ISL8840AMBEPZ [RENESAS]

SWITCHING CONTROLLER, 2000kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012AA, SOIC-8;
ISL8840AMBEPZ
型号: ISL8840AMBEPZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

SWITCHING CONTROLLER, 2000kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012AA, SOIC-8

开关 光电二极管
文件: 总10页 (文件大小:192K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL8840AMBEPZ, ISL8841AMBEPZ, ISL8842AMBEPZ,  
ISL8843AMBEPZ, ISL8844AMBEPZ, ISL8845AMBEPZ  
®
Data Sheet  
September 29, 2008  
FN6792.0  
High Performance Industry Standard  
Single-Ended Current Mode PWM  
Controller  
Features  
• Full Mil-Temp Electrical Performance from -55°C to +125°C  
• Controlled Baseline with One Wafer Fabrication Site and  
One Assembly/Test Site  
The ISL884xAMBEPZ is a high performance drop-in  
replacement for the popular 28C4x and 18C4x PWM  
controllers suitable for a wide range of power conversion  
applications including boost, flyback, and isolated output  
configurations. Its fast signal propagation and output  
switching characteristics make this an ideal product for  
existing and new designs.  
• Full Homogenous Lot Processing in Wafer Fab  
• No Combination of Wafer Fabrication Lots in Assembly  
• Full Traceability Through Assembly and Test by  
Date/Trace Code Assignment  
• Enhanced Process Change Notification  
• Enhanced Obsolescence Management  
• Eliminates Need for Up-Screening a COTS Component  
• 1A MOSFET Gate Driver  
Features include 30V operation, low operating current, 90µA  
start-up current, adjustable operating frequency to 2MHz,  
and high peak current drive capability with 20ns rise and fall  
times.  
RISING UVLO  
(V)  
MAX. DUTY CYCLE  
(%)  
• 90µA Start-up Current, 125µA Maximum  
• 35ns Propagation Delay Current Sense to Output  
• Fast Transient Response with Peak Current Mode Control  
• 30V Operation  
PART NUMBER  
ISL8840AMBEPZ  
ISL8841AMBEPZ  
ISL8842AMBEPZ  
ISL8843AMBEPZ  
ISL8844AMBEPZ  
ISL8845AMBEPZ  
7.0  
7.0  
100  
50  
14.4  
8.4  
100  
100  
50  
• Adjustable Switching Frequency to 2MHz  
• 20ns Rise and Fall Times with 1nF Output Load  
14.4  
8.4  
50  
• Trimmed Timing Capacitor Discharge Current for Accurate  
Deadtime/Maximum Duty Cycle Control  
• 1.5MHz Bandwidth Error Amplifier  
Pinout  
• Tight Tolerance Voltage Reference Over Line, Load and  
Temperature  
ISL884XAMBEPZ  
(8 LD SOIC)  
TOP VIEW  
• ±3% Current Limit Threshold  
• Pb-Free (RoHS Compliant)  
COMP  
1
2
3
4
8
VREF  
VDD  
OUT  
GND  
FB  
7
Applications  
CS  
6
5
• Isolated Flyback and Forward Regulators  
• Boost Regulators  
RTCT  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2008. All Rights Reserved.  
All other trademarks mentioned are the property of their respective owners.  
ISL8840AMBEPZ, ISL8841AMBEPZ, ISL8842AMBEPZ, ISL8843AMBEPZ, ISL8844AMBEPZ, ISL8845AMBEPZ  
Ordering Information  
PART NUMBER  
(Notes 1, 2)  
PART  
MARKING  
TEMP RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
ISL8840AMBEPZ  
8840A MBEPZ  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
8 Ld SOIC  
M8.15  
ISL8841AMBEPZ  
ISL8842AMBEPZ  
ISL8843AMBEPZ  
ISL8844AMBEPZ  
ISL8845AMBEPZ  
NOTES:  
8841A MBEPZ  
8842A MBEPZ  
8843A MBEPZ  
8844A MBEPZ  
8845A MBEPZ  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
1. Add “-TK” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-  
020.  
FN6792.0  
September 29, 2008  
2
 
Functional Block Diagram  
V
VREF  
V
DD  
REF  
5.00V  
START/STOP  
UV COMPARATOR  
ENABLE  
V
OK  
DD  
+
-
VREF FAULT  
VREF  
-
+
+
-
UV COMPARATOR  
GND  
A
4.65V 4.80V  
2.5V  
A = 0.5  
PWM  
COMPARATOR  
CS  
+
-
100mV  
ONLY  
ISL8841AMBEPZ/  
ISL8844AMBEPZ/  
ISL8845AMBEPZ  
2R  
1.1V  
CLAMP  
+
-
FB  
VF TOTAL = 1.15V  
ERROR  
R
Q
T
AMPLIFIER  
COMP  
Q
OUT  
S
R
Q
Q
36k  
RESET  
DOMINANT  
VREF  
100k  
2.9V  
1.0V  
ON  
150k  
OSCILLATOR  
COMPARATOR  
<10ns  
-
RTCT  
+
CLOCK  
8.4mA  
ON  
 
ISL8840AMBEPZ, ISL8841AMBEPZ, ISL8842AMBEPZ, ISL8843AMBEPZ, ISL8844AMBEPZ, ISL8845AMBEPZ  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage, V  
. . . . . . . . . . . . . . . . . . . . . GND -0.3V to +30V  
Thermal Resistance (Note 4)  
θ
(°C/W)  
100  
DD  
OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND -0.3V to V  
JA  
+ 0.3V  
DD  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Signal Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND -0.3V to 6.0V  
Peak GATE Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1A  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +150°C  
Maximum Storage Temperature Range. . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Operating Conditions  
Supply Voltage Range (Note 3) . . . . . . . . . . . . . . . . . . . . . 9V to 30V  
Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . .-55°C to +125°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTES:  
3. All voltages are with respect to GND.  
4. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Technical Brief TB379 for details.  
JA  
Electrical Specifications Recommended operating conditions unless otherwise noted. Refer to “Functional Block Diagram” on page 3.  
V
= 15V, R = 10kΩ, C = 3.3nF, T = -55 to +125°C, Typical values are at T = +25°C. Parameters with MIN  
DD  
t t A A  
and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by  
characterization and are not production tested  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
UNDERVOLTAGE LOCKOUT  
START Threshold (ISL8840AMBEPZ,  
ISL8841AMBEPZ)  
6.5  
8.0  
7.0  
8.4  
7.5  
9.0  
V
V
V
V
V
V
START Threshold (ISL8843AMBEPZ,  
ISL8845AMBEPZ)  
START Threshold (ISL8842AMBEPZ,  
ISL8844AMBEPZ)  
(Note 7)  
13.3  
6.1  
14.3  
6.6  
15.3  
6.9  
STOP Threshold (ISL8840AMBEPZ,  
ISL8841AMBEPZ)  
STOP Threshold (ISL8843AMBEPZ,  
ISL8845AMBEPZ)  
7.3  
7.6  
8.0  
STOP Threshold (ISL8842AMBEPZ,  
ISL8844AMBEPZ)  
8.0  
8.8  
9.6  
Hysteresis (ISL8840AMBEPZ, ISL8841AMBEPZ)  
Hysteresis (ISL8843AMBEPZ, ISL8845AMBEPZ)  
Hysteresis (ISL8842AMBEPZ, ISL8844AMBEPZ)  
-
-
-
-
-
-
0.4  
0.8  
5.4  
90  
-
-
V
V
-
V
Start-up Current, I  
DD  
V
< START Threshold  
125  
4.0  
5.5  
µA  
mA  
mA  
DD  
Operating Current, I  
(Note 5)  
2.9  
4.75  
DD  
Operating Supply Current, I  
REFERENCE VOLTAGE  
Overall Accuracy  
Includes 1nF GATE loading  
D
Over line (V  
= 12V to 30V), load,  
4.900  
5.000  
5.050  
V
DD  
temperature  
Long Term Stability  
Current Limit, Sourcing  
Current Limit, Sinking  
CURRENT SENSE  
Input Bias Current  
CS Offset Voltage  
T
= +125°C, 1000 hours (Note 6)  
-
-20  
5
5
-
-
-
-
mV  
mA  
mA  
A
-
V
V
V
= 1V  
-1.0  
95  
-
1.0  
105  
1.30  
1.03  
µA  
mV  
V
CS  
CS  
CS  
= 0V (Note 6)  
= 0V (Note 6)  
100  
1.15  
1.00  
COMP to PWM Comparator Offset Voltage  
Input Signal, Maximum  
0.80  
0.97  
V
FN6792.0  
September 29, 2008  
4
 
ISL8840AMBEPZ, ISL8841AMBEPZ, ISL8842AMBEPZ, ISL8843AMBEPZ, ISL8844AMBEPZ, ISL8845AMBEPZ  
Electrical Specifications Recommended operating conditions unless otherwise noted. Refer to “Functional Block Diagram” on page 3.  
V
= 15V, R = 10kΩ, C = 3.3nF, T = -55 to +125°C, Typical values are at T = +25°C. Parameters with MIN  
DD  
t t A A  
and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by  
characterization and are not production tested (Continued)  
PARAMETER  
/ΔV  
TEST CONDITIONS  
MIN  
2.5  
-
TYP  
3.0  
35  
MAX  
3.5  
UNITS  
V/V  
Gain, A  
= ΔV  
0 < V < 910mV, V = 0V  
CS FB  
CS  
COMP  
CS  
CS to OUT Delay  
60  
ns  
ERROR AMPLIFIER  
Open Loop Voltage Gain  
Unity Gain Bandwidth  
Reference Voltage  
FB Input Bias Current  
COMP Sink Current  
COMP Source Current  
COMP VOH  
(Note 6)  
(Note 6)  
60  
1.0  
90  
-
dB  
MHz  
V
1.5  
-
V
V
V
V
V
V
= V  
2.460  
-1.0  
1.0  
2.500  
2.535  
FB  
FB  
COMP  
= 0V  
-0.2  
1.0  
µA  
mA  
mA  
V
= 1.5V, V = 2.7V  
FB  
-
-
-
COMP  
COMP  
= 1.5V, V = 2.3V  
FB  
-0.4  
4.80  
0.4  
-
VREF  
1.0  
-
= 2.3V  
-
FB  
FB  
COMP VOL  
= 2.7V  
-
V
PSRR  
Frequency = 120Hz, V  
30V (Note 6)  
= 12V to  
60  
80  
dB  
DD  
OSCILLATOR  
Frequency Accuracy  
Initial, T = +25°C  
48  
51  
0.2  
-
53  
1.0  
5
kHz  
%
A
Frequency Variation with V  
Temperature Stability  
T
= +25°C, (f  
- f  
)/f  
-
DD  
A
30V 10V 30V  
(Note 6)  
-
-
%
Amplitude, Peak-to-Peak  
Static Test  
Static Test  
RTCT = 2.0V  
1.75  
1.0  
8.0  
-
V
RTCT Discharge Voltage (Valley Voltage)  
-
-
V
Discharge Current  
OUTPUT  
6.2  
8.5  
mA  
Gate VOH  
V
- OUT, I  
OUT  
= -200mA  
= 200mA  
-
-
-
-
-
-
1.0  
1.0  
1.0  
20  
20  
-
2.0  
2.0  
-
V
V
DD  
Gate VOL  
OUT - GND, I  
OUT  
Peak Output Current  
Rise Time  
C
C
C
= 1nF (Note 6)  
= 1nF (Note 6)  
= 1nF (Note 6)  
A
OUT  
OUT  
OUT  
40  
40  
1.2  
ns  
ns  
V
Fall Time  
GATE VOL UVLO Clamp Voltage  
PWM  
V
= 5V, I = 1mA  
LOAD  
DD  
Maximum Duty Cycle  
(ISL8840AMBEPZ, ISL8842AMBEPZ,  
ISL8843AMBEPZ)  
COMP = VREF  
COMP = VREF  
COMP = GND  
94.0  
47.0  
-
96.0  
48.0  
-
-
-
%
%
%
Maximum Duty Cycle  
(ISL8841AMBEPZ, ISL8844AMBEPZ,  
ISL8845AMBEPZ)  
Minimum Duty Cycle  
NOTES:  
0
5. This is the V  
current consumed when the device is active but not switching. Does not include gate drive current.  
DD  
6. Limits established by characterization and are not production tested.  
7. Adjust V  
above the start threshold and then lower to 15V.  
DD  
FN6792.0  
September 29, 2008  
5
ISL8840AMBEPZ, ISL8841AMBEPZ, ISL8842AMBEPZ, ISL8843AMBEPZ, ISL8844AMBEPZ, ISL8845AMBEPZ  
Typical Performance Curves  
1.01  
1.001  
1.000  
0.999  
1.00  
0.998  
0.997  
0.996  
0.995  
0.99  
0.98  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 1. FREQUENCY vs TEMPERATURE  
FIGURE 2. REFERENCE VOLTAGE vs TEMPERATURE  
3
1.001  
10  
1.000  
0.998  
0.997  
0.996  
100pF  
100  
10  
1
220pF  
330pF  
470pF  
1.0nF  
2.2nF  
3.3nF  
4.7nF  
6.8nF  
1
10  
R (kΩ)  
100  
-60 -40 -20  
0
20 40 60 80 100 120 140  
t
TEMPERATURE (°C)  
FIGURE 4. RESISTANCE FOR CT CAPACITOR VALUES GIVEN  
FIGURE 3. EA REFERENCE vs TEMPERATURE  
COMP - COMP is the output of the error amplifier and the  
input of the PWM comparator. The control loop frequency  
compensation network is connected between the COMP and  
FB pins.  
Pin Descriptions  
RTCT - This is the oscillator timing control pin. The  
operational frequency and maximum duty cycle are set by  
connecting a resistor, R , between V  
and this pin and a  
t
REF  
timing capacitor, C , from this pin to GND. The oscillator  
produces a sawtooth waveform with a programmable  
FB - The output voltage feedback is connected to the  
inverting input of the error amplifier through this pin. The  
non-inverting input of the error amplifier is internally tied to a  
reference voltage.  
t
frequency range up to 2.0MHz. The charge time, t , the  
C
discharge time, t , the switching frequency, f, and the  
D
maximum duty cycle, D  
following equations:  
, can be approximated from the  
MAX  
CS - This is the current sense input to the PWM comparator.  
The range of the input signal is nominally 0V to 1.0V and has  
an internal offset of 100mV.  
(EQ. 1)  
t
t
0.533 R C  
C
D
t
t
GND - GND is the power and small signal reference ground  
for all functions.  
0.008 R 3.83  
t
(EQ. 2)  
------------------------------------------  
R C In  
t
t
0.008 R 1.71  
t
OUT - This is the drive output to the power switching device.  
It is a high current output capable of driving the gate of a  
power MOSFET with peak currents of 1.0A. This GATE  
f = 1 ⁄ (t + t  
)
(EQ. 3)  
(EQ. 4)  
C
D
output is actively held low when V  
threshold.  
is below the UVLO  
D = t f  
DD  
C
The formulae have increased error at higher frequencies due  
to propagation delays. Figure 4 may be used as a guideline  
in selecting the capacitor and resistor values required for a  
given frequency.  
V
- V is the power connection for the device. The total  
DD  
DD  
supply current will depend on the load applied to OUT. Total  
current is the sum of the operating current and the  
I
DD  
average output current. Knowing the operating frequency, f,  
FN6792.0  
September 29, 2008  
6
 
ISL8840AMBEPZ, ISL8841AMBEPZ, ISL8842AMBEPZ, ISL8843AMBEPZ, ISL8844AMBEPZ, ISL8845AMBEPZ  
and the MOSFET gate charge, Qg, the average output  
current can be calculated from Equation 5:  
affects COMP. During power-down, diode D quickly  
1
discharges C so that the soft-start circuit is properly  
1
initialized prior to the next power-on sequence.  
(EQ. 5)  
I
= Qg × f  
OUT  
Gate Drive  
To optimize noise immunity, bypass V  
to GND with a  
DD  
and GND pins as  
The ISL884xAMBEPZ is capable of sourcing and sinking 1A  
peak current. To limit the peak current through the IC, an  
optional external resistor may be placed between the  
totem-pole output of the IC (OUT pin) and the gate of the  
MOSFET. This small series resistor also damps any  
oscillations caused by the resonant tank of the parasitic  
inductances in the traces of the board and the FET’s input  
capacitance.  
ceramic capacitor as close to the V  
possible.  
DD  
VREF - The 5.00V reference voltage output. +1.0/-1.5%  
tolerance over line, load and operating temperature. Bypass  
to GND with a 0.1µF to 3.3µF capacitor to filter this output as  
needed.  
Functional Description  
Slope Compensation  
Features  
For applications where the maximum duty cycle is less than  
50%, slope compensation may be used to improve noise  
immunity, particularly at lighter loads. The amount of slope  
compensation required for noise immunity is determined  
empirically, but is generally about 10% of the full scale  
current feedback signal. For applications where the duty  
cycle is greater than 50%, slope compensation is required to  
prevent instability.  
The ISL884xAMBEPZ current mode PWM makes an ideal  
choice for low-cost flyback and forward topology  
applications. With its greatly improved performance over  
industry standard parts, it is the obvious choice for new  
designs or existing designs which require updating.  
Oscillator  
The ISL884xAMBEPZ has a sawtooth oscillator with a  
programmable frequency range to 2MHz, which can be  
Slope compensation may be accomplished by summing an  
external ramp with the current feedback signal or by  
subtracting the external ramp from the voltage feedback  
error signal. Adding the external ramp to the current  
feedback signal is the more popular method.  
programmed with a resistor from V  
and a capacitor to  
REF  
GND on the RTCT pin. (Please refer to Figure 4 for the  
resistor and capacitance required for a given frequency.)  
Soft-Start Operation  
From the small signal current-mode model [1] it can be  
shown that the naturally-sampled modulator gain, Fm,  
without slope compensation, is in Equation 6.  
Soft-start must be implemented externally. One method,  
illustrated in Figure 5, clamps the voltage on COMP.  
1
-----------------  
Fm =  
(EQ. 6)  
S t  
n SW  
VREF  
where S is the slope of the sawtooth signal and t is the  
sw  
n
duration of the half-cycle. When an external ramp is added,  
the modulator gain becomes Equation 7:  
D1  
C1  
R1  
COMP  
GND  
Q1  
1
1
(EQ. 7)  
------------------------------------  
--------------------------  
c
Fm =  
=
(S + S )t  
m Snt  
SW  
n
e
SW  
where S is slope of the external ramp and  
e
S
e
S
n
------  
m
= 1 +  
(EQ. 8)  
c
FIGURE 5. SOFT-START  
The criteria for determining the correct amount of external  
ramp can be determined by appropriately setting the  
damping factor of the double-pole located at the switching  
frequency. The double-pole will be critically damped if the  
Q-factor is set to 1, over-damped for Q < 1, and  
under-damped for Q > 1. An under-damped condition may  
result in current loop instability.  
The COMP pin is clamped to the voltage on capacitor C  
1
plus a base-emitter junction by transistor Q . C is charged  
1
1
from VREF through resistor R and the base current of Q1.  
1
At power-up C is fully discharged, COMP is at ~0.7V, and  
1
the duty cycle is zero. As C charges, the voltage on COMP  
1
increases, and the duty cycle increases in proportion to the  
voltage on C . When COMP reaches the steady state  
1
1
(EQ. 9)  
operating point, the control loop takes over and soft-start is  
-------------------------------------------------  
Q =  
π(m (1 D) 0.5)  
c
complete. C continues to charge up to V  
1
and no longer  
REF  
FN6792.0  
September 29, 2008  
7
 
 
 
 
ISL8840AMBEPZ, ISL8841AMBEPZ, ISL8842AMBEPZ, ISL8843AMBEPZ, ISL8844AMBEPZ, ISL8845AMBEPZ  
where D is the percent of on-time during a switching cycle.  
Setting Q = 1 and solving for S yields Equation 10:  
R C signal. A typical application sums the buffered R C  
t t t t  
signal with the current sense feedback and applies the result  
e
to the CS pin, as shown in Figure 6.  
1
π
1
⎛⎛  
⎝⎝  
1  
(EQ. 10)  
--  
-------------  
S
= S  
+ 0.5  
e
n
1 D  
Since S and S are the on time slopes of the current ramp  
n
e
VREF  
and the external ramp, respectively, they can be multiplied  
by t to obtain the voltage change that occurs during t  
.
ON ON  
R9  
R6  
1
π
1
⎛⎛  
⎝⎝  
1  
--  
-------------  
V
= V  
+ 0.5  
(EQ. 11)  
e
n
CS  
1 D  
where V is the change in the current feedback signal (ΔI)  
RTCT  
n
during the on-time and V is the voltage that must be added  
C4  
e
by the external ramp.  
For a flyback converter, V can be solved for in terms of  
n
input voltage, current transducer components, and primary  
inductance, yielding  
FIGURE 6. SLOPE COMPENSATION  
D t  
V R  
IN CS  
Assuming the designer has selected values for the RC filter  
1
π
1
SW  
⎛⎛  
1  
-------------------------------------------------- --  
-------------  
V
=
+ 0.5  
V
e
⎝⎝  
L
1 D  
(R and C ) placed on the CS pin, the value of R required  
p
6
4
9
(EQ. 12)  
to add the appropriate external ramp can be found by  
superposition.  
where R is the current sense resistor, f  
CS  
frequency, L is the primary inductance, V is the minimum  
input voltage, and D is the maximum duty cycle.  
is the switching  
SW  
2.05D R  
6
---------------------------  
(EQ. 16)  
V
=
V
p
IN  
e
R
+ R  
9
6
The current sense signal at the end of the on-time for CCM  
operation is:  
The factor of 2.05 in Equation 16 arises from the peak  
amplitude of the sawtooth waveform on R C minus a  
t
t
base-emitter junction drop. That voltage multiplied by the  
maximum duty cycle is the voltage source for the slope  
compensation. Rearranging to solve for R yields:  
9
(1 D) ⋅ V f  
SW  
N
R  
CS  
N
P
O
S
------------------------  
---------------------------------------------  
V
=
I
+
O
V
(EQ. 13)  
CS  
2L  
s
(2.05D V ) ⋅ R  
e
6
where V  
is the voltage across the current sense resistor,  
L is the secondary winding inductance, and I is the output  
---------------------------------------------  
R
=
Ω
(EQ. 17)  
CS  
9
V
e
s
O
current at current limit. Equation 13 assumes the voltage  
drop across the output rectifier is negligible.  
The value of R  
CS  
rescaled so that the current sense signal presented at the  
determined in Equation 15 must be  
Since the peak current limit threshold is 1.00V, the total  
current feedback signal plus the external ramp voltage must  
sum to this value when the output load is at the current limit  
threshold.  
CS pin is that predicted by Equation 13. The divider created  
by R and R makes this necessary.  
6
9
R
+ R  
6
9
--------------------  
R′  
=
R  
(EQ. 18)  
CS  
CS  
R
9
V
+ V  
= 1  
CS  
(EQ. 14)  
Example:  
e
V
V
= 12V  
= 48V  
IN  
Substituting Equations 12 and 13 into Equation 14 and  
O
solving for R  
yields Equation 15:  
CS  
L = 800µH  
s
1
----------------------------------------------------------------------------------------------------------------------------------------------------  
=
R
CS  
1
--  
+ 0.5  
Ns/Np = 10  
D f V  
N
(1 D) ⋅ V f  
O sw  
π
sw  
IN  
s
------------------------------- -----------------  
------  
-------------------------------------------  
1  
+
I  
+
O
L
1 D  
N
p
2L  
s
p
L = 8.0µH  
p
I
= 200mA  
(EQ. 15)  
O
Switching Frequency, f  
= 200kHz  
SW  
Adding slope compensation is accomplished in the  
Duty Cycle, D = 28.6%  
ISL884xAMBEPZ using an external buffer transistor and the  
FN6792.0  
September 29, 2008  
8
 
 
 
 
 
 
 
 
 
ISL8840AMBEPZ, ISL8841AMBEPZ, ISL8842AMBEPZ, ISL8843AMBEPZ, ISL8844AMBEPZ, ISL8845AMBEPZ  
R = 499Ω  
Fault Conditions  
6
A Fault condition occurs if V  
Fault is detected, OUT is disabled. When V  
4.80V, the Fault condition clears, and OUT is enabled.  
falls below 4.65V. When a  
REF  
Solve for the current sense resistor, R , using Equation 15.  
CS  
exceeds  
REF  
R
= 295mΩ  
CS  
Determine the amount of voltage, V , that must be added to  
e
the current feedback signal using Equation 12.  
Ground Plane Requirements  
Careful layout is essential for satisfactory operation of the  
device. A good ground plane must be employed. A unique  
section of the ground plane must be designated for high di/dt  
currents associated with the output stage. V  
bypassed directly to GND with good high frequency  
capacitors.  
V = 92.4mV  
e
Using Equation 17, solve for the summing resistor, R , from  
9
CT to CS.  
should be  
DD  
R = 2.67kΩ  
9
Determine the new value of R  
(R’ ) using Equation 18.  
CS  
CS  
References  
R’  
CS  
= 350mΩ  
[1] Ridley, R., “A New Continuous-Time Model for Current  
Mode Control”, IEEE Transactions on Power  
Electronics, Vol. 6, No. 2, April 1991.  
Additional slope compensation may be considered for  
design margin. The previous discussion determines the  
minimum external ramp that is required. The buffer transistor  
used to create the external ramp from R C should have a  
t
t
sufficiently high gain (>200) so as to minimize the required  
base current. Whatever base current is required reduces the  
charging current into R C and will reduce the oscillator  
t
t
frequency.  
FN6792.0  
September 29, 2008  
9
ISL8840AMBEPZ, ISL8841AMBEPZ, ISL8842AMBEPZ, ISL8843AMBEPZ, ISL8844AMBEPZ, ISL8845AMBEPZ  
Small Outline Plastic Packages (SOIC)  
M8.15 (JEDEC MS-012-AA ISSUE C)  
N
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
INCHES  
MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0532  
0.0040  
0.013  
0.0688  
0.0098  
0.020  
-
-
1
2
3
L
9
SEATING PLANE  
A
0.0075  
0.1890  
0.1497  
0.0098  
0.1968  
0.1574  
-
-A-  
3
h x 45°  
D
4
-C-  
0.050 BSC  
1.27 BSC  
-
α
H
h
0.2284  
0.0099  
0.016  
0.2440  
0.0196  
0.050  
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
α
8
8
7
NOTES:  
0°  
8°  
0°  
8°  
-
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 1 6/05  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6792.0  
September 29, 2008  
10  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY