ISL85003A [RENESAS]

4.5V to 18V Input, 5A High Efficiency Synchronous Buck Regulator;
ISL85003A
型号: ISL85003A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

4.5V to 18V Input, 5A High Efficiency Synchronous Buck Regulator

文件: 总23页 (文件大小:1254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL85005, ISL85005A  
4.5V to 18V Input, 5A High Efficiency Synchronous Buck Regulator  
FN8871  
Rev.2.00  
May 17, 2018  
The ISL85005 and ISL85005A are monolithic, synchronous  
Features  
buck regulators with integrated 5A, 18V high-side and low-side  
FETs. These devices provide an integrated bootstrap diode for  
the high-side gate driver to reduce the external parts count.  
These devices also have a wide input voltage range to support  
applications with input voltage from multi-cell batteries or  
regulated 5V and 12V power rails.  
• 4.5V to 18V input voltage range  
• Internal 5A, 18V high-side and low-side MOSFET switches  
• ±1%, 0.8V feedback voltage reference  
• Integrated bootstrap diode with undervoltage detection  
• Current mode control with internal slope compensation  
• Internal or external compensation options  
The ISL85005 and ISL85005A regulate the output voltage  
with current mode control and have an internal oscillator. The  
switching frequency of the ISL85005 is internally set as  
500kHz, and can be synchronized to an external clock signal  
with frequency ranges from 300kHz to 2MHz. The ISL85005A  
has a fixed 500kHz switching frequency.  
• Default internally set 500kHz switching frequency  
• Synchronization capability to external clock (ISL85005)  
• Diode Emulation Mode (DEM) and Forced CCM (FCCM)  
options (ISL85005)  
The ISL85005 has a fixed 2.3ms soft-start, while the  
ISL85005A features programmable soft-start to limit inrush  
current during startup. With the SS pin floating, the soft-start  
time of ISL85005A is also 2.3ms.  
• Adjustable soft-start time (ISL85005A)  
• Output Power-Good (PG) indicator  
• Input Undervoltage Lockout (UVLO), input and output  
overvoltage protection  
The ISL85005 can be configured in either forced Continuous  
Conduction Mode (CCM) or Diode Emulation Mode (DEM). DEM  
enables high efficiency at light-load conditions. The  
ISL85005A always operates in forced CCM.  
• High-side cycle-by-cycle current limit, low-side forward and  
reverse overcurrent protection, and thermal shutdown  
• Small 12-pin 3mmx4mm Dual Flat No-Lead (DFN) package  
with EPAD for enhanced thermal performance  
The ISL85005 and ISL85005A have built-in protections  
including input UVLO protection, input and output overvoltage  
protection, high-side cycle-by-cycle current limit, low-side  
forward current limit and reverse current limit, and thermal  
shutdown.  
Applications  
• Network and communications equipment  
• Battery powered systems  
• Multifunction printers  
Related Literature  
For a full list of related documents, visit our website  
• Point-of-load regulators  
• Standard 12V rail supplies  
• Embedded computing systems  
ISL85005, ISL85005A product pages  
Typical Application  
95  
90  
85  
80  
75  
70  
ISL85005  
GND = DEM; VCC = FCCM  
SYNC/  
MODE  
MODE  
BOOT  
VDD  
1
2
3
4
5
6
12  
11  
C
4
V
IN  
PG  
EN  
PG  
4.5V TO 18V  
EN  
VIN 10  
PGND  
VIN  
9
C
FB  
C
6
3
C
5
V
R
1
OUT  
2
PHASE  
PHASE  
COMP  
AGND  
8
7
12V TO 5V  
R
1
5A MAX  
65  
C
12V TO 3.3V  
L
1
60  
C
C
12V TO 1.8V  
8
9
55  
50  
0
1
2
3
4
5
OUTPUT CURRENT (A)  
FIGURE 1. ISL85005 WITH INTERNAL COMPENSATION  
FIGURE 2. EFFICIENCY vs OUTPUT CURRENT  
FN8871 Rev.2.00  
May 17, 2018  
Page 1 of 23  
ISL85005, ISL85005A  
Table of Contents  
Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Typical Application Schematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Operation Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
FCCM Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Light-Load Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Synchronization Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Enable, Soft-Start, and Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Protection Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Forward Overcurrent Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Reverse Overcurrent Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Overvoltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Input Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Thermal Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power Derating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Application Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Boot Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Switching Regulator Output Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Inductor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Loop Compensation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Compensator Design Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
High DC Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Layout Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
FN8871 Rev.2.00  
May 17, 2018  
Page 2 of 23  
ISL85005, ISL85005A  
Functional Block Diagram  
SS (ISL85005A)  
SOFT-START  
CONTROL  
BOOT  
1
1
12  
11  
BOOT  
UVP  
SYNC/MODE (ISL85005)  
VDD  
VIN  
UNDERVOLTAGE  
LOCKOUT  
LDO  
9
EN  
OSCILLATOR  
10  
CSA  
PG  
2
0.8V  
FAULT  
+
REFERENCE  
MONITOR  
CIRCUITS  
SLOPE  
COMP  
+
-
PHASE  
PGND  
7
8
EN  
GATE DRIVE  
CONTROL  
CIRCUIT  
3
VDD  
+
+
THERMAL  
SHUTDOWN  
EA  
13  
-
FB  
600k  
30pF  
4
5
ZERO CROSS  
DETECTOR  
AND  
NEGATIVE  
CURRENT  
LIMIT  
COMP  
AGND  
GND DETECTION  
CIRCUIT  
POSITIVE  
LS OCP  
6
FIGURE 3. BLOCK DIAGRAM  
FN8871 Rev.2.00  
May 17, 2018  
Page 3 of 23  
ISL85005, ISL85005A  
Pin Configurations  
ISL85005  
(12 LD 3x4 DFN)  
TOP VIEW  
ISL85005A  
(12 LD 3x4 DFN)  
TOP VIEW  
SS  
PG  
SYNC/MODE  
1
1
2
3
4
5
6
12 BOOT  
12 BOOT  
11  
10  
9
PG  
EN  
2
3
4
5
6
11  
10  
9
VDD  
VDD  
EN  
VIN  
VIN  
PGND  
PGND  
(EPAD)  
(EPAD)  
FB  
VIN  
FB  
VIN  
COMP  
AGND  
8
PHASE  
PHASE  
COMP  
AGND  
8
PHASE  
PHASE  
7
7
Pin Descriptions  
PIN  
PIN  
NUMBER  
NAME  
DESCRIPTION  
1
SYNC/ Synchronization and mode selection input. Connect to VDD for Forced Continuous Conduction Mode (FCCM). Connect to AGND  
MODE for Diode Emulation Mode (DEM). Connect to an external function generator for synchronization with the positive edge trigger.  
The internal 1MΩ pull-up resistor to VDD prevents an undefined logic state when SYNC is floating.  
(ISL85005)  
1
SS  
Soft-start input. This pin provides a programmable soft-start. When the chip is enabled, the regulated 3.5µA pull-up current  
source charges a capacitor connected from SS to ground. The output voltage of the converter follows the ramping voltage on  
this pin. Without the external capacitor, the default soft-start is 2.3ms.  
(ISL85005A)  
2
PG  
Power-good, open-drain output. Connect a 10kΩ to 100kΩ pull-up resistor between PG and VDD or between PG and a voltage  
not exceeding 5.5V. PG transitions high about 1.5ms after the switching regulator’s output voltage reaches the regulation  
threshold, which is typically 85% of the regulated output voltage.  
3
4
EN  
FB  
Enable input. The regulator is held off when the pin is pulled to ground. The device is enabled when the voltage on this pin rises  
above 0.6V.  
Feedback input. The synchronous buck regulator employs a current mode control loop. FB is the negative input to the voltage  
loop error amplifier. The output voltage is set by an external resistor divider connected to FB. The output voltage can be set to  
any voltage between the power rail (reduced by converter losses) and the 0.8V reference.  
5
6
COMP Compensation node. This pin is connected to the output of the error amplifier and compensates the loop. Internal  
compensation meets most applications. Connect COMP to AGND to select internal compensation. Connect a compensation  
network between COMP and FB to use external compensation.  
AGND The AGND terminal. Provides the return path for the core analog control circuitry within the device. Connect AGND to the board  
ground plane. AGND and PGND are connected internally within the device. Do not operate the device with AGND and PGND  
connected to dissimilar voltages.  
7, 8  
PHASE Phase switch output node. Connect to the external output inductor.  
9, 10  
VIN  
Voltage supply input. The main power input for the IC. Connect to a suitable voltage supply. Place a ceramic capacitor from VIN  
to PGND, close to the IC for decoupling.  
11  
VDD  
Low dropout linear regulator decoupling pin. VDD is the internally generated 5V supply voltage and is derived from VIN. The  
VDD powers all the internal core analog control blocks and drivers. Connect a 1µF capacitor from VDD to the board ground  
plane. If VIN is between 3V to 5.5V, then connect VDD directly to VIN to improve efficiency.  
12  
BOOT Bootstrap input. A floating bootstrap supply pin for the upper power MOSFET gate driver. Connect a 0.1µF capacitor between  
BOOT and PHASE.  
(EPAD)  
PGND Power ground terminal. Provides thermal relief for the package and is connected to the source of the low-side output MOSFET.  
Connect PGND to the board ground plane using as many vias as possible. AGND and PGND are connected internally within the  
device. Do not operate the device with AGND and PGND connected to dissimilar voltages.  
FN8871 Rev.2.00  
May 17, 2018  
Page 4 of 23  
ISL85005, ISL85005A  
Ordering Information  
PART NUMBER  
(Notes 2, 3, 4)  
PART  
MARKING  
TEMP. RANGE  
(°C)  
FREQUENCY TAPE AND REEL  
PACKAGE  
PKG.  
DWG. #  
OPTION  
(kHz) (UNITS) (Note 1) (RoHS COMPLIANT)  
ISL85005FRZ  
005F  
-40 to +125 SYNC  
500  
500  
500  
500  
500  
500  
500  
500  
-
12 Ld DFN  
12 Ld DFN  
12 Ld DFN  
12 Ld DFN  
12 Ld DFN  
12 Ld DFN  
12 Ld DFN  
12 Ld DFN  
L12.3x4  
ISL85005FRZ-T  
ISL85005FRZ-TK  
ISL85005FRZ-T7A  
ISL85005AFRZ  
005F  
-40 to +125 SYNC  
6k  
1k  
250  
-
L12.3x4  
L12.3x4  
L12.3x4  
L12.3x4  
L12.3x4  
L12.3x4  
L12.3x4  
005F  
-40 to +125 SYNC  
005F  
-40 to +125 SYNC  
005A  
-40 to +125 SOFT-START  
-40 to +125 SOFT-START  
-40 to +125 SOFT-START  
-40 to +125 SOFT-START  
ISL85005AFRZ-T  
ISL85005AFRZ-TK  
ISL85005AFRZ-T7A  
ISL85005AEVAL1Z  
ISL85005ADEMO1Z  
ISL85005EVAL1Z  
ISL85005DEMO1Z  
NOTES:  
005A  
6k  
1k  
250  
005A  
005A  
Evaluation Board  
Demonstration Board  
Evaluation Board  
Demonstration Board  
1. Refer to TB347 for details about reel specifications.  
2. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate  
plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), see the ISL85005, ISL85005A product information pages. For more information about MSL, refer to TB363.  
4. The ISL85005 is provided with a frequency synchronization input. The ISL85005A is a version of the part with programmable soft-start.  
TABLE 1. KEY DIFFERENCES BETWEEN FAMILY OF PARTS  
INTERNAL/EXTERNAL  
COMPENSATION  
EXTERNAL FREQUENCY  
SYNC  
PROGRAMMABLE  
SOFT-START  
SWITCHING  
FREQUENCY (kHz)  
CURRENT  
RATING  
PART NUMBER  
ISL85005A  
ISL85005  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
No  
500  
500  
500  
500  
5A  
5A  
3A  
3A  
ISL85003  
No  
ISL85003A  
Yes  
FN8871 Rev.2.00  
May 17, 2018  
Page 5 of 23  
ISL85005, ISL85005A  
Typical Application Schematics  
ISL85005  
GND = DEM; VCC = FCCM  
MODE  
SYNC/  
MODE  
BOOT  
VDD  
VIN  
1
2
3
4
5
6
12  
11  
10  
9
C
4
V
PG  
EN  
PG  
EN  
IN  
4.5V TO 18V  
PGND  
VIN  
C
FB  
3
C
C
6
5
R
2
PHASE  
PHASE  
8
COMP  
AGND  
V
OUT  
5A MAX  
R
1
C
1
7
L
1
C
C
8
9
FIGURE 4. ISL85005 V RANGE FROM 4.5V TO 18V WITH INTERNAL COMPENSATION  
IN  
ISL85005A  
C
SS  
BOOT  
VDD  
SS  
1
2
3
4
5
6
12  
11  
C
4
PG  
EN  
V
PG  
EN  
IN  
4.5V TO 18V  
VIN 10  
PGND  
VIN  
9
8
7
C
3
FB  
C
C
5
6
R
2
PHASE  
COMP  
AGND  
V
OUT  
R
1
5A MAX  
C
1
PHASE  
L
1
C
C
8
9
FIGURE 5. ISL85005A V RANGE FROM 4.5V TO 18V, WITH INTERNAL COMPENSATION WITH PROGRAMMABLE SOFT-START  
IN  
TABLE 2. COMPONENTS SELECTION (REFER TO Figures 1 AND 2)  
V
1.2V  
1OµF  
47µF  
1.8V  
1OµF  
47µF  
2.5V  
1OµF  
47µF  
3.3V  
1OµF  
47µF  
5V  
OUT  
C , C  
1OµF  
47µF  
5
6
9
C , C  
8
C
12pF  
12pF  
12pF  
12pF  
12pF  
1
L
3.3µH  
499kΩ  
998kΩ  
3.3µH  
499kΩ  
392kΩ  
3.3µH  
499kΩ  
232kΩ  
3.3µH  
499kΩ  
157kΩ  
3.3µH  
499kΩ  
95.3kΩ  
1
R
R
1
2
NOTE: V = 12V, I  
IN  
= 5A; The components selection table is a suggestion for typical application using internal compensation mode. For application  
OUT  
that requires high output capacitance greater than 200µF, R should be adjusted to maintain loop response bandwidth about 40kHz. See “Loop  
1
Compensation Design” on page 19 for more detail.  
FN8871 Rev.2.00  
May 17, 2018  
Page 6 of 23  
ISL85005, ISL85005A  
Absolute Maximum Ratings  
Thermal Information  
VIN, EN to AGND and PGND. . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to + 24V  
PHASE to AGND and PGND . . . . . . . . . . . . . . . . . . . . . . . -0.7V to +24V (DC)  
PHASE to AGND and PGND . . . . . . . . . . . . . . . . . . . . . . . -2V to +24V (40ns)  
FB to AGND and PGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to + 7V  
BOOT to PHASE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to + 7V  
VDD, COMP, SYNC, PG to AGND and PGND. . . . . . . . . . . . . . . -0.3V to + 7V  
Junction Temperature Range at 0A . . . . . . . . . . . . . . . . . .-55°C to +150°C  
ESD Rating  
Thermal Resistance  
DFN Package (Notes 5, 6) . . . . . . . . . . . . . .  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
(°C/W)  
41  
(°C/W)  
3
JA  
JC  
Recommended Operating Conditions  
Human Body Model (Tested per JESD22-A114F) . . . . . . . . . . . . . . .2.5kV  
Machine Model (Tested per JESD22-A115-C) . . . . . . . . . . . . . . . . . 150V  
Charged Device Model (Tested per JESD22-C101-E) . . . . . . . . . . . . . 1kV  
Latch-Up (Tested per JESD-78D; Class 2, Level A) . . . . . . . . . . . . . . 100mA  
V
Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5V to 18V  
IN  
Load Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0A to 5A  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
5. is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach” features. See TB379.  
JA  
6. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications All parameter limits are established over the recommended operating conditions with T = -40°C to +125°C,  
J
and with V = 12V unless otherwise noted. Typical values are at T = +25°C. Boldface limits apply across the operating junction temperature range,  
IN  
A
-40°C to +125°C.  
MIN  
MAX  
PARAMETER  
SUPPLY VOLTAGE  
SYMBOL  
TEST CONDITIONS  
(Note 7) TYP (Note 7) UNIT  
V
V
V
Voltage Range  
V
I
4.5  
18  
4.5  
11  
V
IN  
IN  
IN  
IN  
Quiescent Supply Current  
Shutdown Supply Current  
SYNC = Low, EN > 1V, FB = 0.85V, not switching  
EN = AGND  
3.2  
6
mA  
µA  
Q
I
SD  
UNDERVOLTAGE LOCKOUT  
UVLO Threshold  
V
Rising edge  
Falling edge  
4.20  
3.8  
4.35  
5.50  
V
V
IN  
3.5  
INTERNAL VDD LDO  
V
V
Output Voltage  
V
= 6V to 18V, I = 0mA to 30mA  
VDD  
4.30  
5.00  
50  
V
DD  
DD  
IN  
Output Current Limit  
mA  
OSCILLATOR  
Nominal Switching Frequency  
Minimum On-Time  
Minimum Off-Time  
Synchronization Range  
SYNC High-Time  
f
400  
500  
120  
140  
600  
140  
kHz  
ns  
ns  
kHz  
ns  
ns  
V
SW  
t
I
= 0mA (Note 8)  
OUT  
ON  
t
(Note 8)  
180  
OFF  
SYNC ISL85005  
300  
100  
100  
2000  
t
ISL85005  
ISL85005  
ISL85005  
ISL85005  
HI  
SYNC Low-Time  
t
LO  
SYNC Logic Input Low  
SYNC Logic Input High  
ERROR AMPLIFIER  
FB Regulation Voltage  
FB Leakage Current  
Open-Loop Bandwidth  
Gain  
0.50  
1.20  
V
V
V
V
= 4.5V to 18V  
0.792 0.800 0.808  
V
FB  
IN  
= 0.8V (Note 8)  
0.3  
5.5  
70  
10.0  
nA  
FB  
BW  
MHz  
dB  
FN8871 Rev.2.00  
May 17, 2018  
Page 7 of 23  
ISL85005, ISL85005A  
Electrical Specifications All parameter limits are established over the recommended operating conditions with T = -40°C to +125°C,  
J
and with V = 12V unless otherwise noted. Typical values are at T = +25°C. Boldface limits apply across the operating junction temperature range,  
IN  
A
-40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
Output Drive  
SYMBOL  
TEST CONDITIONS  
(Note 7) TYP (Note 7) UNIT  
V
= 1.5V  
±110  
0.15  
550  
µA  
Ω
COMP  
Current Sense Gain  
Slope Compensation  
ENABLE INPUT  
RT  
Se  
f
= 500kHz  
mV/µs  
SW  
EN Input Threshold  
Rising edge  
Hysteresis  
0.5  
60  
0.6  
0.7  
V
100  
140  
mV  
SOFT-START FUNCTION  
Default Soft-Start Time  
SS Internal Soft-Start Charging Current  
POWER-GOOD OPEN-DRAIN OUTPUT  
Output Low Voltage  
ISL85005, ISL85005A with SS pin floating  
ISL85005A  
1.0  
2.5  
2.3  
3.5  
3.6  
4.5  
ms  
µA  
I
= 5mA sinking  
0.25  
0.01  
85  
V
µA  
%
PG  
PG Pin Leakage Current  
PG Lower Threshold  
V
= V  
PG DD  
Percentage of output regulation  
Percentage of output regulation  
80  
90  
PG Upper Threshold  
110  
115  
3
120  
%
PG Thresholds Hysteresis  
Delay Time  
%
Rising edge  
Falling edge  
1.5  
18  
ms  
µs  
FAULT PROTECTION  
A
A
A
High-Side MOSFET Forward Current Limit  
Threshold  
I
6
7.8  
-3.3  
8.6  
9.5  
POCP  
Low-Side MOSFET Reverse Current Limit  
Threshold  
I
Current forced into PHASE node, high-side MOSFET is off,  
SYNC = High  
NOCP  
Low-Side MOSFET Forward Current Limit  
Threshold  
Current in low-side MOSFET at end of low-side cycle.  
V
Overvoltage Threshold  
V
rising  
IN  
19  
20  
1
V
V
IN  
Hysteresis  
Thermal Shutdown Threshold  
T
Temperature rising  
Hysteresis  
165  
10  
°C  
°C  
SD  
T
HYS  
POWER MOSFET  
High-Side MOSFET On-Resistance  
Low-Side MOSFET On-Resistance  
PHASE Pull-Down Resistor  
DIODE EMULATION  
R
I
I
= 100mA  
= 100mA  
57  
40  
10  
95  
75  
mΩ  
mΩ  
kΩ  
HDS  
PHASE  
PHASE  
R
LDS  
EN = AGND  
Zero-Cross Detection Threshold  
NOTE:  
ISL85005  
150  
mA  
7. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.  
8. Compliance to limits is assured by characterization and design.  
FN8871 Rev.2.00  
May 17, 2018  
Page 8 of 23  
ISL85005, ISL85005A  
Typical Characteristics  
V
= 12V, T = +25°C, unless otherwise noted.  
A
IN  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
JUNCTION TEMPERATURE (oC)  
JUNCTION TEMPERATURE (oC)  
FIGURE 7. V QUIESCENT CURRENT vs JUNCTION TEMPERATURE  
IN  
FIGURE 6. V SHUTDOWN CURRENT vs JUNCTION TEMPERATURE  
IN  
0.83  
0.82  
0.81  
0.80  
0.79  
0.78  
0.77  
0.9  
EN RISING  
0.8  
EN FALLING  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
JUNCTION TEMPERATURE (oC)  
JUNCTION TEMPERATURE (oC)  
FIGURE 8. FEEDBACK VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 9. ENABLE THRESHOLDS vs JUNCTION TEMPERATURE  
4.5  
560  
540  
520  
500  
480  
460  
440  
420  
400  
UVLO START SWITCHING  
UVLO STOP SWITCHING  
4.3  
4.1  
3.9  
3.7  
3.5  
3.3  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
JUNCTION TEMPERATURE (oC)  
JUNCTION TEMPERATURE (oC)  
FIGURE 10. V UVLO THRESHOLD vs JUNCTION TEMPERATURE  
IN  
FIGURE 11. SWITCHING FREQUENCY vs JUNCTION TEMPERATURE  
FN8871 Rev.2.00  
May 17, 2018  
Page 9 of 23  
ISL85005, ISL85005A  
Typical Characteristics  
V
= 12V, T = +25°C, unless otherwise noted. (Continued)  
A
IN  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
JUNCTION TEMPERATURE (oC)  
JUNCTION TEMPERATURE (oC)  
FIGURE 13. PG DELAY (RISING) vs JUNCTION TEMPERATURE  
FIGURE 12. PG DELAY (FALLING) vs JUNCTION TEMPERATURE  
12  
11  
10  
9
0
-1  
-2  
-3  
-4  
-5  
-6  
8
7
6
5
4
HIGH SIDE MOSFET  
LOW SIDE MOSFET  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
JUNCTION TEMPERATURE (oC)  
JUNCTION TEMPERATURE (oC)  
FIGURE 14. FORWARD OCP THRESHOLD vs JUNCTION TEMPERATURE  
FIGURE 15. LOW-SIDE REVERSE OCP THRESHOLD vs JUNCTION  
TEMPERATURE  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
JUNCTION TEMPERATURE (oC)  
JUNCTION TEMPERATURE (oC)  
FIGURE 16. HIGH-SIDE r  
vs JUNCTION TEMPERATURE  
FIGURE 17. LOW-SIDE r vs JUNCTION TEMPERATURE  
DS(ON)  
DS(ON)  
FN8871 Rev.2.00  
May 17, 2018  
Page 10 of 23  
ISL85005, ISL85005A  
Typical Performance Curves Circuit of Figure 1. V = 12V, V = 5V, L = 3.3µH, f = 500kHz, T = +25°C, unless  
IN  
OUT  
SW  
A
otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
VIN = 12V, DEM  
VIN = 12V, DEM  
VIN = 5V, DEM  
VIN = 12V, FORCED CCM  
50  
0
1
2
3
4
5
0
1
2
3
4
5
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
FIGURE 19. EFFICIENCY vs LOAD, V  
= 3.3V, DEM  
FIGURE 18. EFFICIENCY vs LOAD, V  
OUT  
= 5V  
OUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 12V, FORCED CCM  
VIN = 5V, FORCED CCM  
VIN = 12V, DEM  
VIN = 5V, DEM  
0
1
2
3
4
5
0
1
2
3
4
5
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
FIGURE 20. EFFICIENCY vs LOAD, V  
= 3.3V, FORCED CCM  
FIGURE 21. EFFICIENCY vs LOAD, V  
= 2.5V, DEM  
OUT  
OUT  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 12V, DEM  
VIN = 5V, DEM  
60  
55  
50  
VIN = 12V, FORCED CCM  
VIN = 5V, FORCED CCM  
0
1
2
3
4
5
0
1
2
3
4
5
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
FIGURE 22. EFFICIENCY vs LOAD, V  
= 2.5V, FORCED CCM  
FIGURE 23. EFFICIENCY vs LOAD, V  
= 1.8V, DEM  
OUT  
OUT  
FN8871 Rev.2.00  
May 17, 2018  
Page 11 of 23  
ISL85005, ISL85005A  
Typical Performance Curves Circuit of Figure 1. V = 12V, V = 5V, L = 3.3µH, f = 500kHz, T = +25°C, unless  
IN  
OUT  
SW  
A
otherwise noted. (Continued)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 12V, DEM  
VIN = 5V, DEM  
VIN = 12V, FORCED CCM  
VIN = 5V, FORCED CCM  
0
1
2
3
4
5
0
1
2
3
4
5
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
FIGURE 25. EFFICIENCY vs LOAD, V  
= 1.2V, DEM  
FIGURE 24. EFFICIENCY vs LOAD, V  
OUT  
= 1.8V, FORCED CCM  
OUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
(2V/DIV)  
OUT  
I
(2A/DIV)  
L
VIN = 12V, FORCED CCM  
VIN = 5V, FORCED CCM  
EN (10V/DIV)  
0
1
2
3
4
5
OU TPUT CURRENT (A)  
1ms/DIV  
FIGURE 26. EFFICIENCY vs LOAD, V  
OUT  
= 1.2V, FORCED CCM  
FIGURE 27. START-UP WITH EN, NO LOAD  
V
(2V/DIV)  
V
(2V/DIV)  
OUT  
OUT  
I
(2A/DIV)  
L
I
(2A/DIV)  
L
V
(5V/DIV)  
IN  
EN (10V/DIV)  
1ms/DIV  
2ms/DIV  
FIGURE 28. START-UP WITH EN, I  
= 5A  
FIGURE 29. START-UP WITH V , NO LOAD  
IN  
OUT  
FN8871 Rev.2.00  
May 17, 2018  
Page 12 of 23  
ISL85005, ISL85005A  
Typical Performance Curves Circuit of Figure 1. V = 12V, V = 5V, L = 3.3µH, f = 500kHz, T = +25°C, unless  
IN  
OUT  
SW  
A
otherwise noted. (Continued)  
V
(2V/DIV)  
OUT  
V
(2V/DIV)  
OUT  
I
(2A/DIV)  
L
I
(2A/DIV)  
L
V
(5V/DIV)  
IN  
EN (10V/DIV)  
50ms/DIV  
2ms/DIV  
FIGURE 30. START-UP WITH V , I  
IN OUT  
= 5A  
FIGURE 31. SHUTDOWN WITH EN, I  
= 10mA  
OUT  
V
(2V/DIV)  
OUT  
V
(2V/DIV)  
OUT  
I
(2A/DIV)  
L
I
(2A/DIV)  
L
V
(10V/DIV)  
IN  
EN (10V/DIV)  
200µs/DIV  
50ms/DIV  
FIGURE 32. SHUTDOWN WITH EN, I  
= 5A  
FIGURE 33. SHUTDOWN WITH V , I = 10mA  
IN OUT  
OUT  
V
(2V/DIV)  
OUT  
I
(500mA/DIV)  
L
I
(2A/DIV)  
L
V
(10V/DIV)  
IN  
PHASE (5V/DIV)  
200µs/DIV  
1µs/DIV  
FIGURE 34. SHUTDOWN WITH V , I  
IN OUT  
= 5A  
FIGURE 35. STEADY STATE OPERATION IN DCM, I  
= 0.2A  
OUT  
FN8871 Rev.2.00  
May 17, 2018  
Page 13 of 23  
ISL85005, ISL85005A  
Typical Performance Curves Circuit of Figure 1. V = 12V, V = 5V, L = 3.3µH, f = 500kHz, T = +25°C, unless  
IN  
OUT  
SW  
A
otherwise noted. (Continued)  
I
(500mA/DIV)  
L
V
(100mV/DIV),  
OUT  
AC COUPLING  
I
(1A/DIV)  
OUT  
PHASE (5V/DIV)  
1µs/DIV  
50µs/DIV  
FIGURE 37. LOAD TRANSIENT, 0A 2.5A 0A, 2.5A/µs  
FIGURE 36. STEADY STATE IN FORCED CCM, I  
= 0.2A  
OUT  
V
(200mV/DIV),  
OUT  
AC COUPLING  
V
(2V/DIV)  
OUT  
I
(2A/DIV)  
L
I
(2A/DIV)  
OUT  
50µs/DIV  
2ms/DIV  
FIGURE 38. LOAD TRANSIENT, 0A 5A 0A, 2.5A/µs  
FIGURE 39. HIGH-SIDE FORWARD OVER CURRENT PROTECTION  
I
(2A/DIV)  
L
I
(2A/DIV)  
L
PHASE (5V/DIV)  
PHASE (10V/DIV)  
1µs/DIV  
20µs/DIV  
FIGURE 40. OUTPUT SHORT-CIRCUIT BEHAVIOR  
FIGURE 41. LOW-SIDE MOSFET REVERSE OVER CURRENT  
PROTECTION  
FN8871 Rev.2.00  
May 17, 2018  
Page 14 of 23  
ISL85005, ISL85005A  
The error amplifier is an operational amplifier that converts the  
voltage error signal to a voltage output. The voltage loop is  
internally compensated with the 30pF and 600kΩ RC network  
that can support most applications.  
Detailed Description  
The ISL85005 and ISL85005A combine a synchronous buck  
controller with a pair of integrated switching MOSFETs. The buck  
controller drives the internal high-side and low-side N-channel  
MOSFETs to deliver load currents up to 5A. The buck regulator  
can operate from an unregulated DC source, such as a battery,  
with a voltage ranging from +4.5V to +18V. An internal 5V LDO  
voltage regulator is used to bias the controller. The converter  
output voltage is programmed using an external resistor divider  
and generates regulated voltages down to 0.8V. These features  
make the regulator suited for a wide range of applications.  
PWM operation is initialized by the clock from the oscillator. The  
upper MOSFET is turned on at the beginning of a cycle and the  
current in the MOSFET starts to ramp up. When the sum of the  
current amplifier CSA signal and the slope compensation  
reaches the control reference of the current loop, the PWM  
comparator sends a signal to the logic to turn off the upper  
MOSFET and turn on the lower MOSFET. The lower MOSFET stays  
on until the end of the cycle. Figure 42 shows the typical  
operating waveforms during Continuous Conduction Mode (CCM)  
operation. The dotted lines illustrate the sum of the  
The controller uses a current mode loop, which simplifies the  
loop compensation and permits fixed frequency operation over a  
wide range of input and output voltages. The internal feedback  
loop compensation option allows for a lower number of external  
components. The regulator switches at a default of 500kHz, or it  
can be synchronized from 300kHz to 2MHz on the ISL85005.  
compensation ramp and the current-sense amplifier’s output.  
V
EAMP  
V
CSA  
The buck regulator is equipped with a lossless current limit  
scheme. The current in the output stage is derived from  
temperature compensated measurements of the drain-to-source  
voltage of the internal power MOSFETs. The current limit  
threshold is internally set at 7.8A.  
DUTY  
CYCLE  
I
L
Operation Initialization  
V
To start operation, pull EN above 0.6V (typical). The power-on  
reset circuitry prevents operation if the input voltage is below  
4.2V. When the power-on reset requirement is met, the controller  
soft-starts with a 2.3ms ramp on the ISL85005 or at a rate  
determined by the value of a capacitor connected between SS  
and AGND on the ISL85005A.  
OUT  
FIGURE 42. CCM OPERATION WAVEFORMS  
Light-Load Operation  
The ISL85005 monitors both the current in the low-side MOSFET  
and the voltage of the FB node for regulation. Pulling the  
SYNC/MODE pin low allows the ISL85005 to enter discontinuous  
operation when lightly loaded by operating the low-side MOSFET  
in Diode Emulation Mode (DEM). In this mode, reverse current is  
not allowed in the inductor, and the output falls naturally to the  
regulation voltage before the high-side MOSFET is switched for  
the next cycle. The boundary is set by Equation 1:  
FCCM Control Scheme  
The regulator employs a current mode Pulse-Width  
Modulation (PWM) control scheme for fast transient response  
and pulse-by-pulse current limiting. The current loop consists of  
the oscillator, the PWM comparator, current-sensing circuit, and  
a slope compensation circuit. The gain of the current-sensing  
circuit is typically 150mV/A and the slope compensation is  
1.1V/T. The reference for the current loop is in turn provided by  
the output of an Error Amplifier (EA), which compares the  
feedback signal at the FB pin to the integrated 0.8V reference.  
Therefore, the output voltage is regulated by using the error  
amplifier to control the reference for the current loop.  
V
1 D  
OUT  
(EQ. 1)  
----------------------------------  
=
I
OUT  
2Lf  
SW  
where D = duty cycle, f  
SW  
= switching frequency, L = inductor  
= output voltage.  
value, I  
= output loading current, V  
OUT  
OUT  
Synchronization Control  
The ISL85005 can be synchronized from 300kHz to 2MHz by an  
external signal applied to the SYNC pin. The rising edge on the  
SYNC triggers the rising edge of the PHASE pulse. Make sure that  
the on-time of the SYNC pulse is greater than 100ns. Although  
the maximum synchronized frequency can be as high as 2MHz,  
the ISL85005 is a current mode regulator that requires a  
minimum of 140ns on-time to regulate properly. As an example,  
the maximum recommended synchronized frequency will be  
about 600kHz with 12V and 1V  
.
IN OUT  
FN8871 Rev.2.00  
May 17, 2018  
Page 15 of 23  
ISL85005, ISL85005A  
Enable, Soft-Start, and Disable  
Forward Overcurrent Protection  
Chip operation begins after V exceeds its rising POR trip point  
The current flowing through the internal high-side MOSFET is  
monitored during the on-time and compared to a typical 7.8A  
overcurrent limit threshold. If the current exceeds the overcurrent  
limit threshold, the high-side MOSFET is immediately turned off  
and does not turn on again until the next switching cycle. The  
current through the low-side switching MOSFET is sampled  
during off time. If the low-side MOSFET current exceeds 8.6A at  
the end of the low-side cycle, then the high-side MOSFET skips  
the next cycle, allowing the inductor current to decay to a safe  
level before resuming switching.  
IN  
(nominal 4.2V). If EN is held low externally, nothing happens until  
this pin is released. When the voltage on the EN pin is above  
0.6V, the LDO powers up and soft-start control begins. The  
default soft-start time is 2.3ms.  
On the ISL85005A, let SS float to select the internal soft-start  
time with a default of 2.3ms. The soft-start time is extended by  
connecting an external capacitor between SS and AGND. A 3.5µA  
current source charges up the capacitor. The soft-start capacitor  
is charged until the voltage on the SS pin reaches a 2.0V clamp  
level. However, the output voltage reaches its regulation value  
when the voltage on the SS pin reaches approximately 0.9V. The  
capacitor, along with an internal 3.5µA current source, sets the  
Reverse Overcurrent Protection  
Similar to the overcurrent, the negative current protection is  
enabled by monitoring the current across the low-side MOSFET,  
as shown in Figure 41 on page 14. When the inductor current  
reaches -3.3A, the synchronous rectifier is turned off. This limits  
the ability of the regulator to actively pull down the output  
voltage and prevents large reverse currents that may fall outside  
the range of the high-side current-sense amplifier.  
soft-start interval of the converter, t , according to Equation 2:  
SS  
(EQ. 2)  
C
nF= 3.5 t mS1.6nF  
SS  
SS  
Output Voltage Selection  
The regulator output voltage is programmed using an external  
resistor divider that scales the feedback relative to the internal  
reference voltage. The scaled voltage is fed back to the inverting  
input of the error amplifier (see Figure 43).  
Output Overvoltage Protection  
The output overvoltage protection is triggered when the output  
voltage exceeds 115% of the nominal voltage setting point. In  
this condition, high-side and low-side MOSFETs are turned off  
until the output drops to within the regulation band. When the  
output is in regulation, the controller restarts under internal SS  
control.  
The output voltage programming resistor, R , depends on the  
2
value chosen for the feedback resistor, R , and the desired  
1
regulator output voltage, V  
OUT  
(see Equation 2). The R value  
1
determines the gain of the feedback loop. See “Loop  
Compensation Design” on page 19 for more details. The value for  
the feedback resistor is typically between 10kΩ and 600kΩ.  
Input Overvoltage Protection  
R
0.8V  
The input overvoltage protection system prevents operation of  
the switching regulator when the input voltage is higher than  
20V. The high-side and low-side MOSFETs are turned off and the  
converter restarts under internal SS control when the input  
voltage returns to normal.  
1
----------------------------------  
R
=
(EQ. 3)  
2
V
0.8V  
OUT  
If the output voltage desired is 0.8V, then R is left unpopulated.  
R is still required to set the low frequency pole of the modulator  
2
1
compensation.  
Thermal Overload Protection  
V
OUT  
Thermal overload protection limits the maximum die  
temperature, and thus the total power dissipation in the  
regulator. A sensor on the chip monitors the junction  
temperature. A signal is sent to the fault monitor circuits  
R
R
1
-
+
EA  
2
whenever the junction temperature (T ) exceeds +165°C, and  
J
this causes the switching regulator and LDO to shut down.  
0.8V  
REFERENCE  
The switching regulator turns on again and soft-starts after the  
IC’s junction temperature cools by 10°C. For continuous  
operation, do not exceed the +125°C junction temperature  
rating.  
FIGURE 43. EXTERNAL RESISTOR DIVIDER  
Power Derating Characteristics  
To prevent the regulator from exceeding the maximum junction  
temperature, some thermal analysis is required. The  
temperature rise is given by Equation 4:  
Protection Features  
The regulator limits current in all on-chip power devices.  
Overcurrent limits are applied to the two output switching  
MOSFETs as well as to the LDO linear regulator that feeds VDD.  
Input and output overvoltage protection circuitry on the switching  
regulator provides a second layer of protection.  
(EQ. 4)  
T
= PD  
JA  
RISE  
where PD is the power dissipated by the regulator and is the  
JA  
thermal resistance from the junction of the die to the ambient  
FN8871 Rev.2.00  
May 17, 2018  
Page 16 of 23  
ISL85005, ISL85005A  
temperature. The junction temperature, T , is given by  
J
Equation 5:  
the manufacturer of the load on specific decoupling  
requirements.  
(EQ. 5)  
The shape of the output voltage waveform during a load transient  
that represents the worst case loading conditions ultimately  
determines the number of output capacitors and their type.  
When this load transient is applied to the converter, most of the  
energy required by the load is initially delivered from the output  
capacitors. This is due to the finite amount of time required for  
the inductor current to slew up to the level of the output current  
required by the load. This phenomenon results in a temporary dip  
in the output voltage. At the very edge of the transient, the  
Equivalent Series Inductance (ESL) of each capacitor induces a  
spike that adds on top of the existing voltage drop due to the  
ESR.  
T
= T + T  
RISE  
J
A
where T is the ambient temperature. The DFN package’s is  
A
JA  
49 (°C/W).  
The actual junction temperature should not exceed the absolute  
maximum junction temperature of +125°C when considering  
the thermal design.  
T
Application Guidelines  
Boot Undervoltage Detection  
After the initial spike, attributable to the ESR and ESL of the  
capacitors, the output voltage experiences sag. This sag is a  
direct consequence of the amount of capacitance on the output.  
The internal driver of the high-side FET is equipped with a boot  
Undervoltage (UV) detection circuit. If the voltage difference  
between BOOT and PHASE falls below 2.5V, the UV detection  
circuit allows the low-side MOSFET on for 300ns to recharge the  
bootstrap capacitor.  
During the removal of the same output load, the energy stored in  
the inductor is dumped into the output capacitors. This energy  
dumping creates a temporary hump in the output voltage. This  
hump, as with the sag, can be attributed to the total amount of  
capacitance on the output. Figure 45 shows a typical response to  
a load transient.  
Although the ISL85005 and ISL85005A include an internal  
bootstrap diode, efficiency can be improved by using an external  
supply voltage and bootstrap Schottky diode. The external diode  
is then sourced from a fixed external 5V supply or from the  
output of the switching regulator if this is at 5V. The bootstrap  
diode can be a low cost type, such as the BAT54.  
PHASE  
V  
HUMP  
C
0.1 F  
4
V
OUT  
µ
BOOT  
ISL85005  
ISL85005A  
V  
ESR  
V  
V  
BAT54  
5V  
SAG  
ESL  
or 5V SOURCE  
OUT  
I
FIGURE 44. EXTERNAL BOOTSTRAP DIODE  
OUT  
Switching Regulator Output Capacitor  
Selection  
I
tran  
An output capacitor is required to filter the inductor current and  
supply the load transient current. The filtering requirements are a  
function of the switching frequency, the ripple current, and the  
required output ripple. The load transient requirements are a  
function of the slew rate (di/dt) and the magnitude of the  
transient load current. These requirements are generally met  
with a mix of capacitor types and careful layout.  
FIGURE 45. TYPICAL TRANSIENT RESPONSE  
The amplitudes of the different types of voltage excursions can  
be approximated using Equations 6, 7, 8, and 9.  
High-frequency ceramic capacitors initially supply the transient  
and slow the current load rate seen by the bulk capacitors. The  
bulk filter capacitor values are generally determined by the  
Equivalent Series Resistance (ESR) and voltage rating  
V  
V  
V  
= ESR I  
tran  
(EQ. 6)  
(EQ. 7)  
(EQ. 8)  
ESR  
ESL  
SAG  
dI  
tran  
---------------  
dt  
= ESL   
requirements rather than actual capacitance requirements.  
Place he high-frequency decoupling capacitors as close to the  
power pins of the load as physically possible. Be careful not to  
add inductance in the circuit board wiring that could cancel the  
usefulness of these low inductance components. Consult with  
2
L
I  
OUT tran  
----------------------------------------------------------  
=
C
 V V  
OUT  
OUT  
IN  
FN8871 Rev.2.00  
May 17, 2018  
Page 17 of 23  
ISL85005, ISL85005A  
inductor current from an initial current value to the transient  
current level. During this interval, the difference between the  
inductor current and the transient current level must be supplied  
by the output capacitor. Minimizing the response time can  
minimize the output capacitance required.  
2
L
I  
OUT tran  
(EQ. 9)  
-------------------------------------  
=
V  
HUMP  
C
V  
OUT  
OUT  
where I  
= Output load current transient and C  
= Total  
OUT  
tran  
output capacitance.  
The response time to a transient is different for the application of  
load and the removal of load. Equations 14 and 15 give the  
approximate response time interval for application and removal  
of a transient load:  
In a typical converter design, the ESR of the output capacitor  
bank dominates the transient response. The ESR and the ESL are  
typically the major contributing factors in determining the output  
capacitance. The number of output capacitors can be  
determined by using Equation 10, which relates the ESR and ESL  
of the capacitors to the transient load step and the voltage limit  
L x I  
tran  
(EQ. 14)  
t
=
RISE  
V
- V  
IN OUT  
(V ):  
O
L x I  
tran  
(EQ. 15)  
t
=
ESL I  
FALL  
tran  
V
-----------------------------  
+ ESR I  
OUT  
tran  
dt  
(EQ. 10)  
-------------------------------------------------------------------  
Number of Caps =  
V  
where I  
is the transient load current step, t  
is the  
is the  
O
tran  
RISE  
FALL  
response time to the application of load, and t  
If V  
SAG  
or V are too large for the output voltage limits,  
HUMP  
response time to the removal of load. The worst case response  
time can be either at the application or removal of load. Check  
both of these equations at the minimum and maximum output  
levels for the worst case response time.  
then the amount of capacitance may need to be increased. In  
this situation, a trade-off between output inductance and output  
capacitance may be necessary.  
The ESL of the capacitors, which is an important parameter in  
the above equations, is not usually listed in the specification.  
Practically, it can be approximated using Equation 11 if an  
Impedance vs Frequency curve is given for a specific capacitor:  
Input Capacitor Selection  
Use a mix of input bypass capacitors to control the input voltage  
ripple. Use ceramic capacitors for high frequency decoupling and  
bulk capacitors to supply the current needed each time the  
switching MOSFET turns on. Place the ceramic capacitors  
physically close to the MOSFET VIN pins (switching MOSFET  
drain) and PGND.  
1
(EQ. 11)  
----------------------------------------  
ESL =  
2
C2    f  
res  
where f is the resonant frequency in which the lowest  
res  
The important parameters for the bulk input capacitance are the  
voltage rating and the RMS current rating. For reliable operation,  
select bulk capacitors with voltage and current ratings above the  
maximum input voltage and largest RMS current required by the  
circuit. Their voltage rating should be at least 1.25 times greater  
than the maximum input voltage, while a voltage rating of  
1.5 times is a conservative guideline. For most cases, the RMS  
current rating requirement for the input capacitor of a buck  
regulator is approximately half the DC load current.  
impedance is achieved.  
The ESL of the capacitors becomes a concern when designing  
circuits that supply power to loads with high rates of change in  
the current.  
Output Inductor Selection  
Select the output inductor to meet the output voltage ripple  
requirements and minimize the converter’s response time to the  
load transient. The inductor value determines the converter’s  
ripple current and the output ripple voltage is a function of the  
ripple current. The ripple voltage and current are approximated  
by Equations 12 and 13:  
The maximum RMS current required by the regulator may be  
more closely approximated through Equation 16:  
2
VOUT  
-------------  
VIN  
VIN VOUT VOUT  
2
1
12  
   
   
------ ---------------------------- -------------  
IRMS  
=
IOUT  
+
L fs  
VIN  
MAX  
MAX  
V V  
V
OUT  
IN  
OUT  
------------------------------------ ---------------  
I =  
(EQ. 12)  
Fs L  
V
(EQ. 16)  
IN  
For a through-hole design, several electrolytic capacitors may be  
needed, especially at temperatures less than -25°C. The  
electrolytic's ESR can increase ten times higher than at room  
temperature and cause input line oscillation. In this case, use a  
more thermally stable capacitor such as X7R ceramic. For  
surface mount designs, solid tantalum capacitors can be used,  
but caution must be exercised with regard to the capacitor surge  
current rating. Some capacitor series available from reputable  
manufacturers are surge current tested.  
V  
= I x ESR  
(EQ. 13)  
OUT  
Increasing the inductance value reduces the ripple current and  
voltage. However, the large inductance values reduce the  
converter’s response time to a load transient. Furthermore, the  
ripple current is an important signed-in current mode control.  
Therefore, set the ripple inductor current to approximately 30%  
of the maximum output current for optimized performance.  
One of the parameters limiting the converter’s response to a load  
transient is the time required to change the inductor current.  
Given a sufficiently fast control loop design, the regulator will  
provide either 0% or 100% duty cycle in response to a load  
transient. The response time is the time required to slew the  
FN8871 Rev.2.00  
May 17, 2018  
Page 18 of 23  
ISL85005, ISL85005A  
Loop Compensation Design  
Compensator Design Goal  
When COMP is not connected to GND, the COMP pin is active for  
external loop compensation. In an application with extreme  
temperatures, such as less than -10°C or greater than +85°C,  
use external compensation. The regulator uses constant  
frequency peak current mode control architecture to achieve a  
fast loop transient response. An accurate current sensing pilot  
device in parallel with the upper MOSFET is used for peak current  
control signal and overcurrent protection. The inductor is not  
considered a state variable because its peak current is constant,  
and the system becomes a single order system. It is much easier  
to design a Type II compensator to stabilize the loop than to  
implement voltage mode control. Peak current mode control has  
an inherent input voltage feed-forward function to achieve good  
line regulation. Figure 46 shows the small signal model of the  
synchronous buck regulator.  
High DC Gain  
Choose Loop bandwidth f of approximately 50kHz or 1/10 of  
the switching frequency.  
c
• Gain margin: >10dB  
• Phase margin: >40°  
The compensator design procedure is as follows:  
The loop gain at crossover frequency of f has a unity gain.  
Therefore, the compensator resistance, R , is determined by  
Equation 18.  
c
6
(EQ. 18)  
R
= 2f C R R f C R  
c o t 1 c o 1  
6
Note that C is the actual capacitance seen by the regulator,  
o
which may include ceramic high frequency decoupling and bulk  
output capacitors. Ceramic may have to be derated by  
^
^
R
^
L
LP  
i
P
i
L
v
o
in  
^
V
^
IN  
^
d
IN  
1:D  
approximately 40% depending on dielectric, voltage stress, and  
I d  
V
L
Rc  
Co  
temperature. Compensator capacitor C is then given by  
Equations 19 and 20.  
+
R
T
6
Ro  
R C  
V C  
o o  
10I R  
o 6  
o
o
(EQ. 19)  
(EQ. 20)  
-------------- -------------------  
C
=
=
6
T (S)  
i
10R  
6
^
d
K
Fm  
R C  
1
c
o
C = max[--------------,---------------]  
7
10R f R  
s 6  
T (S)  
+
v
6
He(S)  
^
Vcomp  
An optional zero can boost the phase margin. CZ2 is a zero due  
to R and C .  
-Av(S)  
1
3
FIGURE 46. SMALL SIGNAL MODEL OF SYNCHRONOUS BUCK  
REGULATOR  
Put compensator zero, CZ2 from 1/2f to f .  
c
c
1
(EQ. 21)  
-------------------  
C =  
3
2f R  
c 1  
C
V
7
O
R
6
For internal compensation mode, R is equal 600kΩ and C is  
C
6
6
6
R
C
3
1
30pF. Equation 18 can be rearranged to solve for R .  
1
-
V
COMP  
Layout Considerations  
V
FB  
R
The layout is very important in a high frequency switching  
+
2
V
REF  
converter design. With power devices switching efficiently at  
500kHz, the resulting current transitions from one device to  
another cause voltage spikes across the interconnecting  
impedances and parasitic circuit elements. These voltage spikes  
can degrade efficiency, radiate noise into the circuit, and lead to  
device overvoltage stress. Careful component layout and Printed  
Circuit Board (PCB) design minimizes these voltage spikes.  
FIGURE 47. TYPE II COMPENSATOR  
Figure 47 shows the Type II compensator. Its transfer function is  
expressed, as shown in Equation 17:  
S
S
   
   
------------  
------------  
1 +  
1 +  
A snubber can be added to reduce voltage spikes. The snubber  
consists of a resistor and a capacitor that are connected in series  
from the PHASE pin to PGND pin. The snubber damps the voltage  
ringing caused by parasitic inductance and capacitance. Another  
option to reduce voltage spikes is to add a boot resistor in series  
with the boot capacitor, which slows down the turn-on of the  
high-side FET and allows more time for the parasitic network to  
discharge.  
ˆ
v
1
comp  
cz1  
cz2  
(EQ. 17)  
---------------- ------------------------------------- --------------------------------------------------------------  
A S=  
=
v
ˆ
C + C   R  
S
S
v
   
6
7
1
o
-------------  
-------------  
S 1 +  
1 +  
   
cp1  
cp2  
where:  
C
+ C  
7
1
1
6
--------------  
--------------  
----------------------  
   
=
,
=
   
=
350kHz  
cp2  
cz1  
cz2  
cp1  
R C  
R C  
R C C  
6 6 7  
6
6
1
3
As an example, consider the turn-off transition of the upper  
MOSFET. Before turn-off, the MOSFET is carrying the full load  
FN8871 Rev.2.00  
May 17, 2018  
Page 19 of 23  
ISL85005, ISL85005A  
current. During turn-off, current stops flowing in the MOSFET and  
is picked up by the internal body diode. Any parasitic inductance  
in the switched current path generates a large voltage spike  
during the switching interval. Careful component selection, tight  
layout of the critical components, and short, wide traces  
minimize the magnitude of voltage spikes.  
V
IN  
V
IN  
C
IN  
ISL85005  
ISL85005A  
L
V
OUT1  
PHASE  
There are two sets of critical components in the regulator  
switching converter. The switching components are the most  
critical because they switch large amounts of energy and  
therefore tend to generate large amounts of noise. Next are the  
small signal components, which connect to sensitive nodes or  
supply critical bypass current and signal coupling.  
C
OUT1  
PGND  
COMP  
C
6
C
7
R
6
A multi-layer PCB is recommended. Figure 48 shows the  
connections of the critical components in the converter. Note  
R
1
FB  
that capacitors C and C  
could each represent numerous  
IN OUT  
R
PGND PAD  
physical capacitors. Dedicate one solid layer, usually a middle  
layer of the PCB, for a ground plane and make all critical  
component ground connections with vias to this layer. Dedicate  
another solid layer as a power plane and break this plane into  
smaller islands of common voltage levels. Keep the metal runs  
from the PHASE terminals to the output inductor short. The  
power plane should support the input power and output power  
nodes. Use copper-filled polygons on the top and bottom circuit  
layers for the phase nodes. Use the remaining printed circuit  
layers for small signal wiring.  
2
C
3
KEY  
ISLAND ON CIRCUIT AND/OR POWER PLANE LAYER  
VIA CONNECTION TO GROUND PLANE  
FIGURE 48. PRINTED CIRCUIT BOARD POWER PLANES AND ISLANDS  
The critical small signal components include any bypass  
capacitors, feedback components, and compensation  
components. Place the compensation components close to the  
FB and COMP pins. Place the feedback resistors as close as  
possible to the FB pin with vias tied straight to the ground plane.  
Figure 49 shows a recommended layout example.  
To dissipate heat generated by the internal LDO and MOSFETs,  
the ground pad should be connected to the internal ground plane  
through at least five vias. This allows the heat to move away from  
the IC and ties the pad to the ground plane through a low  
impedance path.  
Place the switching components close to the regulator first.  
Minimize the length of the connections between the input  
VIN  
capacitors, C , and the power switches by placing them nearby.  
IN  
PHASE  
L1  
Position both the ceramic and bulk input capacitors as close to  
the upper MOSFET drain as possible.  
CIN  
GND  
COUT  
FIGURE 49. RECOMMEND LAYOUT (TOP LAYER)  
FN8871 Rev.2.00  
May 17, 2018  
Page 20 of 23  
ISL85005, ISL85005A  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, however, not  
warranted. Please visit our website to make sure you have the latest revision.  
DATE  
REVISION  
FN8871.2  
CHANGE  
May 17, 2018  
Updated Pin Configuration labels from “4X3” to “3X4”.  
Updated Ordering information by adding tape and reel parts to table, adding tape and reel quantity column,  
updating Note 1, adding demonstration board parts.  
Removed About Intersil section and updated disclaimer.  
Aug 17, 2017  
FN8871.1  
FN8871.0  
In the Component Selection Table, for C , changed “15pF” to “12pF” for all voltages.  
1
Updated Figures 27-34.  
Updated Figure 39.  
In Output Voltage Selection on page 16, changed the maximum value of the feedback resistor from “400kΩ” to  
“600kΩ”.  
In Layout Considerations on page 19, added the second paragraph, which is a description of a snubber.  
Updated Figure 49.  
Nov 28, 2016  
Initial release  
FN8871 Rev.2.00  
May 17, 2018  
Page 21 of 23  
ISL85005, ISL85005A  
For the most recent package outline drawing, see L12.3x4.  
Package Outline Drawing  
L12.3x4  
12 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 1, 3/15  
6
3.00  
A
PIN #1  
SEE DETAIL "X"  
INDEX AREA  
B
6
PIN 1  
INDEX AREA  
1
12  
3.30 ±0.10  
2X 2.50  
6
(4X)  
0.10  
7
10X 0.50  
12X 0.25 ±0.05  
0.10M C A B  
TOP VIEW  
0.90 MAX  
1.70  
±0.10  
4
C
12X 0.40 ± 0.05  
SIDE VIEW  
BOTTOM VIEW  
(12X 0.60)  
( 12 X 0.25)  
( 3.30 )  
( 2.50)  
0.10 C  
(10x 0.50)  
C
0 . 203 REF  
SEATING PLANE  
0.08 C  
(1.70)  
0 . 00 MIN.  
0 . 05 MAX.  
( 2.80 )  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
5. Tiebar shown (if present) is a non-functional feature and may be  
located on any of the 4 sides (or ends).  
6. The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
7. Reference document JEDEC MO-229.  
FN8871 Rev.2.00  
May 17, 2018  
Page 22 of 23  
Notice  
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for  
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by  
you or third parties arising from the use of these circuits, software, or information.  
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or  
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application  
examples.  
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.  
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by  
you or third parties arising from such alteration, modification, copying or reverse engineering.  
5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the  
product’s quality grade, as indicated below.  
"Standard":  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic  
equipment; industrial robots; etc.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.  
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are  
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause  
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all  
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or  
other Renesas Electronics document.  
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the  
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation  
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified  
ranges.  
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a  
certain rate and malfunctions under certain use conditions. Unless designated as  
a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas  
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury  
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to  
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult  
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.  
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and  
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics  
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable  
laws and regulations.  
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws  
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or  
transactions.  
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third  
party in advance of the contents and conditions set forth in this document.  
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
(Rev.4.0-1 November 2017)  
SALES OFFICES  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
http://www.renesas.com  
Renesas Electronics America Inc.  
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.  
Tel: +1-408-432-8888, Fax: +1-408-434-5351  
Renesas Electronics Canada Limited  
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3  
Tel: +1-905-237-2004  
Renesas Electronics Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K  
Tel: +44-1628-651-700, Fax: +44-1628-651-804  
Renesas Electronics Europe GmbH  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-6503-0, Fax: +49-211-6503-1327  
Renesas Electronics (China) Co., Ltd.  
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China  
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
Renesas Electronics (Shanghai) Co., Ltd.  
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China  
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999  
Renesas Electronics Hong Kong Limited  
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2265-6688, Fax: +852 2886-9022  
Renesas Electronics Taiwan Co., Ltd.  
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Singapore Pte. Ltd.  
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949  
Tel: +65-6213-0200, Fax: +65-6213-0300  
Renesas Electronics Malaysia Sdn.Bhd.  
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510  
Renesas Electronics India Pvt. Ltd.  
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India  
Tel: +91-80-67208700, Fax: +91-80-67208777  
Renesas Electronics Korea Co., Ltd.  
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea  
Tel: +82-2-558-3737, Fax: +82-2-558-5338  
© 2018 Renesas Electronics Corporation. All rights reserved.  
Colophon 7.0  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY