  
the end of the PWM cycle. Figure 53 shows the typical operating  
waveforms during the PWM operation. The dotted lines illustrate  
the sum of the slope compensation ramp and the Current-Sense  
Amplifier’s (CSA) output.  
Once the skip mode is entered, the pulse modulation starts being  
controlled by the Skip comparator shown in Figure 3 on page 5.  
Each pulse cycle is still synchronized by the PWM clock. The  
P-FET is turned on at the clock's rising edge and turned off when  
the output is higher than 1.2% of the nominal regulation or when  
its current reaches the peak skip current limit value. Then, the  
inductor current is discharged to 0A and stays at zero (the  
internal clock is disabled) and the output voltage reduces  
gradually due to the load current discharging the output  
capacitor. When the output voltage drops to the nominal voltage,  
the P-FET will be turned on again at the rising edge of the internal  
clock as it repeats the previous operations.  
The output voltage is regulated by controlling the V  
EAMP  
voltage  
to the current loop. The bandgap circuit outputs a 0.6V reference  
voltage to the voltage loop. The feedback signal comes from the  
VFB pin. The soft-start block only affects the operation during the  
start-up and will be discussed separately. The error amplifier is a  
transconductance amplifier that converts the voltage error signal  
to a current output. The voltage loop is internally compensated  
The regulator resumes normal PWM mode operation when the  
output voltage drops 2.5% below the nominal voltage.  
PWM  
PFM  
PWM  
CLOCK  
16 CYCLES  
PFM CURRENT LIMIT  
I
L
LOAD CURRENT  
0
NOMINAL +1.2%  
V
OUT  
NOMINAL -2.5%  
NOMINAL  
FIGURE 54. SKIP MODE OPERATION WAVEFORMS  
FN8736 Rev 2.00  
October 28, 2016  
Page 17 of 23  
ISL8026, ISL8026A  
Frequency Adjust  
Soft Start-Up  
The frequency of operation is fixed at 1MHz for ISL8026, 2MHz for  
ISL8026A when FS is tied to VIN. Adjustable frequency ranges from  
500kHz to 4MHz via a simple resistor connecting FS to SGND,  
according to Equation 2:  
The soft start-up reduces the inrush current during the start-up.  
The soft-start block outputs a ramp reference to the input of the  
error amplifier. This voltage ramp limits the inductor current as  
well as the output voltage speed, so that the output voltage rises  
in a controlled fashion. When VFB is less than 0.1V at the  
beginning of the soft-start, the switching frequency is reduced to  
200kHz, so that the output can start-up smoothly at light load  
condition. During soft-start, the IC operates in the Skip mode to  
support prebiased output condition.  
3
220 10  
------------------------------  
(EQ. 2)  
R
k =  
14  
FS  
f
kHz  
OSC  
Overcurrent Protection  
The overcurrent protection is realized by monitoring the CSA  
Tie SS to SGND for internal soft-start, which is approximately  
1ms. Connect a capacitor from SS to SGND to adjust the  
soft-start time. This capacitor, along with an internal 1.85µA  
output with the OCP comparator, as shown in Figure 3 on page 5.  
The current sensing circuit has a gain of 140mV/A, from the P-FET  
current to the CSA output. When the CSA output reaches the  
threshold, the OCP comparator is tripled to turn off the P-FET  
immediately. The overcurrent function protects the switching  
converter from a shorted output by monitoring the current flowing  
through the upper MOSFET.  
current source sets the soft-start interval of the converter, t as  
SS,  
shown by Equation 3.  
(EQ. 3)  
C
F= 3.1 t s  
SS  
SS  
C
must be less than 33nF to insure proper soft-start reset after  
SS  
Upon detection of an overcurrent condition, the upper MOSFET  
will be immediately turned off and will not be turned on again  
until the next switching cycle. Upon detection of the initial  
overcurrent condition, the overcurrent fault counter is set to 1. If,  
on the subsequent cycle, another overcurrent condition is  
detected, the OC fault counter will be incremented. If there are  
17 sequential OC fault detections, the regulator will be shut down  
under an overcurrent fault condition. An overcurrent fault  
condition will result in the regulator attempting to restart in a  
hiccup mode within the delay of eight soft-start periods. At the  
fault condition.  
Enable  
The Enable (EN) input allows the user to control the turning on or off  
of the regulator for purposes such as power-up sequencing. When  
the regulator is enabled, there is typically a 600µs delay for waking  
up the bandgap reference and then the soft start-up begins.  
Discharge Mode (Soft-Stop)  
When a transition to shutdown mode occurs or the VIN UVLO is  
set, the outputs discharge to GND through an internal 100Ω  
switch.  
th  
end of the 8 soft-start wait period, the fault counters are reset  
and soft-start is attempted again. If the overcurrent condition  
goes away during the delay of 8 soft-start periods, the output will  
resume back into regulation after hiccup mode expires.  
Power MOSFETs  
The power MOSFETs are optimized for best efficiency. The  
ON-resistance for the P-FET is typically 36mΩ and the  
ON-resistance for the N-FET is typically 13mΩ.  
Negative Current Protection  
Similar to overcurrent, the negative current protection is realized  
by monitoring the current across the low-side N-FET, as shown in  
Figure 3 on page 5. When the valley point of the inductor current  
reaches -3A for 4 consecutive cycles, both P-FET and N-FET are  
turned off. The 100Ω in parallel to the N-FET will activate  
discharging the output into regulation. The control will begin to  
switch when output is within regulation. The regulator will be in  
PFM for 20µs before switching to PWM, if necessary.  
100% Duty Cycle  
The ISL8026, ISL8026A features a 100% duty cycle operation to  
maximize the battery life. When the battery voltage drops to a  
level that the ISL8026, ISL8026A can no longer maintain the  
regulation at the output, the regulator completely turns on the  
P-FET. The maximum dropout voltage under the 100% duty cycle  
operation is the product of the load current and the  
ON-resistance of the P-FET.  
PG  
PG is an open-drain output of a window comparator that  
continuously monitors the buck regulator output voltage. PG is  
actively held low when EN is low and during the buck regulator  
soft-start period. After 1ms delay of the soft-start period, PG  
becomes high impedance as long as the output voltage is within the  
nominal regulation voltage set by VFB. When VFB drops 15% below  
or raises 0.8V above the nominal regulation voltage, the ISL8026,  
ISL8026A pulls PG low. Any fault condition forces PG low until the  
fault condition is cleared by attempts to soft-start. For logic level  
Thermal Shutdown  
The ISL8026, ISL8026A has built-in thermal protection. When the  
internal temperature reaches +150°C, the regulator is completely  
shut down. As the temperature drops to +125°C, the ISL8026,  
ISL8026A resumes operation by stepping through the soft-start.  
output voltages, connect an external pull-up resistor, R , between  
1
PG and VIN. A 100kΩ resistor works well in most applications.  
UVLO  
When the input voltage is below the Undervoltage Lockout  
(UVLO) threshold, the regulator is disabled.  
FN8736 Rev 2.00  
October 28, 2016  
Page 18 of 23  
ISL8026, ISL8026A  
The ISL8026, ISL8026A uses an internal compensation network  
and the output capacitor value is dependent on the output  
voltage. The ceramic capacitor is recommended to be X5R or  
X7R. The recommended X5R or X7R minimum output capacitor  
values are shown in Table 3 on page 4.  
Power Derating Characteristics  
To prevent the regulator from exceeding the maximum junction  
temperature, some thermal analysis is required. The  
temperature rise is given by Equation 4:  
(EQ. 4)  
T
= PD  
JA  
In Table 3, the minimum output capacitor value is given for the  
different output voltages to ensure that the whole converter  
system is stable. Additional output capacitance should be added  
for better performance in applications where high load transient  
or low output ripple is required. It is recommended to check the  
system level performance along with the simulation model.  
RISE  
Where PD is the power dissipated by the regulator and θ is the  
JA  
thermal resistance from the junction of the die to the ambient  
temperature. The junction temperature, T , is given by  
Equation 5:  
J
(EQ. 5)  
T
= T + T  
RISE  
Output Voltage Selection  
J
A
The output voltage of the regulator can be programmed via an  
external resistor divider that is used to scale the output voltage,  
relative to the internal reference voltage, and feed it back to the  
inverting input of the error amplifier (refer to Figure 1 on page 1).  
Where T is the ambient temperature. For the TQFN package, the  
A
θ
is 47 (°C/W).  
JA  
The actual junction temperature should not exceed the absolute  
maximum junction temperature of +125°C when considering  
the thermal design.  
The output voltage programming resistor, R , will depend on the  
2
value chosen for the feedback resistor and the desired output  
6
voltage of the regulator. The value for the feedback resistor, R ,  
3
is typically between 10kΩ and 100kΩ, as shown in Equation 7.  
5
3.3V  
V
O
VFB  
-----------  
1  
(EQ. 7)  
R
= R  
3
1.8V  
2
4
3
0.8V  
If the output voltage desired is 0.6V, then R is left unpopulated  
3
and R is shorted. There is a leakage current from V to PHASE.  
2
IN  
It is recommended to preload the output with 10µA minimum.  
2
1
For better performance, add 22pF in parallel with R (200kΩ).  
2
Check loop analysis before use in application.  
V
= 5V, ZERO LFM  
IN  
Input Capacitor Selection  
0
50  
60  
70  
80  
90  
100  
110  
120  
130  
The main functions for the input capacitor are to provide  
decoupling of the parasitic inductance and provide a filtering  
function to prevent the switching current flowing back to the  
battery rail. At least two 22µF X5R or X7R ceramic capacitors are  
a good starting point for the input capacitor selection.  
TEMPERATURE (°C)  
FIGURE 55. DERATING CURVE vs TEMPERATURE  
Application Information  
Output Inductor and Capacitor Selection  
Loop Compensation Design  
To consider steady state and transient operations, the ISL8026  
typically uses a 1.0µH output inductor and the ISL8026A uses a  
0.68µH output inductor. The higher or lower inductor value can  
be used to optimize the total converter system performance. For  
example, for a higher output voltage 3.3V application, in order to  
decrease the inductor current ripple and output voltage ripple,  
the output inductor value can be increased. It is recommended to  
set the ripple inductor current approximately 30% of the  
When COMP is not connected to VIN, the COMP pin is active for  
external loop compensation. The ISL8026, ISL8026A uses  
constant frequency peak current mode control architecture to  
achieve a fast loop transient response. An accurate current  
sensing pilot device in parallel with the upper MOSFET is used for  
peak current control signal and overcurrent protection. The  
inductor is not considered as a state variable since its peak  
current is constant and the system becomes a single order  
system. It is much easier to design a type II compensator to  
stabilize the loop than to implement voltage mode control. Peak  
current mode control has an inherent input voltage feed-forward  
function to achieve good line regulation. Figure 56 on page 20  
shows the small signal model of the synchronous buck regulator.  
maximum output current for optimized performance. The  
inductor ripple current can be expressed, as shown in Equation 6:  
V
O
---------  
V
1 –  
O
V
IN  
--------------------------------------  
(EQ. 6)  
I =  
L f  
S
The inductor’s saturation current rating needs to be at least  
larger than the peak current. The ISL8026, ISL8026A protects  
the typical peak current 9A. The saturation current needs to be  
over 10A for maximum output current application.  
FN8736 Rev 2.00  
October 28, 2016  
Page 19 of 23  
ISL8026, ISL8026A  
The compensator design procedure is as follows:  
^
^
^
L
R
LP  
i
i
P
L
v
in  
o
The loop gain at crossover frequency of f has a unity gain.  
c
^
V d  
in  
Therefore, the compensator resistance R is determined by  
^
^
1:D  
6
I d  
V
L
in  
Equation 9.  
Rc  
Co  
+
Rt  
2f V C R  
o o t  
Ro  
3
c
(EQ. 9)  
---------------------------------  
= 12.210 f V C  
c o o  
R
=
6
GM V  
FB  
T(S)  
i
Where GM is the sum of the transconductance, g , of the voltage  
m
^
d
K
error amplifier in each phase. Compensator capacitor C is then  
6
Fm  
given by Equation 10.  
R C  
V C  
o o  
I R  
o 6  
R C  
o
o
1
c
o
(EQ. 10)  
T (S)  
-------------- --------------  
= ,C = max(--------------,---------------)  
C
=
+
v
He(S)  
6
7
R
R
f R  
s 6  
6
6
^
v
comp  
-Av(S)  
Put one compensator pole at zero frequency to achieve high DC  
gain, and put another compensator pole at either ESR zero  
frequency or half switching frequency, whichever is lower in  
Equation 10. An optional zero can boost the phase margin. CZ2  
FIGURE 56. SMALL SIGNAL MODEL OF SYNCHRONOUS BUCK  
REGULATOR  
is a zero due to R and C .  
2
3
Vo  
Put compensator zero 2 to 5 times f .  
c
1
R
R
C
3
(EQ. 11)  
---------------  
C =  
2
3
3
f R  
c
2
V
FB  
V
-
COMP  
Example: V = 5V, V = 1.8V, I = 6A, f = 1MHz, R = 200kΩ,  
IN sw  
R = 100kΩ, C = 2x22µF/3mΩ, L = 1µH, f = 100kHz, then  
compensator resistance R :  
GM  
O
O
2
V
REF  
+
3
o
c
6
R
6
3
(EQ. 12)  
C
R
= 12.210 100kHz 1.8V 44F = 97.6k  
7
6
C
6
1.8V 44F  
6A 97.6k  
(EQ. 13)  
(EQ. 14)  
-------------------------------  
= 135pF  
C
C
=
6
7
3m  44F  
1
= max(--------------------------------,-------------------------------------------------) = (1pF, 3.3pF)  
97.6k  1MHz97.6k  
FIGURE 57. TYPE II COMPENSATOR  
It is also acceptable to use the closest standard values for C and  
6
Figure 57 shows the type II compensator and its transfer function  
is expressed as shown in Equation 8:  
C . There is approximately 3pF parasitic capacitance from V  
7
COMP  
to GND. Therefore, C is optional. Use C = 150pF and C = OPEN.  
7
6
7
S
S
   
   
------------  
------------  
1 +  
1 +  
ˆ
GM R  
v
1
comp  
3
cz1  
cz2  
(EQ. 15)  
---------------- -------------------------------------------------------- --------------------------------------------------------------  
-----------------------------------------------  
= 16pF  
A S=  
=
C
=
3
v
ˆ
C + C   R + R   
S
S
100kHz 200k  
v
   
6
7
2
3
FB  
-------------  
-------------  
S 1 +  
1 +  
   
cp1  
cp2  
Use C = 15pF. Note that C may increase the loop bandwidth  
(EQ. 8)  
3
3
from previous estimated value. Figure 58 on page 21 shows the  
simulated voltage loop gain. It is shown that it has a 150kHz loop  
bandwidth with a 42° phase margin and 10dB gain margin. It  
may be more desirable to achieve an increased phase margin.  
Where,  
C
+ C  
R + R  
2
C R R  
3 2 3  
1
1
6
7
3
--------------  
--------------  
----------------------  
----------------------  
=
,
=
   
=
   
cp2  
=
cz1  
cz2  
cp1  
R C  
R C  
R C C  
6
6
2
3
6
6
7
This can be accomplished by lowering R by 20% to 30%.  
6
Compensator design goal:  
High DC gain  
Choose loop bandwidth f less than 100kHz  
c
Gain margin: >10dB  
Phase margin: >40°  
FN8736 Rev 2.00  
October 28, 2016  
Page 20 of 23  
ISL8026, ISL8026A  
60  
45  
30  
15  
0
PCB Layout Recommendation  
The PCB layout is a very important converter design step to make  
sure the designed converter works well. For the ISL8026,  
ISL8026A, the power loop is composed of the output inductor Ls,  
the output capacitor (C  
), the PHASE pins and the PGND pin. It  
OUT  
is necessary to make the power loop as small as possible and  
the connecting traces among them should be direct, short and  
wide. The switching node of the converter, the PHASE pins and  
the traces connected to the node are very noisy, so keep the  
voltage feedback trace away from these noisy traces. The input  
capacitor should be placed as close as possible to the VIN pin.  
The ground of input and output capacitors should be connected  
as close as possible. The heat of the IC is mainly dissipated  
through the thermal pad. Maximizing the copper area connected  
to the thermal pad is preferable. In addition, a solid ground plane  
is helpful for better EMI performance. It is recommended to add  
at least 5 vias ground connection within the pad for the best  
thermal relief.  
-15  
-30  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
180  
150  
120  
90  
60  
30  
0
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 58. SIMULATED LOOP GAIN  
FN8736 Rev 2.00  
October 28, 2016  
Page 21 of 23  
ISL8026, ISL8026A  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please go to web to make sure you have the latest revision.  
DATE  
REVISION  
CHANGE  
2
2
October 28, 2016  
FN8736.2 On page 1, last paragraph - converted - 0.22in to 142mm .  
Added “1.5% reference accuracy over load/line/temperature (-40°C to +125°C)” to Features section on page 1.  
Updated Ordering Information table on page 4:  
Added 2 parts - ISL8026FRTAJZ and ISL8026AFRTAJZ  
Removed “-T” from bulk parts and added Tape and Reel unit options to Note 1.  
Updated Recommended Operating Conditions: Added full-range industrial temperature range  
Electrical Spec table updates:  
Reference Voltage added temp -40°C < T < +85°C and added row for -40°C < Tj < +125°C  
J
Transresistance - Added temp -40°C < T < +85°C and added row for temperature -40°C < T < +125°C  
J
J
Nominal Switching Frequency - added temperature -40°C < Tj < +85°C and added row for temperature  
-40°C < T < +125°C  
J
June 26, 2015  
FN8736.1 Updated the 4th Features bullet by changing from 1.2% to 1% and adding temperature range.  
Updated Applications bullets. on page 1.  
Added Related Literature section.  
Added evaluation boards to Ordering Information table on page 4.  
In “Electrical Specifications” on page 6, updated min/max specs for Reference Voltage parameter (min)  
from”0.593” to “0.594” and (max) from “0.607” to “0.606”.  
Updated Equation 9 and Equations 12 through 14 on page 20.  
Updated example I information from “5A” to “6A” on page 20.  
O
May 13, 2015  
FN8736.0 Initial Release  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
© Copyright Intersil Americas LLC 2015-2016. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8736 Rev 2.00  
October 28, 2016  
Page 22 of 23  
ISL8026, ISL8026A  
For the most recent package outline drawing, see L16.3x3D.  
Package Outline Drawing  
L16.3x3D  
16 LEAD THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 0, 3/10  
4X 1.50  
3.00  
6
A
12X 0.50  
PIN #1  
INDEX AREA  
B
13  
16  
6
PIN 1  
INDEX AREA  
12  
1
1.60 SQ  
4
9
(4X)  
0.15  
0.10 M C A B  
16X 0.23±0.05  
8
5
16X 0.40±0.10  
BOTTOM VIEW  
TOP VIEW  
4
SEE DETAIL “X”  
0.10 C  
C
0.75 ±0.05  
0.08 C  
SIDE VIEW  
(12X 0.50)  
(2.80 TYP) ( 1.60)  
(16X 0.23)  
5
0 . 2 REF  
C
(16X 0.60)  
0 . 02 NOM.  
0 . 05 MAX.  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.25mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
JEDEC reference drawing: MO-220 WEED.  
7.  
FN8736 Rev 2.00  
October 28, 2016  
Page 23 of 23  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY