ISL85418FRZ [RENESAS]

Wide VIN 800mA Synchronous Buck Regulator;
ISL85418FRZ
型号: ISL85418FRZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Wide VIN 800mA Synchronous Buck Regulator

文件: 总21页 (文件大小:1338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL85418  
Wide V 800mA Synchronous Buck Regulator  
IN  
FN8369  
Rev 5.00  
March 13, 2015  
The ISL85418 is a 800mA synchronous buck regulator with an  
input range of 3V to 40V. It provides an easy to use, high  
efficiency low BOM count solution for a variety of applications.  
Features  
• Wide input voltage range 3V to 40V  
• Synchronous operation for high efficiency  
• No compensation required  
The ISL85418 integrates both high-side and low-side NMOS  
FETs and features a PFM mode for improved efficiency at light  
loads. This feature can be disabled if forced PWM mode is  
desired. The part switches at a default frequency of 500kHz  
but may also be programmed using an external resistor from  
300kHz to 2MHz. The ISL85418 has the ability to utilize  
internal or external compensation. By integrating both NMOS  
devices and providing internal configuration options, minimal  
external components are required, reducing BOM count and  
complexity of design.  
• Integrated high-side and low-side NMOS devices  
• Selectable PFM or forced PWM mode at light loads  
• Internal fixed (500kHz) or adjustable switching frequency  
300kHz to 2MHz  
• Continuous output current up to 800mA  
• Internal or external soft-start  
• Minimal external components required  
• Power-good and enable functions available  
With the wide V range and reduced BOM, the part provides  
IN  
an easy to implement design solution for a variety of  
applications while giving superior performance. It will provide  
a very robust design for high voltage industrial applications as  
well as an efficient solution for battery powered applications.  
Applications  
• Industrial control  
The part is available in a small Pb-free 4mmx3mm DFN plastic  
package with an operation temperature range of -40°C to  
+125°C.  
• Medical devices  
• Portable instrumentation  
• Distributed power supplies  
• Cloud infrastructure  
Related Literature  
AN1905, “ISL85410EVAL1Z, ISL85418EVAL1Z Wide V 1A,  
IN  
800mA Synchronous Buck Regulator”  
AN1908, “ISL85410DEMO1Z, ISL85418DEMO1Z Wide V  
1A, 800mA Synchronous Buck Regulator”  
IN  
100  
V
= 12V  
V
= 5V  
IN  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
IN  
12  
11  
1
2
SS  
FS  
COMP  
SYNC  
BOOT  
VIN  
R2  
R3  
CFB  
10  
9
3
4
V
= 33V  
IN  
FB  
CBOOT  
100nF  
V
= 15V  
IN  
GND  
CVIN  
10µF  
VCC  
CVCC  
1µF  
VOUT  
5
6
PHASE  
PGND  
PG  
EN  
COUT  
10µF  
L1  
22µH  
V
= 24V  
IN  
INTERNAL DEFAULT PARAMETER SELECTION  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
OUTPUT LOAD (A)  
FIGURE 1. TYPICAL APPLICATION  
FIGURE 2. EFFICIENCY vs LOAD, PFM, V  
= 3.3V  
OUT  
FN8369 Rev 5.00  
March 13, 2015  
Page 1 of 21  
ISL85418  
Table of Contents  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Typical Application Schematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Efficiency Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Soft-Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power-Good . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
PWM Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Light Load Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Protection Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Negative Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Over-Temperature Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Boot Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Application Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Simplifying the Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Operating Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Synchronization Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Inductor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Buck Regulator Output Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Loop Compensation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Layout Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
FN8369 Rev 5.00  
March 13, 2015  
Page 2 of 21  
ISL85418  
Pin Configuration  
ISL85418  
(12 LD 4x3 DFN)  
TOP VIEW  
12  
11  
10  
9
FS  
1
2
3
4
5
6
SS  
SYNC  
BOOT  
VIN  
COMP  
FB  
GND  
VCC  
PG  
EN  
PHASE  
PGND  
8
7
Pin Descriptions  
PIN NUMBER  
SYMBOL  
PIN DESCRIPTION  
1
SS  
The SS pin controls the soft-start ramp time of the output. A single capacitor from the SS pin to ground  
determines the output ramp rate. See “Soft-Start” on page 14 for soft-start details. If the SS pin is tied to  
VCC, an internal soft-start of 2ms will be used.  
2
SYNC  
Synchronization and light load operational mode selection input. Connect to logic high or VCC for PWM  
mode. Connect to logic low or ground for PFM mode. Logic ground enables the IC to automatically choose  
PFM or PWM operation. Connect to an external clock source for synchronization with positive edge trigger.  
Sync source must be higher than the programmed IC frequency. There is an internal 5MΩ pull-down resistor  
to prevent an undefined logic state if SYNC is left floating.  
3
4
BOOT  
VIN  
Floating bootstrap supply pin for the power MOSFET gate driver. The bootstrap capacitor provides the  
necessary charge to turn on the internal N-channel MOSFET. Connect an external 100nF capacitor from this  
pin to PHASE.  
The input supply for the power stage of the regulator and the source for the internal linear bias regulator.  
Place a minimum of 4.7µF ceramic capacitance from VIN to GND and close to the IC for decoupling.  
5
6
7
PHASE  
PGND  
EN  
Switch node output. It connects the switching FETs with the external output inductor.  
Power ground connection. Connect directly to the system GND plane.  
Regulator enable input. The regulator and bias LDO are held off when the pin is pulled to ground. When the  
voltage on this pin rises above 1V, the chip is enabled. Connect this pin to VIN for automatic start-up. Do not  
connect EN pin to VCC since the LDO is controlled by EN voltage.  
8
PG  
Open drain power-good output that is pulled to ground when the output voltage is below regulation limits  
or during the soft-start interval. There is an internal 5MΩ internal pull-up resistor.  
9
VCC  
FB  
Output of the internal 5V linear bias regulator. Decouple to PGND with a 1µF ceramic capacitor at the pin.  
10  
Feedback pin for the regulator. FB is the inverting input to the voltage loop error amplifier. COMP is the  
output of the error amplifier. The output voltage is set by an external resistor divider connected to FB. In  
addition, the PWM regulator’s power-good and UVLO circuits use FB to monitor the regulator output voltage.  
11  
COMP  
COMP is the output of the error amplifier. When it is tied to VCC, internal compensation is used. When only  
an RC network is connected from COMP to GND, external compensation is used. See “Loop Compensation  
Design” on page 17 for more details.  
12  
FS  
Frequency selection pin. Tie to VCC for 500kHz switching frequency. Connect a resistor to GND for  
adjustable frequency from 300kHz to 2MHz.  
EPAD  
GND  
Signal ground connections. Connect to application board GND plane with at least 5 vias. All voltage levels  
are measured with respect to this pin. The EPAD MUST NOT float.  
FN8369 Rev 5.00  
March 13, 2015  
Page 3 of 21  
ISL85418  
Typical Application Schematics  
12  
11  
1
2
SS  
FS  
COMP  
SYNC  
BOOT  
VIN  
R2  
R3  
CFB  
10  
9
3
4
FB  
CBOOT  
100nF  
GND  
VCC  
CVIN  
10µF  
CVCC  
1µF  
5
6
VOUT  
PHASE  
PGND  
PG  
EN  
L1  
22µH  
COUT  
10µF  
FIGURE 3. INTERNAL DEFAULT PARAMETER SELECTION  
12  
1
2
SS  
FS  
RFS  
CSS  
11  
10  
9
COMP  
SYNC  
BOOT  
VIN  
R2  
CFB  
3
4
FB  
CBOOT  
100nF  
GND  
VCC  
R3  
CVIN  
CVCC  
1µF  
10µF  
5
6
VOUT  
PHASE  
PGND  
PG  
EN  
L1  
22µH  
COUT  
10µF  
RCOMP  
CCOMP  
FIGURE 4. USER PROGRAMMABLE PARAMETER SELECTION  
TABLE 1. EXTERNAL COMPONENT SELECTION  
V
L
C
(µF)  
R
R
C
R
(kΩ)  
R
(kΩ)  
C
OUT  
1
OUT  
2
3
FB  
FS  
COMP  
COMP  
(pF)  
(V)  
12  
5
(µH)  
22  
22  
22  
22  
12  
(kΩ)  
90.9  
90.9  
90.9  
90.9  
90.9  
(kΩ)  
4.75  
12.4  
20  
(pF)  
22  
27  
27  
27  
27  
2 x 22  
115  
150  
100  
100  
100  
70  
470  
470  
470  
470  
470  
47 + 22  
47 + 22  
47 + 22  
47 + 22  
DNP (Note 1)  
DNP (Note 1)  
DNP (Note 1)  
DNP (Note 1)  
3.3  
2.5  
1.8  
28.7  
45.5  
NOTE:  
1. Connect FS to V  
CC  
FN8369 Rev 5.00  
March 13, 2015  
Page 4 of 21  
ISL85418  
Functional Block Diagram  
POWER  
GOOD  
LOGIC  
5M  
VCC  
BIAS  
LDO  
EN/SOFT-START  
BOOT  
FB  
FAULT  
LOGIC  
500mV/A  
CURRENT  
SENSE  
600mV VREF  
FS  
OSCILLATOR  
PFM  
GATE  
DRIVE  
AND  
PWM  
PWM  
PWM/PFM  
SELECT LOGIC  
s
Q
Q
PHASE  
FB  
DEADTIME  
R
5M  
CURRENT  
SET  
SYNC  
ZERO CURRENT  
DETECTION  
PGND  
450mV/T SLOPE  
COMPENSATION  
(PWM ONLY)  
gm  
150k  
54pF  
INTERNAL  
COMPENSATION  
PACKAGE  
PADDLE  
INTERNAL = 50µA/V  
EXTERNAL = 230µA/V  
Ordering Information  
PART NUMBER  
PART  
MARKING  
TEMP. RANGE  
(°C)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
(Notes 2, 3, 4)  
ISL85418FRZ  
5418  
-40 to +125  
12 Ld DFN  
L12.4x3  
ISL85418EVAL1Z  
ISL85418DEMO1Z  
NOTES:  
Evaluation Board  
Demonstration Board  
2. Add “-T*” suffix for Tape and Reel. Please refer to TB347 for details on reel specifications.  
3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
4. For Moisture Sensitivity Level (MSL), please see device information page for ISL85418. For more information on MSL please see techbrief TB363.  
FN8369 Rev 5.00  
March 13, 2015  
Page 5 of 21  
ISL85418  
Absolute Maximum Ratings  
Thermal Information  
VIN to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +43V  
PHASE to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VIN + 0.3V (DC)  
PHASE to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2V to 44V (20ns)  
EN to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +43V  
BOOT to PHASE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +5.5V  
COMP, FS, PG, SYNC, SS, VCC to GND . . . . . . . . . . . . . . . . . . -0.3V to +5.9V  
FB to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +2.95V  
ESD Rating  
Thermal Resistance  
DFN Package (Notes 5, 6) . . . . . . . . . . . . . .  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
Operating Junction Temperature Range . . . . . . . . . . . . . .-40°C to +125°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
(°C/W)  
42  
(°C/W)  
4.5  
JA  
JC  
Human Body Model (Tested per JESD22-A114) . . . . . . . . . . . . . . . . . 2kV  
Charged Device Model (Tested per JESD22-C101E). . . . . . . . . . . . .1.5kV  
Latch-up (Tested per JESD-78A; Class 2, Level A) . . . . . . . . . . . . 100mA  
Recommended Operating Conditions  
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 40V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
5. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379 for details.  
6. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications T = -40°C to +125°C, V = 3V to 40V, unless otherwise noted. Typical values are at T = +25°C. Boldface  
A
IN  
A
limits apply across the junction temperature range, -40°C to +125°C  
MIN  
MAX  
PARAMETER  
SUPPLY VOLTAGE  
SYMBOL  
TEST CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNITS  
V
V
V
V
Voltage Range  
V
I
3
40  
V
µA  
µA  
V
IN  
IN  
IN  
CC  
IN  
Quiescent Supply Current  
Shutdown Supply Current  
Voltage  
V
= 0.7V, SYNC = 0V, f  
= V  
SW CC  
80  
2
Q
FB  
EN = 0V, V = 40V (Note 7)  
I
4
SD  
IN  
V
V
= 6V, I  
IN OUT  
= 0 to 10mA  
4.5  
5.1  
5.7  
CC  
POWER-ON RESET  
POR Threshold  
V
Rising edge  
Falling edge  
2.75  
2.6  
2.95  
V
V
CC  
2.35  
OSCILLATOR  
Nominal Switching Frequency  
f
FS pin = V  
CC  
430  
240  
500  
300  
2000  
150  
90  
570  
360  
kHz  
kHz  
kHz  
ns  
SW  
Resistor from FS pin to GND = 340kΩ  
Resistor from FS pin to GND = 32.4kΩ  
Minimum Off-Time  
t
V
= 3V  
OFF  
IN  
(Note 10)  
= 100kΩ  
Minimum On-Time  
t
ns  
ON  
FS Voltage  
V
R
0.39  
300  
100  
0.4  
0.41  
V
FS  
FS  
Synchronization Frequency  
SYNC Pulse Width  
SYNC  
2000  
kHz  
ns  
ERROR AMPLIFIER  
Error Amplifier Transconductance Gain  
gm  
External compensation  
Internal compensation  
165  
230  
50  
295  
µA/V  
µA/V  
nA  
FB Leakage Current  
Current Sense Amplifier Gain  
FB Voltage  
V
= 0.6V  
1
150  
0.54  
FB  
R
0.46  
0.590  
0.590  
0.5  
V/A  
V
T
T
= -40°C to +85°C  
= -40°C to +125°C  
0.599  
0.599  
0.606  
0.607  
A
T
V
A
FN8369 Rev 5.00  
March 13, 2015  
Page 6 of 21  
ISL85418  
Electrical Specifications T = -40°C to +125°C, V = 3V to 40V, unless otherwise noted. Typical values are at T = +25°C. Boldface  
A
IN  
A
limits apply across the junction temperature range, -40°C to +125°C (Continued)  
MIN  
MAX  
PARAMETER  
POWER-GOOD  
SYMBOL  
TEST CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNITS  
Lower PG Threshold - VFB Rising  
Lower PG Threshold - VFB Falling  
Upper PG Threshold - VFB Rising  
Upper PG Threshold - VFB Falling  
PG Propagation Delay  
90  
86  
94  
%
%
%
%
%
V
82.5  
107  
116.5  
112  
10  
120  
Percentage of the soft-start time  
PG Low Voltage  
I
= 3mA, EN = V , V = 0V  
CC FB  
0.05  
0.3  
SINK  
TRACKING AND SOFT-START  
Soft-Start Charging Current  
Internal Soft-Start Ramp Time  
FAULT PROTECTION  
ISS  
4.2  
1.5  
5.5  
2.4  
6.5  
3.4  
µA  
EN/SS = V  
CC  
ms  
Thermal Shutdown Temperature  
T
Rising threshold  
Hysteresis  
150  
20  
°C  
°C  
SD  
T
HYS  
Current Limit Blanking Time  
t
17  
Clock  
OCON  
pulses  
Overcurrent and Auto Restart Period  
Positive Peak Current Limit  
PFM Peak Current Limit  
Zero Cross Threshold  
Negative Current Limit  
POWER MOSFET  
t
8
SS cycle  
OCOFF  
IPLIMIT  
(Note 8)  
(Note 8)  
1
1.2  
0.4  
15  
1.4  
0.5  
A
A
I
0.34  
PK_PFM  
mA  
A
INLIMIT  
-0.67  
-0.6  
-0.53  
High-side  
R
I
I
= 100mA, V = 5V  
CC  
250  
90  
350  
130  
300  
mΩ  
mΩ  
nA  
HDS  
PHASE  
Low-side  
R
= 100mA, V = 5V  
CC  
LDS  
PHASE  
PHASE Leakage Current  
PHASE Rise Time  
EN = PHASE = 0V  
= 40V  
t
V
10  
ns  
RISE  
IN  
EN/SYNC  
Input Threshold  
Falling edge, logic low  
Rising edge, logic high  
EN = 0V/40V  
0.4  
1
V
1.2  
1.4  
0.5  
V
EN Logic Input Leakage Current  
SYNC Logic Input Leakage Current  
-0.5  
µA  
nA  
µA  
SYNC = 0V  
10  
100  
1.55  
SYNC = 5V  
1.0  
NOTES:  
7. FB forced above regulation point (0.6V), no switching, and power MOSFET gate charging current not included.  
8. Established by both current sense amplifier gain test and current sense amplifier output test at I = 0A.  
L
9. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
10. Minimum On-Time required to maintain loop stability.  
FN8369 Rev 5.00  
March 13, 2015  
Page 7 of 21  
ISL85418  
Efficiency Curves  
f
= 500kHz, T = +25°C.  
SW A  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
V
= 24V  
V
= 15V  
V
= 24V  
V
= 15V  
IN  
IN  
IN  
85  
80  
75  
70  
65  
60  
55  
50  
IN  
V
= 33V  
IN  
V
= 33V  
0.2  
IN  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
0.1  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 5. EFFICIENCY vs LOAD, PFM, V  
= 12V  
FIGURE 6. EFFICIENCY vs LOAD, PWM, V  
= 12V  
OUT  
OUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 12V  
V
= 6V  
V
= 12V  
IN  
V
= 6V  
IN  
IN  
IN  
V
= 15V  
V
= 15V  
IN  
IN  
V
= 24V  
IN  
V
= 24V  
IN  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 7. EFFICIENCY vs LOAD, PFM, V  
= 5V, L = 30µH  
1
FIGURE 8. EFFICIENCY vs LOAD, PWM, V  
= 5V, L = 30µH  
1
OUT  
OUT  
100  
100  
V = 12V  
IN  
V
= 12V  
V
= 5V  
V
= 5V  
IN  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
IN  
IN  
V
= 33V  
V
= 33V  
IN  
IN  
V
= 15V  
V
= 15V  
IN  
IN  
V
= 24V  
V
= 24V  
IN  
IN  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 10. EFFICIENCY vs LOAD, PWM, V  
= 3.3V  
FIGURE 9. EFFICIENCY vs LOAD, PFM, V  
= 3.3V  
OUT  
OUT  
FN8369 Rev 5.00  
March 13, 2015  
Page 8 of 21  
ISL85418  
Efficiency Curves  
f
= 500kHz, T = +25°C. (Continued)  
SW A  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
V
= 12V  
IN  
V
= 12V  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
IN  
V
= 5V  
V
= 5V  
IN  
IN  
V
= 15V  
V
= 15V  
IN  
IN  
V
= 33V  
IN  
V
= 33V  
IN  
V
= 24V  
IN  
V
= 24V  
IN  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 11. EFFICIENCY vs LOAD, PFM, V  
= 1.8V  
FIGURE 12. EFFICIENCY vs LOAD, PWM, V  
= 1.8V  
OUT  
OUT  
5.004  
5.030  
5.003  
5.002  
5.001  
5.000  
4.999  
4.998  
4.997  
4.996  
4.995  
4.994  
4.993  
5.025  
5.020  
5.015  
5.010  
5.005  
5.000  
4.995  
4.990  
V
= 6V  
V
= 12V  
IN  
IN  
V
= 6V  
IN  
V
= 12V  
IN  
V
= 24V  
0.2  
IN  
V
= 15V  
0.6  
IN  
V
= 24V  
0.1  
IN  
V
= 15V  
0.6  
IN  
0.5  
OUTPUT LOAD (A)  
0
0.1  
0.3  
0.4  
0.5  
0.7  
0.8  
0
0.2  
0.3  
0.4  
0.7  
0.8  
OUTPUT LOAD (A)  
FIGURE 13. V  
REGULATION vs LOAD, PWM, V = 5V, L = 30µH  
OUT 1  
FIGURE 14. V  
REGULATION vs LOAD, PFM, V = 5V, L = 30µH  
OUT 1  
OUT  
OUT  
3.326  
3.325  
3.324  
3.323  
3.322  
3.321  
3.320  
3.319  
3.318  
3.317  
3.345  
3.340  
3.335  
3.330  
3.325  
3.320  
V
= 5V  
V
= 5V  
IN  
IN  
V
= 12V  
IN  
V
= 12V  
IN  
V
= 15V  
IN  
V
= 15V  
IN  
V
= 24V  
IN  
V
= 33V  
IN  
V
= 33V  
0.1  
IN  
V
= 24V  
IN  
0.3  
OUTPUT LOAD (A)  
3.315  
3.316  
0
0
0.2  
0.4  
0.5  
0.6  
0.7  
0.8  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
OUTPUT LOAD (A)  
FIGURE 15. V  
OUT  
REGULATION vs LOAD, PWM, V  
= 3.3V  
OUT  
FIGURE 16. V  
REGULATION vs LOAD, PFM, V  
= 3.3V  
OUT  
OUT  
FN8369 Rev 5.00  
March 13, 2015  
Page 9 of 21  
ISL85418  
Efficiency Curves  
f
= 500kHz, T = +25°C. (Continued)  
SW A  
1.810  
1.818  
1.816  
1.814  
1.812  
1.810  
1.808  
1.806  
1.804  
1.802  
1.800  
V
= 5V  
IN  
1.809  
1.808  
1.807  
1.806  
1.805  
1.804  
1.803  
1.802  
1.801  
1.800  
V
= 12V  
IN  
V
= 5V  
V
= 15V  
IN  
IN  
V
= 12V  
IN  
V
= 15V  
IN  
V
= 24V  
IN  
V
= 33V  
IN  
V
= 24V  
IN  
V
= 33V  
IN  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 17. V  
REGULATION vs LOAD, PWM, V  
= 1.8V  
FIGURE 18. V  
REGULATION vs LOAD, PFM, V  
= 1.8V  
OUT  
OUT  
OUT  
OUT  
Measurements  
f
= 500kHz, V = 24V, V = 3.3V, T = +25°C  
IN OUT A  
SW  
LX 20V/DIV  
LX 20V/DIV  
V
2V/DIV  
OUT  
V
2V/DIV  
OUT  
EN 20V/DIV  
PG 2V/DIV  
EN 20V/DIV  
PG 2V/DIV  
5ms/DIV  
5ms/DIV  
FIGURE 19. START-UP AT NO LOAD, PFM  
FIGURE 20. START-UP AT NO LOAD, PWM  
LX 20V/DIV  
LX 20V/DIV  
V
2V/DIV  
V
2V/DIV  
OUT  
OUT  
EN 20V/DIV  
PG 2V/DIV  
EN 20V/DIV  
PG 2V/DIV  
100ms/DIV  
100ms/DIV  
FIGURE 22. SHUTDOWN AT NO LOAD, PWM  
FIGURE 21. SHUTDOWN AT NO LOAD, PFM  
FN8369 Rev 5.00  
March 13, 2015  
Page 10 of 21  
ISL85418  
Measurements  
f
= 500kHz, V = 24V, V = 3.3V, T = +25°C (Continued)  
IN OUT A  
SW  
LX 20V/DIV  
LX 20V/DIV  
V
2V/DIV  
OUT  
V
2V/DIV  
OUT  
I
500mA/DIV  
PG 2V/DIV  
L
I
500mA/DIV  
L
PG 2V/DIV  
5ms/DIV  
200µs/DIV  
FIGURE 23. START-UP AT 800mA, PWM  
FIGURE 24. SHUTDOWN AT 800mA, PWM  
LX 20V/DIV  
LX 20V/DIV  
V
2V/DIV  
OUT  
V
2V/DIV  
OUT  
I
500mA/DIV  
PG 2V/DIV  
L
I
500mA/DIV  
PG 2V/DIV  
L
200µs/DIV  
5ms/DIV  
FIGURE 26. SHUTDOWN AT 800mA, PFM  
FIGURE 25. START-UP AT 800mA, PFM  
LX 5V/DIV  
LX 5V/DIV  
50ns/DIV  
50ns/DIV  
FIGURE 27. JITTER AT NO LOAD, PWM  
FIGURE 28. JITTER AT 800mA LOAD, PWM  
FN8369 Rev 5.00  
March 13, 2015  
Page 11 of 21  
ISL85418  
Measurements  
f
= 500kHz, V = 24V, V = 3.3V, T = +25°C (Continued)  
IN OUT A  
SW  
LX 20V/DIV  
LX 20V/DIV  
V
20mV/DIV  
OUT  
V
20mV/DIV  
20mA/DIV  
OUT  
I
20mA/DIV  
L
I
L
1µs/DIV  
10ms/DIV  
FIGURE 30. STEADY STATE AT NO LOAD, PWM  
FIGURE 29. STEADY STATE AT NO LOAD, PFM  
LX 20V/DIV  
LX 20V/DIV  
V
10mV/DIV  
OUT  
V
50mV/DIV  
OUT  
I
500mA/DIV  
L
I
200mA/DIV  
L
1µs/DIV  
10µs/DIV  
FIGURE 31. STEADY STATE AT 800mA, PWM  
FIGURE 32. LIGHT LOAD OPERATION AT 20mA, PFM  
LX 20V/DIV  
V
100mV/DIV  
OUT  
V
10mV/DIV  
OUT  
I
200mA/DIV  
L
I
1A/DIV  
L
1µs/DIV  
200µs/DIV  
FIGURE 33. LIGHT LOAD OPERATION AT 20mA, PWM  
FIGURE 34. LOAD TRANSIENT, PFM  
FN8369 Rev 5.00  
March 13, 2015  
Page 12 of 21  
ISL85418  
Measurements  
f
= 500kHz, V = 24V, V = 3.3V, T = +25°C (Continued)  
IN OUT A  
SW  
LX 20V/DIV  
V
100mV/DIV  
OUT  
V
20mV/DIV  
OUT  
I
1A/DIV  
L
I
1A/DIV  
L
10µs/DIV  
200µs/DIV  
FIGURE 35. LOAD TRANSIENT, PWM  
FIGURE 36. PFM TO PWM TRANSITION  
LX 20V/DIV  
LX 20V/DIV  
V
2V/DIV  
OUT  
V
2V/DIV  
OUT  
I
1A/DIV  
L
I
1A/DIV  
L
PG 2V/DIV  
PG 2V/DIV  
10ms/DIV  
50µs/DIV  
FIGURE 38. OVERCURRENT PROTECTION HICCUP, PWM  
FIGURE 37. OVERCURRENT PROTECTION, PWM  
LX 20V/DIV  
LX 20V/DIV  
V
5V/DIV  
OUT  
SYNC 2V/DIV  
I
1A/DIV  
L
PG 2V/DIV  
200ns/DIV  
20µs/DIV  
FIGURE 39. SYNC AT 800mA LOAD, PWM  
FIGURE 40. NEGATIVE CURRENT LIMIT, PWM  
FN8369 Rev 5.00  
March 13, 2015  
Page 13 of 21  
ISL85418  
Measurements  
f
= 500kHz, V = 24V, V  
= 3.3V, T = +25°C (Continued)  
OUT A  
SW  
IN  
LX 20V/DIV  
V
5V/DIV  
OUT  
V
2V/DIV  
OUT  
I
500mA/DIV  
L
PG 2V/DIV  
PG 2V/DIV  
200µs/DIV  
500µs/DIV  
FIGURE 42. OVER-TEMPERATURE PROTECTION, PWM  
FIGURE 41. NEGATIVE CURRENT LIMIT RECOVERY, PWM  
Power-Good  
Detailed Description  
PG is the open-drain output of a window comparator that  
continuously monitors the buck regulator output voltage via the  
FB pin. PG is actively held low when EN is low and during the  
buck regulator soft-start period. After the soft-start period  
completes, PG becomes high impedance provided the FB pin is  
within the range specified in the “Electrical Specifications” on  
page 3. Should FB exit the specified window, PG will be pulled  
low until FB returns. Over-temperature faults also force PG low  
until the fault condition is cleared by an attempt to soft-start.  
There is an internal 5MΩ internal pull-up resistor.  
The ISL85418 combines a synchronous buck PWM controller  
with integrated power switches. The buck controller drives  
internal high-side and low-side N-channel MOSFETs to deliver  
load current up to 800mA. The buck regulator can operate from  
an unregulated DC source, such as a battery, with a voltage  
ranging from +3V to +40V. An internal LDO provides bias to the  
low voltage portions of the IC.  
Peak current mode control is utilized to simplify feedback loop  
compensation and reject input voltage variation. User selectable  
internal feedback loop compensation further simplifies design.  
The ISL85418 switches at a default 500kHz.  
PWM Control Scheme  
The ISL85418 employs peak current-mode pulse-width  
The buck regulator is equipped with an internal current sensing  
circuit and the peak current limit threshold is typically set at  
1.2A.  
modulation (PWM) control for fast transient response and  
pulse-by-pulse current limiting, as shown in the “Functional Block  
Diagram” on page 5. The current loop consists of the current  
sensing circuit, slope compensation ramp, PWM comparator,  
oscillator and latch. Current sense trans-resistance is typically  
500mV/A and slope compensation rate, Se, is typically 450mV/T  
where T is the switching cycle period. The control reference for  
Power-On Reset  
The ISL85418 automatically initializes upon receipt of the input  
power supply and continually monitors the EN pin state. If EN is  
held below its logic rising threshold the IC is held in shutdown  
and consumes typically 2µA from the VIN supply. If EN exceeds  
its logic rising threshold, the regulator will enable the bias LDO  
and begin to monitor the VCC pin voltage. When the VCC pin  
voltage clears its rising POR threshold, the controller will initialize  
the switching regulator circuits. If VCC never clears the rising POR  
threshold, the controller will not allow the switching regulator to  
operate. If VCC falls below its falling POR threshold while the  
switching regulator is operating, the switching regulator will be  
shut down until VCC returns.  
the current loop comes from the error amplifier’s output (V  
).  
COMP  
A PWM cycle begins when a clock pulse sets the PWM latch and  
the upper FET is turned on. Current begins to ramp up in the upper  
FET and inductor. This current is sensed (V ), converted to a  
CSA  
voltage and summed with the slope compensation signal. This  
combined signal is compared to V and when the signal is  
COMP  
, the latch is reset. Upon latch reset the upper FET is  
equal to V  
COMP  
turned off and the lower FET turned on allowing current to ramp  
down in the inductor. The lower FET will remain on until the clock  
initiates another PWM cycle. Figure 44 shows the typical operating  
waveforms during the PWM operation. The dotted lines illustrate  
the sum of the current sense and slope compensation signal.  
Soft-Start  
To avoid large in-rush current, V  
is slowly increased at start-up  
OUT  
Output voltage is regulated as the error amplifier varies V  
thus output inductor current. The error amplifier is a  
and  
to its final regulated value. Soft-start time is determined by the  
SS pin connection. If SS is pulled to VCC, an internal 2ms timer is  
selected for soft-start. For other soft-start times, simply connect  
a capacitor from SS to GND. In this case, a 5.5µA current pulls up  
the SS voltage and the FB pin will follow this ramp until it reaches  
the 600mV reference level. Soft-start time for this case is  
described by Equation 1:  
COMP  
trans-conductance type and its output (COMP) is terminated with a  
series RC network to GND. This termination is internal (150k/54pF)  
if the COMP pin is tied to VCC. Additionally, the trans-conductance  
for COMP = V is 50µA/V vs 230µA/V for external RC connection.  
CC  
Its non-inverting input is internally connected to a 600mV reference  
voltage and its inverting input is connected to the output voltage via  
the FB pin and its associated divider network.  
(EQ. 1)  
Timems= CnF0.109  
FN8369 Rev 5.00  
March 13, 2015  
Page 14 of 21  
ISL85418  
PWM  
DCM  
PULSE SKIP  
DCM  
PWM  
CLOCK  
8 CYCLES  
I
L
LOAD CURRENT  
0
V
OUT  
FIGURE 43. DCM MODE OPERATION WAVEFORMS  
Output Voltage Selection  
V
COMP  
The regulator output voltage is easily programmed using an  
external resistor divider to scale V relative to the internal  
OUT  
V
CSA  
reference voltage. The scaled voltage is applied to the inverting  
input of the error amplifier; refer to Figure 43.  
DUTY  
CYCLE  
The output voltage programming resistor, R , depends on the  
3
value chosen for the feedback resistor, R , and the desired  
2
I
output voltage, V , of the regulator. Equation 3 describes the  
OUT  
L
relationship between V  
and resistor values.  
OUT  
R x0.6V  
2
V
OUT  
----------------------------------  
=
(EQ. 3)  
R
3
V
0.6V  
OUT  
FIGURE 44. PWM OPERATION WAVEFORMS  
If the desired output voltage is 0.6V, then R is left unpopulated  
3
and R is 0Ω.  
2
Light Load Operation  
V
At light loads, converter efficiency may be improved by enabling  
variable frequency operation (PFM). Connecting the SYNC pin to  
GND will allow the controller to choose such operation  
automatically when the load current is low. Figure 43 shows the  
DCM operation. The IC enters the DCM mode of operation when 8  
consecutive cycles of inductor current crossing zero are detected.  
This corresponds to a load current equal to 1/2 the peak-to-peak  
inductor ripple current and set by Equation 2:  
OUT  
R
R
2
FB  
-
+
EA  
3
0.6V  
REFERENCE  
V
1 D  
(EQ. 2)  
OUT  
----------------------------------  
=
I
OUT  
2Lf  
SW  
FIGURE 45. EXTERNAL RESISTOR DIVIDER  
Where D = duty cycle, f  
SW  
= switching frequency, L = inductor  
= output voltage.  
Protection Features  
value, I  
= output loading current, V  
OUT  
OUT  
The ISL85418 is protected from overcurrent, negative  
While operating in PFM mode, the regulator controls the output  
voltage with a simple comparator and pulsed FET current. A  
comparator signals the point at which FB is equal to the 600mV  
reference at which time the regulator begins providing pulses of  
current until FB is moved above the 600mV reference by 1%. The  
current pulses are approximately 300mA and are issued at a  
frequency equal to the converters programmed PWM operating  
frequency.  
overcurrent and over-temperature. The protection circuits  
operate automatically.  
Overcurrent Protection  
During PWM on-time, current through the upper FET is monitored  
and compared to a nominal 1.2A peak overcurrent limit. In the  
event that current reaches the limit, the upper FET will be turned  
off until the next switching cycle. In this way, FET peak current is  
always well limited.  
Due to the pulsed current nature of PFM mode, the converter can  
supply limited current to the load. Should load current rise  
beyond the limit, V  
signals an FB voltage 1% lower than the 600mV reference and  
forces the converter to return to PWM operation.  
will begin to decline. A second comparator  
If the overcurrent condition persists for 17 sequential clock  
cycles, the regulator will begin its hiccup sequence. In this case,  
both FETs will be turned off and PG will be pulled low. This  
OUT  
FN8369 Rev 5.00  
March 13, 2015  
Page 15 of 21  
ISL85418  
condition will be maintained for 8 soft-start periods after, which  
the regulator will attempt a normal soft-start.  
Application Guidelines  
Simplifying the Design  
While the ISL85418 offers user programmed options for most  
parameters, the easiest implementation with fewest  
Should the output fault persist, the regulator will repeat the  
hiccup sequence indefinitely. There is no danger even if the  
output is shorted during soft-start.  
components involves selecting internal settings for SS, COMP  
and FS. Table 1 on page 4 provides component value selections  
for a variety of output voltages and will allow the designer to  
implement solutions with a minimum of effort.  
ths  
If V  
OUT  
is shorted very quickly, FB may collapse below 5/8 of  
its target value before 17 cycles of overcurrent are detected. The  
ISL85418 recognizes this condition and will begin to lower its  
switching frequency proportional to the FB pin voltage. This  
insures that under no circumstance (even with V  
the inductor current run away.  
near 0V) will  
OUT  
Operating Frequency  
The ISL85418 operates at a default switching frequency of  
Negative Current Limit  
Should an external source somehow drive current into V , the  
controller will attempt to regulate V  
OUT  
500kHz if the FS pin is tied to V . Tie a resistor from the FS pin  
to GND to program the switching frequency from 300kHz to  
2MHz, as shown in Equation 4.  
CC  
OUT  
by reversing its inductor  
current to absorb the externally sourced current. In the event that  
the external source is low impedance, current may be reversed to  
unacceptable levels and the controller will initiate its negative  
current limit protection. Similar to normal overcurrent, the  
negative current protection is realized by monitoring the current  
through the lower FET. When the valley point of the inductor  
current reaches negative current limit, the lower FET is turned off  
and the upper FET is forced on until current reaches the POSITIVE  
current limit or an internal clock signal is issued. At this point, the  
lower FET is allowed to operate. Should the current again be pulled  
to the negative limit on the next cycle, the upper FET will again be  
R
k = 108.75k t 0.2s  1s  
(EQ. 4)  
FS  
Where:  
t is the switching period in µs.  
400  
300  
200  
th  
forced on and current will be forced to 1/6 of the positive current  
limit. At this point the controller will turn off both FET’s and wait for  
COMP to indicate return to normal operation. During this time, the  
controller will apply a 100Ω load from PHASE to PGND and  
attempt to discharge the output. Negative current limit is a  
pulse-by-pulse style operation and recovery is automatic.  
100  
0
Over-Temperature Protection  
Over-temperature protection limits maximum junction  
temperature in the ISL85418. When junction temperature (T )  
exceeds +150°C, both FETs are turned off and the controller  
waits for temperature to decrease by approximately 20°C.  
During this time PG is pulled low. When temperature is within an  
acceptable range, the controller will initiate a normal soft-start  
sequence. For continuous operation, the +125°C junction  
temperature rating should not be exceeded.  
J
250  
500  
750  
1000  
1250  
(kHz)  
1500  
1750  
2000  
f
SW  
FIGURE 46. R SELECTION vs f  
FS  
SW  
Synchronization Control  
The frequency of operation can be synchronized up to 2MHz by  
an external signal applied to the SYNC pin. The rising edge on the  
SYNC triggers the rising edge of PHASE. To properly sync, the  
external source must be at least 10% greater than the  
programmed free running IC frequency.  
Boot Undervoltage Protection  
If the boot capacitor voltage falls below 1.8V, the boot  
undervoltage protection circuit will turn on the lower FET for  
400ns to recharge the capacitor. This operation may arise during  
long periods of no switching such as PFM no load situations. In  
Output Inductor Selection  
The inductor value determines the converter’s ripple current.  
Choosing an inductor current requires a somewhat arbitrary  
choice of ripple current, I. A reasonable starting point is 30% of  
total load current. The inductor value can then be calculated  
using Equation 5:  
PWM operation near dropout (V near V  
), the regulator may  
IN OUT  
hold the upper FET on for multiple clock cycles. To prevent the  
boot capacitor from discharging, the lower FET is forced on for  
approximately 200ns every 10 clock cycles.  
V
- V  
V
OUT  
IN  
OUT  
x I  
(EQ. 5)  
L=  
x
f
V
IN  
SW  
FN8369 Rev 5.00  
March 13, 2015  
Page 16 of 21  
ISL85418  
Increasing the value of inductance reduces the ripple current and  
thus, the ripple voltage. However, the larger inductance value  
may reduce the converter’s response time to a load transient.  
The inductor current rating should be such that it will not saturate  
in overcurrent conditions. For typical ISL85418 applications,  
inductor values generally lies in the 10µH to 47µH range. In  
^
^
^
L
R
LP  
i
i
P
L
v
in  
o
^
V d  
in  
^
^
1:D  
I d  
V
L
in  
Rc  
Co  
+
R
T
Ro  
general, higher V  
will mean higher inductance.  
OUT  
Buck Regulator Output Capacitor Selection  
T(S)  
i
^
d
K
An output capacitor is required to filter the inductor current. The  
current mode control loop allows the use of low ESR ceramic  
capacitors and thus supports very small circuit implementations  
on the PC board. Electrolytic and polymer capacitors may also be  
used.  
Fm  
T (S)  
+
v
He(S)  
^
v
comp  
-Av(S)  
While ceramic capacitors offer excellent overall performance  
and reliability, the actual in-circuit capacitance must be  
considered. Ceramic capacitors are rated using large  
peak-to-peak voltage swings and with no DC bias. In the DC/DC  
converter application, these conditions do not reflect reality. As a  
result, the actual capacitance may be considerably lower than  
the advertised value. Consult the manufacturers datasheet to  
determine the actual in-application capacitance. Most  
manufacturers publish capacitance vs DC bias so that this effect  
can be easily accommodated. The effects of AC voltage are not  
frequently published, but an assumption of ~20% further  
reduction will generally suffice. The result of these  
considerations may mean an effective capacitance 50% lower  
than nominal and this value should be used in all design  
calculations. Nonetheless, ceramic capacitors are a very good  
choice in many applications due to their reliability and extremely  
low ESR.  
FIGURE 47. SMALL SIGNAL MODEL OF SYNCHRONOUS BUCK  
REGULATOR  
Vo  
R
C
3
2
V
FB  
-
V
COMP  
R
3
GM  
V
REF  
+
R
6
C
7
C
6
The following equations allow calculation of the required  
capacitance to meet a desired ripple voltage level. Additional  
capacitance may be used.  
FIGURE 48. TYPE II COMPENSATOR  
Figure 48 shows the type II compensator and its transfer function  
is expressed as shown in Equation 8:  
For the ceramic capacitors (low ESR):  
I  
(EQ. 6)  
is the  
------------------------------------  
V
=
OUTripple  
S
S
8 f  
C
   
   
------------  
------------  
SW  
OUT  
1 +  
1 +  
ˆ
GM R  
v
COMP  
3
cz1  
cz2  
------------------- -------------------------------------------------------- --------------------------------------------------------------  
A S=  
=
v
ˆ
C + C   R + R   
S
S
v
   
6
7
2
3
FB  
Where I is the inductor’s peak-to-peak ripple current, f  
SW  
------------  
------------  
S 1 +  
1 +  
   
cp1  
cp2  
switching frequency and C  
is the output capacitor.  
OUT  
(EQ. 8)  
If using electrolytic capacitors then:  
Where,  
(EQ. 7)  
V
= I*ESR  
OUTripple  
C
+ C  
R + R  
2 3  
C R R  
3 2 3  
1
1
6
7
--------------  
--------------  
----------------------  
----------------------  
=
=
,
=
   
=
   
cp2  
cz1  
cz2  
cp1  
R C  
R C  
R C C  
6
6
2
3
6
6
7
Loop Compensation Design  
When COMP is not connected to VCC, the COMP pin is active for  
external loop compensation. The ISL85418 uses constant  
frequency peak current mode control architecture to achieve a  
fast loop transient response. An accurate current sensing pilot  
device in parallel with the upper MOSFET is used for peak current  
control signal and overcurrent protection. The inductor is not  
considered as a state variable since its peak current is constant,  
and the system becomes a single order system. It is much easier  
to design a type II compensator to stabilize the loop than to  
implement voltage mode control. Peak current mode control has  
an inherent input voltage feed-forward function to achieve good  
line regulation. Figure 47 shows the small signal model of the  
synchronous buck regulator.  
Compensator design goal:  
High DC gain  
Choose loop bandwidth f less than 100kHz  
c
Gain margin: >10dB  
Phase margin: >40°  
The compensator design procedure is as follows:  
The loop gain at crossover frequency of f has a unity gain.  
Therefore, the compensator resistance R is determined by  
Equation 9.  
c
6
FN8369 Rev 5.00  
March 13, 2015  
Page 17 of 21  
ISL85418  
60  
45  
30  
15  
0
2f V C R  
o o t  
3
c
(EQ. 9)  
---------------------------------  
= 22.7510 f V C  
c o o  
R
=
6
GM V  
FB  
Where GM is the trans-conductance, g , of the voltage error  
m
amplifier in each phase. Compensator capacitor C is then given  
by Equation 10.  
6
R C  
V C  
o o  
I R  
o 6  
R C  
o
o
1
c
o
(EQ. 10)  
-------------- --------------  
,C = max(--------------,---------------)  
7
C
=
=
6
R
R
f R  
6
6
s 6  
Put one compensator pole at zero frequency to achieve high DC  
gain, and put another compensator pole at either ESR zero  
frequency or half switching frequency, whichever is lower in  
Equation 10. An optional zero can boost the phase margin. CZ2  
-15  
-30  
100  
1k  
10k  
100k  
1M  
is a zero due to R and C   
2
3
FREQUENCY (Hz)  
Put compensator zero 2 to 5 times f  
c
180  
150  
120  
90  
1
(EQ. 11)  
---------------  
C =  
3
f R  
c
2
Example: V = 12V, V = 5V, I = 800mA, f  
IN  
R = 90.9kΩ, C = 22µF/5mΩ, L = 39µH, f = 50kHz, then  
compensator resistance R :  
= 500kHz,  
O
O
SW  
c
2
o
6
3
(EQ. 12)  
R
= 22.7510 50kHz 5V 22F = 125.12k  
6
60  
It is acceptable to use 124kΩas theclosest standard value for  
30  
R .  
6
0
100  
5V 22F  
800mA 124k  
(EQ. 13)  
------------------------------------------  
= 1.1nF  
C
6
=
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 49. SIMULATED LOOP GAIN  
5m  22F  
124k  
1
C = max(--------------------------------,---------------------------------------------------- )= (0.88pF,5.1pF)  
7
  500kHz 124k  
(EQ. 14)  
It is also acceptable to use the closest standard values for C and  
6
C . There is approximately 3pF parasitic capacitance from V  
to  
7
COMP  
GND; Therefore, C is optional. Use C = 1500pF and C = OPEN.  
7
6
7
1
(EQ. 15)  
--------------------------------------------------  
C =  
= 70pF  
3
  50kHz 90.9k  
Use C = 68pF. Note that C may increase the loop bandwidth  
3
3
from previous estimated value. Figure 49 shows the simulated  
voltage loop gain. It is shown that it has a 75kHz loop bandwidth  
with a 61° phase margin and 6dB gain margin. It may be more  
desirable to achieve an increased gain margin. This can be  
accomplished by lowering R by 20% to 30%. In practice,  
6
ceramic capacitors have significant derating on voltage and  
temperature, depending on the type. Please refer to the ceramic  
capacitor datasheet for more details.  
FN8369 Rev 5.00  
March 13, 2015  
Page 18 of 21  
ISL85418  
Layout Considerations  
Proper layout of the power converter will minimize EMI and noise  
and insure first pass success of the design. PCB layouts are  
provided in multiple formats on the Intersil web site. In addition,  
Figure 50 will make clear the important points in PCB layout. In  
reality, PCB layout of the ISL85418 is quite simple.  
A multi-layer printed circuit board with GND plane is  
recommended. Figure 50 shows the connections of the critical  
components in the converter. Note that capacitors C and C  
IN  
OUT  
could each represent multiple physical capacitors. The most  
critical connections are to tie the PGND pin to the package GND  
pad and then use vias to directly connect the GND pad to the  
system GND plane. This connection of the GND pad to system  
plane insures a low impedance path for all return current, as well  
as an excellent thermal path to dissipate heat. With this  
connection made, place the high frequency MLCC input capacitor  
near the VIN pin and use vias directly at the capacitor pad to tie  
the capacitor to the system GND plane.  
The boot capacitor is easily placed on the PCB side opposite the  
controller IC and 2 vias directly connect the capacitor to BOOT  
and PHASE.  
Place a 1µF MLCC near the VCC pin and directly connect its  
return with a via to the system GND plane.  
Place the feedback divider close to the FB pin and do not route  
any feedback components near PHASE or BOOT. If external  
components are used for SS, COMP or FS the same advice  
applies.  
CSS  
RFS  
CVIN  
L
L1  
C
COUT  
0.47”  
FIGURE 50. PRINTED CIRCUIT BOARD POWER PLANES AND ISLANDS  
FN8369 Rev 5.00  
March 13, 2015  
Page 19 of 21  
ISL85418  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
FN8369.5  
CHANGE  
March 13, 2015  
Changed all occurrences of 36V to 40V throughout datasheet.  
Changed in “Absolute Maximum Ratings” on page 6: VIN to GND and EN to GND "42V" to "43V". Changed  
Phase to GND "43V" to "44V  
August 29, 2014  
FN8369.4  
Changed title of Figure 13 on page 9 from “Efficiency vs Load, PWM, V  
OUT  
= 5V, L = 30µH” to “V  
OUT  
1
Regulation vs Load, PWM, V  
= 5V, L = 30µH”.  
OUT  
1
Replaced Figure 46 on page 16.  
“Power-On Reset” on page 14 changed 10µA to 2µA  
February 25, 2014  
January 17, 2014  
FN8369.3  
FN8369.2  
“Functional Block Diagram” on page 5 changed Internal = 50µs, External = 230µs  
to Internal = 50µA/V, External = 230µA/V and 600mA/Amp to 500mV/A  
“Detailed Description” on page 14 changed 0.9A to 1.2A  
“Power-On Reset” on page 14 changed 1µA to 10µA  
“PWM Control Scheme” on page 14 changed in last paragraph 50µs vs 220µs to 50µA/V vs 230µA/V and  
600mA/Amp to 500mV/A in 1st paragraph  
“Overcurrent Protection” on page 15 changed 0.9A to 1.2A  
November 22, 2013  
FN8369.1  
Initial Release.  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support  
© Copyright Intersil Americas LLC 2013-2015. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8369 Rev 5.00  
March 13, 2015  
Page 20 of 21  
ISL85418  
Package Outline Drawing  
L12.4x3  
12 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 2, 7/10  
3.30 +0.10/-0.15  
2X 2.50  
4.00  
A
6
10X 0.50  
PIN 1  
PIN #1 INDEX AREA  
6
INDEX AREA  
12 X 0.40 ±0.10  
1.70 +0.10/-0.15  
B
1
6
3.00  
(4X)  
0.15  
12  
7
0.10M C A B  
TOP VIEW  
4 12 x 0.23 +0.07/-0.05  
BOTTOM VIEW  
SEE DETAIL "X"  
( 3.30)  
0.10 C  
C
6
1
1.00 MAX  
SEATING PLANE  
0.08  
C
SIDE VIEW  
2.80  
( 1.70 )  
5
0.2 REF  
C
12 X 0.60  
0 . 00 MIN.  
0 . 05 MAX.  
7
12  
( 12X 0.23 )  
( 10X 0 . 5 )  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
7. Compliant to JEDEC MO-229 V4030D-4 issue E.  
FN8369 Rev 5.00  
March 13, 2015  
Page 21 of 21  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY