ISL8036A [RENESAS]

Dual 3A 1MHz/2.5MHz High Efficiency Synchronous Buck Regulator;
ISL8036A
型号: ISL8036A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Dual 3A 1MHz/2.5MHz High Efficiency Synchronous Buck Regulator

文件: 总26页 (文件大小:3229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL8036, ISL8036A  
Dual 3A 1MHz/2.5MHz High Efficiency Synchronous Buck Regulator  
FN6853  
Rev 3.00  
August 17, 2012  
ISL8036, ISL8036A are integrated power controllers rated for  
Features  
dual 3A output current or current sharing operation with a  
• 3A High Efficiency Synchronous Buck Regulator with up to  
95% Efficiency  
1MHz (ISL8036)/2.5MHz (ISL8036A) step-down regulator,  
which is ideal for any low power low-voltage applications. The  
channels are 180° out-of-phase for input RMS current and EMI  
reduction. It is optimized for generating low output voltages  
down to 0.8V each. The supply voltage range is from 2.8V to  
6V, allowing for the use of a single Li+ cell, three NiMH cells or  
a regulated 5V input. The two channels are 180° out-of-phase,  
and each one has a guaranteed minimum output current of  
3A. They can be combined to form a single 6A output in the  
current sharing mode. While in current sharing, the interleaved  
PWM signals reduce input and output ripple.  
• 2% Output Accuracy Over-Temperature/Load/Line  
• Internal Digital Soft-Start - 1.5ms  
• 6A Current Sharing Mode Operation  
• External Synchronization up to 6MHz  
• Internal Current Mode Compensation  
• Peak Current Limiting and Hiccup Mode Short Circuit  
Protection  
• Reverse Overcurrent Protection  
The ISL8036, ISL8036A includes a pair of low ON-resistance  
P-channel and N-channel internal MOSFETs to maximize  
efficiency and minimize external component count. 100%  
duty-cycle operation allows less than 250mV dropout voltage  
at 3A each.  
Applications  
• DC/DC POL Modules  
• µC/µP, FPGA and DSP Power  
• Plug-in DC/DC Modules for Routers and Switchers  
• Test and Measurement Systems  
• Li-ion Battery Power Devices  
• Bar Code Reader  
The ISL8036, ISL8036A offers an independent 1ms  
Power-good (PG) timer at power-up. When shutdown, ISL8036,  
ISL8036A discharges the output capacitor. Other features  
include internal digital soft-start, enable for power sequence,  
overcurrent protection, and thermal shutdown.  
The ISL8036, ISL8036A is offered in a 24 Ld 4mmx4mm QFN  
package with 1mm maximum height. The complete converter  
occupies less than 1.5cm area.  
Related Literature  
AN1616, “ISL8036CRSHEVAL1Z Current Sharing 6A Low  
Quiescent Current High Efficiency Synchronous Buck  
Regulator”  
2
AN1617, “ISL8036DUALEVAL1Z Dual 3A Low Quiescent  
Current High Efficiency Synchronous Buck Regulator”  
AN1615, “ISL8036ACRSHEVAL1Z Current Sharing 6A Low  
Quiescent Current High Efficiency Synchronous Buck  
Regulator”  
AN1618, “ISL8036ADUALEVAL1Z Dual 3A Low Quiescent  
Current High Efficiency Synchronous Buck Regulator”  
100  
90  
80  
70  
60  
50  
40  
3.3V  
- PWM  
OUT  
0
1
2
3
4
5
6
OUTPUT LOAD (A)  
FIGURE 1. EFFICIENCY vs LOAD, 1MHz 5V PWM, T = +25°C  
IN  
A
FN6853 Rev 3.00  
August 17, 2012  
Page 1 of 26  
ISL8036, ISL8036A  
Typical Applications  
L1  
1.5µH  
OUTPUT1  
1.8V/6A  
INPUT 2.8V TO 6V  
VIN1, 2  
LX1  
PGND  
FB1  
C2  
2x22µF  
VDD  
EN1  
C1  
C3  
2x22µF  
12pF  
R2  
124k  
ISL8036,  
ISL8036A  
EN2  
R3  
100k  
PG1  
SGND  
LX2  
L2  
1.5µH  
SYNC  
PG2  
SS  
C4  
2x22µF  
PGND  
C5  
22nF  
FB2  
COMP  
C6  
150pF  
R6  
50k  
SGND  
FIGURE 2. TYPICAL APPLICATION DIAGRAM - SINGLE 6A  
L1  
1.5µH  
OUTPUT1  
1.8V/3A  
INPUT 2.7V TO 6V  
VIN  
LX1  
C2  
2x22µF  
C3  
12pF  
VDD  
SS  
C1  
2x22µF  
PGND  
FB1  
R2  
124k  
ISL8036,  
ISL8036A  
EN1  
R3  
100k  
PG1  
SGND  
LX2  
L2  
1.5µH  
SYN C  
OUTPUT2  
1.8V/3A  
C4  
2x22µF  
EN2  
PG2  
C5  
12pF  
PGND  
FB2  
R5  
124k  
R6  
100k  
COMP  
SGND  
FIGURE 3. TYPICAL APPLICATION DIAGRAM - DUAL 3A OUTPUTS  
FN6853 Rev 3.00  
August 17, 2012  
Page 2 of 26  
ISL8036, ISL8036A  
TABLE 1. COMPONENT VALUE SELECTION FOR DUAL OPERATION  
V
0.8V  
2x22µF  
2X22µF  
1.0~2.2µH  
0
1.2V  
2x22µF  
2X22µF  
1.0~2.2µH  
50k  
1.5V  
2x22µF  
2X22µF  
1.0~2.2µH  
87.5k  
1.8V  
2x22µF  
2X22µF  
1.0~3.3µH  
124k  
2.5V  
2x22µF  
2X22µF  
1.0~3.3µH  
212.5k  
100k  
3.3V  
2x22µF  
2X22µF  
1.0~4.7µH  
312.5k  
100k  
OUT  
C1  
C2 (or C4)  
L1 (or L2)*  
R2 (or R5)  
R3 (or R6)  
100k  
100k  
100k  
100k  
*For ISL8036A, the values used for L1 (or L2) are half the values specified above for each V  
.
OUT  
TABLE 2. COMPONENT VALUE SELECTION FOR CURRENT SHARING OPERATION  
V
0.8V  
2x22µF  
2X22µF  
1.0~2.2µH  
0
1.2V  
2x22µF  
2X22µF  
1.0~2.2µH  
50k  
1.5V  
2x22µF  
2X22µF  
1.0~2.2µH  
87.5k  
1.8V  
2x22µF  
2X22µF  
1.0~3.3µH  
124k  
2.5V  
2x22µF  
2X22µF  
1.0~3.3µH  
212.5k  
100k  
3.3V  
2x22µF  
2X22µF  
1.0~4.7µH  
312.5k  
100k  
OUT  
C1  
C2 (or C4)  
L1 (or L2)*  
R2  
R3  
100k  
100k  
100k  
100k  
R6  
30k  
33k  
31k  
30k  
29k  
28k  
C6  
250pF  
180pF  
150pF  
150pF  
150pF  
150pF  
*For ISL8036A, the values used for L1 (or L2) are half the values specified above for each V  
NOTE: C5 value (22nF) is given by Equation 1 corresponding to the desired soft-start time.  
.
OUT  
TABLE 3. SUMMARY OF DIFFERENCES  
SWITCHING FREQUENCY  
PART NUMBER  
ISL8036  
Internally fixed switching frequency F  
= 1MHz  
SW  
SW  
ISL8036A  
Internally fixed switching frequency F  
= 2.5MHz  
FN6853 Rev 3.00  
August 17, 2012  
Page 3 of 26  
ISL8036, ISL8036A  
Block Diagram  
COMP  
27pF  
390k  
0.3pF  
SS  
SHUTDOWN  
SOFT-  
START  
T
SHUTDOWN  
VIN1  
EN1  
PWM  
LOGIC  
0.8V  
+
BANDGAP  
+
EAMP  
LX1  
COMP  
CONTROLLER  
PROTECTION  
DRIVER  
3pF  
PGND  
SLOPE  
COMP  
+
+
FB1  
CSA1  
1.6k  
SCP  
0.5V  
+
0.864V  
+
+
OSCILLATOR  
VIN1  
0.736V  
1M  
PG1  
SYNC  
1ms  
DELAY  
SGND  
SHUTDOWN  
THERMAL  
SHUTDOWN  
OCP  
THRESHOLD  
LOGIC  
27pF  
390k  
SS  
SOFT-  
START  
0.3pF  
SHUTDOW N  
SHUTDOWN  
BANDGAP  
VIN2  
EN2  
0.8V  
+
+
EAMP  
COMP  
PWM  
LOGIC  
LX2  
CONTROLLER  
PROTECTION  
DRIVER  
3pF  
PGND  
SLOPE  
COMP  
+
+
FB2  
CSA2  
SCP  
1.6k  
0.5V  
+
0.864V  
+
+
VIN2  
0.736V  
1M  
PG2  
1ms  
DELAY  
SGND  
FN6853 Rev 3.00  
August 17, 2012  
Page 4 of 26  
ISL8036, ISL8036A  
Pin Configuration  
ISL8036, ISL8036A  
(24 LD QFN)  
TOP VIEW  
24 23 22 21 20 19  
LX2  
VIN2  
VIN2  
EN2  
PG2  
FB2  
LX1  
VIN1  
VIN1  
VDD  
SS  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
25  
PAD  
EN1  
7
8
9
10 11 12  
Pin Descriptions  
PIN  
NUMBER  
1, 24  
22, 23  
4
SYMBOL  
LX2  
DESCRIPTION  
Switching node connection for Channel 2. Connect to one terminal of inductor for VOUT2.  
Negative supply for the power stage of Channel 2.  
PGND2  
EN2  
Regulator Channel 2 enable pin. Enable the output, VOUT2, when driven to high. Shutdown the VOUT2 and discharge  
output capacitor when driven to low. Do not leave this pin floating.  
5
6
7
PG2  
FB2  
1ms timer output. At power-up or EN HI, this output is a 1ms delayed Power-Good signal for the VOUT2 voltage.  
The feedback network of the Channel 2 regulator. To be connected to FB1 (current sharing)  
COMP  
An additional external network across COMP and SGND is required to improve the loop compensation of the amplifier  
channel parallel operation. The soft-start pin should be tied to the external capacitor. COMP pin is NC in dual mode  
operation, using internal compensation. If SS pin is tied to CSS (without connection to VIN), external compensation is  
automtaically used. Connect an external R,C network on COMP pin for parallel mode operation.  
8
9
NC  
No connect pin; please tie to GND.  
FB1  
The feedback network of the Channel 1 regulator. FB1 is the negative input to the transconductance error amplifier.  
The output voltage is set by an external resistor divider connected to FB1. With a properly selected divider, the output  
voltage can be set to any voltage between the power rail (reduced by converter losses) and the 0.8V reference. There  
is an internal compensation to meet a typical application. In addition, the regulator power-good and undervoltage  
protection circuitry use FB1 to monitor the Channel 1 regulator output voltage.  
10  
11  
12  
SGND  
PG1  
System ground.  
1ms timer output. At power-up or EN HI, this output is a 1ms delayed Power-Good signal for the VOUT1 voltage.  
SYNC  
Connect to logic high or input voltage VIN . Connect to an external function generator for external Synchronization.  
Negative edge trigger. Do not leave this pin floating. Do not tie this pin low (or to SGND).  
13  
EN1  
Regulator Channel 1 enable pin. Enable the output, VOUT1, when driven to high. Shutdown the VOUT1 and discharge  
output capacitor when driven to low. Do not leave this pin floating.  
FN6853 Rev 3.00  
August 17, 2012  
Page 5 of 26  
ISL8036, ISL8036A  
Pin Descriptions(Continued)  
PIN  
NUMBER  
SYMBOL  
SS  
DESCRIPTION  
14  
SS is used to adjust the soft-start time. When SS pin is tied to VIN, SS time is 1.5ms. SS pin is tied to VIN only in dual  
mode operation. SS pin is tied to CSS only in parallel mode operation, using only external compensation. Connect a  
capacitor from SS to SGND to adjust the soft-start time (current sharing). C should not be larger than 33nF. This  
SS  
capacitor, along with an internal 5µA current source sets the soft-start interval of the converter, t  
(EQ. 1)  
.
SS  
C
F= 6.25 t s  
SS  
SS  
15  
VDD  
PGND1  
LX1  
Input supply voltage for the logic. VDD to be at the same potential as VIN +0.3/-0.5V.  
Negative supply for the power stage of Channel 1.  
20, 21  
18, 19  
Switching node connection for Channel 1. Connect to one terminal of inductor for VOUT1.  
Input supply voltage. Connect 22µF ceramic capacitor to power ground per channel.  
16, 17  
2, 3  
VIN1,  
VIN2  
25  
PAD  
The exposed pad must be connected to the SGND pin for proper electrical performance. Add as much vias as possible  
for optimal thermal performance.  
Ordering Information  
PART NUMBER  
(Notes 2, 3)  
PART  
MARKING  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
ISL8036IRZ  
80 36IRZ  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
24 Ld 4x4 QFN  
L24.4x4D  
ISL8036IRZ-T (Note 1)  
ISL8036AIRZ  
80 36IRZ  
24 Ld 4x4 QFN  
24 Ld 4x4 QFN  
24 Ld 4x4 QFN  
L24.4x4D  
L24.4x4D  
L24.4x4D  
80 36AIRZ  
ISL8036AIRZ-T (Note 1)  
ISL8036CRSHEVAL1Z  
ISL8036DUALEVAL1Z  
ISL8036ACRSHEVAL1Z  
ISL8036ADUALEVAL1Z  
NOTES:  
80 36AIRZ  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus  
anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL8036, ISL8036A. For more information on MSL, please see Technical  
Brief TB363.  
FN6853 Rev 3.00  
August 17, 2012  
Page 6 of 26  
ISL8036, ISL8036A  
Table of Contents  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
ISL8036 Typical Operating Performance for Dual PWM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
ISL8036A Typical Operating Performance for Dual PWM Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
ISL8036 Typical Operating Performance for Current Sharing PWM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
ISL8036A Typical Operating Performance for Current Sharing PWM Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PWM Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Synchronization Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Output Current Sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Soft-start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Discharge Mode (Soft-Stop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power MOSFETs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
100% Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Output Inductor and Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
PCB Layout Recommendation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
FN6853 Rev 3.00  
August 17, 2012  
Page 7 of 26  
ISL8036, ISL8036A  
Absolute Maximum Ratings (Reference to SGND)  
Thermal Information  
VIN1, VIN2, VDD . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V (DC) or 7V (20ms)  
LX1, LX2 . . . . . . . . . . . . . -3V/(10ns)/-1.5V (100ns)/-0.3V (DC) to 6.5V (DC) or  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7V(20ms)/8.5V(10ns)  
EN1, EN2, PG1, PG2, SYNC, SS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
FB1, FB2, COMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 2.7V  
NC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 0.3V  
ESD Ratings  
Thermal Resistance (Typical)  
JA (°C/W)  
36  
JC (°C/W)  
24 Ld 4x4 QFN (Notes 4, 5). . . . . . . . . . .  
2
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-55°C to +150°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Human Body Model (Tested per JESD22-A114) . . . . . . . . . . . . . . . . . 4kV  
Charged Device Model (Tested per JESD22-C101E). . . . . . . . . . . . . . 2kV  
Machine Model (Tested per JESD22-A115). . . . . . . . . . . . . . . . . . . . 300V  
Latch Up (Tested per JESD-78A; Class 2, Level A) . . . . . . . . . . . . . . 100mA  
Recommended Operating Conditions  
VIN Supply Voltage Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.85V to 6V  
Load Current Range per Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 0A to 3A  
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For , “case temperature” location is at the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Unless otherwise noted, the typical specifications are measured at the following conditions:  
T = -40°C to +85°C, V = 3.6V, EN1 = EN2 = VDD, L = 1.5µH, C1 = C2 = C4 = 2x22µF, I  
= I = 0A to 3A, unless otherwise noted. Typical values  
OUT1 OUT2  
A
IN  
are at T = +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C.  
A
MIN  
MAX  
PARAMETER  
INPUT SUPPLY  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNITS  
VIN Undervoltage Lockout Threshold  
V
Rising  
2.5  
100  
15  
2.85  
40  
V
UVLO  
Hysteresis  
50  
mV  
mA  
Quiescent Supply Current  
I
SYNC = VDD, EN1 = EN2 = VDD,  
F = 1MHz, no load at the output  
VDD  
S
F
= 2.5MHz, no load at the output  
30  
8
70  
20  
mA  
µA  
S
Shutdown Supply Current  
OUTPUT REGULATION  
FB1, FB2 Regulation Voltage  
FB1, FB2 Bias Current  
Load Regulation  
I
V
= 6V, EN1 = EN2 = SGND  
DD  
SD  
V
0.790  
0.8  
0.1  
2
0.810  
V
µA  
FB  
I
VFB = 0.75V  
FB  
SYNC = VDD, output load from 0A to 6A  
mV/A  
%/V  
ms  
Line Regulation  
V
= V + 0.5V to 6V (minimal 2.85V)  
0.1  
1.5  
5
IN  
O
Soft-start Ramp Time Cycle  
Soft-start Charging Current  
COMPENSATION  
SS = VDD  
I
4
6
µA  
SS  
Error Amplifier Trans-Conductance  
SS = VDD  
20  
100  
0.2  
µA/V  
µA/V  
Ω
SS with Capacitor  
Trans-resistance  
RT  
0.180  
-0.03  
0.220  
+0.03  
Trans-resistance Matching  
OVERCURRENT PROTECTION  
Dynamic Current Limit ON-time  
Dynamic Current Limit OFF-time  
Positive Peak Overcurrent Limit  
RT_match  
Ω
t
17  
8
Clock pulses  
OCON  
t
SS cycle  
OCOFF  
I
I
I
I
4.1  
4.1  
4.8  
4.8  
-2.5  
-2.5  
5.5  
5.5  
A
A
A
A
poc1  
poc2  
noc1  
noc2  
Negative Peak Overcurrent Limit  
-3.5  
-3.5  
-1.5  
-1.5  
FN6853 Rev 3.00  
August 17, 2012  
Page 8 of 26  
ISL8036, ISL8036A  
Electrical Specifications Unless otherwise noted, the typical specifications are measured at the following conditions:  
T = -40°C to +85°C, V = 3.6V, EN1 = EN2 = VDD, L = 1.5µH, C1 = C2 = C4 = 2x22µF, I  
= I = 0A to 3A, unless otherwise noted. Typical values  
OUT1 OUT2  
A
IN  
are at T = +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNITS  
LX1, LX2  
P-Channel MOSFET ON-Resistance  
V
V
V
V
= 6V, I = 200mA  
50  
70  
75  
100  
75  
mΩ  
mΩ  
mΩ  
mΩ  
%
IN  
IN  
IN  
IN  
O
= 2.7V, I = 200mA  
O
N-Channel MOSFET ON-Resistance  
= 6V, I = 200mA  
50  
O
= 2.7V, I = 200mA  
70  
100  
O
LX_ Maximum Duty Cycle  
PWM Switching Frequency  
100  
1.1  
2.5  
F
ISL8036  
0.88  
2.15  
2.64  
1.32  
2.85  
6
MHz  
MHz  
MHz  
°
S
ISL8036A  
Synchronization Frequency Range  
Channel 1 to Channel 2 Phase Shift  
LX Minimum On Time  
F
ISL8036 (Note 7)  
Rising edge to rising edge timing  
SYNC = High (PWM mode)  
EN = LOW  
SYNC  
180  
140  
120  
1
ns  
Soft Discharge Resistance  
LX Leakage Current  
R
80  
100  
0.1  
Ω
DIS  
Pulled up to 6V  
µA  
PG1, PG2  
Output Low Voltage  
Sinking 1mA, VFB = 0.7V  
0.3  
0.1  
V
µA  
%
PG Pin Leakage Current  
PG = V = 6V  
IN  
0.01  
92  
88  
1
Internal PGOOD Low Rising Threshold  
Internal PGOOD Low Falling Threshold  
Delay Time (Rising Edge)  
Percentage of nominal regulation voltage  
Percentage of nominal regulation voltage  
Time from VOUT_ reached regulation  
89.5  
85  
94.5  
91  
%
ms  
µs  
Internal PGOOD Delay Time  
(Falling Edge)  
7
10  
EN1, EN2, SYNC  
Logic Input Low  
0.4  
V
Logic Input High  
1.5  
V
SYNC Logic Input Leakage Current  
Enable Logic Input Leakage Current  
Thermal Shutdown  
I
Pulled up to 6V  
Pulled up to 6V  
0.1  
0.1  
150  
25  
1
1
µA  
µA  
°C  
°C  
SYNC  
I
EN  
Thermal Shutdown Hysteresis  
NOTES:  
6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and  
are not production tested.  
7. The operational frequency per switching channel will be half of the SYNC frequency.  
FN6853 Rev 3.00  
August 17, 2012  
Page 9 of 26  
ISL8036, ISL8036A  
ISL8036 Typical Operating Performance for Dual PWM Operation  
Unless otherwise noted, operating conditions are: V  
= 1.8V; V  
= 0.8V; I  
OUT1  
= 0A to 3A; I  
= 0A to 3A, F = 1MHz.  
SW  
OUT1  
OUT2  
OUT2  
100  
100  
90  
80  
90  
2.5V  
1.8V  
OUT  
2.5V  
OUT  
1.8V  
OUT  
OUT  
80  
70  
60  
50  
40  
OUT  
1.5V  
1.2V  
1.2V  
OUT  
OUT  
1.5V  
OUT  
OUT  
3.3V  
70  
60  
50  
40  
0.0  
0.5  
1.0  
1.5  
(A)  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
(A)  
2.0  
2.5  
3.0  
I
I
OUT  
OUT  
FIGURE 4. EFFICIENCY, V = 3.3V, T = +25°C  
FIGURE 5. EFFICIENCY, V = 5V, T = +25°C  
IN  
A
IN  
A
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.3V  
IN  
5V  
5V  
IN  
IN  
3.3V  
IN  
2.7V  
1.0  
IN  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.5  
2.0  
2.5  
3.0  
I
OUT  
(A)  
OUTPUT LOAD (A)  
FIGURE 6. POWER DISSIPATION, V  
OUT  
= 1.8V, T = +25°C  
FIGURE 7. V  
REGULATION vs LOAD, 1.8V, T = +25°C  
OUT A  
A
1.810  
LX1 2V/DIV  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
VOUT RIPPLE 20mV/DIV  
0A LOAD  
IL1 0.5A/DIV  
2A LOAD  
4.0  
3A LOAD  
3.0  
2.5  
3.5  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
FIGURE 8. OUTPUT VOLTAGE REGULATION vs V , 1.8V, T = +25°C  
IN  
FIGURE 9. STEADY STATE OPERATION AT NO LOAD CHANNEL 1  
A
FN6853 Rev 3.00  
August 17, 2012  
Page 10 of 26  
ISL8036, ISL8036A  
ISL8036 Typical Operating Performance for Dual PWM Operation  
Unless otherwise noted, operating conditions are: V  
= 1.8V; V  
OUT2  
= 0.8V; I  
OUT1  
= 0A to 3A; I  
= 0A to 3A, F  
= 1MHz. (Continued)  
SW  
OUT1  
OUT2  
LX2 2V/DIV  
LX1 2V/DIV  
VOUT RIPPLE 20mV/DIV  
VOUT2 RIPPLE 20mV/DIV  
IL1 2A/DIV  
IL2 0.5A/DIV  
FIGURE 11. STEADY STATE OPERATION WITH FULL LOAD CHANNEL 1  
FIGURE 10. STEADY STATE OPERATION AT NO LOAD CHANNEL 2  
LX2 2V/DIV  
VOUT RIPPLE 50mV/DIV  
IL1 2A/DIV  
VOUT RIPPLE 20mV/DIV  
IL2 2A/DIV  
FIGURE 12. STEADY STATE OPERATION WITH FULL LOAD CHANNEL 2  
FIGURE 13. LOAD TRANSIENT CHANNEL 1  
EN1 2V/DIV  
VOUT2 RIPPLE 20mV/DIV  
VOUT 1V/DIV  
IL1 0.5A/DIV  
IL2 2A/DIV  
PG1 5V/DIV  
FIGURE 15. SOFT-START WITH NO LOAD CHANNEL 1  
FIGURE 14. LOAD TRANSIENT CHANNEL 2  
FN6853 Rev 3.00  
August 17, 2012  
Page 11 of 26  
ISL8036, ISL8036A  
ISL8036 Typical Operating Performance for Dual PWM Operation  
Unless otherwise noted, operating conditions are: V  
= 1.8V; V  
OUT2  
= 0.8V; I  
OUT1  
= 0A to 3A; I  
= 0A to 3A, F  
= 1MHz. (Continued)  
SW  
OUT1  
OUT2  
EN2 2V/DIV  
EN1 2V/DIV  
VOUT1 1V/DIV  
IL1 2A/DIV  
VOUT2 0.5V/DIV  
IL2 0.5A/DIV  
PG2 5V/DIV  
PG1 5V/DIV  
FIGURE 17. SOFT-START AT FULL LOAD CHANNEL 1  
FIGURE 16. SOFT-START WITH NO LOAD CHANNEL 2  
EN1 5V/DIV  
EN2 2V/DIV  
VOUT2 0.5V/DIV  
IL2 2A/DIV  
PG2 5V/DIV  
VOUT1 0.5V/DIV  
IL1 0.5A/DIV  
PG1 5V/DIV  
FIGURE 18. SOFT-START AT FULL LOAD CHANNEL 2  
FIGURE 19. SOFT-DISCHARGE SHUTDOWN CHANNEL 1  
LX1 2V/DIV  
EN2 2V/DIV  
SYNCH 5V/DIV  
VOUT2 0.5V/DIV  
IL2 0.5A/DIV  
VOUT1 RIPPLE 20mV/DIV  
PG2 5V/DIV  
IL1 1A/DIV  
FIGURE 20. SOFT-DISCHARGE SHUTDOWN CHANNEL 2  
FIGURE 21. STEADY STATE OPERATION CHANNEL 1 AT NO LOAD  
WITH F  
= 2.4MHz  
SW  
FN6853 Rev 3.00  
August 17, 2012  
Page 12 of 26  
ISL8036, ISL8036A  
ISL8036 Typical Operating Performance for Dual PWM Operation  
Unless otherwise noted, operating conditions are: V  
= 1.8V; V  
OUT2  
= 0.8V; I  
OUT1  
= 0A to 3A; I  
= 0A to 3A, F = 1MHz. (Continued)  
SW  
OUT1  
OUT2  
LX2 2V/DIV  
LX1 2V/DIV  
SYNCH 5V/DIV  
SYNCH 5V/DIV  
VOUT1 RIPPLE 20mV/DIV  
IL1 2A/DIV  
VOUT2 RIPPLE 20mV/DIV  
IL2 1A/DIV  
FIGURE 22. STEADY STATE OPERATION CHANNEL 2 AT NO LOAD  
WITH F = 2.4MHz  
FIGURE 23. STEADY STATE OPERATION CHANNEL 1 AT FULL LOAD  
WITH F = 2.4MHz  
SW  
SW  
LX2 2V/DIV  
LX1 2V/DIV  
SYNCH 5V/DIV  
SYNCH 5V/DIV  
VOUT2 RIPPLE 20mV/DIV  
VOUT1 RIPPLE 20mV/DIV  
IL2 2A/DIV  
IL1 2A/DIV  
FIGURE 25. STEADY STATE OPERATION CHANNEL 1 AT NO LOAD  
WITH F = 6MHz  
FIGURE 24. STEADY STATE OPERATION CHANNEL 2 AT FULL LOAD  
WITH F = 2.4MHz  
SW  
SW  
LX2 2V/DIV  
PHASE1 5V/DIV  
VOUT1 1V/DIV  
PG1 5V/DIV  
SYNCH 5V/DIV  
VOUT2 RIPPLE 20mV/DIV  
IL2 2A/DIV  
IL1 1A/DIV  
FIGURE 26. STEADY STATE OPERATION CHANNEL 2 AT NO LOAD  
WITH F = 5MHz  
FIGURE 27. OUTPUT SHORT CIRCUIT CHANNEL 1  
SW  
FN6853 Rev 3.00  
August 17, 2012  
Page 13 of 26  
ISL8036, ISL8036A  
ISL8036 Typical Operating Performance for Dual PWM Operation  
Unless otherwise noted, operating conditions are: V  
= 1.8V; V  
OUT2  
= 0.8V; I  
OUT1  
= 0A to 3A; I  
= 0A to 3A, F = 1MHz. (Continued)  
SW  
OUT1  
OUT2  
PHASE1 5V/DIV  
PHASE2 5V/DIV  
VOUT1 1V/DIV  
IL1 1A/DIV  
VOUT2 0.5V/DIV  
IL2 1A/DIV  
PG2 5V/DIV  
PG1 5V/DIV  
FIGURE 28. OUTPUT SHORT CIRCUIT RECOVERY (FROM HICCUP)  
CHANNEL 1  
FIGURE 29. OUTPUT SHORT CIRCUIT CHANNEL 2  
PHASE2 5V/DIV  
VOUT2 1V/DIV  
IL2 1A/DIV  
PG2 5V/DIV  
FIGURE 30. OUTPUT SHORT CIRCUIT RECOVERY (FROM HICCUP) CHANNEL 2  
FN6853 Rev 3.00  
August 17, 2012  
Page 14 of 26  
ISL8036, ISL8036A  
ISL8036A Typical Operating Performance for Dual PWM Operation  
Unless otherwise noted, operating conditions are: V  
= 1.8V; V  
OUT2  
= 0.8V; I  
OUT1  
= 0A to 3A; I  
= 0A to 3A, L1 = L2 = 0.6µH,  
OUT1  
OUT2  
F
= 2.5MHz.  
SW  
100  
90  
80  
70  
60  
50  
100  
2.5V  
OUT  
3.3V  
OUT  
2.5V  
OUT  
90  
80  
70  
60  
50  
1.2V  
OUT  
1.5V  
1.5V  
OUT  
1.8V  
OUT  
OUT  
1.2V  
1.8V  
OUT  
OUT  
40  
0.0  
40  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 32. EFFICIENCY vs LOAD, 5V DUAL CHANNEL 1,  
IN  
FIGURE 31. EFFICIENCY vs LOAD, 3.3V DUAL CHANNEL 1,  
IN  
T
= +25°C  
T
= +25°C  
A
A
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
2.7V  
IN  
3.3V  
IN  
5V  
IN  
3.3V  
IN  
2.7V  
2.0  
IN  
5V  
IN  
0.00  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.5  
3.0  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 33. POWER DISSIPATION vs LOAD, 1.8V  
OUT  
DUAL CHANNEL 1,  
FIGURE 34. V  
OUT  
REGULATION vs LOAD, 1.8V  
OUT  
DUAL CHANNEL 1,  
T
= +25°C  
T = +25°C  
A
A
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
LX1 2V/DIV  
VOUT RIPPLE 20mV/DIV  
IL1 0.5A/DIV  
3A LOAD  
3.0  
1.5A LOAD  
4.0  
0A LOAD  
5.0  
2.5  
3.5  
4.5  
5.5  
INPUT VOLTAGE (V)  
FIGURE 35. V  
OUT  
REGULATION vs V , 1.8V  
IN OUT  
DUAL CHANNEL 1,  
FIGURE 36. STEADY STATE OPERATION AT NO LOAD CHANNEL 1  
T
= +25°C  
A
FN6853 Rev 3.00  
August 17, 2012  
Page 15 of 26  
ISL8036, ISL8036A  
ISL8036A Typical Operating Performance for Dual PWM Operation  
Unless otherwise noted, operating conditions are: V  
= 1.8V; V  
OUT2  
= 0.8V; I  
OUT1  
= 0A to 3A; I = 0A to 3A, L1 = L2 = 0.6µH,  
OUT2  
OUT1  
F
= 2.5MHz. (Continued)  
SW  
LX1 2V/DIV  
LX1 1V/DIV  
IL1 0.5A/DIV  
VOUT RIPPLE 20mV/DIV  
VOUT RIPPLE 20mV/DIV  
IL1 2A/DIV  
FIGURE 37. STEADY STATE OPERATION AT NO LOAD CHANNEL 2  
FIGURE 38. STEADY STATE OPERATION AT FULL LOAD CHANNEL 1  
LX1 1V/DIV  
VOUT1 RIPPLE 50mV/DIV  
IL1 2A/DIV  
VOUT RIPPLE 20mV/DIV  
IL1 2A/DIV  
FIGURE 39. STEADY STATE OPERATION AT FULL LOAD CHANNEL 2  
FIGURE 40. LOAD TRANSIENT CHANNEL 1  
VOUT1 RIPPLE 50mV/DIV  
IL1 2A/DIV  
FIGURE 41. LOAD TRANSIENT CHANNEL 2  
FN6853 Rev 3.00  
August 17, 2012  
Page 16 of 26  
ISL8036, ISL8036A  
ISL8036 Typical Operating Performance for Current Sharing PWM  
Operation  
Unless otherwise noted, operating conditions are: V  
= 1.8V, I  
+ I  
= 0A to 6A, F  
= 1MHz.  
SW  
OUT  
OUT1 OUT2  
100  
100  
90  
80  
70  
60  
50  
40  
90  
2.5V  
OUT  
2.5V  
OUT  
80  
70  
60  
50  
40  
1.5V  
OUT  
1.5V  
1.8V  
OUT  
OUT  
1.8V  
OUT  
1.2V  
OUT  
1.2V  
OUT  
3.3V  
OUT  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 43. EFFICIENCY vs LOAD, V = 5V, T = +25°C  
IN  
FIGURE 42. EFFICIENCY vs LOAD, V = 3.3V, T = +25°C  
A
IN  
A
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
2.7V  
IN  
5V  
IN  
3.3V  
IN  
5V  
IN  
3.3V  
5
IN  
2.7V  
IN  
0
1
2
3
4
5
6
0
1
2
3
4
6
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 45. V  
REGULATION vs LOAD, 1.8V, T = +25°C  
A
FIGURE 44. POWER DISSIPATION vs LOAD, 1.8V, T = +25°C  
A
OUT  
1.820  
1.815  
1.810  
1.805  
1.815  
3.3V  
IN  
5V  
IN  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
5V  
IN  
3.3V  
IN  
2.7V  
1.800  
1.795  
1.790  
IN  
2.7V  
IN  
1
0
2
3
4
5
6
0
1
2
3
4
5
6
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 46. V  
OUT  
REGULATION vs LOAD, 1.8V, T = -40°C  
A
FIGURE 47. V  
OUT  
REGULATION vs LOAD, 1.8V, T = +85°C  
A
FN6853 Rev 3.00  
August 17, 2012  
Page 17 of 26  
ISL8036, ISL8036A  
ISL8036 Typical Operating Performance for Current Sharing PWM  
Operation  
Unless otherwise noted, operating conditions are: V  
= 1.8V, I  
+ I  
= 0A to 6A, F  
= 1MHz. (Continued)  
SW  
OUT  
OUT1 OUT2  
1.820  
LX1 2V/DIV  
1.815  
1.810  
1.805  
4A  
0A  
VOUT RIPPLE 20mV/DIV  
1.800  
IL1 0.5A/DIV  
1.795  
1.790  
6A  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
FIGURE 49. STEADY STATE OPERATION AT NO LOAD CHANNEL 1  
FIGURE 48. OUTPUT VOLTAGE REGULATION vs V , T = +25°C  
IN  
A
LX2 2V/DIV  
LX1 2V/DIV  
VOUT RIPPLE 20mV/DIV  
VOUT RIPPLE 20mV/DIV  
IL1 2A/DIV  
IL2 2A/DIV  
FIGURE 51. STEADY STATE OPERATION WITH FULL LOAD CHANNEL 2  
FIGURE 50. STEADY STATE OPERATION WITH FULL LOAD CHANNEL 1  
LX1 5V/DIV  
LX1 5V/DIV  
LX2 5V/DIV  
LX2 5V/DIV  
IL1 1A/DIV  
IL2 1A/DIV  
IL1 1A/DIV  
IL2 1A/DIV  
FIGURE 52. STEADY STATE OPERATION AT NO LOAD CHANNEL 1  
AND 2  
FIGURE 53. STEADY STATE OPERATION AT FULL LOAD CHANNEL 1  
AND 2  
FN6853 Rev 3.00  
August 17, 2012  
Page 18 of 26  
ISL8036, ISL8036A  
ISL8036 Typical Operating Performance for Current Sharing PWM  
Operation  
Unless otherwise noted, operating conditions are: V  
= 1.8V, I  
+ I  
= 0A to 6A, F  
= 1MHz. (Continued)  
SW  
OUT  
OUT1 OUT2  
EN1 2V/DIV  
VOUT RIPPLE 50mV/DIV  
VOUT 1V/DIV  
IL1 0.5A/DIV  
PG1 5V/DIV  
IL1 2A/DIV  
FIGURE 54. LOAD TRANSIENT CHANNEL 1  
FIGURE 55. SOFT-START WITH NO LOAD CHANNEL 1  
EN1 2V/DIV  
EN1 5V/DIV  
VOUT 1V/DIV  
IL1 2A/DIV  
PG1 5V/DIV  
VOUT 0.5V/DIV  
IL1 0.5A/DIV  
PG1 5V/DIV  
FIGURE 57. SOFT-DISCHARGE SHUTDOWN CHANNEL 1  
FIGURE 56. SOFT-START AT FULL LOAD CHANNEL 1  
LX1 2V/DIV  
SYNC 5V/DIV  
LX1 2V/DIV  
SYNC 5V/DIV  
VOUT RIPPLE 20mV/DIV  
VOUT RIPPLE 20mV/DIV  
IL1 2A/DIV  
IL1 1A/DIV  
FIGURE 59. STEADY STATE OPERATION CH1 AT FULL LOAD WITH  
= 3MHz  
FIGURE 58. STEADY STATE OPERATION CH1 AT NO LOAD WITH  
= 3MHz  
F
F
SW  
SW  
FN6853 Rev 3.00  
August 17, 2012  
Page 19 of 26  
ISL8036, ISL8036A  
ISL8036 Typical Operating Performance for Current Sharing PWM  
Operation  
Unless otherwise noted, operating conditions are: V  
OUT  
= 1.8V, I  
+ I  
= 0A to 6A, F  
= 1MHz. (Continued)  
SW  
OUT1 OUT2  
LX1 2V/DIV  
LX1 2V/DIV  
SYNC 5V/DIV  
SYNC 5V/DIV  
VOUT RIPPLE 20mV/DIV  
VOUT RIPPLE 20mV/DIV  
IL1 1A/DIV  
IL1 2A/DIV  
FIGURE 60. STEADY STATE OPERATION CH1 AT NO LOAD WITH  
FIGURE 61. STEADY STATE OPERATION CH1 AT FULL LOAD WITH  
= 6MHz  
F
= 6MHz  
F
SW  
SW  
PHASE1 5V/DIV  
PHASE1 5V/DIV  
VOUT 1V/DIV  
IL1 1A/DIV  
VOUT 1V/DIV  
PG1 5V/DIV  
IL1 1A/DIV  
PG1 5V/DIV  
FIGURE 63. OUTPUT SHORT CIRCUIT RECOVERY (FROM HICCUP)  
CHANNEL 1  
FIGURE 62. OUTPUT SHORT CIRCUIT CHANNEL 1  
FN6853 Rev 3.00  
August 17, 2012  
Page 20 of 26  
ISL8036, ISL8036A  
ISL8036A Typical Operating Performance for Current Sharing PWM  
Operation  
Unless otherwise noted, operating conditions are: V  
OUT  
= 1.8V, I  
+ I  
= 0A to 6A, L1 = L2 = 0.6µH, F  
= 2.5MHz.  
SW  
OUT1 OUT2  
VOUT RIPPLE 20mV/DIV  
VOUT RIPPLE 20mV/DIV  
LX1 5V/DIV  
LX1 5V/DIV  
LX2 5V/DIV  
LX2 5V/DIV  
FIGURE 64. STEADY STATE OPERATION AT NO LOAD  
FIGURE 65. STEADY STATE OPERATION AT FULL 6A LOAD  
FN6853 Rev 3.00  
August 17, 2012  
Page 21 of 26  
ISL8036, ISL8036A  
Synchronization Control  
Theory of Operation  
The frequency of operation can be synchronized up to 6MHz by  
an external signal applied to the SYNC pin. The 1st falling edge  
on the SYNC triggered the rising edge of the PWM ON pulse of  
Channel 1. The 2nd falling edge of the SYNC triggers the rising  
edge of the PWM ON pulse of the Channel 2. This process  
alternate indefinitely allowing 180° output phase operation  
between the two channels.  
The ISL8036, ISL8036A is a dual 3A or current sharing 6A  
step-down switching regulator optimized for battery-powered or  
mobile applications. The regulator operates at 1MHz (ISL8036) or  
2.5MHz (ISL8036A) fixed switching frequency under heavy load  
condition. The two channels are 180° out-of-phase operation. The  
supply current is typically only 8µA when the regulator is shutdown.  
PWM Control Scheme  
Output Current Sharing  
Pulling the SYNC pin HI (>1.5V) forces the converter into PWM mode  
in the next switching cycle regardless of output current. Each of the  
channels of the ISL8036, ISL8036A employ the current-mode  
pulse-width modulation (PWM) control scheme for fast transient  
response and pulse-by-pulse current limiting, as shown in the “Block  
Diagram” on page 4 with waveforms in Figure 66. The current loop  
consists of the oscillator, the PWM comparator COMP, current  
sensing circuit, and the slope compensation for the current loop  
stability. The current sensing circuit consists of the resistance of the  
P-channel MOSFET when it is turned on and the current sense  
amplifier CSA1. The gain for the current sensing circuit is typically  
0.2V/A. The control reference for the current loops comes from the  
error amplifier EAMP of the voltage loop.  
The ISL8036, ISL8036A dual outputs are paralleled for  
multi-phase operation in order to support a 6A output. Connect  
the FBs together and connect all the COMPs together. Channel 1  
and Channel 2 will be 180° out-of-phase. In parallel configuration,  
external soft-start should be used to ensure proper full loading  
start-up. Before using full load in current sharing mode, PWM  
mode should be enabled. Likewise, multiple regulators can be  
paralleled by connecting the FBs, COMPs, and SS for higher  
current capability. External compensation is required.  
Overcurrent Protection  
CAS1 and CSA2 are used to monitor Output 1 and Output 2  
channels respectively. The overcurrent protection is realized by  
monitoring the CSA output with the OCP threshold logic, as  
shown in Figure 4. The current sensing circuit has a gain of  
0.2V/A, from the P-MOSFET current to the CSA_ output. When  
the CSA1 output reaches the threshold, the OCP comparator is  
tripped to turn off the P-MOSFET immediately. The overcurrent  
function protects the switching converter from a shorted output by  
monitoring the current flowing through the upper MOSFETs.  
The PWM operation is initialized by the clock from the oscillator.  
The P-channel MOSFET is turned on at the beginning of a PWM  
cycle and the current in the MOSFET starts to ramp up. When the  
sum of the current amplifier CSA1 (or CSA2 on Channel 2) and the  
compensation slope (0.46V/µs) reaches the control reference of  
the current loop, the PWM comparator COMP sends a signal to the  
PWM logic to turn off the P-MOSFET and to turn on the N-channel  
MOSFET. The N-MOSFET stays on until the end of the PWM cycle.  
Figure 66 shows the typical operating waveforms during the PWM  
operation. The dotted lines illustrate the sum of the compensation  
ramp and the current-sense amplifier CSA_ output.  
Upon detection of overcurrent condition, the upper MOSFET will  
be immediately turned off and will not be turned on again until  
the next switching cycle. Upon detection of the initial overcurrent  
condition, the Overcurrent Fault Counter is set to 1 and the  
Overcurrent Condition Flag is set from LOW to HIGH. If, on the  
subsequent cycle, another overcurrent condition is detected, the  
OC Fault Counter will be incremented. If there are 17 sequential  
OC fault detections, the regulator will be shutdown under an  
Overcurrent Fault Condition. An Overcurrent Fault Condition will  
result with the regulator attempting to restart in a hiccup mode  
with the delay between restarts being 8 soft-start periods. At the  
end of the eighth soft-start wait period, the fault counters are  
reset and soft-start is attempted again. If the overcurrent  
condition goes away prior to the OC Fault Counter reaching a  
count of four, the Overcurrent Condition Flag will set back to LOW.  
VEAMP  
VCSA1  
Duty  
Cycle  
IL  
VOUT  
If the negative output current reaches -2.5A, the part enters  
Negative Overcurrent Protection. At this point, all switching stops  
and the part enters tri-state mode while the pull-down FET is  
discharging the output until it reaches normal regulation voltage,  
then the IC restarts.  
FIGURE 66. PWM OPERATION WAVEFORMS  
The output voltage is regulated by controlling the reference  
voltage to the current loop. The bandgap circuit outputs a 0.8V  
reference voltage to the voltage control loop. The feedback signal  
comes from the VFB pin. The soft-start block only affects the  
operation during the start-up and will be discussed separately.  
The error amplifier is a transconductance amplifier that converts  
the voltage error signal to a current output. The voltage loop is  
internally compensated with the 27pF and 390kΩ RC network.  
The maximum EAMP voltage output is precisely clamped to the  
bandgap voltage (1.172V).  
PG  
There are two independent power-good signals. PG1 monitors  
the Output Channel 1 and PG2 monitors the Output Channel 2.  
When powering up, the open-collector Power-on Reset output  
holds low for about 1ms after V reaches the preset voltage. The  
O
PG_ output also serves as a 1ms delayed Power-Good signal.  
FN6853 Rev 3.00  
August 17, 2012  
Page 22 of 26  
ISL8036, ISL8036A  
output voltage ripple, the output inductor value can be increased.  
The inductor ripple current can be expressed in Equation 2:  
UVLO  
When the input voltage is below the undervoltage lock out (UVLO)  
threshold, the regulator is disabled.  
V
O
---------  
V
1 –  
(EQ. 2)  
O
V
IN  
Enable  
--------------------------------------  
I =  
L f  
S
The enable (EN) input allows the user to control the turning on or  
off the regulator for purposes such as power-up sequencing.  
When the regulator is enabled, there is typically a 600µs delay  
for waking up the bandgap reference. Then the soft start-up  
begins.  
The inductor’s saturation current rating needs be at least larger than  
the peak current. The ISL8036, ISL8036A protects the typical peak  
current 4.8A. The saturation current needs be over 4.8A for maximum  
output current application.  
ISL8036, ISL8036A uses an internal compensation network and the  
output capacitor value is dependent on the output voltage. The  
ceramic capacitor is recommended to be X5R or X7R. The  
recommended minimum output capacitor values for the ISL8036,  
ISL8036A are shown in Table 4.  
Soft-start-up  
The soft-start-up eliminates the inrush current during the  
start-up. The soft-start block outputs a ramp reference to both  
the voltage loop and the current loop. The two ramps limit the  
inductor current rising speed as well as the output voltage speed  
so that the output voltage rises in a controlled fashion. At the  
very beginning of the start-up, the output voltage is less than  
0.5V; hence the PWM operating frequency is 1/2 of the normal  
frequency.  
TABLE 4. OUTPUT CAPACITOR VALUE vs V  
OUT  
ISL8036, ISL8036A  
V
C
L
OUT  
OUT  
(V)  
0.8  
1.2  
1.6  
1.8  
2.5  
3.3  
3.6  
(µF)  
2 x 22  
2 x 22  
2 x 22  
2 x 22  
2 x 22  
2 x 6.8  
10  
(µH)  
1.0~2.2  
1.0~2.2  
1.0~2.2  
1.0~3.3  
1.0~3.3  
1.0~4.7  
1.0~4.7  
When the IC ramps up at start-up, it can't sink current even at  
PWM mode, behaving like in diode emulated mode for the  
soft-start time.  
Discharge Mode (Soft-Stop)  
When a transition to shutdown mode occurs, or the output  
undervoltage fault latch is set, its output discharges to PGND  
through an internal 100switch.  
Power MOSFETs  
In Table 4, the minimum output capacitor value is given for  
different output voltages to make sure the whole converter  
system is stable.  
The power MOSFETs are optimize for best efficiency. The  
ON-resistance for the P-MOSFET is typically 50mand the  
ON-resistance for the N-MOSFET is typical 50m.  
Output Voltage Selection  
100% Duty Cycle  
The output voltage of the regulator can be programmed via an  
external resistor divider, which is used to scale the output voltage  
relative to the internal reference voltage and feed it back to the  
inverting input of the error amplifier. Refer to Figure 2.  
The ISL8036, ISL8036A features 100% duty cycle operation to  
maximize the battery life. When the battery voltage drops to a  
level that the ISL8036, ISL8036A can no longer maintain the  
regulation at the output, the regulator completely turns on the  
P-MOSFET. The maximum drop-out voltage under the 100%  
duty-cycle operation is the product of the load current and the  
ON-resistance of the P-MOSFET.  
The output voltage programming resistor, R (or R in  
2
5
Channel 2), will depend on the desired output voltage of the  
regulator. The value for the feedback resistor is typically between  
0and 750k. Let R = 124k, then R will be:  
2
3
Thermal Shutdown  
R x0.8V  
2
(EQ. 3)  
----------------------------------  
=
3
The ISL8036, ISL8036A has built-in thermal protection. When the  
internal temperature reaches +150°C, the regulator is completely  
shutdown. As the temperature drops to +125°C, the ISL8036,  
ISL8036A resumes operation by stepping through a soft start-up.  
R
V
0.8V  
OUT  
For better performance, add 12pF in parallel with R If the  
2
output voltage desired is 0.8V, then leave R unpopulated and  
3
short R .  
2
Applications Information  
Output Inductor and Capacitor Selection  
To consider steady state and transient operation, ISL8036,  
ISL8036A typically uses a 1.5µH output inductor. Higher or lower  
inductor value can be used to optimize the total converter system  
performance. For example, for a higher output voltage 3.3V  
application, in order to decrease the inductor current ripple and  
Input Capacitor Selection  
The main functions for the input capacitor are to provide  
decoupling of the parasitic inductance and to provide filtering  
function to prevent the switching current flowing back to the  
battery rail. One 22µF X5R or X7R ceramic capacitor is a good  
starting point for the input capacitor selection per channel.  
FN6853 Rev 3.00  
August 17, 2012  
Page 23 of 26  
ISL8036, ISL8036A  
PCB Layout Recommendation  
The PCB layout is a very important converter design step to make  
sure the designed converter works well. For ISL8036, ISL8036A,  
the power loop is composed of the output inductor Ls, the output  
capacitor C  
and C , the LX’s pins, and the PGND pin. It is  
OUT1  
OUT2  
necessary to make the power loop as small as possible and the  
connecting traces among them should be direct, short and wide.  
The switching node of the converter, the LX_ pins, and the traces  
connected to the node are very noisy, so keep the voltage  
feedback trace away from these noisy traces. The FB network  
should be as close as possible to its FB pin. SGND should have one  
single connection to PGND. The input capacitor should be placed  
as closely as possible to the VIN pin. Also, the ground of the input  
and output capacitors should be connected as closely as  
possible. The heat of the IC is mainly dissipated through the  
thermal pad. Maximizing the copper area connected to the  
thermal pad is preferable. In addition, a solid ground plane is  
helpful for better EMI performance. It is recommended to add at  
least 5 vias ground connection within the pad for the best  
thermal relief.  
© Copyright Intersil Americas LLC 2010-2012. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6853 Rev 3.00  
August 17, 2012  
Page 24 of 26  
ISL8036, ISL8036A  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev.  
DATE  
REVISION  
CHANGE  
July 18, 2012  
FN6853.3 page 5  
Comments added, COMP pin:  
COMP pin is NC in dual mode operation, using internal compensation. If SS pin is tied to CSS (without VIN connection),  
external compensation is automatically used. Connect an external R,C network on COMP pin for parallel mode  
operation.  
Comments added, SS pin:  
When SS pin is tied to VIN, SS time is 1.5ms. SS pin is tied to VIN only in dual mode operation.  
SS pin is tied to CSS only in parallel mode operation, using only external compensation.  
page 6 Ordering Information table, added evals:  
ISL8036ACRSHEVAL1Z, ISL8036ADUALEVAL1Z, ISL8036CRSHEVAL1Z, ISL8036DUALEVAL1Z  
page 15  
Figure 33 title correction: "1.8VIN" on the title of these is changed to "1.8VOUT".  
Figure 34 title correction: "1.8VIN" on the title of these is changed to "1.8VOUT"  
Figure 35 title correction: "1.8VIN" on the title of these is changed to "1.8VOUT"  
page 18, Figure 48, deleted "1.8V" in the title since the condition is mentioned in the page header.  
page 22  
Line 4 in Overcurrent Protection paragraph, instead of "Figure 66" changed to "Figure 4".  
"with the delay between restarts being 4 soft-start periods" changed to "with the delay between restarts being 8  
soft-start periods".  
"end of the fourth soft-start wait period" to "end of the eighth soft-start wait period"  
October 14, 2011 FN6853.2 Added “Related Literature” on page 1.  
In the “Absolute Maximum Ratings” on page 8, changed:  
“LX1, LX2....-1.5V (100ns)/-0.3V (DC) to 6.5V (DC) or 7V (20ms)”  
to:  
“LX1, LX2....-3V/(10ns)/-1.5V (100ns)/-0.3V (DC) to 6.5V (DC) or 7V (20ms)/8.5V(10ns)”  
October 12, 2010 FN6853.1 In Table 3 on page 3, corrected F  
September 28, 2010 FN6853.0 Initial release.  
for ISL8036 from 1Hz to 1MHz.  
SW  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL8036, ISL8036A  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/search.php  
FN6853 Rev 3.00  
August 17, 2012  
Page 25 of 26  
ISL8036, ISL8036A  
Package Outline Drawing  
L24.4x4D  
24 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 2, 10/06  
4X  
2.5  
4.00  
A
20X  
0.50  
PIN #1 CORNER  
(C 0 . 25)  
B
19  
24  
PIN 1  
INDEX AREA  
1
18  
2 . 50 ± 0 . 15  
13  
0.15  
(4X)  
12  
24X 0 . 4 ± 0 . 1  
7
0.10 M C  
A B  
TOP VIEW  
+ 0 . 07  
24X 0 . 23  
4
- 0 . 05  
BOTTOM VIEW  
SEE DETAIL "X"  
C
0.10  
0 . 90 ± 0 . 1  
C
BASE PLANE  
( 3 . 8 TYP )  
SEATING PLANE  
0.08  
SIDE VIEW  
C
(
2 . 50 )  
( 20X 0 . 5 )  
5
C
0 . 2 REF  
( 24X 0 . 25 )  
0 . 00 MIN.  
0 . 05 MAX.  
( 24X 0 . 6 )  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
FN6853 Rev 3.00  
August 17, 2012  
Page 26 of 26  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY