ISL85410FRZ-T [RENESAS]

Wide VIN 1A Synchronous Buck Regulator; DFN12; Temp Range: -40° to 125°C;
ISL85410FRZ-T
型号: ISL85410FRZ-T
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Wide VIN 1A Synchronous Buck Regulator; DFN12; Temp Range: -40° to 125°C

开关
文件: 总22页 (文件大小:2277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL85410  
Wide V 1A Synchronous Buck Regulator  
IN  
FN8375  
Rev.8.00  
Mar 15, 2019  
The ISL85410 is a 1A synchronous buck regulator with an  
input range of 3V to 40V. It provides an easy-to-use, high  
efficiency low BOM count solution for a variety of applications.  
Features  
• Wide input voltage range: 3V to 40V  
• Synchronous operation for high efficiency  
• No compensation required  
The ISL85410 integrates both high-side and low-side NMOS  
FETs and features a PFM mode for improved efficiency at light  
loads. This feature can be disabled if a forced PWM mode is  
needed. The ISL85410 switches at a default frequency of  
500kHz; however, it can also be programmed using an  
external resistor from 300kHz to 2MHz. The ISL85410 has the  
ability to use internal or external compensation. By integrating  
both NMOS devices and providing internal configuration  
options, minimal external components are required, which  
reduces BOM count and complexity of design.  
• Integrated high-side and low-side NMOS devices  
• Selectable PFM or forced PWM mode at light loads  
• Internal fixed frequency (500kHz) or adjustable switching  
frequency (300kHz to 2MHz)  
• Continuous output current up to 1A  
• Internal or external soft-start  
• Minimal external components required  
• Power-good and enable functions available  
With a wide V range and reduced BOM, the ISL85410  
IN  
provides an easy to implement design solution for a variety of  
applications while giving superior performance. The ISL85410  
provides a very robust design for high-voltage industrial  
applications and an efficient solution for battery powered  
applications.  
Applications  
• Industrial control  
• Medical devices  
The ISL85410 is available in a small Pb-free 4mmx3mm DFN  
plastic package with a full-range industrial temperature of  
-40°C to +125°C.  
• Portable instrumentation  
• Distributed power supplies  
• Cloud infrastructure  
Related Literature  
For a full list of related documents, visit our website:  
ISL85410 device page  
100  
95  
90  
85  
1
2
12  
11  
SS  
FS  
80  
COMP  
SYNC  
BOOT  
VIN  
R2  
R3  
CFB  
V
= 15V  
= 5V  
IN  
V
75  
70  
65  
60  
55  
50  
IN  
10  
9
3
4
FB  
CBOOT  
100nF  
GND  
V
= 24V  
IN  
CVIN  
VCC  
CVCC  
1µF  
10µF  
5
6
VOUT  
PHASE  
PGND  
V
= 12V  
IN  
PG  
EN  
L1  
22µH  
COUT  
10µF  
V
= 33V  
IN  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
INTERNAL DEFAULT PARAMETER SELECTION  
FIGURE 2. EFFICIENCY vs LOAD, PFM, V  
= 3.3V  
FIGURE 1. TYPICAL APPLICATION  
OUT  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 1 of 22  
ISL85410  
Table of Contents  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Typical Application Schematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Efficiency Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Soft-Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power-Good . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
PWM Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Light Load Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Protection Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Negative Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Over-Temperature Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Boot Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Application Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Simplifying the Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Operating Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Minimum On/Off-Time Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Synchronization Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Inductor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Buck Regulator Output Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Loop Compensation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Layout Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 2 of 22  
ISL85410  
Pin Configuration  
12 LD 4x3 DFN  
TOP VIEW  
12  
11  
10  
9
FS  
1
2
3
4
5
6
SS  
SYNC  
BOOT  
VIN  
COMP  
FB  
GND  
VCC  
PG  
EN  
PHASE  
PGND  
8
7
Pin Descriptions  
PIN NUMBER  
SYMBOL  
PIN DESCRIPTION  
1
SS  
Controls the soft-start ramp time of the output. A single capacitor from the SS pin to ground determines the  
output ramp rate. See “Soft-Start” on page 14 for soft-start details. If the SS pin is tied to VCC, an internal  
soft-start of 2ms is used.  
2
SYNC  
Synchronization and light load operational mode selection input. Connect to logic high or VCC for PWM  
mode. Connect to logic low or ground for PFM mode. Logic ground enables the IC to automatically choose  
PFM or PWM operation. Connect to an external clock source for synchronization with positive edge trigger.  
The sync source must be higher than the programmed IC frequency. An internal 5MΩ pull-down resistor  
prevents an undefined logic state if SYNC is left floating.  
3
4
BOOT  
VIN  
Floating bootstrap supply pin for the power MOSFET gate driver. The bootstrap capacitor provides the  
necessary charge to turn on the internal N-Channel MOSFET. Connect an external 100nF capacitor from this  
pin to PHASE.  
The input supply for the power stage of the regulator and the source for the internal linear bias regulator.  
Place a minimum of 4.7µF ceramic capacitance from VIN to GND and close to the IC for decoupling.  
5
6
7
PHASE  
PGND  
EN  
Switch node output. It connects the switching FETs with the external output inductor.  
Power ground connection. Connect directly to the system GND plane.  
Regulator enable input. The regulator and bias LDO are held off when the pin is pulled to ground. When the  
voltage on this pin rises above 1V, the chip is enabled. Connect this pin to VIN for automatic start-up. Do not  
connect the EN pin to VCC because the LDO is controlled by EN voltage.  
8
PG  
Open-drain, power-good output that is pulled to ground when the output voltage is below regulation limits  
or during the soft-start interval. There is an internal 5MΩ internal pull-up resistor.  
9
VCC  
FB  
Output of the internal 5V linear bias regulator. Decouple to PGND with a 1µF ceramic capacitor at the pin.  
10  
Feedback pin for the regulator. FB is the inverting input to the voltage loop error amplifier. COMP is the  
output of the error amplifier. The output voltage is set by an external resistor divider connected to FB. In  
addition, the PWM regulator’s power-good and UVLO circuits use FB to monitor the regulator output voltage.  
11  
COMP  
COMP is the output of the error amplifier. When it is tied to VCC, internal compensation is used. When only  
an RC network is connected from COMP to GND, external compensation is used. See “Loop Compensation  
Design” on page 17 for more details.  
12  
FS  
Frequency selection pin. Tie to VCC for 500kHz switching frequency. Connect a resistor to GND for  
adjustable frequency from 300kHz to 2MHz.  
EPAD  
GND  
Signal ground connections. Connect to the application board GND plane with at least five vias. All voltage  
levels are measured with respect to this pin. The EPAD MUST NOT float.  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 3 of 22  
ISL85410  
Typical Application Schematics  
1
12  
11  
SS  
FS  
2
COMP  
SYNC  
R2  
R3  
CFB  
10  
9
3
BOOT  
FB  
CBOOT  
100nF  
GND  
4
VIN  
VCC  
CVIN  
10µF  
CVCC  
1µF  
VOUT  
5
6
PHASE  
PGND  
PG  
EN  
L1  
22µH  
COUT  
10µF  
FIGURE 3. INTERNAL DEFAULT PARAMETER SELECTION  
12  
1
2
SS  
FS  
RFS  
CSS  
11  
10  
9
COMP  
SYNC  
BOOT  
VIN  
R2  
R3  
CFB  
3
4
FB  
CBOOT  
100nF  
GND  
VCC  
CVIN  
10µF  
CVCC  
1µF  
5
6
VOUT  
PHASE  
PGND  
PG  
EN  
L1  
22µH  
COUT  
10µF  
RCOMP  
CCOMP  
FIGURE 4. USER PROGRAMMABLE PARAMETER SELECTION  
TABLE 1. EXTERNAL COMPONENT SELECTION  
V
(V)  
L
(µH)  
C
(µF)  
R
(kΩ)  
R
(kΩ)  
C
(pF)  
R
(kΩ)  
R
(kΩ)  
C
(pF)  
OUT  
1
OUT  
2
3
FB  
FS  
COMP  
COMP  
12  
22  
2 x 22  
90.9  
90.9  
90.9  
90.9  
90.9  
4.75  
12.4  
20  
22  
115  
150  
100  
100  
100  
70  
470  
5
22  
22  
22  
12  
47 + 22  
47 + 22  
47 + 22  
47 + 22  
27  
27  
27  
27  
DNP (Note 1)  
DNP (Note 1)  
DNP (Note 1)  
DNP (Note 1)  
470  
470  
470  
470  
3.3  
2.5  
1.8  
28.7  
45.5  
NOTE:  
1. Connect FS to V  
.
CC  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 4 of 22  
ISL85410  
Functional Block Diagram  
PG  
SS  
EN  
VIN  
FB  
POWER-  
GOOD  
5M  
VCC  
LOGIC  
BIAS  
LDO  
EN/SOFT-  
START  
BOOT  
FB  
FS  
FAULT  
LOGIC  
500mV/A  
600mV VREF  
CURRENT SENSE  
GATE  
DRIVE  
AND  
OSCILLATOR  
PFM  
PWM  
PWM  
PWM/PFM  
SELECT LOGIC  
s
Q
Q
PHASE  
PGND  
FB  
DEADTIME  
R
5M  
CURRENT  
SET  
SYNC  
ZERO CURRENT  
DETECTION  
450mV/T SLOPE  
COMPENSATION  
(PWM ONLY)  
150k  
54pF  
INTERNAL  
COMPENSATION  
PACKAGE  
PADDLE  
INTERNAL = 50µA/V  
EXTERNAL = 230µA/V  
COMP  
GND  
Ordering Information  
PART NUMBER  
(Notes 3, 4)  
PART  
MARKING  
TEMP. RANGE  
(°C)  
TAPE AND REEL  
(Units) (Note 2)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
ISL85410FRZ  
5410  
5410  
5410  
-40 to +125  
-40 to +125  
-40 to +125  
-
12 Ld DFN  
L12.4x3  
ISL85410FRZ-T  
ISL85410FRZ -T7A  
ISL85410EVAL1Z  
ISL85410DEMO1Z  
NOTES:  
6k  
12 Ld DFN  
12 Ld DFN  
L12.4x3  
L12.4x3  
250  
Evaluation Board  
Demonstration Board  
2. See TB347 for details about reel specifications.  
3. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate  
plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
4. For Moisture Sensitivity Level (MSL), see the ISL85410 device page. For more information about MSL, see TB363.  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 5 of 22  
ISL85410  
Absolute Maximum Ratings  
Thermal Information  
VIN to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +43V  
PHASE to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VIN+0.3V (DC)  
PHASE to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2V to +44V (20ns)  
EN to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +43V  
BOOT to PHASE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +5.5V  
COMP, FS, PG, SYNC, SS, VCC to GND . . . . . . . . . . . . . . . . . . -0.3V to +5.9V  
FB to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +2.95V  
ESD Rating  
Thermal Resistance  
DFN Package (Notes 5, 6) . . . . . . . . . . . . . .  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
Operating Junction Temperature Range . . . . . . . . . . . . . .-40°C to +125°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
(°C/W)  
42  
(°C/W)  
4.5  
JA  
JC  
Human Body Model (Tested per JESD22-A114) . . . . . . . . . . . . . . . . . 2kV  
Charged Device Model (Tested per JESD22-C101E). . . . . . . . . . . . .1.5kV  
Latch-Up (Tested per JESD-78A; Class 2, Level A) . . . . . . . . . . . . 100mA  
Recommended Operating Conditions  
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +3V to +40V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
5. is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach” features. See TB379  
JA  
for details.  
6. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications T = -40°C to +125°C, V = 3V to 40V, unless otherwise noted. Typical values are at T = +25°C. Boldface  
A
IN  
A
limits apply across the junction temperature range, -40°C to +125°C  
MIN  
MAX  
PARAMETER  
SUPPLY VOLTAGE  
SYMBOL  
TEST CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNIT  
V
V
V
V
Voltage Range  
V
I
3
40  
V
µA  
µA  
V
IN  
IN  
IN  
CC  
IN  
Quiescent Supply Current  
Shutdown Supply Current  
Voltage  
V
= 0.7V, SYNC = 0V, f  
= V  
SW CC  
80  
2
Q
FB  
EN = 0V, V = 40V (Note 7)  
I
4
SD  
IN  
V
V
= 6V, I  
IN OUT  
= 0 to 10mA  
4.5  
5.1  
5.7  
CC  
POWER-ON RESET  
POR Threshold  
V
Rising edge  
Falling edge  
2.75  
2.6  
2.95  
V
V
CC  
2.35  
OSCILLATOR  
Nominal Switching Frequency  
f
FS pin = V  
CC  
430  
240  
500  
300  
2000  
150  
90  
570  
360  
kHz  
kHz  
kHz  
ns  
SW  
Resistor from the FS pin to GND = 340kΩ  
Resistor from the FS pin to GND = 32.4kΩ  
Minimum Off-Time  
t
V
= 3V  
MIN_OFF  
IN  
(Note 10)  
= 100kΩ  
Minimum On-Time  
t
ns  
MIN_ON  
FS Voltage  
V
R
0.39  
300  
100  
0.4  
0.41  
V
FS  
SYNC  
FS  
Synchronization Frequency  
SYNC Pulse Width  
2000  
kHz  
ns  
ERROR AMPLIFIER  
Error Amplifier Transconductance Gain  
g
External compensation  
Internal compensation  
165  
230  
50  
295  
µA/V  
µA/V  
nA  
m
FB Leakage Current  
Current Sense Amplifier Gain  
FB Voltage  
V
= 0.6V  
1
150  
0.54  
FB  
R
0.46  
0.590  
0.590  
0.5  
V/A  
V
T
T
= -40°C to +85°C  
= -40°C to +125°C  
0.599  
0.599  
0.606  
0.607  
A
T
V
A
FN8375 Rev.8.00  
Mar 15, 2019  
Page 6 of 22  
ISL85410  
Electrical Specifications T = -40°C to +125°C, V = 3V to 40V, unless otherwise noted. Typical values are at T = +25°C. Boldface  
A
IN  
A
limits apply across the junction temperature range, -40°C to +125°C (Continued)  
MIN  
MAX  
PARAMETER  
POWER-GOOD  
SYMBOL  
TEST CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNIT  
Lower PG Threshold - VFB Rising  
Lower PG Threshold - VFB Falling  
Upper PG Threshold - VFB Rising  
Upper PG Threshold - VFB Falling  
PG Propagation Delay  
90  
86  
94  
%
%
%
%
%
V
82.5  
107  
116.5  
112  
10  
120  
Percentage of the soft-start time  
PG Low Voltage  
I
= 3mA, EN = V , V = 0V  
CC FB  
0.05  
0.3  
SINK  
TRACKING AND SOFT-START  
Soft-Start Charging Current  
Internal Soft-Start Ramp Time  
FAULT PROTECTION  
ISS  
4.2  
1.5  
5.5  
2.4  
6.5  
3.4  
µA  
EN/SS = V  
CC  
ms  
Thermal Shutdown Temperature  
T
Rising threshold  
Hysteresis  
150  
20  
°C  
°C  
SD  
T
HYS  
Current Limit Blanking Time  
t
17  
Clock  
OCON  
pulses  
Overcurrent and Auto Restart Period  
Positive Peak Current Limit  
PFM Peak Current Limit  
Zero Cross Threshold  
Negative Current Limit  
POWER MOSFET  
t
8
SS cycle  
OCOFF  
IPLIMIT  
(Note 8)  
(Note 8)  
1.3  
1.5  
0.4  
15  
1.7  
0.5  
A
A
I
0.34  
PK_PFM  
mA  
A
INLIMIT  
-0.67  
-0.6  
-0.53  
High-Side  
R
I
I
= 100mA, V = 5V  
CC  
250  
90  
350  
130  
300  
mΩ  
mΩ  
nA  
HDS  
PHASE  
Low-Side  
R
= 100mA, V = 5V  
CC  
LDS  
PHASE  
PHASE Leakage Current  
PHASE Rise Time  
EN = PHASE = 0V  
= 40V  
t
V
10  
ns  
RISE  
IN  
EN/SYNC  
Input Threshold  
Falling edge, logic low  
Rising edge, logic high  
EN = 0V/40V  
0.4  
1
V
1.2  
1.4  
0.5  
V
EN Logic Input Leakage Current  
SYNC Logic Input Leakage Current  
-0.5  
µA  
nA  
µA  
SYNC = 0V  
10  
100  
1.55  
SYNC = 5V  
1.0  
NOTES:  
7. Test condition: V = 40V, FB forced above regulation point (0.6V), switching and power MOSFET gate charging current not included.  
IN  
8. Established by both current sense amplifier gain test and current sense amplifier output test at I = 0A.  
L
9. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
10. Minimum on-time required to maintain loop stability.  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 7 of 22  
ISL85410  
Efficiency Curves  
f
= 500kHz, T = +25°C  
SW A  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
V
= 24V  
V
= 24V  
IN  
IN  
V
= 15V  
IN  
V
= 15V  
85  
IN  
80  
V
= 33V  
IN  
75  
70  
65  
60  
55  
50  
V
= 33V  
IN  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
FIGURE 5. EFFICIENCY vs LOAD, PFM, V  
= 12V  
FIGURE 6. EFFICIENCY vs LOAD, PWM, V  
= 12V  
OUT  
OUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 12V  
V
= 12V  
IN  
IN  
V
= 6V  
V
= 6V  
IN  
IN  
V
= 24V  
V
= 15V  
V
= 24V  
V
= 15V  
IN  
IN  
IN  
IN  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
FIGURE 8. EFFICIENCY vs LOAD, PWM, V  
= 5V, L = 30µH  
1
FIGURE 7. EFFICIENCY vs LOAD, PFM, V  
= 5V, L = 30µH  
1
OUT  
OUT  
100  
100  
95  
V
= 12V  
IN  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 5V  
IN  
90  
85  
80  
V
= 15V  
V
= 15V  
= 5V  
IN  
IN  
V
V
= 33V  
75  
70  
65  
60  
55  
50  
IN  
IN  
V
= 24V  
IN  
V
= 24V  
IN  
V
= 12V  
IN  
V
= 33V  
IN  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
FIGURE 9. EFFICIENCY vs LOAD, PFM, V  
OUT  
= 3.3V  
FIGURE 10. EFFICIENCY vs LOAD, PWM, V = 3.3V  
OUT  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 8 of 22  
ISL85410  
Efficiency Curves  
f
= 500kHz, T = +25°C (Continued)  
SW A  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
V
= 12V  
IN  
95  
V
= 12V  
IN  
V
= 5V  
90  
85  
80  
75  
70  
65  
60  
55  
50  
IN  
V
= 5V  
IN  
V
= 15V  
IN  
V
= 15V  
V
= 33V  
V
= 33V  
IN  
IN  
IN  
V
= 24V  
IN  
V
= 24V  
IN  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
FIGURE 12. EFFICIENCY vs LOAD, PWM, V  
= 1.8V  
FIGURE 11. EFFICIENCY vs LOAD, PFM, V  
OUT  
= 1.8V  
OUT  
5.004  
5.003  
5.002  
5.001  
5.000  
4.999  
4.998  
4.997  
4.996  
4.995  
4.994  
4.993  
5.030  
5.025  
5.020  
5.015  
5.010  
5.005  
5.000  
4.995  
4.990  
V
= 6V  
IN  
V
= 6V  
IN  
V
= 12V  
IN  
V
= 12V  
IN  
V
= 15V  
IN  
V
= 15V  
IN  
V
= 24V  
IN  
V
= 24V  
IN  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
FIGURE 14. V  
REGULATION vs LOAD, PFM, V  
OUT  
= 5V, L = 30µH  
1
FIGURE 13. V  
REGULATION vs LOAD, PWM, V = 5V, L = 30µH  
OUT 1  
OUT  
OUT  
3.345  
3.340  
3.335  
3.330  
3.325  
3.320  
3.315  
3.326  
3.325  
3.324  
3.323  
3.322  
3.321  
3.320  
3.319  
3.318  
3.317  
V
= 5V  
IN  
V
= 5V  
IN  
V
= 12V  
IN  
V
= 12V  
IN  
V
= 15V  
V
= 33V  
IN  
IN  
V
= 15V  
IN  
V
= 24V  
IN  
V
= 33V  
IN  
V
= 24V  
IN  
3.316  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
FIGURE 16. V  
OUT  
REGULATION vs LOAD, PFM, V  
= 3.3V  
OUT  
FIGURE 15. V  
OUT  
REGULATION vs LOAD, PWM, V  
= 3.3V  
OUT  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 9 of 22  
ISL85410  
Efficiency Curves  
f
= 500kHz, T = +25°C (Continued)  
SW A  
1.810  
1.818  
1.816  
1.814  
1.812  
1.810  
1.808  
1.806  
1.804  
1.802  
1.800  
V
= 5V  
V
= 15V  
IN  
IN  
1.809  
1.808  
1.807  
1.806  
1.805  
1.804  
1.803  
1.802  
1.801  
1.800  
V
= 5V  
IN  
V
= 12V  
IN  
V
= 12V  
IN  
V
= 15V  
IN  
V
= 33V  
V
= 24V  
IN  
IN  
V
= 33V  
V
= 24V  
IN  
IN  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT LOAD (A)  
FIGURE 17. V  
OUT  
REGULATION vs LOAD, PWM, V  
OUT  
= 1.8V  
FIGURE 18. V  
REGULATION vs LOAD, PFM, V  
= 1.8V  
OUT  
OUT  
Measurements  
f
= 500kHz, V = 24V, V = 3.3V, T = +25°C  
IN OUT A  
SW  
LX 20V/DIV  
LX 20V/DIV  
V
2V/DIV  
OUT  
V
2V/DIV  
OUT  
EN 20V/DIV  
PG 2V/DIV  
EN 20V/DIV  
PG 2V/DIV  
5ms/DIV  
5ms/DIV  
FIGURE 19. START-UP AT NO LOAD, PFM  
FIGURE 20. START-UP AT NO LOAD, PWM  
LX 20V/DIV  
LX 20V/DIV  
V
2V/DIV  
V
2V/DIV  
OUT  
OUT  
EN 20V/DIV  
PG 2V/DIV  
EN 20V/DIV  
PG 2V/DIV  
100ms/DIV  
100ms/DIV  
FIGURE 22. SHUTDOWN AT NO LOAD, PWM  
FIGURE 21. SHUTDOWN AT NO LOAD, PFM  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 10 of 22  
ISL85410  
Measurements  
f
= 500kHz, V = 24V, V = 3.3V, T = +25°C (Continued)  
IN OUT A  
SW  
LX 20V/DIV  
LX 20V/DIV  
V
2V/DIV  
OUT  
V
2V/DIV  
OUT  
I
500mA/DIV  
L
I
500mA/DIV  
L
PG 2V/DIV  
PG 2V/DIV  
200µs/DIV  
5ms/DIV  
FIGURE 23. START-UP AT 1A, PWM  
FIGURE 24. SHUTDOWN AT 1A, PWM  
LX 20V/DIV  
LX 20V/DIV  
V
2V/DIV  
OUT  
V
2V/DIV  
OUT  
I
500mA/DIV  
L
I
500mA/DIV  
L
PG 2V/DIV  
PG 2V/DIV  
200µs/DIV  
5ms/DIV  
FIGURE 25. START-UP AT 1A, PFM  
FIGURE 26. SHUTDOWN AT 1A, PFM  
LX 5V/DIV  
LX 5V/DIV  
5ns/DIV  
5ns/DIV  
FIGURE 27. JITTER AT NO LOAD, PWM  
FIGURE 28. JITTER AT 1A LOAD, PWM  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 11 of 22  
ISL85410  
Measurements  
f
= 500kHz, V = 24V, V = 3.3V, T = +25°C (Continued)  
IN OUT A  
SW  
LX 20V/DIV  
LX 20V/DIV  
V
20mV/DIV  
OUT  
V
20mV/DIV  
20mA/DIV  
OUT  
I
20mA/DIV  
L
I
L
1µs/DIV  
10ms/DIV  
FIGURE 30. STEADY STATE AT NO LOAD, PWM  
FIGURE 29. STEADY STATE AT NO LOAD, PFM  
LX 20V/DIV  
LX 20V/DIV  
V
20mV/DIV  
OUT  
V
50mV/DIV  
OUT  
I
1A/DIV  
L
I
200mA/DIV  
L
1µs/DIV  
10µs/DIV  
FIGURE 31. STEADY STATE AT 1A, PWM  
FIGURE 32. LIGHT LOAD OPERATION AT 20mA, PFM  
LX 20V/DIV  
V
100mV/DIV  
OUT  
V
10mV/DIV  
OUT  
I
200mA/DIV  
L
I
1A/DIV  
L
1µs/DIV  
200µs/DIV  
FIGURE 33. LIGHT LOAD OPERATION AT 20mA, PWM  
FIGURE 34. LOAD TRANSIENT, PFM  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 12 of 22  
ISL85410  
Measurements  
f
= 500kHz, V = 24V, V = 3.3V, T = +25°C (Continued)  
IN OUT A  
SW  
LX 20V/DIV  
V
100mV/DIV  
OUT  
V
20mV/DIV  
OUT  
I
1A/DIV  
I
1A/DIV  
L
L
200µs/DIV  
10µs/DIV  
FIGURE 35. LOAD TRANSIENT, PWM  
FIGURE 36. PFM TO PWM TRANSITION  
LX 20V/DIV  
LX 20V/DIV  
V
2V/DIV  
OUT  
V
2V/DIV  
OUT  
I
1A/DIV  
L
I
1A/DIV  
L
PG 2V/DIV  
PG 2V/DIV  
10ms/DIV  
50µs/DIV  
FIGURE 38. OVERCURRENT PROTECTION HICCUP, PWM  
FIGURE 37. OVERCURRENT PROTECTION, PWM  
LX 20V/DIV  
LX 20V/DIV  
V
5V/DIV  
OUT  
SYNC 2V/DIV  
I
1A/DIV  
L
PG 2V/DIV  
200ns/DIV  
20µs/DIV  
FIGURE 39. SYNC AT 1A LOAD, PWM  
FIGURE 40. NEGATIVE CURRENT LIMIT, PWM  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 13 of 22  
ISL85410  
Measurements  
f
= 500kHz, V = 24V, V = 3.3V, T = +25°C (Continued)  
IN OUT A  
SW  
LX 20V/DIV  
V
5V/DIV  
OUT  
V
2V/DIV  
OUT  
I
500mA/DIV  
L
PG 2V/DIV  
PG 2V/DIV  
200µs/DIV  
500µs/DIV  
FIGURE 42. OVER-TEMPERATURE PROTECTION, PWM  
FIGURE 41. NEGATIVE CURRENT LIMIT RECOVERY, PWM  
Power-Good  
Detailed Description  
PG is the open-drain output of a window comparator that  
continuously monitors the buck regulator output voltage vrom  
the FB pin. PG is actively held low when EN is low and during the  
buck regulator soft-start period. After the soft-start period  
completes, PG becomes high impedance if the FB pin is within  
the range specified in the “Electrical Specifications” on page 7. If  
FB exits the specified window, PG is pulled low until FB returns.  
Over-temperature faults also force PG low until the fault  
condition is cleared by an attempt to soft-start. There is an  
internal 5MΩ internal pull-up resistor.  
The ISL85410 combines a synchronous buck PWM controller  
with integrated power switches. The buck controller drives  
internal high-side and low-side N-channel MOSFETs to deliver  
load current up to 1A. The buck regulator can operate from an  
unregulated DC source, such as a battery, with a voltage ranging  
from +3V to +40V. An internal LDO provides bias to the low  
voltage portions of the IC.  
Peak current mode control is used to simplify feedback loop  
compensation and reject input voltage variation. User selectable  
internal feedback loop compensation further simplifies design.  
The ISL85410 switches at a default 500kHz.  
PWM Control Scheme  
The ISL85410 employs peak current-mode pulse-width  
The buck regulator is equipped with an internal current sensing  
circuit and the peak current limit threshold is typically set at  
1.5A.  
modulation (PWM) control for fast transient response and  
pulse-by-pulse current limiting, as shown in the “Functional Block  
Diagram” on page 5. The current loop consists of the current  
sensing circuit, slope compensation ramp, PWM comparator,  
oscillator, and latch. Current sense trans-resistance is typically  
500mV/A and slope compensation rate, Se, is typically 450mV/T  
where T is the switching cycle period. The control reference for the  
Power-On Reset  
The ISL85410 automatically initializes upon receipt of the input  
power supply and continually monitors the EN pin state. If EN is  
held below its logic rising threshold, the IC is held in shutdown  
current loop comes from the error amplifier’s output (V  
).  
COMP  
and consumes typically 2µA from the V supply. If EN exceeds  
IN  
A PWM cycle begins when a clock pulse sets the PWM latch and the  
upper FET is turned on. Current begins to ramp up in the upper FET  
its logic rising threshold, the regulator enables the bias LDO and  
begins to monitor the VCC pin voltage. When the VCC pin voltage  
clears its rising POR threshold, the controller initializes the  
switching regulator circuits. If VCC never clears the rising POR  
threshold, the controller does not allow the switching regulator to  
operate. If VCC falls below its falling POR threshold while the  
switching regulator is operating, the switching regulator is shut  
down until VCC returns.  
and inductor. This current is sensed (V ), converted to a voltage  
CSA  
and summed with the slope compensation signal. This combined  
signal is compared to V  
and when the signal is equal to V ,  
COMP  
COMP  
the latch is reset. Upon latch reset, the upper FET is turned off and  
the lower FET turned on allowing current to ramp down in the  
inductor. The lower FET remains on until the clock initiates another  
PWM cycle. Figure 44 shows the typical operating waveforms during  
the PWM operation. The dotted lines illustrate the sum of the  
current sense and slope compensation signal.  
Soft-Start  
To avoid large in-rush current, V  
is slowly increased at start-up  
OUT  
Output voltage is regulated as the error amplifier varies VCOMP  
and therefore varies the output inductor current. The error  
amplifier is a transconductance type and its output (COMP) is  
terminated with a series RC network to GND. This termination is  
internal (150k/54pF) if the COMP pin is tied to VCC. Additionally,  
the transconductance for COMP = VCC is 50µA/V vs 230µA/V for  
external RC connection. Its noninverting input is internally  
connected to a 600mV reference voltage and its inverting input is  
connected to the output voltage from the FB pin and its  
associated divider network.  
to its final regulated value. Soft-start time is determined by the  
SS pin connection. If SS is pulled to VCC, an internal 2ms timer is  
selected for soft-start. For other soft-start times, connect a  
capacitor from SS to GND. In this case, a 5.5µA current pulls up  
the SS voltage and the FB pin follows this ramp until it reaches  
the 600mV reference level. The soft-start time for this case is  
described by Equation 1:  
(EQ. 1)  
Timems= CnF0.109  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 14 of 22  
ISL85410  
PWM  
DCM  
PULSE SKIP  
DCM  
PWM  
CLOCK  
8 CYCLES  
I
L
LOAD CURRENT  
0
V
OUT  
FIGURE 43. DCM MODE OPERATION WAVEFORMS  
limit, V  
OUT  
begins to decline. A second comparator signals an FB  
voltage 2% lower than the 600mV reference and forces the  
converter to return to PWM operation.  
V
COMP  
V
CSA  
Output Voltage Selection  
The regulator output voltage is programmed using an external  
DUTY  
CYCLE  
resistor divider to scale V relative to the internal reference  
OUT  
voltage. The scaled voltage is applied to the inverting input of the  
error amplifier; see Figure 45.  
I
L
The output voltage programming resistor, R , depends on the  
3
value chosen for the feedback resistor, R , and the needed  
2
V
OUT  
output voltage, V , of the regulator. Equation 3 describes the  
OUT  
relationship between V  
and resistor values.  
OUT  
R x0.6V  
2
FIGURE 44. PWM OPERATION WAVEFORMS  
----------------------------------  
=
(EQ. 3)  
R
3
V
0.6V  
OUT  
Light Load Operation  
At light loads, converter efficiency can be improved by enabling  
variable frequency operation (PFM). Connecting the SYNC pin to  
GND allows the controller to choose such operation  
automatically when the load current is low. Figure 43 shows the  
DCM operation. The IC enters DCM mode when eight consecutive  
cycles of inductor current crossing zero are detected. This  
corresponds to a load current equal to 1/2 the peak-to-peak  
inductor ripple current and set by Equation 2:  
If the needed output voltage is 0.6V, then R is left unpopulated  
3
and R is 0Ω.  
2
V
OUT  
R
R
2
FB  
-
+
EA  
3
0.6V  
REFERENCE  
V
1 D  
(EQ. 2)  
OUT  
----------------------------------  
=
I
OUT  
2L f  
SW  
FIGURE 45. EXTERNAL RESISTOR DIVIDER  
where D = duty cycle, f  
= switching frequency, L = inductor  
SW  
= output loading current, V  
value, I  
= output voltage.  
OUT  
OUT  
Protection Features  
The ISL85410 is protected from overcurrent, negative  
overcurrent and over-temperature. The protection circuits  
operate automatically.  
While operating in PFM mode, the regulator controls the output  
voltage with a simple comparator and pulsed FET current. A  
comparator indicates the point at which FB is equal to the  
600mV reference, at which time the regulator begins providing  
pulses of current until FB is moved above the 600mV reference  
by 1%. The current pulses are approximately 400mA and are  
issued at a frequency equal to the converter’s programmed PWM  
operating frequency.  
Overcurrent Protection  
During PWM on-time, current through the upper FET is monitored  
and compared to a nominal 1.5A peak overcurrent limit. If  
current reaches the limit, the upper FET is turned off until the  
Due to the pulsed current nature of PFM mode, the converter can  
supply limited current to the load. If load current rises beyond the  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 15 of 22  
ISL85410  
next switching cycle. In this way, FET peak current is always well  
limited.  
Application Guidelines  
Simplifying the Design  
If the overcurrent condition persists for 17 sequential clock  
cycles, the regulator begins its hiccup sequence. In this case,  
both FETs are turned off and PG is pulled low. This condition is  
maintained for eight soft-start periods, after which the regulator  
attempts a normal soft-start.  
While the ISL85410 offers user programmed options for most  
parameters, the easiest implementation with fewest  
components involves selecting internal settings for SS, COMP,  
and FS. Table 1 on page 4 provides component value selections  
for a variety of output voltages and allows you to implement  
solutions with a minimum of effort.  
If output fault persists, the regulator repeats the hiccup  
sequence indefinitely. There is no danger even if the output is  
shorted during soft-start.  
Operating Frequency  
The ISL85410 operates at a default switching frequency of  
ths  
If V  
OUT  
is shorted very quickly, FB may collapse below 5/8 of  
its target value before 17 cycles of overcurrent are detected. The  
ISL85410 recognizes this condition and begins to lower its  
switching frequency proportional to the FB pin voltage. This  
adjustment ensures that the inductor current does not run away  
under any circumstance (even with VOUT near 0V).  
500kHz if the FS pin is tied to V . Tie a resistor from the FS pin  
to GND to program the switching frequency from 300kHz to  
2MHz, as shown in Equation 4.  
CC  
R
k = 108.75k t 0.2s  1s  
(EQ. 4)  
FS  
Where:  
Negative Current Limit  
t is the switching period in µs.  
If an external source somehow drives current into V , the  
OUT  
controller attempts to regulate V  
OUT  
by reversing its inductor  
400  
current to absorb the externally sourced current. If the external  
source is low impedance, the current may be reversed to  
unacceptable levels and the controller initiates its negative current  
limit protection. Similar to normal overcurrent, the negative  
current protection is realized by monitoring the current through the  
lower FET. When the valley point of the inductor current reaches  
negative current limit, the lower FET is turned off and the upper  
FET is forced on until current reaches the POSITIVE current limit or  
an internal clock signal is issued. Next, the lower FET is allowed to  
operate. If the current is pulled to the negative limit again on the  
next cycle, the upper FET is forced on again and the current is  
300  
200  
100  
0
th  
forced to 1/6 of the positive current limit. Next, the controller  
turns off both FETs and waits for COMP to indicate a return to  
normal operation. During this time, the controller applies a 100Ω  
load from PHASE to PGND and attempts to discharge the output.  
Negative current limit is a pulse-by-pulse style operation and  
recovery is automatic.  
250  
500  
750  
1000  
1250  
(kHz)  
1500  
1750  
2000  
f
SW  
FIGURE 46. R SELECTION vs f  
FS  
SW  
Over-Temperature Protection  
Over-temperature protection limits maximum junction  
temperature in the ISL85410. When junction temperature (T )  
exceeds +150°C, both FETs are turned off and the controller  
waits for temperature to decrease by approximately 20°C.  
During this time PG is pulled low. When temperature is within an  
acceptable range, the controller initiates a normal soft-start  
sequence. For continuous operation, do not exceed the +125°C  
junction temperature rating.  
Minimum On/Off-Time Limitation  
Minimum on-time (t  
) is the shortest duration of time that  
the HS FET can be turned on and minimum off time (t ) is  
MIN_ON  
J
MIN_OFF  
the shortest duration of time that the HS FET can be turned off.  
The typical t  
For a given t  
is 90ns and the typical t  
is 150ns.  
MIN_ON  
MIN_ON  
MIN_OFF  
, a higher switching frequency  
and t  
MIN_OFF  
results in a narrower range of allowed duty cycle, which  
translates to a smaller allowed V range.  
IN  
) and switching frequency (f ),  
For a given output voltage (V  
OUT  
SW  
the maximum allowed voltage is given by (Equation 5):  
Boot Undervoltage Protection  
If the boot capacitor voltage falls below 1.8V, the boot  
V
OUT  
--------------------------------------  
SW  
undervoltage protection circuit turns on the lower FET for 400ns  
to recharge the capacitor. This operation may arise during long  
periods of no switching such as PFM no load situations. In PWM  
(EQ. 5)  
V
=
INmax  
f
t  
MIN_ON  
The minimum allowed voltage is given by (Equation 6):  
operation near dropout (V near V  
), the regulator can hold  
IN OUT  
V
the upper FET on for multiple clock cycles. To prevent the boot  
capacitor from discharging, the lower FET is forced on for  
approximately 200ns every 10 clock cycles.  
OUT  
--------------------------------------------------  
(EQ. 6)  
V
=
INmin  
1 f  
t  
MIN_OFF  
SW  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 16 of 22  
ISL85410  
Table 2 shows the recommended switching frequencies for the  
ceramic capacitors are a very good choice in many applications  
due to their reliability and extremely low ESR.  
various V  
to operate up to the maximum V (40V).  
OUT  
IN  
Use the following equations to calculate the required  
capacitance for ripple voltage. Additional capacitance may be  
used.  
TABLE 2. RECOMMENDED SWITCHING FREQUENCIES FOR VARIOUS  
V
OUT  
V
(V)  
V
(V)  
f
(kHz)  
IN (max)  
40  
OUT  
SW  
For the ceramic capacitors (low ESR):  
5
500  
I  
40  
40  
40  
3.3  
500  
500  
300  
(EQ. 8)  
is the  
------------------------------------  
V
=
OUTripple  
C
OUT  
8 f  
SW  
2.5  
1.8  
where I is the inductor’s peak-to-peak ripple current, f  
SW  
switching frequency and C  
is the output capacitor.  
OUT  
Synchronization Control  
If using electrolytic capacitors,  
The frequency of operation can be synchronized up to 2MHz by  
an external signal applied to the SYNC pin. The rising edge on the  
SYNC triggers the rising edge of PHASE. To properly sync, the  
external source must be at least 10% greater than the  
programmed free running IC frequency.  
(EQ. 9)  
V
= I*ESR  
OUTripple  
Loop Compensation Design  
When COMP is not connected to VCC, the COMP pin is active for  
external loop compensation. The ISL85410 uses constant  
frequency peak current mode control architecture to achieve a  
fast loop transient response. An accurate current sensing pilot  
device in parallel with the upper MOSFET is used for peak current  
control signal and overcurrent protection. The inductor is not  
considered as a state variable since its peak current is constant,  
and the system becomes a single order system. It is much easier  
to design a type II compensator to stabilize the loop than to  
implement voltage mode control. Peak current mode control has  
an inherent input voltage feed-forward function to achieve good  
line regulation. Figure 47 shows the small signal model of the  
synchronous buck regulator.  
Output Inductor Selection  
The inductor value determines the converter’s ripple current.  
Choosing an inductor current requires a somewhat arbitrary  
choice of ripple current, I. A reasonable starting point is 30% of  
total load current. The inductor value can then be calculated  
using Equation 7:  
V
V  
V
OUT  
V
IN  
IN  
f
OUT  
------------------------------- ---------------  
(EQ. 7)  
L =  
 I  
SW  
Increasing the value of inductance reduces the ripple current and  
thus, the ripple voltage. However, the larger inductance value  
may reduce the converter’s response time to a load transient.  
The inductor current rating should be such that it does not  
saturate in overcurrent conditions. For typical ISL85410  
applications, inductor values generally lie in the 10µH to 47µH  
^
^
L
R
LP  
^
P
i
i
in  
L
v
o
^
V
d
^
^
1:D  
in  
I d  
V
L
in  
Rc  
Co  
+
R
T
range. In general, higher V  
causes higher inductance.  
OUT  
Ro  
Buck Regulator Output Capacitor Selection  
An output capacitor is required to filter the inductor current. The  
current mode control loop allows the use of low ESR ceramic  
capacitors and thus supports very small circuit implementations  
on the PC board. Electrolytic and polymer capacitors can also be  
used.  
T(S)  
i
^
d
K
Fm  
T (S)  
+
v
He(S)  
^
V
While ceramic capacitors offer excellent overall performance  
and reliability, the actual in-circuit capacitance must be  
considered. Ceramic capacitors are rated using large  
peak-to-peak voltage swings and with no DC bias. In the DC/DC  
converter application, these conditions do not reflect reality. As a  
result, the actual capacitance may be considerably lower than  
the advertised value. Consult the manufacturer’s datasheet to  
determine the actual in-application capacitance. Most  
comp  
-Av(S)  
FIGURE 47. SMALL SIGNAL MODEL OF SYNCHRONOUS BUCK  
REGULATOR  
manufacturers publish capacitance vs DC bias so that this effect  
can be easily accommodated. The effects of AC voltage are not  
frequently published, but an assumption of ~20% further  
reduction generally suffices. The result of these considerations  
may mean an effective capacitance 50% lower than nominal and  
this value should be used in all design calculations. Nonetheless,  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 17 of 22  
ISL85410  
1
(EQ. 13)  
---------------  
C =  
3
Vo  
f R  
c
2
Example: V = 12V, V = 5V, I = 1A, f  
= 500kHz,  
R = 90.9kΩ, C = 22µF/5mΩ, L = 39µH, f = 50kHz, then  
IN SW  
O
O
R
2
C
3
2
o
c
V
FB  
compensator resistance R :  
6
-
V
COMP  
GM  
V
REF  
+
3
R
3
(EQ. 14)  
R
= 22.7510 50kHz 5V 22F = 125.12k  
6
R
C
6
C
7
It is acceptable to use 124kΩas theclosest standard value for  
6
R .  
6
5V 22F  
1A 124k  
(EQ. 15)  
------------------------------  
= 0.88nF  
C
6
=
FIGURE 48. TYPE II COMPENSATOR  
5m  22F  
124k  
1
C = max(--------------------------------,---------------------------------------------------- )= (0.88pF,5.1pF)  
7
  500kHz 124k  
Figure 48 shows the type II compensator and its transfer function  
is expressed as shown in Equation 10:  
(EQ. 16)  
S
S
It is also acceptable to use the closest standard values for C and  
6
   
   
------------  
------------  
1 +  
1 +  
ˆ
GM R  
v
C . There is approximately 3pF parasitic capacitance from V  
COMP  
3
cz1  
cz2  
7
COMP  
------------------- -------------------------------------------------------- --------------------------------------------------------------  
A S=  
=
v
ˆ
C + C   R + R   
S
S
to GND; Therefore, C is optional. Use C = 1500pF and  
v
   
7
6
6
7
2
3
FB  
------------  
------------  
S 1 +  
1 +  
   
C = OPEN.  
cp1  
cp2  
7
(EQ. 10)  
1
(EQ. 17)  
--------------------------------------------------  
C =  
= 70pF  
3
  50kHz 90.9k  
where;  
C
+ C  
R
+ R  
2 3  
1
1
6
7
--------------  
--------------  
----------------------  
----------------------  
=
,
=
   
=
  =  
cp2  
Use C = 68pF. Note that C may increase the loop bandwidth  
cz1  
cz2  
cp1  
3
3
R C  
R C  
R C C  
C R R  
3 2  
6
6
2
3
6
6
7
3
from previous estimated value. Figure 49, on page 19 shows the  
simulated voltage loop gain. It is shown that it has a 75kHz loop  
bandwidth with a 61° phase margin and 6dB gain margin. It may  
be more desirable to achieve an increased gain margin., which  
Compensator design goal:  
• High DC gain  
can be accomplished by lowering R by 20% to 30%. In practice,  
6
ceramic capacitors have significant derating on voltage and  
temperature, depending on the type. See the ceramic capacitor  
datasheet for more details.  
• Choose loop bandwidth f less than 100kHz  
c
• Gain margin: >10dB  
• Phase margin: >40°  
The compensator design procedure is as follows:  
The loop gain at crossover frequency of f has a unity gain.  
c
Therefore, the compensator resistance R is determined by  
6
Equation 11.  
2f V C R  
o o t  
3
c
(EQ. 11)  
---------------------------------  
= 22.7510 f V C  
c o o  
R
=
6
GM V  
FB  
where GM is the transconductance, g , of the voltage error  
m
amplifier in each phase. Compensator capacitor C is then given  
6
by Equation 12.  
R C  
V C  
o o  
I R  
o 6  
R C  
o
o
1
c
o
(EQ. 12)  
-------------- --------------  
,C = max(--------------,---------------------)  
7
C
=
=
6
R
R
f  
R
6
6
SW 6  
Put one compensator pole at zero frequency to achieve high DC  
gain, and put another compensator pole at either ESR zero  
frequency or half switching frequency, whichever is lower in  
Equation 12. An optional zero can boost the phase margin. CZ2  
is a zero due to R and C   
2
3
Put compensator zero 2 to 5 times f .  
c
FN8375 Rev.8.00  
Mar 15, 2019  
Page 18 of 22  
ISL85410  
Place a 1µF MLCC near the VCC pin and directly connect its  
return with a via to the system GND plane.  
60  
45  
30  
15  
0
Place the feedback divider close to the FB pin and do not route  
any feedback components near PHASE or BOOT. If external  
components are used for SS, COMP, or FS, the same advice  
applies.  
CSS  
RFS  
N  
CVIN  
-15  
-30  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
180  
150  
120  
90  
L1  
C
COUT  
60  
30  
0.47”  
0
100  
FIGURE 50. PRINTED CIRCUIT BOARD POWER PLANES AND ISLANDS  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 49. SIMULATED LOOP GAIN  
Layout Considerations  
Proper layout of the power converter minimizes EMI and noise  
and ensures first pass success of the design. Printed Circuit  
Board (PCB) layouts are provided in multiple formats on the  
Renesas website. In addition, Figure 50 illustrates the important  
points in PCB layout. In reality, PCB layout of the ISL85410 is  
quite simple.  
A multilayer PCB with GND plane is recommended. Figure 50  
shows the connections of the critical components in the  
converter. Note that capacitors C and C  
can each represent  
IN  
OUT  
multiple physical capacitors. The most critical connections are to  
tie the PGND pin to the package GND pad and then use vias to  
directly connect the GND pad to the system GND plane. This  
connection of the GND pad to system plane ensures a low  
impedance path for all return current and an excellent thermal  
path to dissipate heat. With this connection made, place the high  
frequency MLCC input capacitor near the VIN pin and use vias  
directly at the capacitor pad to tie the capacitor to the system  
GND plane.  
The boot capacitor is easily placed on the PCB side opposite the  
controller IC and two vias directly connect the capacitor to BOOT  
and PHASE.  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 19 of 22  
ISL85410  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please visit our website to make sure you have the latest revision.  
DATE  
REVISION  
FN8375.8  
CHANGE  
Mar 15, 2019  
Updated links throughout document.  
Updated Related Literature section  
Updated the Ordering Information table by adding tape and reel parts, demo board, and updated notes.  
Under Light Load Operation section changed 300mA to 400mA and 1% to 2%.  
Added Minimum On/Off-Time Limitation section.  
Removed About Intersil section.  
Updated Disclaimer.  
Updated POD L12.4x3 to the latest version changes are as follows:  
Tiebar Note 5 updated  
From: Tiebar shown (if present) is a non-functional feature.  
To: Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends).  
Mar 13, 2015  
FN8375.7  
On page 1, updated all 36V references to 40V and replaced Figure 2.  
On page 6, under “Absolute Maximum Ratings”  
for VIN to GND updated max from “+42V” to “+43V”  
for PHASE to GND updated max from “43V” to “+44V”  
for EN to GND updated max from “+42V” to “+43V”  
Under “Recommended Operating Conditions” updated supply voltage max from “36V” to “+40V”.  
In “Electrical Specifications” updated all occurrences of VIN value from “36V” to “40V”.  
Replaced Figure 9, on page 8.  
On page 14, under “Detailed Description” section updated voltage range max from “+36V” to “+40V”.  
Aug 28, 2014  
Jul 24, 2014  
FN8375.6  
FN8375.5  
POD changed from L12.3x4 back to original L12.4x3.  
Changed title of Figure 13, on page 9 from “Efficiency vs Load, PWM, V  
OUT  
= 5V, L = 30µH” to “V  
OUT  
1
Regulation vs Load, PWM, V  
= 5V, L = 30µH”.  
OUT  
1
Replaced Figure Figure 46, on page 16.  
Updated POD from L12.4x3 to L12.3x4  
Feb 25, 2014  
Jan 17, 2014  
FN8375.4  
FN8375.3  
“Power-On Reset” on page 14 changed 10µA to 2µA.  
“Functional Block Diagram” on page 5 changed Internal=50µs, External=230µs  
to Internal=50µA/V, External=230µA/V and 600mA/Amp to 500mV/A  
“Detailed Description” on page 14 changed 0.9A to 1.5A  
“Power-On Reset” on page 14 changed 1µA to 10µA  
“PWM Control Scheme” on page 14 changed in last paragraph 50µs vs 220µs to 50µA/V vs 230µA/V and  
600mA/Amp to 500mV/A in 1st paragraph  
“Overcurrent Protection” on page 15 changed 0.9A to 1.5A  
Nov 22, 2013  
FN8375.2  
Initial Release.  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 20 of 22  
ISL85410  
For the most recent package outline drawing, see L12.4x3.  
Package Outline Drawing  
L12.4x3  
12 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 3, 3/15  
3.30 +0.10/-0.15  
2X 2.50  
4.00  
A
6
10X 0.50  
PIN 1  
PIN #1 INDEX AREA  
INDEX AREA  
12 X 0.40 ±0.10  
1.70 +0.10/-0.15  
B
6
1
6
3.00  
(4X)  
0.15  
12  
7
0.10M C A B  
TOP VIEW  
4 12 x 0.23 +0.07/-0.05  
BOTTOM VIEW  
SEE DETAIL "X"  
(3.30)  
0.10 C  
C
6
1
1.00 MAX  
SEATING PLANE  
0.08  
C
SIDE VIEW  
2.80  
(1.70)  
5
0.2 REF  
C
12 X 0.60  
0. 00 MIN.  
0. 05 MAX.  
7
12  
(12 X 0.23)  
(10X 0.5)  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance: Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
5. Tiebar shown (if present) is a non-functional feature and  
may be located on any of the 4 sides (or ends).  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
6.  
7. Compliant to JEDEC MO-229 V4030D-4 issue E.  
FN8375 Rev.8.00  
Mar 15, 2019  
Page 21 of 22  
1RWLFH  
ꢃꢅ 'HVFULSWLRQVꢀRIꢀFLUFXLWVꢆꢀVRIWZDUHꢀDQGꢀRWKHUꢀUHODWHGꢀLQIRUPDWLRQꢀLQꢀWKLVꢀGRFXPHQWꢀDUHꢀSURYLGHGꢀRQO\ꢀWRꢀLOOXVWUDWHꢀWKHꢀRSHUDWLRQꢀRIꢀVHPLFRQGXFWRUꢀSURGXFWVꢀ  
DQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ<RXꢀDUHꢀIXOO\ꢀUHVSRQVLEOHꢀIRUꢀWKHꢀLQFRUSRUDWLRQꢀRUꢀDQ\ꢀRWKHUꢀXVHꢀRIꢀWKHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀDQGꢀLQIRUPDWLRQꢀLQꢀWKHꢀGHVLJQꢀRIꢀ\RXUꢀ  
SURGXFWꢀRUꢀV\VWHPꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀDQGꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ  
WKHVHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀRUꢀLQIRUPDWLRQꢅ  
ꢁꢅ 5HQHVDVꢀ(OHFWURQLFVꢀKHUHE\ꢀH[SUHVVO\ꢀGLVFODLPVꢀDQ\ꢀZDUUDQWLHVꢀDJDLQVWꢀDQGꢀOLDELOLW\ꢀIRUꢀLQIULQJHPHQWꢀRUꢀDQ\ꢀRWKHUꢀFODLPVꢀLQYROYLQJꢀSDWHQWVꢆꢀFRS\ULJKWVꢆꢀRUꢀ  
RWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀWKLUGꢀSDUWLHVꢆꢀE\ꢀRUꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRUꢀWHFKQLFDOꢀLQIRUPDWLRQꢀGHVFULEHGꢀLQꢀWKLVꢀ  
GRFXPHQWꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢆꢀWKHꢀSURGXFWꢀGDWDꢆꢀGUDZLQJVꢆꢀFKDUWVꢆꢀSURJUDPVꢆꢀDOJRULWKPVꢆꢀDQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ  
ꢇꢅ 1RꢀOLFHQVHꢆꢀH[SUHVVꢆꢀLPSOLHGꢀRUꢀRWKHUZLVHꢆꢀLVꢀJUDQWHGꢀKHUHE\ꢀXQGHUꢀDQ\ꢀSDWHQWVꢆꢀFRS\ULJKWVꢀRUꢀRWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀRUꢀ  
RWKHUVꢅ  
ꢈꢅ <RXꢀVKDOOꢀQRWꢀDOWHUꢆꢀPRGLI\ꢆꢀFRS\ꢆꢀRUꢀUHYHUVHꢀHQJLQHHUꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢆꢀZKHWKHUꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀ  
DQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀRUꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀVXFKꢀDOWHUDWLRQꢆꢀPRGLILFDWLRQꢆꢀFRS\LQJꢀRUꢀUHYHUVHꢀHQJLQHHULQJꢅ  
ꢉꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀFODVVLILHGꢀDFFRUGLQJꢀWRꢀWKHꢀIROORZLQJꢀWZRꢀTXDOLW\ꢀJUDGHVꢊꢀꢋ6WDQGDUGꢋꢀDQGꢀꢋ+LJKꢀ4XDOLW\ꢋꢅꢀ7KHꢀLQWHQGHGꢀDSSOLFDWLRQVꢀIRUꢀ  
HDFKꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀGHSHQGVꢀRQꢀWKHꢀSURGXFWꢌVꢀTXDOLW\ꢀJUDGHꢆꢀDVꢀLQGLFDWHGꢀEHORZꢅ  
ꢋ6WDQGDUGꢋꢊ  
&RPSXWHUVꢍꢀRIILFHꢀHTXLSPHQWꢍꢀFRPPXQLFDWLRQVꢀHTXLSPHQWꢍꢀWHVWꢀDQGꢀPHDVXUHPHQWꢀHTXLSPHQWꢍꢀDXGLRꢀDQGꢀYLVXDOꢀHTXLSPHQWꢍꢀKRPHꢀ  
HOHFWURQLFꢀDSSOLDQFHVꢍꢀPDFKLQHꢀWRROVꢍꢀSHUVRQDOꢀHOHFWURQLFꢀHTXLSPHQWꢍꢀLQGXVWULDOꢀURERWVꢍꢀHWFꢅ  
ꢋ+LJKꢀ4XDOLW\ꢋꢊ 7UDQVSRUWDWLRQꢀHTXLSPHQWꢀꢎDXWRPRELOHVꢆꢀWUDLQVꢆꢀVKLSVꢆꢀHWFꢅꢏꢍꢀWUDIILFꢀFRQWUROꢀꢎWUDIILFꢀOLJKWVꢏꢍꢀODUJHꢐVFDOHꢀFRPPXQLFDWLRQꢀHTXLSPHQWꢍꢀNH\ꢀ  
ILQDQFLDOꢀWHUPLQDOꢀV\VWHPVꢍꢀVDIHW\ꢀFRQWUROꢀHTXLSPHQWꢍꢀHWFꢅ  
8QOHVVꢀH[SUHVVO\ꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀSURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀQRWꢀLQWHQGHGꢀRUꢀDXWKRUL]HGꢀIRUꢀXVHꢀLQꢀSURGXFWVꢀRUꢀV\VWHPVꢀWKDWꢀPD\ꢀSRVHꢀDꢀGLUHFWꢀWKUHDWꢀWRꢀ  
KXPDQꢀOLIHꢀRUꢀERGLO\ꢀLQMXU\ꢀꢎDUWLILFLDOꢀOLIHꢀVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢍꢀVXUJLFDOꢀLPSODQWDWLRQVꢍꢀHWFꢅꢏꢆꢀRUꢀPD\ꢀFDXVHꢀVHULRXVꢀSURSHUW\ꢀGDPDJHꢀꢎVSDFHꢀV\VWHPꢍꢀ  
XQGHUVHDꢀUHSHDWHUVꢍꢀQXFOHDUꢀSRZHUꢀFRQWUROꢀV\VWHPVꢍꢀDLUFUDIWꢀFRQWUROꢀV\VWHPVꢍꢀNH\ꢀSODQWꢀV\VWHPVꢍꢀPLOLWDU\ꢀHTXLSPHQWꢍꢀHWFꢅꢏꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀ  
DQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀGDPDJHVꢀRUꢀORVVHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀDQ\ꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀWKDWꢀLVꢀ  
LQFRQVLVWHQWꢀZLWKꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢆꢀXVHUꢌVꢀPDQXDOꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢅ  
ꢑꢅ :KHQꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀUHIHUꢀWRꢀWKHꢀODWHVWꢀSURGXFWꢀLQIRUPDWLRQꢀꢎGDWDꢀVKHHWVꢆꢀXVHUꢌVꢀPDQXDOVꢆꢀDSSOLFDWLRQꢀQRWHVꢆꢀꢋ*HQHUDOꢀ1RWHVꢀIRUꢀ  
+DQGOLQJꢀDQGꢀ8VLQJꢀ6HPLFRQGXFWRUꢀ'HYLFHVꢋꢀLQꢀWKHꢀUHOLDELOLW\ꢀKDQGERRNꢆꢀHWFꢅꢏꢆꢀDQGꢀHQVXUHꢀWKDWꢀXVDJHꢀFRQGLWLRQVꢀDUHꢀZLWKLQꢀWKHꢀUDQJHVꢀVSHFLILHGꢀE\ꢀ  
5HQHVDVꢀ(OHFWURQLFVꢀZLWKꢀUHVSHFWꢀWRꢀPD[LPXPꢀUDWLQJVꢆꢀRSHUDWLQJꢀSRZHUꢀVXSSO\ꢀYROWDJHꢀUDQJHꢆꢀKHDWꢀGLVVLSDWLRQꢀFKDUDFWHULVWLFVꢆꢀLQVWDOODWLRQꢆꢀHWFꢅꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀPDOIXQFWLRQVꢆꢀIDLOXUHꢀRUꢀDFFLGHQWꢀDULVLQJꢀRXWꢀRIꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRXWVLGHꢀRIꢀVXFKꢀ  
VSHFLILHGꢀUDQJHVꢅ  
ꢒꢅ $OWKRXJKꢀ5HQHVDVꢀ(OHFWURQLFVꢀHQGHDYRUVꢀWRꢀLPSURYHꢀWKHꢀTXDOLW\ꢀDQGꢀUHOLDELOLW\ꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVHPLFRQGXFWRUꢀSURGXFWVꢀKDYHꢀVSHFLILFꢀ  
FKDUDFWHULVWLFVꢆꢀVXFKꢀDVꢀWKHꢀRFFXUUHQFHꢀRIꢀIDLOXUHꢀDWꢀDꢀFHUWDLQꢀUDWHꢀDQGꢀPDOIXQFWLRQVꢀXQGHUꢀFHUWDLQꢀXVHꢀFRQGLWLRQVꢅꢀ8QOHVVꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀ  
SURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀ  
DUHꢀQRWꢀVXEMHFWꢀWRꢀUDGLDWLRQꢀUHVLVWDQFHꢀGHVLJQꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀLPSOHPHQWLQJꢀVDIHW\ꢀPHDVXUHVꢀWRꢀJXDUGꢀDJDLQVWꢀWKHꢀSRVVLELOLW\ꢀRIꢀERGLO\ꢀLQMXU\ꢆꢀ  
LQMXU\ꢀRUꢀGDPDJHꢀFDXVHGꢀE\ꢀILUHꢆꢀDQGꢓRUꢀGDQJHUꢀWRꢀWKHꢀSXEOLFꢀLQꢀWKHꢀHYHQWꢀRIꢀDꢀIDLOXUHꢀRUꢀPDOIXQFWLRQꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVXFKꢀDVꢀVDIHW\ꢀ  
GHVLJQꢀIRUꢀKDUGZDUHꢀDQGꢀVRIWZDUHꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢀUHGXQGDQF\ꢆꢀILUHꢀFRQWUROꢀDQGꢀPDOIXQFWLRQꢀSUHYHQWLRQꢆꢀDSSURSULDWHꢀWUHDWPHQWꢀIRUꢀDJLQJꢀ  
GHJUDGDWLRQꢀRUꢀDQ\ꢀRWKHUꢀDSSURSULDWHꢀPHDVXUHVꢅꢀ%HFDXVHꢀWKHꢀHYDOXDWLRQꢀRIꢀPLFURFRPSXWHUꢀVRIWZDUHꢀDORQHꢀLVꢀYHU\ꢀGLIILFXOWꢀDQGꢀLPSUDFWLFDOꢆꢀ\RXꢀDUHꢀ  
UHVSRQVLEOHꢀIRUꢀHYDOXDWLQJꢀWKHꢀVDIHW\ꢀRIꢀWKHꢀILQDOꢀSURGXFWVꢀRUꢀV\VWHPVꢀPDQXIDFWXUHGꢀE\ꢀ\RXꢅ  
ꢔꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀIRUꢀGHWDLOVꢀDVꢀWRꢀHQYLURQPHQWDOꢀPDWWHUVꢀVXFKꢀDVꢀWKHꢀHQYLURQPHQWDOꢀFRPSDWLELOLW\ꢀRIꢀHDFKꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀFDUHIXOO\ꢀDQGꢀVXIILFLHQWO\ꢀLQYHVWLJDWLQJꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢀWKDWꢀUHJXODWHꢀWKHꢀLQFOXVLRQꢀRUꢀXVHꢀRIꢀ  
FRQWUROOHGꢀVXEVWDQFHVꢆꢀLQFOXGLQJꢀZLWKRXWꢀOLPLWDWLRQꢆꢀWKHꢀ(8ꢀ5R+6ꢀ'LUHFWLYHꢆꢀDQGꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀLQꢀFRPSOLDQFHꢀZLWKꢀDOOꢀWKHVHꢀ  
DSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀGDPDJHVꢀRUꢀORVVHVꢀRFFXUULQJꢀDVꢀDꢀUHVXOWꢀRIꢀ\RXUꢀQRQFRPSOLDQFHꢀ  
ZLWKꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅ  
ꢄꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDQGꢀWHFKQRORJLHVꢀVKDOOꢀQRWꢀEHꢀXVHGꢀIRUꢀRUꢀLQFRUSRUDWHGꢀLQWRꢀDQ\ꢀSURGXFWVꢀRUꢀV\VWHPVꢀZKRVHꢀPDQXIDFWXUHꢆꢀXVHꢆꢀRUꢀVDOHꢀLVꢀ  
SURKLELWHGꢀXQGHUꢀDQ\ꢀDSSOLFDEOHꢀGRPHVWLFꢀRUꢀIRUHLJQꢀODZVꢀRUꢀUHJXODWLRQVꢅꢀ<RXꢀVKDOOꢀFRPSO\ꢀZLWKꢀDQ\ꢀDSSOLFDEOHꢀH[SRUWꢀFRQWUROꢀODZVꢀDQGꢀUHJXODWLRQVꢀ  
SURPXOJDWHGꢀDQGꢀDGPLQLVWHUHGꢀE\ꢀWKHꢀJRYHUQPHQWVꢀRIꢀDQ\ꢀFRXQWULHVꢀDVVHUWLQJꢀMXULVGLFWLRQꢀRYHUꢀWKHꢀSDUWLHVꢀRUꢀWUDQVDFWLRQVꢅ  
ꢃꢂꢅ ,WꢀLVꢀWKHꢀUHVSRQVLELOLW\ꢀRIꢀWKHꢀEX\HUꢀRUꢀGLVWULEXWRUꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀRUꢀDQ\ꢀRWKHUꢀSDUW\ꢀZKRꢀGLVWULEXWHVꢆꢀGLVSRVHVꢀRIꢆꢀRUꢀRWKHUZLVHꢀVHOOVꢀRUꢀ  
WUDQVIHUVꢀWKHꢀSURGXFWꢀWRꢀDꢀWKLUGꢀSDUW\ꢆꢀWRꢀQRWLI\ꢀVXFKꢀWKLUGꢀSDUW\ꢀLQꢀDGYDQFHꢀRIꢀWKHꢀFRQWHQWVꢀDQGꢀFRQGLWLRQVꢀVHWꢀIRUWKꢀLQꢀWKLVꢀGRFXPHQWꢅ  
ꢃꢃꢅ 7KLVꢀGRFXPHQWꢀVKDOOꢀQRWꢀEHꢀUHSULQWHGꢆꢀUHSURGXFHGꢀRUꢀGXSOLFDWHGꢀLQꢀDQ\ꢀIRUPꢆꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢆꢀZLWKRXWꢀSULRUꢀZULWWHQꢀFRQVHQWꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢃꢁꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀLIꢀ\RXꢀKDYHꢀDQ\ꢀTXHVWLRQVꢀUHJDUGLQJꢀWKHꢀLQIRUPDWLRQꢀFRQWDLQHGꢀLQꢀWKLVꢀGRFXPHQWꢀRUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWVꢅ  
ꢎ1RWHꢃꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢋꢀDVꢀXVHGꢀLQꢀWKLVꢀGRFXPHQWꢀPHDQVꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢀDQGꢀDOVRꢀLQFOXGHVꢀLWVꢀGLUHFWO\ꢀRUꢀLQGLUHFWO\ꢀFRQWUROOHGꢀ  
VXEVLGLDULHVꢅ  
ꢎ1RWHꢁꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢎVꢏꢋꢀPHDQVꢀDQ\ꢀSURGXFWꢀGHYHORSHGꢀRUꢀPDQXIDFWXUHGꢀE\ꢀRUꢀIRUꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢎ5HYꢅꢈꢅꢂꢐꢃꢀꢀ1RYHPEHUꢀꢁꢂꢃꢒꢏ  
Corporate Headquarters  
ContactInformation
TOYOSU FORESIA, 3-2-24 Toyosu,  
For further information on a product, technology, the most up-to-date  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
version of a document, or your nearest sales office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas Electronics  
Corporation. All trademarks and registered trademarks are the property  
of their respective owners.  
‹ꢀꢁꢂꢃꢄꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢅꢀ$OOꢀULJKWVꢀUHVHUYHGꢅ  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY