ISL85412DEMO1Z [RENESAS]

Wide VIN 150mA Synchronous Buck Regulator;
ISL85412DEMO1Z
型号: ISL85412DEMO1Z
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Wide VIN 150mA Synchronous Buck Regulator

文件: 总19页 (文件大小:1265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL85412  
Wide V 150mA Synchronous Buck Regulator  
IN  
FN8378  
Rev 1.00  
March 13, 2015  
The ISL85412 is a 150mA synchronous buck regulator with an  
input range of 3.5V to 40V. It provides an easy to use, high  
efficiency low BOM count solution for a variety of applications.  
Features  
• Wide input voltage range of 3.5V to 40V  
• Synchronous operation for high efficiency  
• No compensation required  
The ISL85412 integrates both high-side and low-side NMOS  
FETs and features a PFM mode for improved efficiency at light  
loads. This feature can be disabled if forced PWM mode is  
desired. The part switches at a default frequency of 700kHz.  
By integrating both NMOS devices and providing internal  
configuration, minimal external components are required,  
reducing BOM count and complexity of design.  
• Integrated high-side and low-side NMOS devices  
• Selectable PFM or forced PWM mode at light loads  
• Internal switching frequency 700kHz  
• Continuous output current up to 150mA  
• Internal soft-start  
With the wide V range and reduced BOM, the part provides  
IN  
an easy to implement design solution for a variety of  
applications while giving superior performance. It will provide  
a very robust design for high voltage industrial applications as  
well as an efficient solution for battery powered applications.  
• Minimal external components required  
• Power-good and enable functions available  
Applications  
• Industrial control  
The part is available in a small Pb-free 3mmx3mm TDFN  
plastic package with an operation junction temperature range  
of -40°C to +125°C.  
• Medical devices  
• Portable instrumentation  
• Distributed power supplies  
Cloud infrastructure  
Related Literature  
AN1929, “ISL85413EVAL1Z, ISL85412EVAL1Z Evaluation  
Boards”  
AN1931, “ISL85413DEMO1Z, ISL85412DEMO1Z Wide VIN  
Synchronous Buck Regulator - Short Form”  
100  
90  
V
OUT  
U1 ISL85412  
C4  
R1  
1
2
3
4
8
7
6
5
MODE  
MODE  
BOOT  
VIN  
FB  
VCC  
PG  
80  
R2  
C6  
C5  
0.1µF  
70  
+3.5 ... +40V  
1µF  
VIN  
PG  
3.3V  
OUT  
1.5V  
OUT  
1.8V  
C1  
20µF  
GND  
60  
50  
40  
EN  
PHASE  
EN  
1.2V  
OUT  
OUT  
f
= 700kHz  
5.0V  
OUT  
SW  
2.5V  
OUT  
1.0V  
VOUT  
GND  
OUT  
MAX 150mA  
C8  
L1  
Device must be  
connected to GND  
plane with vias.  
0.00  
0.03  
0.06  
0.09  
0.12  
0.15  
OUTPUT LOAD (A)  
FIGURE 1. TYPICAL APPLICATION  
FIGURE 2. EFFICIENCY vs LOAD, PFM, V = 12V  
IN  
FN8378 Rev 1.00  
March 13, 2015  
Page 1 of 19  
ISL85412  
Table of Contents  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Efficiency Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Soft-Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power-Good . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
PWM Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Light Load Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Protection Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Negative Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Over-Temperature Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Boot Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Application Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Simplifying the Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Inductor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Buck Regulator Output Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Layout Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
FN8378 Rev 1.00  
March 13, 2015  
Page 2 of 19  
ISL85412  
Pin Configuration  
ISL85412  
(8 LD 3x3 TDFN)  
TOP VIEW  
1
2
3
4
MODE  
BOOT  
VIN  
FB  
VCC  
PG  
8
7
6
5
GND  
PHASE  
EN  
Pin Descriptions  
PIN #  
SYMBOL  
PIN DESCRIPTION  
1
MODE  
Mode Selection pin. Connect to logic high or VCC for PWM mode. Connect to logic low or ground for PFM  
mode. Logic ground enables the IC to automatically choose PFM or PWM operation. There is an internal  
5MΩ pull-down resistor to prevent an undefined logic state if MODE is left floating.  
2
3
BOOT  
VIN  
Floating bootstrap supply pin for the power MOSFET gate driver. The bootstrap capacitor provides the  
necessary charge to turn on the internal N-channel MOSFET. Connect an external 100nF capacitor from this  
pin to PHASE.  
The input supply for the power stage of the regulator and the source for the internal linear bias regulator.  
Place a minimum of 10µF ceramic capacitance from VIN to GND and close to the IC for decoupling.  
4
5
PHASE  
EN  
Switch node output. It connects the switching FETs with the external output inductor.  
Regulator enable input. The regulator and bias LDO are held off when the pin is pulled to ground. When the  
voltage on this pin rises above 1V, the chip is enabled. Connect this pin to VIN for automatic start-up. Do not  
connect EN pin to VCC since the LDO is controlled by EN voltage.  
6
PG  
Open drain power-good output that is pulled to ground when the output voltage is below regulation limits  
or during the soft-start interval. There is an internal 5MΩ internal pull-up resistor.  
7
8
VCC  
FB  
Output of the internal 5V linear bias regulator. Decouple to PGND with a 1µF ceramic capacitor at the pin.  
Feedback pin for the regulator. FB is the inverting input to the voltage loop error amplifier. COMP is the  
output of the error amplifier. The output voltage is set by an external resistor divider connected to FB. In  
addition, the PWM regulator’s power-good and UVLO circuits use FB to monitor the regulator output voltage.  
EPAD  
GND  
Signal ground connections. Connect to application board GND plane with at least 5 vias. All voltage levels  
are measured with respect to this pin. The EPAD MUST not float.  
TABLE 1. EXTERNAL COMPONENT SELECTION (Refer to Figure 1)  
V
C
C
L
(µH)  
R
R
2
(kΩ)  
OUT  
(V)  
4
8
1
1
(pF)  
100  
100  
100  
100  
100  
100  
100  
100  
(µF)  
2x22  
2x22  
2x22  
2x22  
22  
(kΩ)  
90.9  
90.9  
90.9  
90.9  
90.9  
90.9  
90.9  
90.9  
1.0  
1.2  
1.5  
1.8  
2.5  
3.3  
5.0  
12.0  
10  
137  
10  
90.9  
60.4  
45.3  
28.7  
20.0  
12.4  
4.75  
16  
16  
22  
22  
33  
22  
47  
22  
100  
FN8378 Rev 1.00  
March 13, 2015  
Page 3 of 19  
ISL85412  
Functional Block Diagram  
PG  
VIN  
EN  
FB  
POWER-  
GOOD  
5M  
VCC  
LOGIC  
BIAS  
LDO  
EN/SOFT-  
START  
BOOT  
FB  
FAULT  
LOGIC  
930mV/A  
CURRENT  
SENSE  
600mV VREF  
MODE  
OSCILLATOR  
GATE  
DRIVE  
AND  
PWM  
PWM  
PWM/PFM  
SELECT LOGIC  
s
Q
Q
PHASE  
FB  
PFM  
5M  
DEADTIME  
R
CURRENT  
SET  
ZERO CURRENT  
DETECTION  
PGND  
450mV/T SLOPE  
COMPENSATION  
(PWM ONLY)  
150k  
54pF  
INTERNAL  
COMPENSATION  
INTERNAL = 50µs  
PACKAGE  
PADDLE  
GND  
Ordering Information  
PART NUMBER  
PART  
MARKING  
TEMP. RANGE  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
(Notes 1, 2, 3)  
ISL85412FRTZ  
(°C)  
5412  
-40 to +125  
8 Ld TDFN  
L8.3x3H  
ISL85412EVAL1Z  
ISL85412DEMO1Z  
NOTES:  
Evaluation Board  
Demonstration Board  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL85412. For more information on MSL please see techbrief TB363.  
FN8378 Rev 1.00  
March 13, 2015  
Page 4 of 19  
ISL85412  
Absolute Maximum Ratings  
Thermal Information  
VIN to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +43V  
PHASE to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VIN + 0.3V (DC)  
PHASE to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2V to 44V (20ns)  
EN to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +43V  
BOOT to PHASE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +5.5V  
COMP, FS, PG, MODE, SS, VCC to GND. . . . . . . . . . . . . . . . . . -0.3V to +5.9V  
FB to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +2.95V  
Junction Temperature Range at 0A . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
ESD Rating  
Thermal Resistance  
TDFN Package (Note 4, 5). . . . . . . . . . . . . .  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature Range . . . . . . . . . . . . . .-40°C to +125°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
(°C/W)  
47  
(°C/W)  
4
JA  
JC  
Recommended Operating Conditions  
Human Body Model (Tested per JESD22-A114) . . . . . . . . . . . . . . . .2.5kV  
Charged Device Model (Tested per JESD22-C101E). . . . . . . . . . . . . . 1kV  
Machine Model (Tested per JESD22-A115). . . . . . . . . . . . . . . . . . . . 200V  
Latch-up (Tested per JESD-78A; Class 2, Level A) . . . . . . . . . . . . . . 100mA  
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5V to 40V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379 for details.  
5. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications T = -40°C to +125°C, V = 3.5V to 40V, unless otherwise noted. Typical values are at T = +25°C. Boldface  
J
IN  
A
limits apply across the junction temperature range.  
MIN  
MAX  
PARAMETER  
SUPPLY VOLTAGE  
SYMBOL  
TEST CONDITIONS  
(Note 8)  
TYP  
(Note 8  
UNITS  
V
V
V
V
Voltage Range  
V
I
3.5  
40  
V
µA  
µA  
V
IN  
IN  
IN  
CC  
IN  
Quiescent Supply Current  
Shutdown Supply Current  
Voltage  
V
= 0.7V, MODE = 0V  
50  
1.8  
5.1  
5
Q
FB  
I
EN = 0V, V = 40V (Note 6)  
2.5  
5.5  
SD  
IN  
V
V
V
= 40V  
4.5  
CC  
IN  
IN  
= 12V; I  
= 0A to 10mA  
4.35  
5.45  
V
OUT  
POWER-ON RESET  
POR Threshold  
V
Rising Edge  
Falling Edge  
3.3  
3
3.46  
784  
V
V
CC  
2.76  
600  
OSCILLATOR  
Nominal Switching Frequency  
Minimum Off-Time  
f
f
= V  
700  
130  
90  
kHz  
ns  
SW  
SW CC  
t
V
= 3.5V  
OFF  
IN  
Minimum On-Time  
t
(Note 9)  
ns  
ON  
ERROR AMPLIFIER  
Error Amplifier Transconductance Gain  
FB Leakage Current  
gm  
50  
1
µA/V  
nA  
V
= 0.6V  
100  
1.02  
FB  
Current Sense Amplifier Gain  
FB Voltage  
R
0.84  
0.93  
0.599  
V/A  
V
T
T
= -40°C to +125°C  
0.589  
0.606  
A
POWER-GOOD  
Lower PG Threshold - VFB Rising  
Lower PG Threshold - VFB Falling  
Upper PG Threshold - VFB Rising  
Upper PG Threshold - VFB Falling  
PG Propagation Delay  
PG Low Voltage  
91  
85  
94  
%
%
%
%
%
V
81.5  
107  
118  
111  
10  
121  
Percentage of the soft-start time  
= 3mA, EN = V , V = 0V  
I
0.05  
0.3  
SINK  
CC FB  
FN8378 Rev 1.00  
March 13, 2015  
Page 5 of 19  
ISL85412  
Electrical Specifications T = -40°C to +125°C, V = 3.5V to 40V, unless otherwise noted. Typical values are at T = +25°C. Boldface  
J
IN  
A
limits apply across the junction temperature range. (Continued)  
MIN  
MAX  
PARAMETER  
TRACKING AND SOFT-START  
Internal Soft-Start Ramp Time  
FAULT PROTECTION  
SYMBOL  
TEST CONDITIONS  
(Note 8)  
TYP  
2.3  
(Note 8  
UNITS  
ms  
EN/SS = V  
1.5  
3.1  
CC  
Thermal Shutdown Temperature  
T
Rising Threshold  
Hysteresis  
150  
20  
°C  
°C  
SD  
T
HYS  
Current Limit Blanking Time  
t
17  
Clock  
OCON  
pulses  
Overcurrent and Auto Restart Period  
Positive Peak Current Limit  
PFM Peak Current Limit  
Zero Cross Threshold  
Negative Current Limit  
POWER MOSFET  
t
8
0.4  
0.22  
5
SS cycle  
OCOFF  
IPLIMIT  
(Note 7)  
(Note 7)  
0.36  
0.17  
0.44  
0.27  
A
A
I
PK_PFM  
mA  
A
INLIMIT  
-0.33  
-0.30  
-0.27  
High-side  
R
I
I
= 100mA, V = 5V  
CC  
900  
500  
50  
1300  
800  
mΩ  
mΩ  
nA  
HDS  
PHASE  
Low-side  
R
= 100mA, V = 5V  
CC  
LDS  
PHASE  
PHASE Leakage Current  
PHASE Rise Time  
EN = PHASE = 0V  
= 40V  
300  
t
V
10  
ns  
RISE  
IN  
EN/MODE  
Mode Input Threshold  
Rising Edge, Logic High  
Falling Edge, Logic Low  
Rising Edge, Logic High  
Falling Edge, Logic Low  
EN = 0V/40V  
1.3  
1.0  
1.2  
0.9  
1.45  
1.45  
V
V
0.4  
EN Threshold  
V
0.4  
V
EN Logic Input Leakage Current  
MODE Logic Input Leakage Current  
MODE Pull-down Resistor  
NOTES:  
-0.5  
0.5  
100  
6.15  
µA  
nA  
MΩ  
MODE = 0V  
10  
5
6. Test Condition: V = 40V, FB forced above regulation point (0.6V), no switching, and power MOSFET gate charging current not included.  
IN  
7. Established by both current sense amplifier gain test and current sense amplifier output test at I = 0A.  
L
8. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
9. Minimum On-Time required to maintain loop stability.  
FN8378 Rev 1.00  
March 13, 2015  
Page 6 of 19  
ISL85412  
Efficiency Curves  
f
= 700kHz, T = +25°C, C = 20µF  
SW  
A
IN  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
1.8V  
1.8V  
OUT  
OUT  
1.5V  
OUT  
3.3V  
2.5V  
OUT  
OUT  
2.5V  
3.3V  
OUT  
OUT  
OUT  
1.5V  
OUT  
70  
60  
50  
40  
OUT  
1.2V  
1.2V  
OUT  
1.0V  
1.0V  
OUT  
0
0
0
0.03  
0.06  
0.09  
0.12  
0.15  
0
0.03  
0.06  
0.09  
0.12  
0.15  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 3. EFFICIENCY vs LOAD, PFM, V = 5V  
IN  
FIGURE 4. EFFICIENCY vs LOAD, PWM, V = 5V  
IN  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
3.3V  
OUT  
3.3V  
OUT  
1.5V  
OUT  
1.8V  
5.0V  
OUT  
OUT  
1.8V  
OUT  
1.2V  
OUT  
2.5V  
OUT  
5.0V  
OUT  
2.5V  
OUT  
1.5V  
OUT  
1.0V  
OUT  
1.2V  
OUT  
1.0V  
OUT  
0.06  
OUTPUT LOAD (A)  
0
0.03  
0.06  
0.09  
0.12  
0.15  
0.03  
0.09  
0.12  
0.15  
OUTPUT LOAD (A)  
FIGURE 5. EFFICIENCY vs LOAD, PFM, V = 12V  
IN  
FIGURE 6. EFFICIENCY vs LOAD, PWM, V = 12V  
IN  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
5.0V  
12V  
OUT  
OUT  
2.5V  
OUT  
12V  
OUT  
2.5V  
OUT  
1.5V  
OUT  
OUT  
3.3V  
1.8V  
OUT  
5.0V  
OUT  
1.2V  
OUT  
1.5V  
OUT  
1.8V  
1.2V  
1.0V  
OUT  
OUT  
OUT  
1.0V  
OUT  
0
0.03  
0.06  
0.09  
0.12  
0.15  
0.03  
0.06  
0.09  
0.12  
0.15  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 8. EFFICIENCY vs LOAD, PWM, V = 24V  
IN  
FIGURE 7. EFFICIENCY vs LOAD, PFM, V = 24V  
IN  
FN8378 Rev 1.00  
March 13, 2015  
Page 7 of 19  
ISL85412  
Efficiency Curves  
f
= 700kHz, T = +25°C, C = 20µF (Continued)  
IN  
SW  
A
100  
100  
90  
80  
70  
60  
50  
40  
12V  
OUT  
12V  
OUT  
5.0V  
5.0V  
OUT  
90  
80  
70  
60  
50  
40  
OUT  
3.3V  
OUT  
3.3V  
OUT  
2.5V  
OUT  
1.5V  
1.2V  
OUT  
OUT  
1.8V  
2.5V  
OUT  
OUT  
1.8V  
OUT  
1.5V  
OUT  
1.2V  
OUT  
0.09  
OUTPUT LOAD (A)  
0
0.03  
0.06  
0.09  
0.12  
0.15  
0
0.03  
0.06  
0.12  
0.15  
OUTPUT LOAD (A)  
FIGURE 9. EFFICIENCY vs LOAD, PFM, V = 36V  
IN  
FIGURE 10. EFFICIENCY vs LOAD, PWM, V = 36V  
IN  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
5V PFM  
IN  
24V PFM  
IN  
5V PFM  
IN  
24V PFM  
IN  
36V PFM  
IN  
12V PFM  
IN  
12V PFM  
IN  
12V PWM  
IN  
5V PWM  
IN  
36V PWM  
IN  
12V PWM  
IN  
24V PWM  
IN  
5V PWM  
IN  
0
0.03  
0.06  
0.09  
0.12  
0.15  
0
0.03  
0.06  
0.09  
0.12  
0.15  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 11. V  
OUT  
REGULATION vs LOAD, V  
= 1V  
FIGURE 12. V  
OUT  
REGULATION vs LOAD, V  
= 1.2V  
OUT  
OUT  
1.56  
1.55  
1.53  
1.52  
1.50  
1.49  
1.47  
1.83  
24V PFM  
IN  
5V PFM  
IN  
12V PFM  
IN  
36V PFM  
IN  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
12V PFM  
IN  
36V PFM  
IN  
5V PFM  
IN  
24V PFM  
IN  
12V PWM  
IN  
5V PWM  
IN  
24V PWM  
IN  
36V PWM  
IN  
12V PWM  
IN  
5V PWM  
IN  
24V PWM  
IN  
36V PWM  
IN  
0
0.03  
0.06  
0.09  
0.12  
0.15  
0
0.03  
0.06  
0.09  
0.12  
0.15  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 13. V  
OUT  
REGULATION vs LOAD, PWM, V  
= 1.5V  
OUT  
FIGURE 14. V  
OUT  
REGULATION vs LOAD, V  
= 1.8V  
OUT  
FN8378 Rev 1.00  
March 13, 2015  
Page 8 of 19  
ISL85412  
Efficiency Curves  
f
= 700kHz, T = +25°C, C = 20µF (Continued)  
IN  
SW  
A
2.55  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
5V PFM  
IN  
12V PFM  
IN  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
36V PFM  
IN  
5V PFM  
IN  
36V PFM  
IN  
12V PFM  
IN  
24V PFM  
IN  
24V PFM  
IN  
12V PWM  
IN  
5V PWM  
IN  
12V PWM  
IN  
5V PWM  
IN  
36V PWM  
IN  
24V PWM  
IN  
36V PWM  
IN  
24V PWM  
IN  
0
0.03  
0.06  
0.09  
0.12  
0.15  
0
0.03  
0.06  
0.09  
0.12  
0.15  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 16. V  
OUT  
REGULATION vs LOAD, V  
= 3.3V  
OUT  
FIGURE 15. V  
OUT  
REGULATION vs LOAD, V = 2.5V  
OUT  
12.35  
12.28  
12.20  
12.13  
12.05  
11.98  
11.90  
5.04  
24V PFM  
IN  
5.03  
5.01  
5.00  
4.98  
4.97  
4.95  
12V PFM  
IN  
36V PFM  
IN  
24V PFM  
IN  
36V PFM  
IN  
12V PWM  
IN  
36V PWM  
IN  
24V PWM  
IN  
36V PWM  
IN  
24V PWM  
IN  
0
0.03  
0.06  
0.09  
0.12  
0.15  
0
0.03  
0.06  
0.09  
0.12  
0.15  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 17. V  
OUT  
REGULATION vs LOAD, V  
= 5V  
FIGURE 18. V  
REGULATION vs LOAD, V = 12V  
OUT  
OUT  
OUT  
FN8378 Rev 1.00  
March 13, 2015  
Page 9 of 19  
ISL85412  
Typical Performance Curves  
V
= 12V, V  
OUT  
= 3.3V, f  
= 700kHz, T = +25°C, C = 20µF,  
IN  
IN  
SW  
A
C
= 22µF.  
OUT  
PHASE 10V/DIV  
PHASE 10V/DIV  
V
2V/DIV  
OUT  
V
2V/DIV  
OUT  
VEN 10V/DIV  
PG 5V/DIV  
VEN 10V/DIV  
PG 5V/DIV  
1ms/DIV  
1ms/DIV  
FIGURE 19. START-UP AT NO LOAD, PFM  
FIGURE 20. START-UP AT NO LOAD, PWM  
PHASE 10V/DIV  
PHASE 10V/DIV  
V
2V/DIV  
V
2V/DIV  
OUT  
OUT  
VEN 10V/DIV  
PG 5V/DIV  
VEN 10V/DIV  
PG 5V/DIV  
100ms/DIV  
100ms/DIV  
FIGURE 21. SHUTDOWN IN NO LOAD, PFM  
FIGURE 22. SHUTDOWN AT NO LOAD, PWM  
PHASE 10V/DIV  
PHASE 10V/DIV  
V
2V/DIV  
V
2V/DIV  
OUT  
OUT  
VEN 10V/DIV  
PG 5V/DIV  
VEN 10V/DIV  
PG 5V/DIV  
1ms/DIV  
2ms/DIV  
FIGURE 23. START-UP AT 150mA, PWM  
FIGURE 24. SHUTDOWN AT 150mA, PWM  
FN8378 Rev 1.00  
March 13, 2015  
Page 10 of 19  
ISL85412  
Typical Performance Curves  
V
= 12V, V  
OUT  
= 3.3V, f  
= 700kHz, T = +25°C, C = 20µF,  
IN  
IN  
SW  
A
C
= 22µF. (Continued)  
OUT  
PHASE 10V/DIV  
PHASE 10V/DIV  
V
2V/DIV  
OUT  
V
2V/DIV  
OUT  
VEN 10V/DIV  
PG 5V/DIV  
VEN 10V/DIV  
PG 5V/DIV  
1ms/DIV  
5ms/DIV  
FIGURE 25. START-UP AT 150mA, PFM  
FIGURE 26. SHUTDOWN AT 150mA, PFM  
V
10V/DIV  
1V/DIV  
IN  
V
10V/DIV  
2V/DIV  
IN  
V
V
OUT  
OUT  
I
100mA/DIV  
PG 5V/DIV  
I
100mA/DIV  
PG 5V/DIV  
L
L
1ms/DIV  
1ms/DIV  
FIGURE 27. START-UP V AT 150mA LOAD, PFM  
IN  
FIGURE 28. START-UP V AT 150mA LOAD, PWM  
IN  
V
10V/DIV  
V
10V/DIV  
IN  
IN  
V
2V/DIV  
V
2V/DIV  
OUT  
OUT  
I
100mA/DIV  
PG 5V/DIV  
I
100mA/DIV  
PG 5V/DIV  
L
L
5ms/DIV  
5ms/DIV  
FIGURE 29. SHUTDOWN V AT 150mA LOAD, PFM  
IN  
FIGURE 30. SHUTDOWN V AT 150mA LOAD, PWM  
IN  
FN8378 Rev 1.00  
March 13, 2015  
Page 11 of 19  
ISL85412  
Typical Performance Curves  
V
= 12V, V  
OUT  
= 3.3V, f  
= 700kHz, T = +25°C, C = 20µF,  
IN  
IN  
SW  
A
C
= 22µF. (Continued)  
OUT  
PHASE 10V/DIV  
PHASE 10V/DIV  
V
2V/DIV  
OUT  
V
V
2V/DIV  
OUT  
V
10v/DIV  
IN  
10v/DIV  
IN  
PG 5V/DIV  
PG 5V/DIV  
1ms/DIV  
1ms/DIV  
FIGURE 31. START-UP V AT NO LOAD, PFM  
IN  
FIGURE 32. START-UP V AT NO LOAD, PWM  
IN  
PHASE 10V/DIV  
PHASE 10V/DIV  
V
V
1V/DIV  
OUT  
V
V
2V/DIV  
OUT  
5v/DIV  
IN  
10v/DIV  
IN  
PG 5V/DIV  
PG 5V/DIV  
100ms/DIV  
100ms/DIV  
FIGURE 33. SHUTDOWN V AT NO LOAD, PFM  
IN  
FIGURE 34. SHUTDOWN V AT NO LOAD, PWM  
IN  
PHASE 1V/DIV  
PHASE 1V/DIV  
100ns/DIV  
100ns/DIV  
FIGURE 35. JITTER AT NO LOAD, PWM  
FIGURE 36. JITTER AT FULL LOAD, PWM  
FN8378 Rev 1.00  
March 13, 2015  
Page 12 of 19  
ISL85412  
Typical Performance Curves  
V
= 12V, V  
OUT  
= 3.3V, f  
= 700kHz, T = +25°C, C = 20µF,  
IN  
SW  
A
IN  
C
= 22µF. (Continued)  
OUT  
PHASE 10V/DIV  
PHASE 10V/DIV  
V
RIPPLE 20mV/DIV  
V
RIPPLE 20mV/DIV  
OUT  
OUT  
I
100mA/DIV  
L
I
100mA/DIV  
L
1µs/DIV  
5ms/DIV  
FIGURE 37. STEADY STATE AT NO LOAD, PFM  
FIGURE 38. STEADY STATE AT NO LOAD, PWM  
PHASE 10V/DIV  
PHASE 10V/DIV  
V
20mV/DIV  
OUT  
V
20mV/DIV  
OUT  
I
100mA/DIV  
2µs/DIV  
L
I
100mA/DIV  
L
1µs/DIV  
FIGURE 39. STEADY STATE AT 150mA LOAD, PWM  
FIGURE 40. STEADY STATE AT 20mA LOAD, PFM  
V
RIPPLE 100mV/DIV  
OUT  
V
RIPPLE 50mV/DIV  
OUT  
I
100mA/DIV  
L
I
100mA/DIV  
L
200µs/DIV  
200µs/DIV  
FIGURE 41. LOAD TRANSIENT, PFM  
FIGURE 42. LOAD TRANSIENT, PWM  
FN8378 Rev 1.00  
March 13, 2015  
Page 13 of 19  
ISL85412  
Typical Performance Curves  
V
= 12V, V  
OUT  
= 3.3V, f  
= 700kHz, T = +25°C, C = 20µF,  
IN  
IN  
SW  
A
C
= 22µF. (Continued)  
OUT  
PHASE 10V/DIV  
PHASE 10V/DIV  
V
2V/DIV  
OUT  
V
2V/DIV  
OUT  
I
500mA/DIV  
PG 5V/DIV  
L
I
500mA/DIV  
PG 5V/DIV  
L
20µs/DIV  
10ms/DIV  
FIGURE 43. OUTPUT SHORT CIRCUIT  
FIGURE 44. OVERCURRENT PROTECTION  
PHASE1 10V/DIV  
PHASE1 10V/DIV  
V
RIPPLE 20mV/DIV  
V
RIPPLE 20mV/DIV  
OUT1  
OUT1  
I
50mA/DIV  
10µs/DIV  
I
50mA/DIV  
5µs/DIV  
L
L
FIGURE 45. PFM TO PWM TRANSITION  
FIGURE 46. PWM TO PFM TRANSITION  
V
2V/DIV  
PHASE 10V/DIV  
OUT  
I
200mA/DIV  
L
V
2V/DIV  
OUT  
PG 2V/DIV  
PG 5V/DIV  
10µs/DIV  
200ms/DIV  
FIGURE 47. OVERVOLTAGE PROTECTION  
FIGURE 48. OVERTEMPERATURE PROTECTION  
FN8378 Rev 1.00  
March 13, 2015  
Page 14 of 19  
ISL85412  
A PWM cycle begins when a clock pulse sets the PWM latch and  
the upper FET is turned on. Current begins to ramp up in the upper  
Detailed Description  
The ISL85412 combines a synchronous buck PWM controller  
with integrated power switches. The buck controller drives  
internal high-side and low-side N-channel MOSFETs to deliver  
load current up to 150mA. The buck regulator can operate from  
an unregulated DC source, such as a battery, with a voltage  
ranging from +3.5V to +40V. An internal LDO provides bias to the  
low voltage portions of the IC.  
