ISL80510IRAJZ [RENESAS]

High Performance 1A LDO;
ISL80510IRAJZ
型号: ISL80510IRAJZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

High Performance 1A LDO

文件: 总13页 (文件大小:961K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL80505  
High Performance 500mA LDO  
FN8770  
Rev 1.00  
November 10, 2016  
The ISL80505 is a single output Low Dropout voltage regulator  
(LDO) capable of sourcing up to 500mA output current. This  
LDO operates from input voltages of 1.8V to 6V. The output  
voltage of ISL80505 can be programmed from 0.8V to 5.5V.  
Features  
• ±1.8% V  
accuracy guaranteed over line, load, and  
OUT  
T = -40°C to +125°C  
J
• Very low 45mV dropout voltage at V  
= 2.5V  
OUT  
A submicron BiCMOS process is utilized for this product family  
to deliver the best in class analog performance and overall  
value. This CMOS LDO consumes significantly lower quiescent  
current as a function of load compared to bipolar LDOs, which  
translates into higher efficiency and packages with smaller  
footprints.  
• Stable with a 4.7µF output ceramic capacitor  
• Very fast transient response  
• Programmable output soft-start time  
• Excellent PSRR over wide frequency range  
• Current limit protection  
State-of-the-art internal compensation achieves a very fast  
load transient response and excellent PSRR. The ISL80505  
• Thermal shutdown function  
provides an output accuracy of ±1.8% V  
accuracy over all  
OUT  
• Available in an 8 Ld DFN package  
• Pb-free (RoHS compliant)  
load, line and temperature variations (T = -40°C to +125°C).  
J
An external capacitor on the soft-start pin provides an  
adjustable soft starting of the output voltage ramp to control  
the inrush current. The ENABLE feature allows the part to be  
placed into a low quiescent current shutdown mode.  
Applications  
• Noise sensitive instrumentation systems  
• Post regulation of switched mode power supplies  
• Industrial systems  
Table 1 shows the differences between the ISL80505 and  
others in its family.  
TABLE 1. KEY DIFFERENCES BETWEEN FAMILY OF PARTS  
• Medical equipment  
PART NUMBER INPUT VOLTAGE RANGE MAX OUTPUT CURRENT  
• Telecommunications and networking equipment  
• Servers  
ISL80510  
ISL80505  
2.2V to 6V  
1.8V to 6V  
1.0A  
0.5A  
• Hard disk drives (HD/HDD)  
Related Literature  
• For a full list of related documents, visit our website  
- ISL80505 product page  
80  
I
= 0.1A  
OUT  
70  
60  
50  
40  
30  
20  
10  
0
I
= 0.3A  
ISL80505  
EPAD  
OUT  
V
V
IN  
V
V
V
V
OUT  
C
IN  
IN  
OUT  
1
2
8
OUT  
C
IN  
R
1
OUT  
7
6
FB  
SS  
C
PB  
(OPTIONAL)  
3
4
I
= 0.5A  
OUT  
ENABLE  
GND  
V
V
= 2.3V  
= 1.8V  
= 10µF  
= 2.7nF  
PB  
= 10kΩ  
IN  
C
SS  
5
OUT  
C
C
R
R
R
OUT  
2
1
2
= 3.83kΩ  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 1. TYPICAL APPLICATION CIRCUIT  
FIGURE 2. PSRR  
FN8770 Rev 1.00  
November 10, 2016  
Page 1 of 13  
ISL80505  
Block Diagram  
VIN  
REFERENCE  
+
SOFT-START  
FET DRIVER  
WITH CURRENT  
LIMIT  
-
EA  
+
CONTROL  
LOGIC  
THERMAL  
SENSOR  
ENABLE  
SS  
VOUT  
FB  
GND  
FIGURE 3. BLOCK DIAGRAM  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
TEMP RANGE  
(°C)  
PACKAGE  
(RoHS Compliant)  
PKG  
DWG. #  
ISL80505IRAJZ  
0505  
Evaluation Board  
-40 to +125  
8 Ld 3x3 DFN  
L8.3X3J  
ISL80510EVAL1Z  
NOTES:  
1. Add “-T” suffix for 6k unit or “-T7A” suffix for 250 unit tape and reel options. Refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), see device information page for ISL80505. For more information on MSL see Technical Brief TB363.  
FN8770 Rev 1.00  
November 10, 2016  
Page 2 of 13  
ISL80505  
Pin Configuration  
ISL80505  
(8 LD 3x3 DFN)  
TOP VIEW  
V
V
V
V
1
2
OUT  
OUT  
FB  
8
IN  
7
6
IN  
EPAD  
SS  
3
4
GND  
5
ENABLE  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
1, 2  
V
Regulated output voltage. A minimum 4.7µF X5R/X7R output capacitor is required for stability. See “External  
Capacitor Requirements” on page 10 for more details.  
OUT  
3
4
FB  
GND  
This pin is the input to the control loop error amplifier and is used to set the output voltage of the LDO.  
Ground  
5
ENABLE  
SS  
V
independent chip enable. TTL and CMOS compatible.  
IN  
6
External capacitor on this pin adjusts start-up ramp and controls inrush current.  
7, 8  
V
Input supply; A minimum of 4.7µF X5R/X7R input capacitor is required for proper operation. See “External  
Capacitor Requirements” on page 10 for more details.  
IN  
-
EPAD  
EPAD at ground potential. It is recommended to solder the EPAD to the ground plane.  
FN8770 Rev 1.00  
November 10, 2016  
Page 3 of 13  
ISL80505  
Absolute Maximum Ratings  
Thermal Information  
V
V
Relative to GND (Note 4). . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
Relative to GND (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
Thermal Resistance (Typical)  
8 Ld DFN Package (Notes 5, 6). . . . . . . . . .  
JA (°C/W)  
48  
JC (°C/W)  
IN  
OUT  
7
ENABLE, FB, SS Relative to GND (Note 4) . . . . . . . . . . . . . . . -0.3V to +6.5V  
ESD Rating  
Human Body Model (Tested per JESD22 A114F) . . . . . . . . . . . . . . .2.5kV  
Machine Model (Tested per JESD22 A115C) . . . . . . . . . . . . . . . . . 250V  
Charge Device Model (Tested per JESD22-C101C). . . . . . . . . . . . . . . 2kV  
Latch-Up (Tested per JESD78C, Class 2, Level A) . . . . . ±100mA at +85°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
Recommended Operating Conditions (Notes 7, 8)  
Junction Temperature Range (T ) . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
J
V
V
Relative to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.8V to 6V  
IN  
Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .800mV to 5.5V  
OUT  
ENABLE, FB, SS Relative to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 6V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTES:  
4. Absolute maximum voltage rating is defined as the voltage applied for a lifetime average duty cycle above 6V of 1%.  
5. is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
6. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
7. Electromigration specification defined as lifetime average junction temperature of +110°C where maximum rated DC current = lifetime average  
current.  
8. The recommended operating condition for V relative to GND is 1.8V to 6V for a junction temperature range of 0°C to +125°C. The recommended  
IN  
operating condition for V relative to GND is 2.2V to 6V for a junction temperature range of -40°C to +125°C.  
IN  
Electrical Specifications Unless otherwise noted, 1.8V < V < 6V, V  
= 0.5V, T = +25°C. Applications must follow thermal  
J
guidelines of the package to determine worst case junction temperature. Please refer to “Applications Information” on page 10 and Tech Brief TB379.  
IN  
OUT  
Boldface limits apply across the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
DC CHARACTERISTICS  
Input Voltage  
SYMBOL  
TEST CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNIT  
V
0°C < T < +125°C  
1.8  
2.2  
6.0  
6.0  
509  
1
V
V
IN  
J
-40°C < T < +125°C  
J
Feedback Pin Voltage  
Feedback Input Current  
Line Regulation  
V
1.8V < V < 6V; 0A < I  
IN LOAD  
< 500mA  
491  
500  
mV  
µA  
%
FB  
V
V
= 0.5V  
0.01  
FB  
IN  
(V  
OUT(LOW LINE) -  
= 1.8V to 6V; I  
= 100mA  
-0.9  
-0.7  
0.9  
LOAD  
V
V
)/  
OUT(HIGH LINE)  
OUT(LOW LINE)  
Load Regulation  
(V  
V
V
= 2.2V; I = 0A to 500mA  
LOAD  
0.7  
%
OUT(NO LOAD) -  
)/  
IN  
OUT(FULL LOAD)  
V
OUT(NO LOAD)  
Ground Pin Current  
I
I
I
= 0A, 1.8V < V < 6V  
IN  
2.2  
2.8  
0.2  
45  
4.6  
5.7  
12  
mA  
mA  
µA  
mV  
A
Q
LOAD  
LOAD  
= 500mA, 1.8V < V < 6V  
IN  
Ground Pin Current in Shutdown  
Dropout Voltage (Note 10)  
I
ENABLE pin = 0V, V = 6V  
IN  
SHDN  
V
I
= 500mA, V = 2.5V  
OUT  
90  
DO  
LOAD  
Output Short-Circuit Current  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
OCP  
TSD  
V
= 0V  
0.75  
1.2  
160  
30  
1.5  
OUT  
°C  
°C  
TSDn  
FN8770 Rev 1.00  
November 10, 2016  
Page 4 of 13  
ISL80505  
Electrical Specifications Unless otherwise noted, 1.8V < V < 6V, V  
= 0.5V, T = +25°C. Applications must follow thermal  
J
guidelines of the package to determine worst case junction temperature. Please refer to “Applications Information” on page 10 and Tech Brief TB379.  
IN  
OUT  
Boldface limits apply across the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
AC CHARACTERISTICS  
SYMBOL  
PSRR  
TEST CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNIT  
Input Supply Ripple Rejection  
f = 1kHz, I  
LOAD  
= 500mA; V = 2.2V;  
IN  
57  
60  
79  
dB  
dB  
V
= 1.8V  
OUT  
f = 120Hz, I  
= 500mA; V = 2.2V;  
IN  
LOAD  
= 1.8V  
V
V
OUT  
Output Noise Voltage  
= 2.2V; V  
= 1.8V; I  
LOAD  
= 500mA,  
µV  
RMS  
IN  
OUT  
BW = 100Hz < f < 100kHz  
ENABLE PIN CHARACTERISTICS  
Turn-On Threshold  
0.5  
10  
0.8  
80  
1
V
Hysteresis  
200  
mV  
µs  
ENABLE Pin Turn-On Delay  
ENABLE Pin Leakage Current  
SOFT-START CHARACTERISTICS  
SS Pin Currents (Note 11)  
C
= 4.7µF, I  
= 500mA  
= 6V, ENABLE = 3V  
100  
OUT  
LOAD  
V
1
µA  
IN  
I
V
= 3.5V, ENABLE = 0V, SS = 1V  
0.5  
1
1.3  
mA  
µA  
PD  
IN  
I
-3.3  
-2  
-0.8  
CHG  
NOTES:  
9. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
10. Dropout is defined as the difference in supply V and V  
IN OUT  
when the output is below its nominal regulation.  
11. I is the internal pull-down current that discharges the external SS capacitor on disable. I  
is the current from the SS pin that charges the external  
PD  
CHG  
SS capacitor during start-up.  
Typical Operating Performance Unless otherwise noted: V = 2.2V, V = 1.8V, C = C = 10µF,  
IN  
OUT  
IN  
OUT  
T = +25°C, I  
J
= 0A.  
LOAD  
90  
60  
50  
40  
30  
20  
10  
0
V
= 2.5V  
OUT  
I
= 250mA  
OUT  
80  
70  
60  
50  
40  
30  
20  
10  
0
+85°C  
+125°C  
+125°C  
+85°C  
-40°C  
+25°C  
+25°C  
0°C  
0°C  
-40°C  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
OUTPUT CURRENT (A)  
1.80 2.17 2.54 2.91 3.28 3.65 4.02 4.39 4.76 5.13 5.50  
OUTPUT VOLTAGE (V)  
FIGURE 4. DROPOUT vs OUTPUT CURRENT  
FIGURE 5. DROPOUT vs OUTPUT VOLTAGE  
FN8770 Rev 1.00  
November 10, 2016  
Page 5 of 13  
ISL80505  
Typical Operating Performance Unless otherwise noted: V = 2.2V, V = 1.8V, C = C = 10µF,  
IN  
OUT  
IN  
OUT  
T = +25°C, I  
J
= 0A. (Continued)  
LOAD  
120  
100  
80  
60  
40  
20  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 500mA  
V
= 2.5V  
OUT  
OUT  
I
= 500mA  
+125°C  
OUT  
+85°C  
I
= 250mA  
OUT  
+25°C  
0°C  
-40°C  
1.80 2.17 2.54 2.91 3.28 3.65 4.02 4.39 4.76 5.13 5.50  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 6. DROPOUT vs OUTPUT VOLTAGE  
FIGURE 7. DROPOUT vs TEMPERATURE  
3.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+125°C  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+85°C  
+125°C  
+25°C  
+25°C  
-40°C  
0.2  
-40°C  
+85°C  
0
0.1  
0.1  
0.2  
0.3  
0.3  
0.4  
0.4  
0.5  
0.5  
1.8 2.2  
2.6  
3.1  
3.5  
3.9  
4.3  
4.7  
5.2  
5.6  
6.0  
OUTPUT CURRENT (A)  
INPUT VOLTAGE (V)  
FIGURE 8. GROUND CURRENT vs OUTPUT CURRENT  
FIGURE 9. GROUND CURRENT vs INPUT VOLTAGE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
= 0A  
OUT  
V
= 6V  
IN  
V
= 5V  
IN  
V
= 1.8V  
IN  
V
= 3V  
65  
IN  
-40 -25 -10 5.0 20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 10. GROUND CURRENT vs TEMPERATURE  
FIGURE 11. SHUTDOWN CURRENT vs TEMPERATURE  
FN8770 Rev 1.00  
November 10, 2016  
Page 6 of 13  
ISL80505  
Typical Operating Performance Unless otherwise noted: V = 2.2V, V = 1.8V, C = C = 10µF,  
IN  
OUT  
IN  
OUT  
T = +25°C, I  
J
= 0A. (Continued)  
LOAD  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
RISING THRESHOLD, FALLING THRESHOLD, -40°C  
V
= 2.2V  
IN  
-40°C  
RISING THRESHOLD, +25°C  
EN RISING THRESHOLD  
RISING THRESHOLD, +85°C  
NG  
SHO  
°C  
LLI  
RE  
FA  
TH  
+85  
EN FALLING THRESHOLD  
LD,  
FALLING  
THRESHOLD,  
+25°C  
RISING  
THRESHOLD,  
+125°C  
FALLING  
THRESHOLD, +125°C  
-40 -25 -10 5.0 20  
35  
50  
65  
80  
95 110 125  
1.8 2.2  
2.6  
3.1  
3.5  
3.9  
4.3  
4.7  
5.2 5.6  
6.0  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
FIGURE 12. EN THRESHOLDS vs TEMPERATURE  
FIGURE 13. EN THRESHOLDS vs INPUT VOLTAGE  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.854  
1.836  
1.818  
1.800  
1.782  
1.764  
1.746  
+125°C  
+85°C  
T = +85°C  
T = +25°C  
T = -40°C  
T = +125°C  
+25°C  
-40°C  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
INPUT VOLTAGE (V)  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
OUTPUT CURRENT (A)  
FIGURE 14. OUTPUT VOLTAGE vs INPUT VOLTAGE  
FIGURE 15. OUTPUT VOLTAGE vs OUTPUT CURRENT  
1.854  
1.836  
1.818  
1.800  
1.782  
1.764  
1.746  
1.854  
1.836  
1.818  
1.800  
1.782  
1.764  
1.746  
T = +85°C  
Series5  
I
= 0A  
OUT  
T = +125°C  
T = -40°C  
I
= 500mA  
OUT  
2.2 2.6  
3.0  
3.3 3.7  
4.1 4.5  
4.9  
5.2  
5.6 6.0  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 17. OUTPUT VOLTAGE vs INPUT VOLTAGE  
FIGURE 16. OUTPUT VOLTAGE vs TEMPERATURE  
FN8770 Rev 1.00  
November 10, 2016  
Page 7 of 13  
ISL80505  
Typical Operating Performance Unless otherwise noted: V = 2.2V, V = 1.8V, C = C = 10µF,  
IN  
OUT  
IN  
OUT  
T = +25°C, I  
J
= 0A. (Continued)  
LOAD  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 6V  
R
= 3.6Ω  
IN  
LOAD  
EN (2V/DIV)  
V
= 2.2V  
IN  
V
= 1.8V  
IN  
SS (500mV/DIV)  
V
(500mV/DIV)  
OUT  
I
(500mA/DIV)  
LOAD  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
2ms/DIV  
TEMPERATURE (°C)  
FIGURE 19. ENABLE START-UP (C = 10nF)  
SS  
FIGURE 18. CURRENT LIMIT vs TEMPERATURE  
C
= 10µF, C  
= 10nF  
PB  
C
= 4.7µF  
OUT  
OUT  
V
(AC- COUPLED, 20mV/DIV)  
V
(AC- COUPLED, 50mV/DIV)  
OUT  
OUT  
10mA <-> 500mA AT 2A/µs  
10mA <-> 500mA AT 2A/µs  
I
(200mA/DIV)  
LOAD  
I
(200mA/DIV)  
LOAD  
200µs/DIV  
200µs/DIV  
FIGURE 20. LOAD TRANSIENT RESPONSE  
FIGURE 21. LOAD TRANSIENT RESPONSE  
C
= 4.7µF, I = 10mA  
LOAD  
C
= 10µF, C  
= 10nF, I = 10mA  
LOAD  
OUT  
OUT  
PB  
V
(AC- COUPLED, 10mV/DIV)  
OUT  
V
(AC- COUPLED, 10mV/DIV)  
OUT  
2.2V <-> 6V AT 1V/µs  
V
(2V/DIV)  
2.2V <-> 6V AT 1V/µs  
IN  
V
(2V/DIV)  
IN  
200µs/DIV  
200µs/DIV  
FIGURE 23. LINE TRANSIENT RESPONSE  
FIGURE 22. LINE TRANSIENT RESPONSE  
FN8770 Rev 1.00  
November 10, 2016  
Page 8 of 13  
ISL80505  
Typical Operating Performance Unless otherwise noted: V = 2.2V, V = 1.8V, C = C = 10µF,  
IN  
OUT  
IN  
OUT  
T = +25°C, I  
J
= 0A. (Continued)  
LOAD  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
I
= 0.1A  
OUT  
I
= 0.1A  
I
OUT  
I
= 0.2A  
OUT  
= 0.2A  
OUT  
I
= 0.5A  
OUT  
I
= 0.5A  
I
= 0.4A  
OUT  
OUT  
I
= 0.4A  
I
OUT  
I
= 0.3A  
OUT  
= 0.3A  
OUT  
V
C
= 2.3V  
= 10nF  
10  
C
IN  
= 10nF  
PB  
PB  
0
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FIGURE 25. PSRR vs FREQUENCY  
FIGURE 24. PSRR vs FREQUENCY  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 0.2A  
OUT  
I
= 0.1A  
I
OUT  
I
= 0.1A  
OUT  
= 0.2A  
OUT  
I
= 0.5A  
I
= 0.5A  
OUT  
OUT  
I
= 0.3A  
OUT  
I
OUT  
= 0.4A  
I
= 0.4A  
I
OUT  
= 0.3A  
OUT  
C
= 47µF  
OUT  
C
= 4.7µF  
OUT  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FIGURE 26. PSRR vs FREQUENCY (C  
= 4.7µF)  
FIGURE 27. PSRR vs FREQUENCY (C  
= 47µF)  
OUT  
OUT  
10.00  
1.00  
0.10  
0.01  
I
= 500mA  
OUT  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
FIGURE 28. OUTPUT NOISE SPECTRAL DENSITY  
FN8770 Rev 1.00  
November 10, 2016  
Page 9 of 13  
ISL80505  
customer. Stable operation over full temperature, V range,  
IN  
Applications Information  
Input Voltage Requirements  
The ISL80505 is a linear voltage regulator operating from 1.8V to  
6V input voltage and regulates output voltage between 0.8V to  
5.5V, a maximum 500mA output current.  
V
range, and load extremes are guaranteed for all capacitor  
OUT  
types and values assuming a minimum of 4.7µF X5R/X7R is  
used for local bypass on V . This output capacitor must be  
OUT  
and GND pins of the LDO with PCB traces  
connected to the V  
OUT  
no longer than 0.5cm.  
There is a growing trend to use very low ESR Multilayer Ceramic  
Capacitors (MLCC) because they can support fast load transients  
and also bypass very high frequency noise from other sources.  
However, the effective capacitance of MLCCs drops with applied  
voltage, age, and temperature. X7R and X5R dielectric ceramic  
capacitors are strongly recommended as they typically maintain  
a capacitance range within ±20% of nominal voltage over full  
operating ratings of temperature and voltage.  
Due to the nature of an LDO, V must be some margin higher  
IN  
than V  
plus dropout at the maximum rated current of the  
OUT  
application if active filtering (PSRR) is expected from V to V  
.
IN OUT  
The generous dropout specification of this family of LDOs allows  
applications to design a level of efficiency.  
Enable Operation  
The ENABLE turn-on threshold is typically 800mV with 80mV of  
hysteresis. An internal pull-up or pull-down resistor to change  
these values is available upon request. As a result, this pin must  
Additional capacitors of any value in ceramic, POSCAP,  
alum/tantalum electrolytic types may be placed in parallel to  
improve PSRR at higher frequencies and/or load transient AC  
output voltage tolerances.  
not be left floating and should be tied to V if not used. A 1kΩ to  
IN  
10kΩ pull-up resistor is required for applications that use open  
collector or open-drain outputs to control the ENABLE pin. The  
INPUT CAPACITOR  
ENABLE pin may be connected directly to V for applications  
IN  
For proper operation, a minimum capacitance of 4.7µF X5R/X7R  
is required at the input. This ceramic input capacitor must be  
with outputs that are always on.  
connected to the V and GND pins of the LDO with PCB traces no  
longer than 0.5cm.  
IN  
Output Voltage  
The output voltage can be set by an external resistor divider  
network. The values of resistors R and R can be calculated by  
PHASE BOOST CAPACITOR (CPB)  
1
2
using Equation 1.  
A small phase boost capacitor, C , can be placed across the top  
PB  
V
resistor, R , in the feedback resistor divider network in order to  
1
OUT  
---------------  
R
= R  
2
1  
(EQ. 1)  
1
improve the AC performances of the LDO for the applications  
where the output capacitor is 10µF or larger. For 10µF output  
0.5  
capacitor, the recommended C value can be calculated by  
using Equation 4.  
Soft-Start Operation  
PB  
The soft-start circuit controls the rate at which the output voltage  
rises up to regulation at power-up or LDO enable. This start-up  
ramp time can be set by adding an external capacitor from the  
SS pin to ground. An internal 2µA current source charges up the  
1
(EQ. 4)  
-----------------------------------  
C
=
PB  
2x6000xR  
1
This zero increases the crossover frequency of the LDO and  
provides additional phase resulting in faster load transient  
response.  
C
and the feedback reference voltage is clamped to the  
SS  
voltage across it. The start-up time is set by Equation 2.  
C
x0.5  
SS  
(EQ. 2)  
-----------------------  
=
t
start  
2A  
Power Dissipation and Thermals  
The junction temperature must not exceed the range specified in  
the “Recommended Operating Conditions” on page 4. The power  
dissipation can be calculated by using Equation 5:  
Equation 3 determines the C required for a specific start-up  
SS  
inrush current, where V  
is the output voltage, C  
is the total  
is the desired inrush  
OUT  
OUT  
capacitance on the output and I  
current.  
INRUSH  
(EQ. 5)  
P
= V V  
  I  
+ V I  
OUT IN GND  
D
IN  
OUT  
V
xC  
x2A  
OUT  
x0.5V  
OUT  
I
(EQ. 3)  
---------------------------------------------------  
=
C
SS  
The maximum allowable junction temperature, T  
maximum expected ambient temperature, T  
A(MAX)  
and the  
, determine  
J(MAX)  
INRUSH  
the maximum allowable power dissipation, as shown in  
Equation 6:  
The external capacitor is always discharged to ground at the  
beginning of start-up or enabling.  
(EQ. 6)  
P
= T  
T     
JMAXA JA  
DMAX  
External Capacitor Requirements  
is the junction-to-ambient thermal resistance.  
External capacitors are required for proper operation. Careful  
attention must be paid to the layout guidelines and selection of  
capacitor type and value to ensure optimal performance.  
JA  
For safe operation, ensure that the power dissipation P ,  
calculated from Equation 5, is less than the maximum allowable  
power dissipation P  
D
.
D(MAX)  
OUTPUT CAPACITOR  
The ISL80505 applies state-of-the-art internal compensation to  
keep the selection of the output capacitor simple for the  
FN8770 Rev 1.00  
November 10, 2016  
Page 10 of 13  
ISL80505  
The DFN package uses the copper area on the PCB as a heatsink.  
The EPAD of this package must be soldered to the copper plane  
(GND plane) for effective heat dissipation. Figure 29 shows a  
Figure 30 shows an example for 2-layer PCB layout. The bottom  
layer is the ground plane.  
curve for the of the DFN package for different copper area  
JA  
sizes.  
IN  
CIN  
OUT  
49  
ISL80505  
COUT  
47  
45  
R1  
EN  
43  
41  
R2  
CPB  
CSS  
GND  
39  
FIGURE 30. EXAMPLE FOR PCB LAYOUT  
37  
2
4
6
8
10 12 14 16 18 20 22 24  
2
EPAD-MOUNT COPPER LAND AREA ON PCB (mm )  
FIGURE 29. 3mmx3mm-10 PIN DFN ON 4-LAYER PCB WITH  
General PowerPAD Design  
Considerations  
THERMAL VIAS vs EPAD-MOUNT COPPER LAND  
JA  
AREA ON PCB  
The following is an example of how to use via’s to remove heat  
from the IC.  
Thermal Fault Protection  
The power level and the thermal impedance of the package  
(+48°C/W for DFN) determine when the junction temperature  
exceeds the thermal shutdown temperature. In the event that the  
die temperature exceeds around +160°C, the output of the LDO will  
shut down until the die temperature cools down to about +130°C.  
Current Limit Protection  
FIGURE 31. PCB VIA PATTERN  
The ISL80505 LDO incorporates protection against overcurrent due  
to any short or overload condition applied to the output pin. The LDO  
performs as a constant current source when the output current  
exceeds the current limit threshold noted in the “Electrical  
A minimum of 4 vias evenly distributed to fill the thermal pad  
footprint is recommended. Keep the vias small but not so small  
that their inside diameter prevents solder wicking through the  
holes during reflow.  
Specifications” table on page 4. If the short or overload condition is  
removed from V , then the output returns to normal voltage  
OUT  
Connect all vias to the ground plane. It is important the vias have  
a low thermal resistance for efficient heat transfer. Do not use  
“thermal relief” patterns to connect the vias. It is important to  
have a complete connection of the plated through-hole to each  
plane.  
regulation mode. In the event of an overload condition, the LDO may  
begin to cycle on and off due to the die temperature exceeding  
thermal fault condition and subsequently cooling down after the  
power device is turned off.  
PC Board Layout  
The performance of this LDO depends greatly on the care taken  
in designing the PC board. The following are recommendations to  
achieve optimum performance.  
• A minimum capacitance of 4.7µF X5R/X7R ceramic input  
capacitor must be placed to the V and GND pins of the LDO  
IN  
with PCB traces no longer than 0.5cm.  
• A minimum capacitance of 4.7µF X5R/X7R ceramic output  
capacitor must be placed to the V  
and GND pins of the LDO  
with PCB traces no longer than 0.5cm.  
OUT  
• Connect the EPAD to the ground plane with low-thermal  
resistance vias.  
FN8770 Rev 1.00  
November 10, 2016  
Page 11 of 13  
ISL80505  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please visit our website to make sure you have the latest revision.  
DATE  
REVISION  
FN8770.1  
CHANGE  
November 10, 2016  
Updated Related Literature section on page 1.  
Updated Note 1 on page 2.  
September 8, 2015  
FN8770.0  
Initial Release  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing, and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation, and related parts, see the respective product information  
page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
© Copyright Intersil Americas LLC 2015-2016. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8770 Rev 1.00  
November 10, 2016  
Page 12 of 13  
ISL80505  
For the most recent package outline drawing, see L8.3x3J.  
Package Outline Drawing  
L8.3x3J  
8 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 1 3/15  
2X 1.950  
3.00  
A
6X 0.65  
B
5
8
(4X)  
0.15  
1.64 +0.10/ - 0.15  
6
PIN 1  
INDEX AREA  
6
PIN #1 INDEX AREA  
4
1
4
8X 0.30  
0.10 M C A B  
8X 0.400 ± 0.10  
TOP VIEW  
2.38  
+0.10/ - 0.15  
BOTTOM VIEW  
SEE DETAIL "X"  
( 2.38 )  
( 1.95)  
C
0.10  
C
Max 1.00  
0.08  
C
SIDE VIEW  
( 8X 0.60)  
(1.64)  
( 2.80 )  
PIN 1  
5
C
0 . 2 REF  
(6x 0.65)  
0 . 00 MIN.  
0 . 05 MAX.  
( 8 X 0.30)  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
5.  
Tiebar shown (if present) is a non-functional feature and may be  
located on any of the 4 sides (or ends).  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
6.  
FN8770 Rev 1.00  
November 10, 2016  
Page 13 of 13  

相关型号:

ISL8088

Dual 800mA Low Quiescent Current 2.25MHz High Efficiency Synchronous Buck Regulator
INTERSIL

ISL8088IRZ

Dual 800mA Low Quiescent Current 2.25MHz High Efficiency Synchronous Buck Regulator
INTERSIL

ISL8088IRZ-T

Dual 800mA Low Quiescent Current 2.25MHz High Efficiency Synchronous Buck Regulator
INTERSIL

ISL8088IRZ-T13

SWITCHING REGULATOR
RENESAS

ISL8088IRZ-T7

SWITCHING REGULATOR
RENESAS

ISL8088IRZ-T7A

Dual 800mA Low Quiescent Current 2.25MHz High Efficiency Synchronous Buck Regulator; DFN10; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL8088_10

Dual 800mA Low Quiescent Current 2.25MHz High Efficiency Synchronous Buck Regulator
INTERSIL

ISL8101

Two-Phase Multiphase Buck PWM Controller with Integrated MOSFET Drivers
INTERSIL

ISL8101CRZ

Two-Phase Multiphase Buck PWM Controller with Integrated MOSFET Drivers
INTERSIL

ISL8101CRZ

DUAL SWITCHING CONTROLLER, 255kHz SWITCHING FREQ-MAX, PQCC24, 4 X 4 MM, ROHS COMPLIANT, PLASTIC, MO-220VGGD-2, QFN-24
RENESAS

ISL8101EVAL1

Two-Phase Multiphase Buck PWM Controller with Integrated MOSFET Drivers
INTERSIL

ISL8101IRZ

Two-Phase Multiphase Buck PWM Controller with Integrated MOSFET Drivers
INTERSIL