FET and inductor. This current is sensed (V ), converted to a  
CSA  
voltage and summed with the slope compensation signal. This  
combined signal is compared to V and when the signal is  
COMP  
, the latch is reset. Upon latch reset the upper FET is  
equal to V  
COMP  
turned off and the lower FET turned on allowing current to ramp  
down in the inductor. The lower FET will remain on until the clock  
initiates another PWM cycle. Figure 49 shows the typical operating  
waveforms during the PWM operation. The dotted lines illustrate  
the sum of the current sense and slope compensation signal.  
Peak current mode control is utilized to simplify feedback loop  
compensation and reject input voltage variation. User selectable  
internal feedback loop compensation further simplifies design.  
The ISL85412 switches at a default 700kHz.  
Output voltage is regulated as the error amplifier varies its output  
and thus output inductor current. The error amplifier is a  
transconductance type and its output is terminated with a series  
RC (150k/54pF) network to GND. The transconductance of the  
error amplifier is 50µs. Its noninverting input is internally  
connected to a 600mV reference voltage and its inverting input is  
connected to the output voltage via the FB pin and its associated  
divider network.  
The buck regulator is equipped with an internal current sensing  
circuit and the peak current limit threshold is typically set at  
0.4A.  
Power-On Reset  
The ISL85412 automatically initializes upon receipt of the input  
power supply and continually monitors the EN pin state. If EN is  
held below its logic rising threshold, the IC is held in shutdown  
and consumes typically 1.8µA from the VIN supply. If EN exceeds  
its logic rising threshold, the regulator will enable the bias LDO  
and begin to monitor the VCC pin voltage. When the VCC pin  
voltage clears its rising POR threshold, the controller will initialize  
the switching regulator circuits. If VCC never clears the rising POR  
threshold, the controller will not allow the switching regulator to  
operate. If VCC falls below its falling POR threshold while the  
switching regulator is operating, the switching regulator will be  
shut down until VCC returns.  
V
COMP  
V
CSA  
DUTY  
CYCLE  
I
L
V
OUT  
Soft-Start  
To avoid large inrush current, V  
to its final regulated value in 2.3ms.  
is slowly increased at start-up  
OUT  
FIGURE 49. PWM OPERATION WAVEFORMS  
Light Load Operation  
Power-Good  
At light loads, converter efficiency may be improved by enabling  
variable frequency operation (PFM). Connecting the MODE pin to  
GND will allow the controller to choose such operation  
automatically when the load current is low. Figure 50 shows the  
PFM operation. The IC enters the PFM mode of operation when 8  
consecutive cycles of inductor current crossing zero are detected.  
This corresponds to a load current equal to 1/2 the peak-to-peak  
inductor ripple current and set by Equation 1:  
PG is the open-drain output of a window comparator that  
continuously monitors the buck regulator output voltage via the  
FB pin. PG is actively held low when EN is low and during the  
buck regulator soft-start period. After the soft-start period  
completes, PG becomes high impedance provided the FB pin is  
within the range specified in the “Electrical Specifications” on  
page 5. Should FB exit the specified window, PG will be pulled  
low until FB returns. Over-temperature faults also force PG low  
until the fault condition is cleared by an attempt to soft-start.  
There is an internal 5MΩ internal pull-up resistor.  
V
1 D  
(EQ. 1)  
OUT  
----------------------------------  
=
I
OUT  
2Lf  
SW  
PWM Control Scheme  
where D = duty cycle, f  
SW  
= switching frequency, L = inductor  
= output voltage.  
The ISL85412 employs peak current-mode pulse-width  
modulation (PWM) control for fast transient response and  
pulse-by-pulse current limiting, as shown in the “Functional Block  
Diagram” on page 4. The current loop consists of the current  
sensing circuit, slope compensation ramp, PWM comparator,  
oscillator and latch. Current sense transresistance is typically  
930mV/A and slope compensation rate, Se, is typically 450mV/T  
where T is the switching cycle period. The control reference for  
the current loop comes from the error amplifier’s output.  
value, I  
= output loading current, V  
OUT  
OUT  
While operating in PFM mode, the regulator controls the output  
voltage with a simple comparator and pulsed FET current. A  
comparator signals the point at which FB is equal to the 600mV  
reference at which time the regulator begins providing pulses of  
current until FB is moved above the 600mV reference by 1%. The  
current pulses are approximately 200mA and are issued at a  
frequency equal to the converter’s PWM operating frequency.  
FN8378 Rev 1.00  
March 13, 2015  
Page 15 of 19  
ISL85412  
PWM  
PFM  
PULSE SKIP  
PFM  
PWM  
CLOCK  
8 CYCLES  
I
L
LOAD CURRENT  
0
V
OUT  
FIGURE 50. PFM MODE OPERATION WAVEFORMS  
Due to the pulsed current nature of PFM mode, the converter can  
supply limited current to the load. Should load current rise  
event that current reaches the limit, the upper FET will be turned  
off until the next switching cycle. In this way, FET peak current is  
always well limited.  
beyond the limit, V  
will begin to decline. A second comparator  
OUT  
signals an FB voltage 1% lower than the 600mV reference and  
forces the converter to return to PWM operation.  
If the overcurrent condition persists for 17 sequential clock  
cycles, the regulator will begin its hiccup sequence. In this case,  
both FETs will be turned off and PG will be pulled low. This  
condition will be maintained for 8 soft-start periods after which  
the regulator will attempt a normal soft-start.  
Output Voltage Selection  
The regulator output voltage is easily programmed using an  
external resistor divider to scale V  
relative to the internal  
OUT  
Should the output fault persist, the regulator will repeat the  
hiccup sequence indefinitely. There is no danger even if the  
output is shorted during soft-start.  
reference voltage. The scaled voltage is applied to the inverting  
input of the error amplifier; refer to Figure 51.  
The output voltage programming resistor, R , depends on the  
2
ths  
If V  
OUT  
is shorted very quickly, FB may collapse below 5/8 of  
value chosen for the feedback resistor, R and the desired output  
1
its target value before 17 cycles of overcurrent are detected. The  
ISL85412 recognizes this condition and will begin to lower its  
switching frequency proportional to the FB pin voltage. This  
voltage, V , of the regulator. Equation 2 describes the  
OUT  
relationship between V  
and resistor values.  
OUT  
R x0.6V  
1
insures that under no circumstance (even with V  
near 0V) will  
----------------------------------  
=
(EQ. 2)  
OUT  
R
2
V
0.6V  
OUT  
the inductor current run away.  
If the desired output voltage is 0.6V, then R is left unpopulated  
2
Negative Current Limit  
Should an external source somehow drive current into V , the  
and R is 0Ω.  
1
OUT  
controller will attempt to regulate V  
OUT  
by reversing its inductor  
V
OUT  
current to absorb the externally sourced current. In the event that  
the external source is low impedance, current may be reversed to  
unacceptable levels and the controller will initiate its negative  
current limit protection. Similar to normal overcurrent, the  
negative current protection is realized by monitoring the current  
through the lower FET. When the valley point of the inductor  
current reaches negative current limit, the lower FET is turned off  
and the upper FET is forced on until current reaches the positive  
current limit or an internal clock signal is issued. At this point, the  
lower FET is allowed to operate. Should the current again be pulled  
to the negative limit on the next cycle, the upper FET will again be  
R
R
1
FB  
-
+
EA  
2
0.6V  
REFERENCE  
FIGURE 51. EXTERNAL RESISTOR DIVIDER  
th  
forced on and current will be forced to 1/6 of the positive current  
Protection Features  
limit. At this point the controller will turn off both FETs and wait for  
error amplifier’s output to indicate return to normal operation.  
During this time, the controller will apply a 100Ω load from PHASE  
to PGND and attempt to discharge the output. Negative current  
limit is a pulse-by-pulse style operation and recovery is automatic.  
Negative current limit protection is disabled in PFM operating  
mode because reverse current is not allowed to build due to the  
diode emulation behavior of the lower FET.  
The ISL85412 is protected from overcurrent, negative  
overcurrent and over-temperature. The protection circuits  
operate automatically.  
Overcurrent Protection  
During PWM on-time, current through the upper FET is monitored  
and compared to a nominal 0.4A peak overcurrent limit. In the  
FN8378 Rev 1.00  
March 13, 2015  
Page 16 of 19  
ISL85412  
manufacturers publish capacitance vs DC bias so that this effect  
can be easily accommodated. The effects of AC voltage are not  
frequently published, but an assumption of ~20% further  
reduction will generally suffice. The result of these  
considerations may mean an effective capacitance 50% lower  
than nominal and this value should be used in all design  
calculations. Nonetheless, ceramic capacitors are a very good  
choice in many applications due to their reliability and extremely  
low ESR.  
Over-Temperature Protection  
Over-temperature protection limits maximum junction  
temperature in the ISL85412. When junction temperature (T )  
exceeds +150°C, both FETs are turned off and the controller  
waits for temperature to decrease by approximately 20°C.  
During this time PG is pulled low. When temperature is within an  
acceptable range, the controller will initiate a normal soft-start  
sequence. For continuous operation, the +125°C junction  
temperature rating should not be exceeded.  
J
The following equations allow calculation of the required  
capacitance to meet a desired ripple voltage level. Additional  
capacitance may be used.  
Boot Undervoltage Protection  
If the Boot capacitor voltage falls below 1.8V, the Boot  
undervoltage protection circuit will turn on the lower FET for  
400ns to recharge the capacitor. This operation may arise during  
long periods of no switching such as PFM no load situations. In  
For the ceramic capacitors (low ESR):  
I  
(EQ. 4)  
is the  
------------------------------------  
V
=
OUTripple  
C
OUT  
8 f  
SW  
PWM operation near dropout (V near V  
), the regulator may  
IN OUT  
hold the upper FET on for multiple clock cycles. To prevent the  
boot capacitor from discharging, the lower FET is forced on for  
approximately 200ns every 34 clock cycles.  
Where I is the inductor’s peak-to-peak ripple current, f  
SW  
switching frequency and C  
is the output capacitor.  
OUT  
If using electrolytic capacitors then:  
(EQ. 5)  
V
= I*ESR  
Application Guidelines  
OUTripple  
Simplifying the Design  
Layout Considerations  
Table 1 on page 3 provides component value selections for a  
variety of output voltages and will allow the designer to  
implement solutions with a minimum of effort.  
Proper layout of the power converter will minimize EMI and noise  
and insure first pass success of the design. PCB layouts are  
provided in multiple formats on the Intersil web site. In addition,  
Figure 52 will make clear the important points in PCB layout. In  
reality, PCB layout of the ISL85412 is quite simple.  
Output Inductor Selection  
The inductor value determines the converter’s ripple current.  
Choosing an inductor current requires a somewhat arbitrary  
choice of ripple current, I. A reasonable starting point is 30% of  
total load current. The inductor value can then be calculated  
using Equation 3:  
A multi-layer printed circuit board with GND plane is  
recommended. Figure 52 shows the connections of the critical  
components in the converter. Note that capacitors C and C  
could each represent multiple physical capacitors. The most  
critical connections are to tie the PGND pin to the package GND  
pad and then use vias to directly connect the GND pad to the  
system GND plane. This connection of the GND pad to system  
plane insures a low impedance path for all return current, as well  
as an excellent thermal path to dissipate heat. With this  
connection made, place the high frequency MLCC input capacitor  
near the VIN pin and use vias directly at the capacitor pad to tie  
the capacitor to the system GND plane.  
IN  
OUT  
V
V  
V
OUT  
V
IN  
IN  
F
OUT  
(EQ. 3)  
------------------------------- ---------------  
L =  
 I  
S
Increasing the value of inductance reduces the ripple current and  
thus, the ripple voltage. However, the larger inductance value  
may reduce the converter’s response time to a load transient.  
The inductor current rating should be such that it will not saturate  
in overcurrent conditions. For typical ISL85412 applications,  
inductor values generally lies in the 10µH to 47µH range. In  
The boot capacitor is easily placed on the PCB side opposite the  
controller IC and 2 vias directly connect the capacitor to BOOT  
and PHASE.  
general, higher V  
will mean higher inductance.  
OUT  
Buck Regulator Output Capacitor Selection  
Place a 1µF MLCC near the VCC pin and directly connect its  
return with a via to the system GND plane.  
An output capacitor is required to filter the inductor current. The  
current mode control loop allows the use of low ESR ceramic  
capacitors and thus supports very small circuit implementations  
on the PC board. Electrolytic and polymer capacitors may also be  
used.  
Place the feedback divider close to the FB pin and do not route  
any feedback components near PHASE or BOOT.  
While ceramic capacitors offer excellent overall performance  
and reliability, the actual in-circuit capacitance must be  
considered. Ceramic capacitors are rated using large  
peak-to-peak voltage swings and with no DC bias. In the DC/DC  
converter application, these conditions do not reflect reality. As a  
result, the actual capacitance may be considerably lower than  
the advertised value. Consult the manufacturers data sheet to  
determine the actual in-application capacitance. Most  
FN8378 Rev 1.00  
March 13, 2015  
Page 17 of 19  
ISL85412  
FIGURE 52. PRINTED CIRCUIT BOARD POWER PLANES AND ISLANDS  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
FN8378.1  
CHANGE  
March 13, 2015  
Upgraded the max nom VIN from 36V to 40V and abs max to 43V.  
- On page 1 - Changed all "36V" occurrences on to "40V" and also changed "36V" to "40V" in the Typical  
Application diagram.  
- On page 5 - Changed in the Abs Max Ratings: "42V" to "43V" (twice) and "43V" to "44V" (once) and in the  
Recommended Operating Conditions "36V" to "40V".  
On pages 5 and 6 - In the EC table, changed "36V" to "40V" all occurrences .  
- on page 15 - Changed the occurrence "36V" to "40V" in the "Detailed Description".  
April 11, 2014  
FN8378.0  
Initial Release.  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
© Copyright Intersil Americas LLC 2014-2015. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8378 Rev 1.00  
March 13, 2015  
Page 18 of 19  
ISL85412  
Package Outline Drawing  
L8.3x3H  
8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE (TDFN)  
Rev 0, 2/08  
2.38  
1.50 REF  
3.00  
A
PIN #1 INDEX AREA  
6
6 X 0.50  
6
PIN 1  
INDEX AREA  
B
8 X 0.40  
1
4
2.20  
3.00  
1.64  
(4X)  
0.15  
5
8
0.10 M C A B  
8 X 0.25  
TOP VIEW  
BOTTOM VIEW  
( 2.38 )  
SEE DETAIL "X"  
0 .80 MAX  
C
0.10  
C
BASE PLANE  
SEATING PLANE  
0.08  
C
2 . 80  
( 2 .20 )  
SIDE VIEW  
0.2 REF  
( 1.64 )  
C
8X 0.60  
0 . 00 MIN.  
0 . 05 MAX.  
( 8X 0.25 )  
DETAIL “X”  
( 6X 0 . 5 )  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Lead width dimension applies to the metallized terminal and is  
measured between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN8378 Rev 1.00  
March 13, 2015  
Page 19 of 19  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY