ISL95338HRTZ-T [RENESAS]

Bidirectional Buck-Boost Voltage Regulator; TQFN32; Temp Range: See Datasheet;
ISL95338HRTZ-T
型号: ISL95338HRTZ-T
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Bidirectional Buck-Boost Voltage Regulator; TQFN32; Temp Range: See Datasheet

文件: 总51页 (文件大小:910K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
ISL95338  
Bidirectional Buck-Boost Voltage Regulator  
The ISL95338 is a bidirectional, buck-boost voltage  
regulator that provides buck-boost voltage regulation  
and protection features. The Renesas advanced R3™  
Technology provides high light-load efficiency, fast  
transient response, and seamless DCM/CCM  
transitions.  
Features  
• Bidirectional buck, boost, and buck-boost operation  
• Input voltage range: 3.8V to 24V (no dead zone)  
• Output voltage: up to 20V  
• Up to 1MHz switching frequency  
The ISL95338 takes input power from a wide range of  
DC power sources (such as conventional AC/DC  
ADPs, USB PD ports, and travel ADPs) and safely  
converts it to a regulated voltage up to 20V. The  
ISL95338 can also convert a wide range DC power  
source connected at its output (system side) to a  
regulated voltage to its input (ADP side). This  
bidirectional buck-boost regulation feature makes its  
application very flexible.  
• Programmable soft-start time  
• LDO output for VDD and VDDP  
• System status alert function  
• Bidirectional internal discharge function  
• Active switching for negative voltage transitions  
• Bypass mode in both directions  
• Forward mode enable, Reverse mode enable  
• OCP, OVP, UVP, and OTP protection  
The ISL95338 includes various system operation  
functions such as Forward mode enable, Reverse  
mode enable, programmable soft-start time, and  
2
• SMBus and auto-increment I C compatible  
adjustable V  
in both the forward direction and  
OUT  
• Pb-free (RoHS compliant)  
• 32 Ld 4x4 TQFN Package  
reverse direction. The protection functionalities  
include OCP, OVP, UVP, and OTP.  
The ISL95338 has serial communication through  
SMBus/I C that allows programming of many critical  
Applications  
2
Tablets, Ultrabooks, power banks, mobile devices,  
and USB-C  
parameters to deliver a customized solution. These  
programming parameters include, but are not limited  
to: output current limit, input current limit, and output  
voltage setting.  
Related Literature  
For a full list of related documents, visit our website:  
ISL95338 device page  
FN8896 Rev.4.01  
Sep.17.20  
Page 1 of 50  
ISL95338  
5
5
Vꢄ  
Vꢅ  
96<6ꢇꢇꢈ6\VWHPꢇ6LGHꢉ  
9
,1  
ꢇꢈ$GDSWHUꢇ6LGHꢉ  
ꢅꢆP  
ꢄꢆP  
4
4
4
/
4
&623  
&621  
&6,1  
&6,3  
$'3  
$'36  
)5:(1  
596(1  
9287  
,6/ꢀꢁꢂꢂꢃ  
92876  
$''5ꢆ  
352&+27ꢊ  
5963*  
*1'  
$''5ꢄ  
5()  
)5:3*  
9
9
,1  
287  
Figure 1. Typical Application Circuit  
FN8896 Rev.4.01  
Sep.17.20  
Page 2 of 50  
ISL95338  
Contents  
1.  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.1  
1.2  
1.3  
1.4  
1.5  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Simplified Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.  
Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
2.3  
2.4  
2.5  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Recommended Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SMBus Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.  
4.  
Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
General SMBus Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Data Validity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SMBus Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Byte Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2
SMBus and I C Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.  
ISL95338 SMBus Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
5.10  
5.11  
Setting System Side Current Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Setting Input Current Limit in Forward Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Setting System Regulating Voltage in Forward Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Setting PROCHOT# Threshold for ADP Side Overcurrent Condition . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Setting PROCHOT# Threshold for System Side Overcurrent Condition . . . . . . . . . . . . . . . . . . . . . . . 26  
Setting PROCHOT# Debounce Time and Duration Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Regulating Voltage Register in Reverse Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Output Current Limit Register in Reverse Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Input Voltage Limit Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Information Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.  
Application Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
6.10  
6.11  
R3 Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
ISL95338 Bidirectional Buck-Boost Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Programming Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
DE Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Forward Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Reverse Mode for USB OTG (On-the-Go). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Fast REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Fast Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Way Overcurrent Protection (WOCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
ADP Input Overvoltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
FN8896 Rev.4.01  
Sep.17.20  
Page 3 of 50  
ISL95338  
6.12  
6.13  
6.14  
6.15  
6.16  
6.17  
6.18  
System Output Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
System Output Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
ADP Output Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
ADP Output Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Over-Temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Switching Power MOSFET Gate Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
ADP Side Input Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
7.  
General Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
Select the LC Output Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Select the Input Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Select the Switching Power MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Select the Bootstrap Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Select the Resistor Divider for VOUTS and ADPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Selecting the DCIN Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
8.  
9.  
Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10. Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
FN8896 Rev.4.01  
Sep.17.20  
Page 4 of 50  
ISL95338  
1. Overview  
1. Overview  
1.1  
Block Diagram  
9287  
$'3  
9287  
):53*  
):5(1  
'59  
ꢆꢍꢃ9  
'&,1  
&03  
ꢋꢍꢄ9  
ꢁ9ꢇ  
/'2  
/RZꢇ  
3ZUꢇ  
/'2  
9''  
&03  
'59  
aꢄ9  
5963*  
596(1  
ꢂꢍꢃ9  
ꢅꢍꢎ9  
&03  
'$&  
DQG  
&QWOꢇ/RJLFꢇ  
IRUꢇ2&ꢌ29ꢌ  
89ꢌ27ꢇ  
352*  
60%XVꢌ  
,&  
%227ꢄ  
$''5ꢆ  
$''5ꢄ  
'LJLWDOꢇ  
&RQWUROꢇ  
DQGꢇ)XVHꢇ  
/RJLF  
8*$7(ꢄ  
3+$6(ꢄ  
6&/  
6'$  
%8)  
/*$7(ꢄ  
*1'  
6RIW6WDUW  
&03  
29  
89  
&03  
ꢐꢄꢄꢆꢆP9ꢏ  
/*$7(ꢅ  
)ZGꢇ  
ꢏIZGꢑꢃꢅꢆP9ꢐ  
ꢏUHYꢑꢄꢅꢆꢆP9  
9'$&  
9''3  
&03  
3+$6(ꢅ  
ꢄX$  
5()  
5HYꢇ9'$&  
95()  
8*$7(ꢅ  
%227ꢅ  
)ZG  
5HY  
9287V  
$'3V  
9,1'$&  
)ZG  
&203I  
&6,3  
&203  
/RRS  
&6,3  
&6,1  
5HY  
)ZG  
6HOHFWRU  
$&'$&  
5HY  
ꢄꢃ[  
&203U  
$&)%  
ꢄꢃ[  
(UURUꢇ  
$PSOLILHU  
,)%ꢅ'$&  
)ZG  
5HY  
&623  
&621  
ꢄꢃ[  
,)%ꢅ  
ꢄꢃ[  
&03  
'&+27'$&  
'59  
352&+27ꢊ  
&03  
$&+27'$&  
Figure 2. Block Diagram  
FN8896 Rev.4.01  
Sep.17.20  
Page 5 of 50  
ISL95338  
1. Overview  
1.2  
Simplified Application Circuit  
5
5
Vꢄ  
Vꢅ  
9
ꢇꢈ$GDSWHUꢇ6LGHꢉ  
,1  
96<6ꢇꢇꢈ6\VWHPꢇ6LGHꢉ  
ꢅꢆP  
ꢄꢆP  
4
4
4
/
4
&623  
&621  
&6,1  
&6,3  
$'3  
$'36  
)5:(1  
596(1  
9287  
,6/ꢀꢁꢂꢂꢃ  
92876  
$''5ꢆ  
352&+27ꢊ  
*1'  
5963*  
)5:3*  
$''5ꢄ  
5()  
ꢂꢍꢂ9  
)5:3*  
5963*  
9
,1  
9
287  
Figure 3. Simplified Application Diagram  
1.3  
Ordering Information  
Part Number  
Tape and Reel  
Package  
Pkg.  
(Notes 2, 3)  
Part Marking  
Temp. Range (°C)  
-10 to +100  
-10 to +100  
-10 to +100  
-10 to +100  
-40 to +100  
-40 to +100  
-40 to +100  
(Units) (Note 1)  
(RoHS Compliant)  
32 Ld 4x4 TQFN  
32 Ld 4x4 TQFN  
32 Ld 4x4 TQFN  
32 Ld 4x4 TQFN  
32 Ld 4x4 TQFN  
32 Ld 4x4 TQFN  
32 Ld 4x4 TQFN  
Dwg. #  
ISL95338HRTZ  
ISL95338HRTZ-T  
ISL95338HRTZ-TK  
ISL95338HRTZ-T7A  
ISL95338IRTZ  
95338H  
95338H  
95338H  
95338H  
95338I  
-
6k  
1k  
250  
-
L32.4x4D  
L32.4x4D  
L32.4x4D  
L32.4x4D  
L32.4x4D  
L32.4x4D  
L32.4x4D  
ISL95338IRTZ-T  
ISL95338IRTZ-TK  
ISL95338EVAL1Z  
Notes:  
95338I  
6k  
1k  
95338I  
Evaluation board  
1. See TB347 for details about reel specifications.  
2. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations).  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC  
J-STD-020.  
3. For Moisture Sensitivity Level (MSL), see the ISL95338 device page. For more information about MSL, see TB363.  
FN8896 Rev.4.01  
Sep.17.20  
Page 6 of 50  
ISL95338  
1. Overview  
1.4  
Pin Configuration  
32 Ld 4x4 TQFN  
Top View  
32 31 30 29 28 27 26 25  
CSON  
CSOP  
FRWPG  
PROCHOT#  
SCL  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VOUTS  
BOOT2  
UGATE2  
PHASE2  
LGATE2  
VDDP  
SDA  
GND  
(Bottom Pad)  
RVSEN  
FRWEN  
VDD  
DCIN  
9
10 11  
12 13 14 15 16  
1.5  
Pin Descriptions  
Pin Number  
Pin Name  
Description  
BOTTOM  
PAD  
GND  
Signal common of the IC. Unless otherwise stated, signals are referenced to the GND pin. GND should also  
be used as the thermal pad for heat dissipation.  
1
CSON  
CSOP  
Forward VOUT current sense “-” input. Connect to the VOUT current resistor negative input. Place a 0.1µF  
ceramic capacitor between CSOP and CSON to provide differential mode filtering.  
2
Forward VOUT current sense “+” input. Connect to the VOUT current resistor positive input. Place a 0.1µF  
ceramic capacitor between CSOP and CSON to provide differential mode filtering.  
3
4
VOUTS  
BOOT2  
Forward VSYS feedback voltage. Use a resistor divider externally to configure the forward VSYS voltage.  
High-side MOSFET Q4 gate driver supply. Connect an MLCC capacitor across the BOOT2 pin and the  
PHASE2 pin. The boot capacitor is charged through an internal boot diode connected from the VDDP pin to  
the BOOT2 pin when the PHASE2 pin drops below VDDP minus the voltage drop across the internal boot  
diode.  
5
6
UGATE2  
PHASE2  
High-side MOSFET Q4 gate drive.  
Current return path for the high-side MOSFET Q4 gate drive. Connect this pin to the node consisting of the  
high-side MOSFET Q4 source, the low-side MOSFET Q3 drain, and one terminal of the inductor.  
7
8
LGATE2  
VDDP  
Low-side MOSFET Q3 gate drive.  
Power supply for the gate drivers. Connect to the VDD pin through a 4.7Ω resistor and connect a 2.2μF  
ceramic capacitor to GND. The effective capacitance at 5V must be at least 0.4μF after derating.  
9
LGATE1  
PHASE1  
Low-side MOSFET Q2 gate drive.  
10  
Current return path for the high-side MOSFET Q1 gate drive. Connect this pin to the node consisting of the  
high-side MOSFET Q1 source, the low-side MOSFET Q2 drain, and the input terminal of the inductor.  
11  
12  
UGATE1  
BOOT1  
High-side MOSFET Q1 gate drive.  
High-side MOSFET Q1 gate driver supply. Connect an MLCC capacitor across the BOOT1 pin and the  
PHASE1 pin. The boot capacitor is charged through an internal boot diode connected from the VDDP pin to  
the BOOT1 pin when the PHASE1 pin drops below VDDP minus the voltage drop across the internal boot  
diode.  
13  
14  
15  
ADPS  
CSIN  
CSIP  
Reverse output voltage feedback. Use a resistor divider externally to configure the reverse output voltage.  
ADP current sense “-” input.  
ADP current sense “+” input. The modulator also uses this pin to sense the input voltage in Forward mode  
and output voltage in Reverse mode.  
FN8896 Rev.4.01  
Sep.17.20  
Page 7 of 50  
ISL95338  
1. Overview  
Pin Number  
Pin Name  
Description  
16  
ADP  
Senses ADP voltage. When the ADP voltage is higher than 4.1V, Forward mode can be enabled.  
The ADP pin is also one of the two internal low power LDO inputs.  
17  
18  
DCIN  
VDD  
Internal LDO input that provides power to the IC. Connect a diode OR from ADP and the system outputs.  
Connect a 4.7μF ceramic capacitor to GND. The effective capacitance at 20V must be at least 0.4μF after  
derating.  
Internal LOD output; provides the bias power for the internal analog and digital circuit Connect a 2.2μF  
ceramic capacitor to GND. The effective capacitance at 5V must be at least 0.4μF after derating.  
If VDD is pulled below 2.7V, the ISL95338 resets all the SMBus register values to the default.  
19  
20  
21  
22  
23  
FRWEN  
RVSEN  
SDA  
Forward mode enable, analog signal input. Forward mode is valid if the FRWEN pin voltage is greater than  
0.8V.  
Reverse mode enable, digital signal input. Reverse mode is valid if the signal is “1” (logic high), otherwise,  
Reverse mode is disabled.  
SMBus data I/O. Connect to the data line from the host controller. Connect a 10k pull-up resistor according to  
the SMBus specification.  
SCL  
SMBus clock I/O. Connect to the clock line from the host controller. Connect a 10k pull-up resistor according  
to the SMBus specification.  
PROCHOT# Open-drain output. Pulled low when input current is detected as hot in Forward and Reverse mode. SMBus  
command to pull low (see Table 8 and Table 10 for Control 2 Register 0x3DH and Control4 Register 0x4EH).  
24  
25  
26  
27  
28  
29  
FRWPG  
ADDR0  
RVSPG  
PROG  
COMPF  
REF  
Open-drain output. Indicator output to indicate the forward modulator is enabled.  
Address setting pin for the IC. The IC address is set by the ADDR0 and ADDR1 logic voltage levels.  
Open-drain output. Indicator output to indicate the reverse modulator is enabled.  
A resistor from the PROG pin to GND sets the default forward system output voltage.  
Forward mode error amplifier output. Connect a compensation network externally from COMPF to GND.  
Output voltage soft-start reference. A ceramic capacitor from REF to GND is set to the desired soft-start time.  
In Forward mode, forward output voltage (VOUTS) reference soft-start time is set. In Reverse mode, reverse  
output voltage (ADPS) reference soft-start time is set.  
30  
31  
32  
COMPR  
VOUT  
Reverse mode error amplifier output. Connect a compensation network externally from COMPR to GND.  
Forward VOUT sense voltage for the modulator and PHASE 2 zero-current comparator.  
ADDR1  
Address setting pin for the IC. The IC address is set by the ADDR0 and ADDR1 logic voltage levels.  
FN8896 Rev.4.01  
Sep.17.20  
Page 8 of 50  
ISL95338  
2. Specifications  
2. Specifications  
2.1  
Absolute Maximum Ratings  
Parameter  
Minimum  
-0.3  
Maximum  
+30  
Unit  
V
CSIP, CSIN, DCIN, ADPS, ADP  
CSIP  
0.3  
ADP + 2  
+30  
V
PHASE1  
GND - 0.3  
GND - 2 (<20ns)  
PHASE1 - 0.3  
GND - 0.3  
GND - 2 (<20ns)  
PHASE2 - 0.3  
GND - 0.3  
GND - 2 (<20ns)  
-0.3  
V
PHASE1  
+30  
V
UGATE1  
BOOT1 + 0.3  
+30  
V
V
PHASE2  
PHASE2  
+30  
V
UGATE2  
BOOT2 + 0.3  
VDDP + 0.3  
VDDP + 0.3  
+24  
V
LGATE1, LGATE2  
LGATE1, LGATE2  
VOUT, VOUTS, CSOP, CSON  
VDD, VDDP  
BOOT1, BOOT2  
BOOT1  
V
V
V
-0.3V  
+6.5  
V
- 0.3  
VDDP + 25  
PHASE1 + 6.5  
PHASE2 + 6.5  
+6.5  
V
(PHASE1 - 0.3)  
(PHASE2 - 0.3)  
-0.3  
V
BOOT2  
V
BOOT1-PHASE1, BOOT2-PHASE2  
COMPR, COMPF, REF, PROG  
V
-0.3  
+6.5  
V
RVSEN, FRWEN, ADDR0, ADDR1  
FRWPG, PROCHOT#, RVSPG  
-0.3  
+6.5  
V
-0.3  
+6.5  
V
SCL, SDA  
-0.3  
+6.5  
V
CSIP-CSIN, CSOP-CSON  
-0.3  
+0.3  
V
RVSEN, FRWEN, SDA, SCL, FRWPG, RVSPG, PROCHOT#  
ESD Rating  
2
mA  
Unit  
kV  
V
Rating  
2
Human Body Model (Tested per JS-001-2014)  
Machine Model (Tested per JESD22-A115C)  
Charged Device Model (Tested per JS-002-2014)  
Latch-Up (Tested per JESD78E)  
200  
1
kV  
mA  
100  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely  
impact product reliability and result in failures not covered by warranty.  
2.2  
Thermal Information  
Thermal Resistance (Typical)  
JA (°C/W)  
JC (°C/W)  
32 Ld TQFN Package (Notes 4, 5)  
37  
2
Notes:  
4. JA is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach” features.  
See TB379.  
5. For JC, the “case temp” location is the center of the ceramic on the package underside.  
Parameter  
Junction Temperature Range (TJ)  
Storage Temperature Range (TS)  
Pb-Free Reflow Profile  
Minimum  
-10  
Maximum  
+125  
Unit  
°C  
-65  
+150  
°C  
See TB493  
FN8896 Rev.4.01  
Sep.17.20  
Page 9 of 50  
ISL95338  
2. Specifications  
2.3  
Recommended Operation Conditions  
Parameter  
Minimum  
Maximum  
+100  
Unit  
°C  
°C  
V
Ambient Temperature - HRTZ  
Ambient Temperature - IRTZ  
ADP Input Voltage  
-10  
-40  
+4  
+100  
+24  
VOUT Input Voltage  
+4  
+20  
V
2.4  
Electrical Specifications  
Operating conditions: ADP = CSIP = CSIN = 4V and 23V, VOUTS = VOUT = CSOP = CSON = 8V, unless otherwise noted. Boldface limits  
apply across the junction temperature range, -10°C to +125°C unless otherwise specified.  
Min  
Max  
Parameter  
Symbol  
Test Conditions  
(Note 6) Typ (Note 6) Unit  
UVLO/ACOK  
VADP UVLO Rising  
VADP_UVLO_r  
VADP_UVLO_h  
VOUT_UVLO_r  
VOUT_UVLO_h  
VDD_2P7_r  
3.9  
3.9  
2.5  
3.6  
4.2  
530  
4.2  
300  
2.7  
150  
3.8  
4.55  
4.55  
2.9  
V
mV  
V
VADP UVLO Hysteresis  
VOUT UVLO Rising  
VOUT UVLO Hysteresis  
mV  
V
VDDA 2P7 Rising, SMBus Active (Note 7)  
VDDA 2P7 POR Hysteresis (Note 7)  
VDD_2P7_h  
mV  
V
VDDA 3P8 POR Rising, Modulator, and  
Gate Driver Active  
VDD_3P8_r  
3.9  
VDD 3P8 Hysteresis  
FRWEN Rising  
VDD_3P8_h  
FRWEN_r  
FRWEN_h  
150  
0.8  
50  
mV  
V
0.775  
0.825  
FRWEN Hysteresis  
mV  
Bias Current  
Forward Supply Current, Disable State  
ADP, ADPS CSIN, CSIP, VDDP, DCIN  
= 5V, FWREN = Low  
130  
70  
200  
150  
µA  
µA  
µA  
µA  
µA  
µA  
Reverse Supply Current, Disable State  
Forward Supply Current, Enable State  
Reverse Supply Current, Enable State  
Forward Supply Current, Enable State  
Reverse Supply Current, Enable State  
VOUT, VOUTS CSON, CSOP, VDDP,  
DCIN = 5V, RVSEN = Low  
ADP, ADPS CSIN, CSIP, DCIN = 20V,  
FWREN = High  
3000  
3000  
1600  
1600  
3300  
3300  
2000  
2000  
VOUT, VOUTS CSON, CSOP, DCIN  
= 20V, RVSEN = High  
DCIN only (does not include gate  
driver current)  
DCIN only (does not include gate  
driver current)  
Linear Regulator  
VDDA Output Voltage  
VDD  
6V < VADP < 23V, no load  
30mA, VDCIN = 4V  
4.5  
90  
5.1  
100  
135  
5.5  
V
VDDA Dropout Voltage  
VDD_dp  
VDD_OC  
mV  
mA  
VDD Overcurrent Threshold  
ADP Current Regulation, RADP = 20mΩ  
Input Current Accuracy  
165  
|CSIP - CSIN| = 80mV  
|CSIP - CSIN| = 40mV  
|CSIP - CSIN| = 10mV  
4
2
A
%
A
-3  
-4  
+3  
+4  
%
A
0.5  
-10  
+10  
%
FN8896 Rev.4.01  
Sep.17.20  
Page 10 of 50  
ISL95338  
2. Specifications  
Operating conditions: ADP = CSIP = CSIN = 4V and 23V, VOUTS = VOUT = CSOP = CSON = 8V, unless otherwise noted. Boldface limits  
apply across the junction temperature range, -10°C to +125°C unless otherwise specified. (Continued)  
Min  
Max  
Parameter  
Symbol  
Test Conditions  
(Note 6) Typ (Note 6) Unit  
ADP Current PROCHOT# Threshold  
IADP_HOT_TH10  
ACProchot = 0x0A80H (2688mA)  
2688  
1024  
mA  
%
Rs1 = 20mΩ  
-3.0  
-6.0  
+3.0  
+6.0  
ACProchot = 0x0400H (1024mA)  
mA  
%
Voltage Regulation  
Output Voltage Accuracy Forward (HRTZ)  
Measured at VOUTS, 8V and up  
Measured at VOUTS, 4V to 8V  
Measured at ADPS, 8V and up  
Measured at ADPS, 4V to 8V  
Measured at VOUTS, 8V and up  
Measured at VOUTS, 4V to 8V  
Measured at ADPS, 8V and up  
Measured at ADPS, 4V to 8V  
Measured at ADPS  
-1  
-1.5  
-1  
+1  
+1.5  
+1  
%
%
%
%
%
%
%
%
V
Output Voltage Accuracy Reverse (HRTZ)  
Output Voltage Accuracy Forward (IRTZ)  
Output Voltage Accuracy Reverse (IRTZ)  
Minimum Input Voltage Accuracy  
-1.5  
-2  
+1.5  
+2  
-1.5  
-2  
+1.5  
+2  
-3  
+3  
-3  
+3  
V
Current Regulation, Rs2 = 10mΩ  
OUT  
VOUT Current Accuracy  
|CSOP - CSON| = 60mV  
|CSOP - CSON| = 20mV  
|CSOP - CSON| = 10mV  
|CSOP - CSON| = 5mV  
6
2
A
%
A
-3  
-5  
+3  
+5  
%
A
1
-10  
-20  
0
+10  
+20  
27  
%
A
0.5  
%
ADP Current-Sense Amplifier, RADP = 20mΩ  
CSIP/CSIN Input Voltage Range  
VCSIP/N  
V
VOUT Current-Sense Amplifier, RBAT = 10mΩ  
System Side Current PROCHOT#  
Threshold, Rs2 = 10mΩ  
ISYS_HOT  
SystemSideProchot = 0x1000H  
(4096mA)  
4096  
mA  
%
-5  
+5  
RVSEN  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Leakage Current  
0.9  
V
V
0.35  
1
VRVSEN = 3.3V, 5V  
Pin at 0.4V  
µA  
PROCHOT#, RVSPG, FWRPG  
Output Sinking Current  
37  
mA  
µA  
Leakage Current  
1
PROCHOT#  
PROCHOT# Debounce Time (Note 7)  
PROCHOT# Duration Time (Note 7)  
Protection  
PROCHOT# Debounce register  
PROCHOT# Duration register  
-15  
-15  
15  
15  
%
%
ADP Overvoltage Rising Hysteresis  
ADP Overvoltage Hysteresis  
VOUTS Overvoltage Rising Threshold  
VOUTS Overvoltage Hysteresis  
ADPS Overvoltage Rising Threshold  
ADPS Overvoltage Hysteresis  
Forward mode  
25.5  
0.85  
0.9  
26.4  
0.35  
1.1  
27  
1.45  
1.5  
V
V
V
V
V
V
Forward mode VOUTS-12xREF  
Reverse mode ADPS-12xREF  
0.55  
1.2  
0.6  
FN8896 Rev.4.01  
Sep.17.20  
Page 11 of 50  
ISL95338  
2. Specifications  
Operating conditions: ADP = CSIP = CSIN = 4V and 23V, VOUTS = VOUT = CSOP = CSON = 8V, unless otherwise noted. Boldface limits  
apply across the junction temperature range, -10°C to +125°C unless otherwise specified. (Continued)  
Min  
Max  
Parameter  
Symbol  
Test Conditions  
(Note 6) Typ (Note 6) Unit  
VOUTS Undervoltage Falling Threshold  
VOUTS Undervoltage Hysteresis  
ADPS Undervoltage Falling Threshold  
ADPS Undervoltage Hysteresis  
Over-Temperature Threshold (Note 7)  
Oscillator  
Forward mode VOUTS-12xREF  
-1.15  
-1.55  
140  
-0.85  
0.6  
-0.55  
-0.85  
160  
V
V
Reverse mode ADPS-12xREF  
-1.2  
0.4  
V
V
150  
°C  
Oscillator Frequency, Digital Core Only  
Digital Debounce Time Accuracy  
0.85  
-15  
1
1.15  
15  
MHz  
%
PV Debounce and UV Debounce for  
FWRPG and RVSPG delay  
Miscellaneous  
Switching Frequency Accuracy  
All programmed fSW settings, CCM,  
and no period stretching  
-15  
15  
%
ADP Discharge Current  
ADP = 5V  
6.5  
8.5  
0.7  
0.7  
14  
mA  
mA  
µA  
µA  
µA  
VOUT Discharge Current  
REF Pin Sink/Source Current  
REF Pin Fast Sink Current  
REF Pin Fast Source Current  
SMBus  
VOUT = 5V  
Control1 <3> = 0  
Control1 <3> = 1  
Control1 <3> = 1  
SDA/SCL Input Low Voltage  
SDA/SCL Input High Voltage  
SDA/SCL Input Bias Current  
SDA, Output Sink Current (Note 7)  
SMBus Frequency  
3.3V  
0.8  
1
V
V
3.3V  
2
3.3V  
µA  
mA  
kHz  
SDA = 0.4V  
4
fSMB  
10  
400  
1200  
475  
1200  
450  
1200  
450  
1200  
450  
Gate Driver  
UGATE1 Pull-Up Resistance  
UGATE1 Source Current  
UGATE1 Pull-Down Resistance  
UGATE1 Sink Current  
UG1RPU  
UG1SRC  
UG1RPD  
UG1SNK  
100mA source current  
UGATE1 - PHASE1 = 2.5V  
100mA sink current  
800  
2
mΩ  
A
1.3  
1.9  
1.3  
2.3  
1.3  
2.3  
1.3  
350  
2.8  
800  
2
mΩ  
A
UGATE1 - PHASE1 = 2.5V  
100mA source current  
LGATE1 - GND = 2.5V  
100mA sink current  
LGATE1 Pull-Up Resistance  
LGATE1 Source Current  
LGATE1 Pull-Down Resistance  
LGATE1 Sink Current  
LG1RPU  
mΩ  
A
LG1SRC  
LG1RPD  
300  
3.5  
800  
2
mΩ  
A  
LG1SNK  
LGATE1 - GND = 2.5V  
100mA source current  
LGATE2 - GND = 2.5V  
100mA sink current  
LGATE2 Pull-Up Resistance  
LGATE2 Source Current  
LGATE2 Pull-Down Resistance  
LGATE2 Sink Current  
LG2RPU  
mΩ  
A
LG2SRC  
LG2RPD  
300  
3.5  
800  
2
mΩ  
A
LG2SNK  
LGATE2 - GND = 2.5V  
100mA source current  
UGATE2 - PHASE2 = 2.5V  
100mA sink current  
UGATE2 Pull-Up Resistance  
UGATE2 Source Current  
UGATE2 Pull-Down Resistance  
UGATE2 Sink Current  
UG2RPU  
UG2SRC  
UG2RPD  
UG2SNK  
mΩ  
A
300  
3.5  
20  
mΩ  
A  
UGATE2 - PHASE2 = 2.5V  
2.3  
10  
10  
10  
10  
UGATE1 to LGATE1 Dead Time  
LGATE1 to UGATE1 Dead Time  
LGATE2 to UGATE2 Dead Time  
UGATE2 to LGATE2 Dead Time  
tUG1LG1DEAD  
tLG1UG1DEAD  
tLG2UG2DEAD  
tUG2LG2DEAD  
40  
40  
40  
40  
ns  
20  
ns  
20  
ns  
20  
ns  
FN8896 Rev.4.01  
Sep.17.20  
Page 12 of 50  
ISL95338  
2. Specifications  
2.5  
SMBus Timing Specification  
Min  
Max  
Parameters  
Symbol  
FSMB  
Test Conditions  
(Note 6)  
Typ  
(Note 6) Unit  
SMBus Frequency  
10  
4.7  
4
400  
kHz  
µs  
Bus-Free Time  
tBUF  
Start Condition Hold Time from SCL  
tHD:STA  
tSU:STA  
µs  
Start Condition Set-Up Time from  
SCL  
4.7  
µs  
Stop Condition Set-Up Time from  
SCL  
tSU:STO  
4
µs  
SDA Hold Time from SCL  
SDA Set-Up Time from SCL  
SCL Low Period  
tHD:DAT  
tSU:DAT  
tLOW  
300  
250  
4.7  
4
ns  
ns  
µs  
µs  
s
SCL High Period  
tHIGH  
SMBus Inactivity Timeout  
Maximum charging period without an SMBus  
Write to MaxSystemVoltage or ADPCurrent  
register  
175  
Notes:  
6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by  
characterization and are not production tested.  
7. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.  
PWM  
tLGFUGR  
t
FU  
t
RU  
1V  
UGATE  
LGATE  
1V  
t
RL  
t
FL  
tUGFLGR  
Figure 4. Gate Driver Timing Diagram  
FN8896 Rev.4.01  
Sep.17.20  
Page 13 of 50  
ISL95338  
3. Typical Performance Curves  
3. Typical Performance Curves  
Figure 6. Reverse Mode, Soft-Start, 12VADP, 5VSYS  
Figure 5. Forward Mode Soft-Start, 12VADP, 20VSYS  
Figure 7. VSYS Voltage Ramps Up in Forward Mode, Buck  
-> Buck-Boost -> Boost Operation Mode Transition  
Figure 8. ADP Voltage Ramps Up in Reverse Mode, Buck  
-> Buck-Boost -> Boost Operation Mode Transition  
Figure 10. Reverse Mode, 20VADP to 5VADP  
Figure 9. Reverse Mode, 5VADP to 20VADP  
FN8896 Rev.4.01  
Sep.17.20  
Page 14 of 50  
ISL95338  
3. Typical Performance Curves  
Figure 12. Forward Mode, 20VSYS to 5VSYS  
Figure 11. Forward Mode, 5VSYS to 20VSYS  
Figure 14. Forward Mode, Output Voltage Loop to  
Adapter Voltage Loop Transition. 6VADP, Input Voltage  
Limit = 5.12V, 12VSYS, System Load 0A to 0.78A Step,  
System Current Limit = 5A, Input Current Limit = 5A  
Figure 13. Forward Mode, Output Voltage Loop to ADP  
Current Loop Transition. 5VADP, 12VSYS, System Load 0A  
to 0.65A Step, ADP Current Limit = 1.5A  
Figure 15. Forward Mode, Force Buck-Boost Mode to  
Boost Mode. 10VADP, 12VSYS  
Figure 16. Reverse Mode, Force Buck-Boost Mode to  
Boost Mode. 12VADP, 10VSYS  
FN8896 Rev.4.01  
Sep.17.20  
Page 15 of 50  
ISL95338  
3. Typical Performance Curves  
Figure 17. Forward Mode, 5VADP, 12VSYS, 0A-2A  
Transient Load  
Figure 18. Reverse Mode, 20VADP, 12VSYS, 0A-2A  
Transient Load  
FN8896 Rev.4.01  
Sep.17.20  
Page 16 of 50  
ISL95338  
4. General SMBus Architecture  
4. General SMBus Architecture  
9''ꢇ60%  
60%XVꢇ6ODYH  
,QSXW  
6&/  
2XWSXW  
2XWSXW  
&RQWURO  
6WDWHꢇ  
0DFKLQHꢇ  
5HJLVWHUVꢇ  
0HPRU\ꢒꢇ  
(WFꢍ  
60%XVꢇ0DVWHU  
6&/  
,QSXW  
,QSXW  
6'$  
&RQWURO  
&21752/ 2XWSXW  
2XWSXW  
&38  
,QSXW  
6'$  
&RQWURO  
60%86ꢇ6/$9(  
,QSXW  
2XWSXW  
6&/  
&RQWURO  
2XWSXW  
2XWSXW  
6WDWHꢇ  
0DFKLQHꢇ  
5HJLVWHUVꢇ  
0HPRU\ꢒꢇ  
(WFꢍ  
,QSXW  
6'$  
&RQWURO  
2XWSXW  
6&/ 6'$  
7Rꢇ2WKHUꢇ6ODYHꢇ  
'HYLFHV  
Figure 19. General SMBus Architecture  
4.1  
Data Validity  
The data on the SDA line must be stable during the HIGH period of the SCL, unless generating a START or STOP  
condition. The HIGH or LOW state of the data line can change only when the clock signal on the SCL line is LOW.  
See Figure 20.  
SDA  
SCL  
Data Line  
Stable  
Data Valid  
Change  
of Data  
Allowed  
Figure 20. Data Validity  
FN8896 Rev.4.01  
Sep.17.20  
Page 17 of 50  
ISL95338  
4. General SMBus Architecture  
4.2  
START and STOP Conditions  
As Figure 21 shows, the START condition is a HIGH to LOW transition of the SDA line while SCL is HIGH.  
The STOP condition is a LOW to HIGH transition on the SDA line while SCL is HIGH. A STOP condition must be  
sent before each START condition.  
SDA  
SCL  
S
P
Start  
Stop  
Condition  
Condition  
Figure 21. Start and Stop Waveforms  
4.3  
Acknowledge  
Each address and data transmission uses nine clock pulses. The ninth pulse is the acknowledge bit (ACK). After  
the start condition, the master sends seven slave address bits and an R/W bit during the next eight clock pulses.  
During the nine clock pulse, the device that recognizes its own address holds the data line low to acknowledge  
(see Figure 22). Both the master and slave use the ACK bit to acknowledge receipt of register addresses and  
data.  
MSB  
SDA  
SCL  
1
2
8
9
Start  
Acknowledge  
from Slave  
Figure 22. Acknowledge on the SMBus  
4.4  
SMBus Transactions  
All transactions start with a control byte sent from the SMBus master device. The control byte begins with a START  
condition, followed by seven bits of slave address (see Table 1), and the R/W bit. The R/W bit is “0” for a WRITE or  
“1” for a READ. If any slave device on the SMBus bus recognizes its address, it acknowledges by pulling the Serial  
Data (SDA) line low for the last clock cycle in the control byte. If no slave exists at that address or it is not ready to  
communicate, the data line is “1”, which indicates a Not Acknowledge condition.  
After the control byte is sent and the ISL95338 acknowledges it, the second byte sent by the master must be a  
register address byte such as 0x14 for the SystemCurrentLimit register. The register address byte tells the  
ISL95338 which register the master writes or reads. See Table 2 for details of the registers. After the ISL95338  
receives a register address byte, it responds with an acknowledge.  
FN8896 Rev.4.01  
Sep.17.20  
Page 18 of 50  
ISL95338  
4. General SMBus Architecture  
4.5  
Byte Format  
Every byte put on the SDA line must be eight bits long and must be followed by an acknowledge bit. Data is  
transferred with the Most Significant Bit (MSB) first and the Least Significant Bit (LSB) last. The LO BYTE data is  
transferred before the HI BYTE data. For example, when writing 0x41A0, 0xA0 is written first and 0x41 is written  
second.  
Write to a Register  
Slave  
ADDR + W  
Register  
ADDR  
LO Byte  
Data  
HI Byte  
Data  
S
S
A
A
A
A
A P  
Read from a Register  
Slave  
ADDR + W  
Register  
ADDR  
Slave  
LO Byte  
Data  
HI Byte  
Data  
A
P
S
A
A
N P  
ADDR + R  
Driven by the  
Master  
S
P
A
N
Start  
Acknowledge  
No  
Stop  
Driven by the IC  
Acknowledge  
Figure 23. SMBus Read and Write Protocol  
2
4.6  
SMBus and I C Compatibility  
2
The ISL95338 SMBus minimum input logic high voltage is 2V, so it is compatible with I C with higher than 2V  
pull-up power supply.  
2
2
The ISL95338 SMBus registers are 16 bits, so it is compatible with 16 bits I C or 8 bits I C with auto-increment  
capability. The chip does not acknowledge SMBus communication unless either ADP or VOUT is higher than  
4.1V.  
FN8896 Rev.4.01  
Sep.17.20  
Page 19 of 50  
ISL95338  
5. ISL95338 SMBus Commands  
5. ISL95338 SMBus Commands  
The ISL95338 receives control inputs from the SMBus interface after Power-On Reset (POR). The serial interface  
complies with the System Management Bus Specification, which can be downloaded from www.smbus.org. The  
ISL95338 uses the SMBus Read-word and Write-word protocols (see Figure 23) to communicate with the host  
system. The ISL95338 is an SMBus slave device and does not initiate communication on the bus. The ISL95338  
address is programmable through ADDR0 and ADDR1 voltage levels (see Table 1) to support multiple ISL95338s  
sharing a common SMBus. Connect the ADDR0 and ADDR1 pins to either ground or VDD.  
Bits 1 and 2 are for ADDR0 and ADDR1 pins, respectively. The “1” means the pin voltage is high, while the “0”  
means the pin voltage is low. From Bits 3 to 7, the value is fixed as 10010. The address is latched at rising VDD  
2P7 POR threshold.  
Table 1. Address Table  
ADDR0  
ADDR1  
Read/Write  
Binary Address  
1001,0001  
1001,0000  
1001,0101  
1001,0100  
1001,0011  
1001,0010  
1001,0111  
1001,0110  
Hex Address  
0X91H  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
0X90H  
0X95H  
0X94H  
0X93H  
0X92H  
0X97H  
0X96H  
The data (SDA) and clock (SCL) pins have Schmitt-trigger inputs that can accommodate slow edges. Choose  
pull-up resistors for SDA and SCL to achieve rise times according to the SMBus specifications.  
The illustration in this datasheet is based on current sensing-resistors R = 20mΩand R = 10mΩ, unless  
s1  
s2  
otherwise specified.  
Table 2. Register Summary  
Register Read/ Number  
Address Write of Bits  
Register Names  
SystemCurrentLimit  
Description  
Default  
0X14  
0X15  
R/W  
R/W  
11  
12  
[12:2]11-bit, LSB size 4mA, total range 6080mA, with 10mΩ RS1 1.5A  
ForwardRegulatingVoltage  
[14:3]12-bit, LSB size 12mV, see PROG Table 21  
5.004V  
9.000V  
12.000V  
16.008V  
20.004V  
0x0000h  
0x0000h  
0x0000h  
0x0000h  
Control0  
0X39  
0X3A  
0X3C  
0X3D  
0X3F  
0X47  
R/W  
R
16  
16  
16  
16  
11  
6
Configure various options  
Indicate various status  
Information1  
Control1  
R/W  
R/W  
R/W  
R/W  
Configure various options  
Configure various options  
Control2  
ForwardInputCurrent  
ADPInputCurrentProchot#  
[12:2]11-bit, LSB size 4mA, total range 6080mA, with 20mΩ RS1 1.5A  
[12:7] ADP input current PROCHOT# threshold. Default  
3.072A  
3.072A,128mA resolution for 20mΩ Rs1, for Forward mode only.  
SystemInputCurrentProchot#  
ReverseRegulatingVoltage  
ReverseOutputCurrent  
0X48  
0X49  
0X4A  
R/W  
R/W  
R/W  
6
12  
6
[13:8] System current towards switcher PROCHOT# threshold. 4.096A  
Default 4.096A, 256mA resolution for 10mΩ Rs2  
.
[14:3] 12-bit, LSB size 12mV  
Reverse mode regulating voltage reference  
5.004V  
0.512A  
[12:7] 6-bit, LSB size 128mA, total range 4.096A  
Reverse mode maximum current limit  
FN8896 Rev.4.01  
Sep.17.20  
Page 20 of 50  
ISL95338  
5. ISL95338 SMBus Commands  
Table 2.  
Register Summary (Continued)  
Register Read/ Number  
Address Write of Bits  
Register Names  
Description  
Default  
InputVoltageLimit  
0X4B  
R/W  
6
[13:8] 6-bit, LSB size 512mV  
4.096V  
Forward low VIN loop voltage reference  
Control3  
0X4C  
0X4D  
0X4E  
0XFE  
0XFF  
R/W  
R
16  
16  
8
Configure various options  
Indicate various status  
0x0000h  
0x0000h  
0x00h  
Information2  
Control4  
R/W  
R
[7:0] 8-bit, configure various options  
Manufacturers ID register  
Device ID register - 0x0D  
ManufacturerID  
DeviceID  
8
0x49h  
R
8
0x0Dh  
5.1  
Setting System Side Current Limit  
To set the system side current limit, which is the output current in Forward mode or the input current in Reverse  
mode, write a 16-bit SystemCurrentLimit command (0X14H or 0b00010100) using the Write-word protocol shown  
in Figure 23 and the data format shown in Table 3 for a 10mΩ R or Table 4 for a 5mΩ R .  
s2  
s2  
The ISL95338 limits the system current by limiting the CSOP-CSON voltage. By using the recommended  
current-sense resistor value R = 10mΩ, the register’s LSB always translates to 4mA of output current. The  
s2  
SystemCurrentLimit register accepts any output current command but only the valid register bits are written to the  
register and the maximum value is clamped at 6080mA for R = 10mΩ.  
s2  
After POR, the SystemCurrentLimit register is reset to 0x05DCH (1.5A). The SystemCurrentLimit register can be  
read back to verify its content.  
Table 3. SystemCurrentLimit Register 0x14H (11-Bit, 4mA Step, 10mΩ Sense Resistor, x36)  
Bit  
<1:0>  
<2>  
Description  
Not used  
0 = Add 0mA of system current limit.  
1 = Add 4mA of system current limit.  
<3>  
<4>  
0 = Add 0mA of system current limit.  
1 = Add 8mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 16mA of system current limit.  
<5>  
0 = Add 0mA of system current limit.  
1 = Add 32mA of system current limit.  
<6>  
0 = Add 0mA of system current limit.  
1 = Add 64mA of system current limit.  
<7>  
0 = Add 0mA of system current limit.  
1 = Add 128mA of system current limit.  
<8>  
0 = Add 0mA of system current limit.  
1 = Add 256mA of system current limit.  
<9>  
0 = Add 0mA of system current limit.  
1 = Add 512mA of system current limit.  
<10>  
<11>  
<12>  
0 = Add 0mA of system current limit.  
1 = Add 1024mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 2048mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 4096mA of system current limit.  
<13:15>  
Not used  
Maximum  
<12:2> = 10111110000 6080mA  
Note: The gain for the system side current-sensing amplifiers is different for Forward mode and Reverse mode. The gain in Reverse  
mode is half of that in Forward mode. Therefore, in Reverse mode, the sensing current value needs to be doubled compared to the value  
set in the SystemCurrentLimit register.  
FN8896 Rev.4.01  
Sep.17.20  
Page 21 of 50  
ISL95338  
5. ISL95338 SMBus Commands  
Table 4. ForwardOutputCurrentLimit Register 0x14H (11-Bit, 8mA Step, 5mΩ Sense Resistor, x36)  
Bit  
<1:0>  
<2>  
Description  
Not used  
0 = Add 0mA of system current limit.  
1 = Add 8mA of system current limit.  
<3>  
<4>  
0 = Add 0mA of system current limit.  
1 = Add 16mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 32mA of system current limit.  
<5>  
0 = Add 0mA of system current limit.  
1 = Add 64mA of system current limit.  
<6>  
0 = Add 0mA of system current limit.  
1 = Add 128mA of system current limit.  
<7>  
0 = Add 0mA of system current limit.  
1 = Add 256mA of system current limit.  
<8>  
0 = Add 0mA of system current limit.  
1 = Add 512mA of system current limit.  
<9>  
0 = Add 0mA of system current limit.  
1 = Add 1024mA of system current limit.  
<10>  
<11>  
<12>  
0 = Add 0mA of system current limit.  
1 = Add 2048mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 4096mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 8192mA of system current limit.  
<13:15>  
Not used  
Maximum  
<12:2> = 10111110000 12160mA  
5.2  
Setting Input Current Limit in Forward Mode  
To set the input current limit in Forward mode, write a 16-bit ForwardInputCurrent command (0x3FH or  
0b00111111) using the Write-word protocol shown in Figure 23 and the data format shown in Table 5 for a 20mΩ  
R
or Table 6 for a 10mΩ R .  
s1  
s1  
The ISL95338 limits the input current in Forward mode by limiting the CSIP-CSIN voltage. By using the  
recommended current-sense resistor values, the register’s LSB always translates to 4mA of input current. Any  
input current limit command is accepted, but only the valid register bits are written to the ForwardInputCurrent  
register and the maximum values are clamped at 6080mA for R = 20mΩ.  
s1  
.
Table 5. ForwardInputCurrent Register 0x3FH (11-Bit, 4mA Step, 20mΩ Sense Resistor, x18)  
Bit  
<1:0>  
<2>  
Description  
Not used  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 4mA of input current limit in Forward mode.  
<3>  
<4>  
<5>  
<6>  
<7>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 8mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 16mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 32mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 64mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 128mA of input current limit in Forward mode.  
FN8896 Rev.4.01  
Sep.17.20  
Page 22 of 50  
ISL95338  
5. ISL95338 SMBus Commands  
Table 5. ForwardInputCurrent Register 0x3FH (11-Bit, 4mA Step, 20mΩ Sense Resistor, x18)  
Bit  
Description  
0 = Add 0mA of input current limit in Forward mode.  
<8>  
1 = Add 256mA of input current limit in Forward mode.  
<9>  
<10>  
<11>  
<12>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 512mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 1024mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 2048mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 4096mA of input current limit in Forward mode.  
<13:15>  
Not used  
Maximum  
<12:2> = 10111110000 6080mA.  
Table 6. ForwardInputCurrent Register 0x3FH (11-Bit, 8mA Step, 10mΩ Sense Resistor, x18)  
Bit  
<1:0>  
<2>  
Description  
Not used  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 8mA of input current limit in Forward mode.  
<3>  
<4>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 16mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 32mA of input current limit in Forward mode.  
<5>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 64mA of input current limit in Forward mode.  
<6>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 128mA of input current limit in Forward mode.  
<7>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 256mA of input current limit in Forward mode.  
<8>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 512mA of input current limit in Forward mode.  
<9>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 1024mA of input current limit in Forward mode.  
<10>  
<11>  
<12>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 2048mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 4096mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 8192mA of input current limit in Forward mode.  
<13:15>  
Not used  
Maximum  
<12:2> = 10111110000 12160mA  
FN8896 Rev.4.01  
Sep.17.20  
Page 23 of 50  
ISL95338  
5. ISL95338 SMBus Commands  
5.3  
Setting System Regulating Voltage in Forward Mode  
To set the regulating voltage in Forward mode, write a 16-bit ForwardRegulatingVoltage command (0x15H or  
0b00010101) using the Write-word protocol shown in Figure 23 and the data format as shown in Table 7.  
The output regulating voltage range in Forward mode is 2V to 24V. The ForwardRegulatingVoltage register  
accepts any voltage command, but only the valid register bits are written to the register. The maximum value is  
clamped at 24.576V. The ISL95338 accepts a 0V command, but the register value does not change. The VOUTS  
pin is the output voltage regulation sense point in Forward mode.  
In Forward mode, you can also configure the regulating output voltage by setting the external voltage divider on  
the VOUTS pin without changing the ForwardRegulatingVoltage register value.  
Table 7. ForwardRegulatingVoltage Register 0x15H (12mV Step)  
Bit  
<2:0>  
<3>  
Description  
Not used  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 12mV of regulating voltage in Forward mode.  
<4>  
<5>  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 24mV of regulating voltage in Forward mode.  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 48mV of regulating voltage in Forward mode.  
<6>  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 96mV of regulating voltage in Forward mode.  
<7>  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 192mV of regulating voltage in Forward mode.  
<8>  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 384mV of regulating voltage in Forward mode.  
<9>  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 768mV of regulating voltage in Forward mode.  
<10>  
<11>  
<12>  
<13>  
<14>  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 1536mV of regulating voltage in Forward mode.  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 3072mV of regulating voltage in Forward mode.  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 6144mV of regulating voltage in Forward mode.  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 12288mV of regulating voltage in Forward mode.  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 24576mV of regulating voltage in Forward mode.  
<15>  
Not used  
24576mV  
Maximum  
Note: The default reading value of this register is 6.288V when the chip is powering up without writing any values because of the DAC  
initial value. Thus, write the needed value in this register before enabling forward output voltage.  
FN8896 Rev.4.01  
Sep.17.20  
Page 24 of 50  
ISL95338  
5. ISL95338 SMBus Commands  
5.4  
Setting PROCHOT# Threshold for ADP Side Overcurrent Condition  
To set the PROCHOT# assertion threshold for the ADP side input overcurrent condition in Forward mode, write a  
16-bit ADPsideProchot# command (0x47H or 0b01000111) using the Write-word protocol shown in Figure 23 and  
the data format shown in Table 8. By using the recommended current-sense resistor values, the register’s LSB  
always translates to 128mA of input current. The ADPsideProchot# register accepts any current command, but  
only the valid register bits are written to the register. The maximum values are clamped at 6400mA for  
R
= 20mΩ.  
s1  
After POR, the ADPsideProchot# register is reset to 0x0C00H. The ADPsideProchot# register can be read back  
to verify its content.  
If the input current exceeds the ADPsideProchot# register setting, the PROCHOT# signal asserts after the  
debounce time programmed by the Control2 register Bit<10:9> and latches on for a minimum time programmed  
by Control2 register Bit<8:6>.  
Table 8. ADPsideProchot# Register 0x47H (20mΩ Sensing Resistor, 128mA Step, x18 Gain)  
Bit  
<6:0>  
<7>  
Description  
Not used  
0 = Add 0mA of ADPsideProchot# threshold.  
1 = Add 128mA of ADPsideProchot# threshold.  
<8>  
<9>  
0 = Add 0mA of ADPsideProchot# threshold.  
1 = Add 256mA of ADPsideProchot# threshold.  
0 = Add 0mA of ADPsideProchot# threshold.  
1 = Add 512mA of ADPsideProchot# threshold.  
<10>  
<11>  
<12>  
0 = Add 0mA of ADPsideProchot# threshold.  
1 = Add 1024mA of ADPsideProchot# threshold.  
0 = Add 0mA of ADPsideProchot# threshold.  
1 = Add 2048mA of ADPsideProchot# threshold.  
0 = Add 0mA of ADPsideProchot# threshold.  
1 = Add 4096mA of ADPsideProchot# threshold.  
<15:13>  
Not used  
Maximum  
<12:7> = 110010, 6400mA  
FN8896 Rev.4.01  
Sep.17.20  
Page 25 of 50  
ISL95338  
5. ISL95338 SMBus Commands  
5.5  
Setting PROCHOT# Threshold for System Side Overcurrent Condition  
To set the PROCHOT# signal assertion threshold for system side input overcurrent condition in Reverse mode,  
write a 16-bit SystemsideProchot# command (0x48H or 0b01001000) using the Write-word protocol shown in  
Figure 23 and the data format shown in Table 9. By using the recommended current-sense resistor values, the  
register’s LSB always translates to 256mA of system side current. The SystemsideProchot# register accepts any  
current command, but only the valid register bits are written to the register. The maximum values are clamped at  
12.8A for R = 10mΩ.  
s2  
After POR, the SystemsideProchot# register is reset to 0x1000H. The SystemsideProchot# register can be read  
back to verify its content.  
If the system side current exceeds the SystemsideProchot# register setting, the PROCHOT# signal asserts after  
the debounce time programmed by the Control2 register Bit<10:9> and latches on for a minimum time  
programmed by Control2 register Bit<8:6>.  
Table 9. SystemsideProchot# Register 0x48H (10mΩ Sensing Resistor, 256mA Step, x18 Gain)  
Bit  
<7:0>  
<8>  
Description  
Not used  
0 = Add 0mA of SystemsideProchot# threshold.  
1 = Add 256mA of SystemsideProchot# threshold.  
<9>  
0 = Add 0mA of SystemsideProchot# threshold.  
1 = Add 512mA of SystemsideProchot# threshold.  
<10>  
<11>  
<12>  
<13>  
0 = Add 0mA of SystemsideProchot# threshold.  
1 = Add 1024mA of SystemsideProchot# threshold.  
0 = Add 0mA of SystemsideProchot# threshold.  
1 = Add 2048mA of SystemsideProchot# threshold.  
0 = Add 0mA of SystemsideProchot# threshold.  
1 = Add 4096mA of SystemsideProchot# threshold.  
0 = Add 0mA of SystemsideProchot# threshold.  
1 = Add 8192mA of SystemsideProchot# threshold.  
<15:14>  
Not used  
Maximum  
<13:8> = 110010, 12800mA  
5.6  
Setting PROCHOT# Debounce Time and Duration Time  
Control2 register Bit<10:9> configures the PROCHOT# signal debounce time before its assertion for  
ADPsideProchot# and SystemsideProchot#.  
Control2 register Bit<8:6> configures the minimum duration of the PROCHOT# signal when asserted.  
5.7  
Control Registers  
The Control0, Control1, Control2, Control3, and Control4 registers configure the operation of the ISL95338. To  
change certain functions or options after POR, write a 16-bit control command to Control0 register (0x39H or  
0b00111001), and a 16-bit control command to Control1 register (0x3CH or 0b00111100), Control2 register  
(0x3DH or 0b00111101), Control3 register (0x4CH or 0b00111100), or Control4 register (0x4EH or 0b00111101)  
using the Write-word protocol shown in Figure 23 and the data format shown in Table 10, through Table 14,  
respectively.  
FN8896 Rev.4.01  
Sep.17.20  
Page 26 of 50  
ISL95338  
5. ISL95338 SMBus Commands  
Table 10. Control0 Register 0x39H  
Bit  
Bit Name  
Description  
<15:13> Forward Buck and  
Buck-Boost Phase  
Comparator Threshold  
Offset  
Adjusts the phase comparator threshold offset for forward buck and buck-boost.  
000 = 0mV  
001 = 1mV  
010 = 2mV  
011 = 3mV  
100 = -4mV  
101 = -3mV  
110 = -2mV  
111 = -1mV  
<12:10> Forward and Reverse  
Adjusts the phase comparator threshold offset for forward and reverse boost.  
Boost Phase Comparator 000 = 0mV  
Threshold Offset  
001 = 0.5mV  
010 = 1mV  
011 = 1.5mV  
100 = -2mV  
101 = -1.5mV  
110 = -1mV  
111 = -0.5mV  
<9:7>  
Reverse Buck and  
Buck-Boost Phase  
Comparator Threshold  
Offset  
Adjusts the phase comparator threshold offset for reverse buck and buck-boost.  
000 = 0mV  
001 = 1mV  
010 = 2mV  
011 = 3mV  
100 = -4mV  
101 = -3mV  
110 = -2mV  
111 = -1mV  
<6:5>  
High-Side FET Short  
Detection Threshold  
Configures the high-side FET short detection PHASE node voltage threshold during low-side FET  
turn-on.  
00 = 400mV (default)  
01 = 500mV  
10 = 600mV  
11 = 800mV  
<4:3>  
<2>  
Not used  
Disable Input Voltage  
Regulation Loop  
Disables or enables the input voltage regulation loop.  
0 = Enable input voltage regulation loop (default)  
1 = Disable input voltage regulation loop  
<1>  
<0>  
ADP Side Discharge  
Enables or disables the ADP side charger function.  
0 = Disable (default)  
1 = Enable  
System Side Discharge  
Enables or disables the system side charger function.  
0 = Disable (default)  
1 = Enable  
Table 11. Control1 Register 0x3CH  
Bit  
Bit Name  
Description  
<15>  
Disable Diode-Emulation  
Comparator  
Enables or disables diode-emulation comparator.  
0 = Diode-emulation comparator enabled (default)  
1 = Diode-emulation comparator disabled  
<14>  
<13>  
<12>  
Allow Sinking Current  
During Negative DAC  
Transition  
Enables or disables sinking current during negative DAC transition.  
0 = Sinking current during negative DAC transition enabled (default)  
1 = Sinking current during negative DAC transition disabled  
Skip Trim During Restart  
Enables or disables trim read during restart. Program this bit when PGOOD is high.  
0 = Read trim during restart  
1 = Skip trim during restart  
Skip Autozero During  
Restart  
Enables or disables autozero during restart. Program this bit when PGOOD is high.  
0 = Autozero during restart  
1 = Skip autozero during restart  
FN8896 Rev.4.01  
Sep.17.20  
Page 27 of 50  
ISL95338  
5. ISL95338 SMBus Commands  
Table 11. Control1 Register 0x3CH (Continued)  
Bit  
Bit Name  
Description  
<11>  
Reverse Mode Function  
Enables or disables Force Reverse mode function.  
0 = Disable Force Reverse mode function (default)  
1 = Enable Force Reverse mode function  
<10>  
Audio Filter  
Enables or disables the audio filter function. No audio filter function in Buck-Boost mode.  
0 = Disable (default)  
1 = Enable  
<9:7>  
Switching Frequency  
Configures the switching frequency.  
000 = 1000kHz  
001 = 910kHz  
010 = 850kHz  
011 = 787kHz  
100 = 744kHz  
101 = 695kHz  
110 = 660kHz  
111 = 620kHz  
<6>  
<5>  
Not used  
Disable System Side  
Current-Amp When in  
FWD Mode without ADP  
Enables or disables the system side current amplifier when in FWD mode without ADP.  
0 = Enable system side current amplifier (default)  
1 = Disable system side current amplifier  
<4>  
<3>  
<2>  
Bypass Mode  
Enables or disables the Bypass mode.  
0 = Disable (default)  
1 = Enable  
Fast REF mode  
Enables or disables the fast REF mode.  
0 = Disable (default)  
1 = Enable  
Stop Switching in FWD  
Mode  
Enables or disables the buck-boost switching VOUT output. When disabled, the ISL95338 stops  
switching and REF drops to OV. Valid in Forward mode only.  
0 = Enable switching (default)  
1 = Disable switching  
<1>  
<0>  
OV Enable or Disable  
During Slew-Down  
Enables or disables OV fault when the VDAC slew rate is down in Forward and Reverse mode.  
0 = Enable OV (default)  
1 = Disable OV  
Force 5.04V VDAC  
Enables or disables force 5.04V VDAC in Forward and Reverse mode.  
0 = Disable force 5.04V VDAC (default)  
1 = Enable force 5.04V VDAC  
Table 12. Control2 Register 0x3DH  
Bit  
Bit Name  
OV Control  
Description  
<15>  
Enables or disables OV.  
0 = Enable OV (default)  
1 = Disable OV  
<14>  
<13>  
<12>  
<11>  
UV Control  
Enables or disables UV.  
0 = Enable UV (default)  
1 = Disable UV  
Fault Restart Debounce for Configures fault restart debounce for reverse enable.  
Reverse Enable  
0 = Debounce time is 1.3s (default)  
1 = Debounce time is 150ms  
Fault Restart Debounce  
Configures fast fault restart debounce.  
0 = Debounce time is 1.3s or 150ms, depends on Bit<13> setting (default)  
1 = Debounce time is 200µs or 10µs, depends on Bit<13> setting  
Forward Restart Debounce Configures fault restart debounce for forward enable.  
for Forward Enable  
0 = Debounce time is 1.3s (default)  
1 = Debounce time is 150ms  
FN8896 Rev.4.01  
Sep.17.20  
Page 28 of 50  
ISL95338  
5. ISL95338 SMBus Commands  
Table 12. Control2 Register 0x3DH (Continued)  
Bit  
Bit Name  
Description  
<10:9>  
PROCHOT# Debounce  
Configures the PROCHOT# debounce time before its assertion for ADPsideProchot# and  
SystemsideProchot#.  
00: 7µs (default)  
01: 100µs  
10: 500µs  
11: 1ms  
<8:6>  
PROCHOT# Duration  
Configures the minimum duration of the PROCHOT# signal when asserted.  
000 = 10ms (default)  
001 = 20ms  
010 = 15ms  
011 = 5ms  
100 = 1ms  
101 = 500µs  
110 = 100µs  
111 = 0s  
<5>  
<4>  
Not used  
Reverse Fast Swap  
Forward Fast Swap  
Configures reverse fast swap.  
0 = Disable reverse fast swap (default)  
1 = Enable reverse fast swap  
<3>  
Configures forward fast swap.  
0 = Disable forward fast swap (default)  
1 = Enable forward fast swap  
<2>  
<1>  
Not Used  
Not used  
Disable WOC Fault  
Enables or disables WOC fault.  
0 = Enable WOC (default)  
1 = Disable WOC  
<0>  
System Side WOC  
Threshold  
Configures the System Side WOC fault comparator value.  
0 = 20mV (default)  
1 = 30mV  
Table 13. Control3 Register 0x4CH  
Bit  
Bit Name  
Description  
<15>  
Re-Read PROG Pin  
Resistor  
Specifies whether to re-read the PROG pin resistor before switching.  
0 = Re-read PROG pin resistor (default)  
1 = Do not re-read PROG pin resistor  
<14>  
<13>  
<12>  
Not used  
Not used  
Reverse Startup Debounce Configures the startup debounce time for reverse mode.  
Time  
0 = Debounce time is 200µs (default)  
1 = Debounce time is 10µs  
<11>  
Forward Startup Debounce Configures the startup debounce time for forward mode.  
Time  
0 = Debounce time is 200µs (default)  
1 = Debounce time is 10µs  
<10:8>  
Force Operating Mode  
Enables or disables Force Operating mode.  
0XX: No effect  
100: No switching, do not use  
101: Buck mode  
110: Boost mode  
111: Buck-Boost mode  
<7>  
<6>  
Not used  
Current Loop Feedback  
Gain  
Configures the current loop feedback gain for high current.  
0 = Gain x 1 (default)  
1 = Gain x 0.5  
<5>  
Input Current Limit Loop  
Disables the input current limit loop.  
0 = Enable input current limit loop (default)  
1 = Disable input current limit loop  
FN8896 Rev.4.01  
Sep.17.20  
Page 29 of 50  
ISL95338  
5. ISL95338 SMBus Commands  
Table 13. Control3 Register 0x4CH (Continued)  
Bit  
<4>  
<3>  
Bit Name  
Not Used  
Disabled REF Amplifier for Disables the REF amplifier.  
Description  
Not used  
Use with External  
Reference  
0 = Enable REF amplifier (default)  
1 = Disable REF amplifier  
<2>  
<1>  
<0>  
Digital Reset  
Resets all SMBus register values to POR default value and restarts switching.  
0 = Idle (default)  
1 = Reset  
Buck-Boost Switching  
Period  
Configures the switching period in Buck-Boost mode.  
0 = Period x 1 (default)  
1 = Period x 2 (half switching frequency)  
PGOOD Setting  
Configures the PGGOD assert condition.  
0 = PGOOD suppressed until VREF equals to VDAC (default)  
1 = PGOOD assert when switching starts  
Table 14. Control4 Register 0x4EH  
Bit  
<15:8>  
<7>  
Bit Name  
Description  
Not used  
Reverse Mode Current  
PROCHOT#  
Enables or disables trigger PROCHOT# with current in Reverse mode.  
0 = Enable (default)  
1 = Disable  
<6>  
Forward Sleep Mode  
Enables or disables Chip Sleep mode in Forward mode regardless of ADP voltage. RVSEN pin or  
Control1 bit <11> can override this function.  
0 = Disable (default)  
1 = Enable  
<5:2>  
<1>  
Not used  
PROCHOT# Clear  
PROCHOT# Latch  
Clears PROCHOT#.  
0 = Idle (default)  
1 = Clear PROCHOT#  
<0>  
Manually resets PROCHOT#.  
0 = PROCHOT# signal auto-clear  
1 = hold PROCHOT# low when tripped  
5.8  
Regulating Voltage Register in Reverse Mode  
The ReverseRegulatingVoltage register contains the SMBus readable and writable Reverse mode output  
regulation voltage reference. The default value is 5.004V. This register accepts any voltage command but only the  
valid register bits are written to the register. However, the register should not be programmed higher than the  
recommended operating voltage.  
In Reverse mode, you can also configure the regulating output voltage on the ADP side by setting the external  
voltage divider on the ADP pin, without changing the ReverseRegulatingVoltage register value.  
Table 15. ReverseRegulatingVoltage Register 0x49H  
Bit  
<2:0>  
<3>  
Description  
Not used  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 12mV of regulating voltage in Reverse mode.  
<4>  
<5>  
<6>  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 24mV of regulating voltage in Reverse mode.  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 48mV of regulating voltage in Reverse mode.  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 96mV of regulating voltage in Reverse mode.  
FN8896 Rev.4.01  
Sep.17.20  
Page 30 of 50  
ISL95338  
5. ISL95338 SMBus Commands  
Table 15. ReverseRegulatingVoltage Register 0x49H (Continued)  
Bit  
Description  
<7>  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 192mV of regulating voltage in Reverse mode.  
<8>  
<9>  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 384mV of regulating voltage in Reverse mode.  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 768mV of regulating voltage in Reverse mode.  
<10>  
<11>  
<12>  
<13>  
<14>  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 1536mV of regulating voltage in Reverse mode.  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 3072mV of regulating voltage in Reverse mode.  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 6144mV of regulating voltage in Reverse mode.  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 12288mV of regulating voltage in Reverse mode.  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 24576mV of regulating voltage in Reverse mode.  
<15>  
Not used  
27456mV  
Maximum  
5.9  
Output Current Limit Register in Reverse Mode  
The ReverseCurrentLimit register contains the SMBus readable and writable reverse current limit. The default is  
512mA. This register accepts any current command, but only the valid register bits are written to the register. The  
maximum values are clamped at 4096mA for R = 20mΩ.  
s1  
Table 16. ReverseCurrentLimit Register 0x4AH  
Bit  
Description  
<6:0>  
<7>  
Not used  
0 = Add 0mA of output current limit in Reverse mode.  
1 = Add 128mA of output current limit in Reverse mode.  
<8>  
<9>  
0 = Add 0mA of output current limit in Reverse mode.  
1 = Add 256mA of output current limit in Reverse mode.  
0 = Add 0mV of output current limit in Reverse mode.  
1 = Add 512mA of output current limit in Reverse mode.  
<10>  
<11>  
<12>  
0 = Add 0mV of output current limit in Reverse mode.  
1 = Add 1024mA of output current limit in Reverse mode.  
0 = Add 0mV of output current limit in Reverse mode.  
1 = Add 2048mA of output current limit in Reverse mode.  
0 = Add 0mV of output current limit in Reverse mode.  
1 = Add 4096mA of output current limit in Reverse mode.  
<15:13>  
Not used  
4096mA  
Maximum  
FN8896 Rev.4.01  
Sep.17.20  
Page 31 of 50  
ISL95338  
5. ISL95338 SMBus Commands  
5.10 Input Voltage Limit Register  
The InputVoltageLimit register contains the SMBus readable and writable input voltage limits. The default is  
4.096V. This register accepts any command, but only the valid register bits are written to the register. The  
maximum values are clamped at 18V.  
Table 17. InputVoltageLimit Register 0x4BH  
Bit  
<7:0>  
<8>  
Description  
Not used  
0 = Add 0mV of input voltage limit.  
1 = Add 512mV of input voltage limit.  
<9>  
0 = Add 0mA of input voltage limit.  
1 = Add 1024mV of input voltage limit.  
<10>  
<11>  
<12>  
<13>  
0 = Add 0mV of input voltage limit.  
1 = Add 2048mV of input voltage limit.  
0 = Add 0mV of input voltage limit.  
1 = Add 4096mV of input voltage limit.  
0 = Add 0mV of input voltage limit.  
1 = Add 8192mV of input voltage limit.  
0 = Add 0mV of input voltage limit.  
1 = Add 16384mV of input voltage limit.  
<15:14>  
Not used  
18000mV  
Maximum  
5.11 Information Register  
The Information Register contains SMBus readable information about manufacture and operating modes.  
Table 18 and Table 19 identify the bit locations of the information available.  
Table 18. Information1 Register 0x3AH  
Bit  
Description  
<10:0>  
<11>  
Not used  
Indicates whether SystemSideProchot# is tripped.  
0 = SystemSideProchot# is not tripped  
1 = SystemSideProchot# is tripped  
<12>  
Indicates whether ADPsideProchot# is tripped.  
0 = ADPSideProchot# is not tripped  
1 = ADPSideProchot# is tripped  
<14:13>  
Indicates the active control loop.  
00 = Voltage control loop is active  
01 = System current loop is active  
10 = ADP current limit loop is active  
11 = Input voltage loop is active  
<15>  
Indicates whether the internal reference circuit is active. Bit<15> = 0 indicates that the ISL95338 is in low power  
mode.  
0 = Reference is not active  
1 = Reference is active  
FN8896 Rev.4.01  
Sep.17.20  
Page 32 of 50  
ISL95338  
5. ISL95338 SMBus Commands  
Table 19. Information2 Register 0x4DH  
Bit  
Description  
<4:0>  
<7:5>  
Program resister read out  
Indicates the ISL95338 operation mode.  
001: Forward Boost  
010: Forward Buck  
011: Forward Buck-Boost  
101: Reverse Boost  
110: Reverse Buck  
111: Reverse Buck-Boost  
<11:8>  
Indicates the ISL95338 state machine status.  
0000 = OFF  
0010 = ADP  
0100 = VSYS  
0110 = Enable Reverse mode  
1000 = Enable LDO5  
1110 = WAIT  
<12>  
<13>  
<14>  
Not used  
Not used  
Indicates forward switching enable.  
0 = Not enabled  
1 = Enabled  
<15>  
Not used  
FN8896 Rev.4.01  
Sep.17.20  
Page 33 of 50  
ISL95338  
6. Application Information  
6. Application Information  
6.1  
R3 Modulator  
The ISL95338 uses the Renesas Robust Ripple Regulator (R3) modulation scheme. The R3 modulator combines  
the best features of fixed frequency PWM and hysteretic PWM, while eliminating many of their shortcomings.  
Figure 24 conceptually shows the R3 modulator circuit and Figure 25 shows the operation principles in steady  
state.  
COMP  
+
-
S
R
V
CR  
PWM  
Q
L
PWM  
V
O
+
-
VW  
PHASE  
V
W
I
L
C
O
Hysteretic  
Window  
+
GM  
V
CR  
-
C
R
COMP  
Figure 25. R3 Modulator Operation Principles in Steady  
State  
Figure 24. R3 Modulator  
The fixed voltage window between VW and COMP is called the VW window in the following discussion. The  
modulator charges the ripple capacitor C with a current source equal to g (V - V ) during PWM on-time and  
R
m
IN  
O
discharges the ripple capacitor C with a current source equal to g V during PWM off-time, where g is a gain  
R
m
O
m
factor. The C voltage V , therefore emulates the inductor current waveform. The modulator turns off the PWM  
r
CR  
pulse when V reaches VW and turns on the PWM pulse when it reaches COMP.  
CR  
Because the modulator works with V , which is a large amplitude and noise-free synthesized signal, it achieves  
cr  
lower phase jitter than a conventional hysteretic mode modulator.  
Figure 26 shows the operation principles during dynamic response. The COMP voltage rises during dynamic  
response and turns on PWM pulses earlier and more frequently temporarily. This behavior allows for higher  
control loop bandwidth than a conventional fixed frequency PWM modulator at the same steady-state switching  
frequency.  
PWM  
PHASE  
VW  
UGATE  
LGATE  
COMP  
VCR  
IL  
Figure 27. Diode Emulation  
Figure 26. R3 Modulator Operation Principles in  
Dynamic Response  
The R3 modulator can operate in Diode Emulation (DE) mode to increase light-load efficiency. For example, in  
Buck DE mode the low-side MOSFET conducts when the current is flowing from source-to-drain and does not  
allow reverse current, emulating a diode. As shown in Figure 27, when LGATE is on, the low-side MOSFET  
carries current, which creates negative voltage on the phase node due to the voltage drop across the  
ON-resistance. The IC monitors the current by monitoring the phase node voltage. It turns off LGATE when the  
FN8896 Rev.4.01  
Sep.17.20  
Page 34 of 50  
ISL95338  
6. Application Information  
phase node voltage reaches zero to prevent the inductor current from reversing the direction and creating  
unnecessary power loss. Similar operations apply for other modes, such as Boost and Buck-boost mode.  
If the load current is light enough, as Figure 27 shows, the inductor current reaches and stays at zero before the  
next phase node pulse. At this stage, the regulator is in Discontinuous Conduction Mode (DCM). If the load  
current is heavy enough, the inductor current never reaches 0A and the regulator is in CCM, although the  
controller is in DE mode.  
Figure 28 shows the operation principle in Diode Emulation mode at light load. The load gets incrementally lighter  
in the three cases from top to bottom. The PWM on-time is determined by the VW window size, therefore, it is the  
same, making the inductor current triangle the same in the three cases. The R3 modulator clamps the ripple  
capacitor voltage V in DE mode to make it mimic the inductor current. The COMP voltage takes longer to reach  
CR  
V
, which naturally stretches the switching period. The inductor current triangles move farther apart from each  
CR  
other, so that the inductor current average value is equal to the load current. The reduced switching frequency  
helps increase light-load efficiency.  
CCM/DCM Boundary  
VW  
VCR  
IL  
Light DCM  
VW  
VCR  
IL  
Deep DCM  
VW  
VCR  
IL  
Figure 28. Period Stretching  
6.2  
ISL95338 Bidirectional Buck-Boost Voltage Regulator  
The ISL95338 bidirectional buck-boost voltage regulator drives an external N-channel MOSFET bridge comprised  
of two transistor pairs as shown in Figure 2. The first pair, Q and Q , is a buck arrangement with the transistor  
1
2
center tap connected to an inductor “input”, as is the case with a buck converter in Forward mode. The second  
transistor pair, Q and Q , is a boost arrangement with the transistor center tap connected to the same inductor’s  
3
4
“output”, as is the case with a boost converter in Forward mode. This arrangement supports the same operation  
mode in reverse direction.  
• In Forward Buck mode, Q and Q turn on and off alternatively, while Q remains off and Q remains on.  
1
2
3
4
• In Forward Boost mode, Q3 and Q4 turn on and off alternatively, while Q1 remains on and Q2 remains off.  
• In Forward Buck-Boost mode, Q and Q turn on at the same time, Q turns off and Q turns on, Q turns off  
1
3
3
4
1
and Q turns on, and after Q and Q turn off at the same time, and Q and Q turn on again.  
2
2
4
1
3
• In Forward Bypass mode, Q and Q are always on, while Q and Q are always off.  
1
4
2
3
• In Reverse Buck mode, Q and Q turn on and off alternatively, while Q remains off and Q remains on.  
3
4
2
1
• In Reverse Boost mode, Q and Q turn on and off alternatively, while Q remains on and Q remains off.  
1
2
4
3
FN8896 Rev.4.01  
Sep.17.20  
Page 35 of 50  
ISL95338  
6. Application Information  
• In Reverse Buck-Boost mode, Q and Q turn on at the same time, Q turns off and Q turns on, Q turns off  
4
2
2
1
4
and Q turns on, and after Q and Q turn off at the same time and Q and Q turn on again.  
3
3
1
4
2
• In Reverse Bypass mode, Q and Q are always on, except during the needed refresh time, while Q and Q  
3
1
4
2
are always off.  
• In Reverse mode, the output sensing point is CSIP pin.  
Table 20. Operation Mode  
Mode  
Forward Buck  
Q
Q
Q
Q
4
1
2
3
Control FET  
ON  
Sync. FET  
OFF  
OFF  
Control FET  
Control FET  
OFF  
ON  
Sync. FET  
Sync. FET  
ON  
Forward Boost  
Forward Buck-Boost  
Forward Bypass  
Reverse Buck  
Control FET  
ON  
Sync. FET  
OFF  
ON  
OFF  
Sync. FET  
OFF  
Control FET  
ON  
Reverse Boost  
Sync. FET  
Sync. FET  
ON  
Control FET  
Control FET  
OFF  
Reverse Buck-Boost  
Reverse Bypass  
Sync. FET  
OFF  
Control FET  
ON  
56ꢄ  
&6,1  
9$'3  
&6,3  
9287  
56ꢅ  
&621 6<67(0  
/2$'  
&623  
4ꢋ  
4ꢂ  
4ꢄ  
4ꢅ  
/ꢄ  
Figure 29. Buck-Boost Regulator Topology  
The ISL95338 optimizes the operation mode transition algorithm by considering the input and output voltage ratio  
and the load condition. The ISL95338 transitions from Boost mode to Buck-Boost mode when ADP voltage V  
ADP  
is rising and is higher than 94% of the system bus voltage VSYS, If V  
is higher than 120% of VSYS, the  
ADP  
ISL95338 transitions from Buck-Boost mode to Buck mode under any circumstance. At a heavier load, the mode  
transition point changes accordingly to accommodate the duty cycle change due to the power loss on the voltage  
regulator circuit.  
When the ADP voltage V  
is falling and is lower than 106% of the system bus voltage VSYS, the ISL95338  
ADP  
transitions from Buck mode to Buck-Boost mode. If V  
from Buck-Boost mode to Boost mode.  
is lower than 80% of VSYS, the ISL95338 transitions  
ADP  
VADP  
Buck  
Buck  
120%  
Buck-Boost  
106%  
VSYS  
Buck-Boost  
94%  
Boost  
80%  
Boost  
VADP  
Figure 30. Operation Mode  
FN8896 Rev.4.01  
Sep.17.20  
Page 36 of 50  
ISL95338  
6. Application Information  
When the reverse function is enabled with the SMBus command or RVSEN pin, and if reverse voltage VSYS is  
higher than 4.1V, the ISL95338 operates in Reverse mode.  
You can enable Bypass mode with Control1 register Bit 4. When the Bypass mode control bit is enabled, the REF  
ramps to the input voltage, and the switcher continues switching until the output voltage is in the 300mV window  
to the input. When the regulating voltage is within the 300mV window to the input voltage, the latch is set to stop  
the switching, Q and Q are always on while Q and Q are always off, and UV and OV are disabled. To exit  
1
4
2
3
Bypass mode, unprogram Control1 register Bit 4; the REF then ramps to DAC and switching resumes.  
6.3  
Soft-Start  
The ISL95338 includes a low power LDO with nominal 5V output with an input that is OR-ed from the VOUT pin  
and ADP pin. The ISL95338 also includes a high power LDO with nominal 5V output with an input that is from the  
DCIN pin connected to the ADP and the system bus, through an external OR-ing diode circuit. Both LDO outputs  
are tied to the VDD pin to provide the bias power and gate drive power for ISL95338. The VDDP pin is the  
ISL95338 gate drive power supply input. Use an R-C filter to generate the VDDP pin voltage from the VDD pin  
voltage.  
When V > 2.7V, the ISL95338 digital block is activated. The soft-start time can be set by the external capacitor  
DD  
on the REF pin. The ISL95338 sources 1µA current out of the REF pin to charge this external capacitor. Its  
voltage is used as the output voltage reference in the soft-start procedure.  
6.4  
Programming Options  
The resistor from the PROG pin to GND programs the ISL95338’s forward output voltage configuration. Table 21  
shows the programing options.  
Table 21. PROG Pin Programming Options  
Prog-GND Resistance (kΩ)  
Default Forward  
Min  
0
Max  
28  
Regulating Voltage  
5.004  
35.7  
82.5  
147  
237  
71.5  
133  
215  
open  
9.000  
12.000  
16.008  
20.004  
The switching frequency can be changed through SMBus Control1 register Bit<9:7> after POR. See the SMBus  
Control1 register programming table (Table 11) for a detailed description.  
After POR, the ISL95338 sources 10µA current out of the PROG pin and reads the PROG pin voltage to determine  
the resistor value. If the ISL95338 is powered up from reverse side, it does not read PROG resistor. When  
FRWEN is enabled, the ISL95338 resets the forward regulating voltage register to its default values according to  
the PROG pin setting.  
By default, the ADP current-sensing resistor R is 20mΩ and VSYS current-sensing resistor R is 10mΩ. Using  
s1  
s2  
these R = 20mΩand R = 10mΩ options results in a 4mA/LSB correlation in the SMBus current commands.  
s1  
s2  
If the R and R values are different from these R = 20mΩand R = 10mΩ options, the SMBus command  
s1  
s2  
s1  
s2  
needs to be scaled accordingly to obtain the correct current. Smaller current-sense resistor values reduce the  
power loss whereas larger current-sense resistor values give better accuracy.  
The illustration in this datasheet is based on current-sensing resistors R = 20mΩ and R = 10mΩ unless  
s1  
s2  
specified otherwise.  
FN8896 Rev.4.01  
Sep.17.20  
Page 37 of 50  
ISL95338  
6. Application Information  
6.5  
DE Operation  
In DE mode, the ISL95338 uses a phase comparator to monitor the PHASE node voltage to the ground or VOUT  
or ADP voltage during the low-side switching FET on-time to detect the inductor current zero crossing, depending  
on the operation mode (Buck, Buck-Boost, or Boost) and power delivery direction (Forward or reverse direction).  
See Table 22. The phase comparator needs a minimum on-time of the low-side switching FET for it to recognize  
the inductor current zero crossing. If the low-side switching FET on-time is too short for the phase comparator to  
successfully recognize the inductor zero crossing, the ISL95338 may lose diode emulation ability. To prevent this  
scenario, the ISL95338 uses a minimum low-side switching FET on-time. When the intended low-side switching  
FET on-time is shorter than the minimum value, the ISL95338 stretches the switching period to keep the low-side  
switching FET on-time at the minimum value, which causes the CCM switching frequency to drop below the set  
point.  
Table 22. Voltage Comparator for DE Operation  
Mode  
Buck  
Direction  
Forward  
Forward  
Forward  
Reverse  
Reverse  
Reverse  
Voltage Comparator  
PHASE 1 to GND  
PHASE 1 to VOUT  
PHASE 1 to VOUT  
PHASE 2 to GND  
PHASE 1 to ADP  
PHASE 1 to ADP  
Boost  
Buck-Boost  
Buck  
Boost  
Buck-Boost  
6.6  
Forward Mode  
When the forward function is enabled with the SMBus command or FRWEN pin (voltage is higher than 0.8V) and  
DCIN is powered by ADP, and if the ADP is plugged in and its value is higher than 4.1V, the ISL95338 can operate  
in Forward Buck mode, Forward Boost mode, Forward Buck-Boost mode, or Forward Bypass mode. After the  
forward output voltage reaches the regulating output voltage range set by register 0X15H Bit<14:3>, forward  
power-good FWGPG asserts to High.  
6.7  
Reverse Mode for USB OTG (On-the-Go)  
When the reverse function is enabled with the SMBus command (Control1 Bit 11) or RVSEN pin, and if an  
external voltage is on system side and its value is higher than 4.1V, the ISL95338 can operate in Reverse Buck  
mode, Reverse Boost mode, Reverse Buck-Boost mode, or Reverse Bypass mode. RVSEN is the digital input  
pin. The 1.3s or 150ms debounce time can be set by Control2 register Bit<13>. After the reverse output voltage  
reaches the output voltage set by register 0X49H Bit<14:3>, reverse power-good RVSPG asserts to High.  
Before Reverse mode starts switching, the CSIP pin voltage needs to drop below the reverse output overvoltage  
protection threshold (ReverseRegulatingVoltage + 1177mV) first.  
The default reverse output voltage is 5V and programmable up to 20V in Reverse Buck, Reverse Buck-Boost, and  
Reverse Boost mode. In Reverse Bypass mode, the reverse output voltage’s maximum value is programmable up  
to 20V. The reverse voltage register 0X49H can be used to configure the reverse output voltage.  
6.8  
Fast REF  
To achieve fast REF in some applications, the fast REF function can be programmed by Control1 Bit 3. If this bit is  
programmed, a 1µA current source for the REF pin is replaced with 5k impedance to get faster transitions for REF  
voltage.  
FN8896 Rev.4.01  
Sep.17.20  
Page 38 of 50  
ISL95338  
6. Application Information  
6.9  
Fast Swap  
The ISL95338 provides fast swap function in Forward mode and Reverse mode. You can implement the fast swap  
function in Forward mode in one of two ways (pin reverse or software reverse) by completing the following steps:  
• Pin reverse fast swap enable:  
1. Program Control2 Bit 4 (Reverse Fast Swap).  
2. Skip trim during restart by programming Control1 Bit 13.  
3. Skip autozero during restart by programming Control1 Bit 12.  
4. Enable RVSEN pin.  
• Software reverse fast swap enable:  
1. Program Control1 Bit 0 (Force 5.04V VDAC).  
2. Program Control1 Bit 3 (Fast REF).  
3. Skip trim during restart with programming Control1 Bit 13.  
4. Skip autozero during restart with programming Control1 Bit 12.  
5. Program Control1 Bit 11 (Force Reverse mode).  
Similarly, you can implement the fast swap function in Reverse mode in one of two ways (pin reverse or software  
reverse) by following the steps below:  
• Pin forward fast swap enable:  
1. Program Control2 Bit 3 (Forward Fast Swap).  
2. Skip trim during restart by programming Control1 Bit 13.  
3. Skip autozero during restart by programming Control1 Bit 12.  
4. Disable the RVSEN pin.  
5. Enable the FWREN pin.  
• Software forward fast swap enable:  
1. Program Control1 Bit 0 (Force 5.04V VDAC).  
2. Program Control1 Bit 3 (Fast REF).  
3. Skip trim during restart by programming Control1 Bit 13.  
4. Skip autozero during restart by programming Control1 Bit 12.  
5. Un-program Control1 Bit 11 (Force Reverse mode).  
6.10 Way Overcurrent Protection (WOCP)  
The ISL95338 provides Way Overcurrent Protection (WOCP) against MOSFET shorts, system side and ADP side  
shorts, and inductor shorts. The ISL95338 monitors the CSIP-CSIN voltage and CSON-CSOP voltage and  
compares them to the WOCP threshold 12A for ADP current and 20A for system side current in Forward mode.  
When the WOC comparator is tripped, the ISL95338 counts one time within each 10µs window. If the ISL95338  
counts WOC to 7 times in 50ms, it stops switching immediately. After the 1.3s or 150ms debounce time is set by  
Control2 register Bit<12>, the ISL95338 goes through the start-up sequence to retry.  
The WOCP function can be disabled through Control2 register Bit<1>.  
6.11 ADP Input Overvoltage Protection  
If the ADP pin input voltage exceeds 26.4V for more than 10µs, the ISL95338 declares an ADP overvoltage  
condition and stops switching. When the ADP voltage drops below 25.608V for more than 100µs, the ISL95338  
starts to switch.  
FN8896 Rev.4.01  
Sep.17.20  
Page 39 of 50  
ISL95338  
6. Application Information  
6.12 System Output Overvoltage Protection  
The ISL95338 provides system rail output overvoltage protection. If the system voltage VOUTS is 1095mV higher  
than the ForwardRegulatingVoltage register set value for more than 100µs, it declares the system overvoltage,  
de-asserts FWRPG, and stops switching. It resumes switching with the 100µs debounce when the VOUTS is less  
than 542mV plus the setting reference voltage for forward.  
6.13 System Output Undervoltage Protection  
The ISL95338 provides system rail output undervoltage protection. If the system voltage VOUTS is 818mV lower  
than the ForwardRegulatingVoltage register set value for more than 1ms, it declares the system undervoltage,  
de-asserts FWRPG, and restarts.  
6.14 ADP Output Overvoltage Protection  
The ISL95338 provides ADP rail output overvoltage protection. If the ADP voltage ADPS is 1177mV higher than  
the ReverseRegulatingVoltage register set value for more than 100µs, it declares the ADP overvoltage,  
de-asserts RVSPG, and stops switching. The ISL95338 resumes switching with the 100µs debounce when ADPS  
is less than 583mV plus the setting reference voltage for reverse.  
6.15 ADP Output Undervoltage Protection  
The ISL95338 provides ADP rail output undervoltage protection. If the ADP voltage VADPS is 1177mV lower than  
the ReverseRegulatingVoltage register set value for more than 1ms, it declares the ADP undervoltage, de-asserts  
RVSPG, and stops switching.  
6.16 Over-Temperature Protection  
The ISL95338 stops switching for self protection when the junction temperature exceeds +140°C. The ISL95338  
resumes switching when the temperature falls below +120°C and after a 100µs delay.  
6.17 Switching Power MOSFET Gate Capacitance  
The ISL95338 includes an internal 5V LDO output at the VDD pin that can provide the switching MOSFET gate  
driver power through the VDDP pin with an R-C filter. The 5V LDO output overcurrent protection threshold is  
115mA nominal. When selecting the switching power MOSFET, the MOSFET gate capacitance should be  
considered carefully to avoid overloading the 5V LDO, especially in Buck-Boost mode when four MOSFETs are  
switching at the same time. For one MOSFET, the gate drive current can be estimated by Equation 1:  
I
= Q f  
g
SW  
(EQ. 1)  
where:  
driver  
Q is the total gate ADP which can be found in the MOSFET datasheet  
g
f
is switching frequency  
SW  
Renesas recommends connecting a 2.2μF ceramic capacitor from the VDD and VDDP pins to GND. The effective  
capacitance of the MLCC at 5V must be at least 0.4μF after derating and at least 1.6 times the effective  
capacitance at the BOOT pin. Use a X7R or X5R ceramic capacitor.  
FN8896 Rev.4.01  
Sep.17.20  
Page 40 of 50  
ISL95338  
6. Application Information  
6.18 ADP Side Input Filter  
The ADP cable parasitic inductance and capacitance can cause some voltage ringing or an overshoot spike at the  
ADP connector node when the ADP is hot plugged in. This voltage spike can damage the ISL95338 pins  
connecting to the ADP connector node. One low cost solution is to add an R-C snubber circuit at the ADP  
connector node to clamp the voltage spike as shown in Figure 31. A practical value of the R-C snubber is 2.2Ω to  
2.2µF; however, the appropriate values and power rating should be carefully characterized based on the actual  
design. Additionally, it is not recommended to add a pure capacitor at the ADP connector node, which can cause  
an even bigger voltage spike due to the ADP cable or the ADP current path parasitic inductance.  
Adapter  
Connector  
Ri  
2.2  
Ci  
ACIN  
2.2µF  
RC Snubber  
ISL95338  
Figure 31. Adapter Input RC Snubber Circuit  
FN8896 Rev.4.01  
Sep.17.20  
Page 41 of 50  
ISL95338  
7. General Application Information  
7. General Application Information  
This design guide provides a high-level explanation of the steps necessary to design a single-phase power  
converter. It is assumed that the reader is familiar with many of the basic skills and techniques referenced in the  
following sections. In addition to this guide, complete reference designs that include schematics, bill of materials,  
and example board layouts are provided.  
7.1  
Select the LC Output Filter  
The duty cycle of an ideal buck converter in CCM is a function of the input and the output voltage. This  
relationship is written by Equation 2:  
V
OUT  
(EQ. 2)  
D = --------------  
V
IN  
The output inductor peak-to-peak ripple current is written by Equation 3:  
V
1 D  
OUT  
(EQ. 3)  
I
= -----------------------------------  
P-P  
SW  
f
L
A typical step-down DC/DC converter has an I  
of 20% to 40% of the maximum DC output load current for a  
P-P  
practical design. The value of I  
is selected based upon several criteria such as MOSFET switching loss,  
P-P  
inductor core loss, and the resistive loss of the inductor winding.  
The DC copper loss of the inductor can be estimated by Equation 4:  
2
(EQ. 4)  
where I  
P
= I  
DCR  
COPPER  
LOAD  
is the converter output DC current.  
LOAD  
The copper loss can be significant so attention has to be given to the DCR selection. Another factor to consider  
when choosing the inductor is its saturation characteristics at elevated temperatures. A saturated inductor can  
destroy circuit components.  
A DC/DC buck regulator must have output capacitance C , into which ripple current I  
can flow. Current I  
P-P  
O
P-P  
develops a corresponding ripple voltage V  
across C which is the sum of the voltage drop across the capacitor  
O,  
P-P  
ESR and of the voltage change stemming from ADP moved in and out of the capacitor. These two voltages are  
written by Equation 5 and Equation 6:  
(EQ. 5)  
V  
= I  
ESR  
P-P  
ESR  
I
P-P  
(EQ. 6)  
V = --------------------------  
C
8
C
f
O  
SW  
If the output of the converter has to support a load with high pulsating current, several capacitors need to be  
paralleled to reduce the total ESR until the required V is achieved. The inductance of the capacitor can cause  
P-P  
a brief voltage dip if the load transient has an extremely high slew rate. Low inductance capacitors should be  
considered in this scenario. A capacitor dissipates heat as a function of RMS current and frequency. Be sure that  
I
is shared by a sufficient quantity of paralleled capacitors so that they operate below the maximum rated RMS  
P-P  
current at f . Take into account that the rated value of a capacitor can fade as much as 50% as the DC voltage  
SW  
across it increases.  
FN8896 Rev.4.01  
Sep.17.20  
Page 42 of 50  
ISL95338  
7. General Application Information  
7.2  
Select the Input Capacitor  
The important parameters for the input capacitance are the voltage rating and the RMS current rating. For reliable  
operation, select capacitors with voltage and current ratings above the maximum input voltage and capable of  
supplying the RMS current required by the switching circuit. Their voltage rating should be at least 1.25 times  
greater than the maximum input voltage, while a voltage rating of 1.5 times is a preferred rating. The typical  
application circuit (Figure 1) is a graph of the input capacitor RMS ripple current, normalized relative to output load  
current, as a function of duty cycle and is adjusted for converter efficiency. The normalized RMS ripple current  
calculation is written as Equation 7:  
2
D k  
12  
I
D  1 D+--------------  
= ---------------------------------------------------------------------  
MAX  
(EQ. 7)  
where:  
I
C
RMS,NORMALIZED  
IN  
I
MAX  
I
is the maximum continuous I  
of the converter  
LOAD  
MAX  
k is a multiplier (0 to 1) corresponding to the inductor peak-to-peak ripple amplitude expressed as a ratio of I  
(0 to 1)  
MAX  
D is the duty cycle that is adjusted to take into account the efficiency of the converter, which is written as  
Equation 8:  
V
OUT  
(EQ. 8)  
D = -------------------------  
V
EFF  
IN  
In addition to the capacitance, some low ESL ceramic capacitance is recommended to decouple between the  
drain of the high-side MOSFET and the source of the low-side MOSFET.  
0.60  
0.48  
k = 0.25  
k = 0.5  
k = 0  
0.36  
k = 1  
k = 0.75  
0.24  
V
= ±2.5V  
S
0.12  
0
0
0.1  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0.2  
Duty Cycle  
Figure 32. Normalized RMS Input Current at EFF = 1  
7.3  
Select the Switching Power MOSFET  
Typically, a MOSFET cannot tolerate even brief excursions beyond its maximum drain-to-source voltage rating.  
The MOSFETs used in the power stage of the converter should have a maximum VDS rating that exceeds the  
sum of the upper voltage tolerance of the input power source and the voltage spike that occurs when the  
MOSFET switches off.  
Several power MOSFETs are readily available that are optimized for DC/DC converter applications. The preferred  
high-side MOSFET emphasizes low gate ADP so that the device spends the least amount of time dissipating  
power in the linear region. Unlike the low-side MOSFET, which has the drain-to-source voltage clamped by its  
FN8896 Rev.4.01  
Sep.17.20  
Page 43 of 50  
ISL95338  
7. General Application Information  
, plus the  
body diode during turn off, the high-side MOSFET turns off with a VDS of approximately V - V  
IN  
OUT  
spike across it. The preferred low-side MOSFET emphasizes low r  
when fully saturated to minimize  
DS(ON)  
conduction loss. Note that this is an optimal configuration of MOSFET selection for low duty cycle applications  
(D < 50%). For higher output, low input voltage solutions, a more balanced MOSFET selection for high-side and  
low-side devices may be warranted.  
For the low-side (LS) MOSFET, the power loss can be assumed to be conductive only and is written as  
Equation 9:  
2
(EQ. 9)  
P
I  
r  
1 D  
DSON_LS  
CON_LS  
LOAD  
For the high-side (HS) MOSFET, the conduction loss is written as Equation 10:  
2
P
= I  
r
D
DSON_HS  
(EQ. 10)  
CON_HS  
LOAD  
For the high-side MOSFET, the switching loss is written as Equation 11:  
V
I
t
f
V
I
t
f
INPEAKSWOFF  
SW  
INVALLEYSWON  
SW  
(EQ. 11)  
where:  
P
= ----------------------------------------------------------------------- + -------------------------------------------------------------------  
SW_HS  
2
2
I
I
t
t
is the difference of the DC component of the inductor current minus 1/2 of the inductor ripple current  
VALLEY  
is the sum of the DC component of the inductor current plus 1/2 of the inductor ripple current  
PEAK  
is the time required to drive the device into saturation  
SW(ON)  
SW(OFF)  
is the time required to drive the device into cut-off  
7.4  
Select the Bootstrap Capacitor  
The selection of the bootstrap capacitor is written by Equation 12:  
Q
g
(EQ. 12)  
where:  
C
= ----------------------  
BOOT  
V  
BOOT  
Q is the total gate required to turn on the high-side MOSFET  
g
V  
is the maximum allowed voltage decay across the boot capacitor each time the high-side MOSFET is  
BOOT  
switched on  
As an example, suppose the high-side MOSFET has a total gate ADP Q of 25nC at V = 5V and a V of  
BOOT  
g
GS  
200mV. The calculated bootstrap capacitance is 0.125µF; for a comfortable margin, select a capacitor that is  
double the calculated capacitance. In this example, 0.22µF is enough.  
Renesas recommends using a 0.47μF ceramic capacitor at the BOOT pin. The effective capacitance of the MLCC  
at 5V must be at least 0.25μF after derating and at least 50 times the effective high-side MOSFET gate  
capacitance. Use a X7R or X5R ceramic capacitor.  
FN8896 Rev.4.01  
Sep.17.20  
Page 44 of 50  
ISL95338  
7. General Application Information  
7.5  
Select the Resistor Divider for VOUTS and ADPS  
ISL95338  
1.5M 1.5M  
VOUTS  
R
VSYS  
ADPS  
VADP  
R
2
R
1
3
R
4
1M  
1M  
Figure 33. Resistor Divider for VOUTS and ADPS  
ADPS and VOUTS are output voltage feedback pins, in Reverse mode and Forward mode, respectively, that  
allow you to change output voltage by the resistor divider (R , R , and R , R ), as shown in Figure 2. There are  
1
2
3
4
two parallel resistors (1M and 1.5M) inside from VOUTS and ADPS to ground. For example, in Forward mode,  
VSYS voltage magnitude can be revised by tuning R and R values, written by Equation 13. Thus, there is no  
1
2
need to change the Forward Regulating Voltage register (0x15H) through the GUI. The same process can be  
applied at the ADPS pin.  
1.5M\\1M\\R   
2
-------------------------------------------------------  
(EQ. 13)  
V
= V  
SYS  
OUTS  
1.5M\\1M\\R + R  
2
1
7.6  
Selecting the DCIN Filter  
When the ADP is plugged in, it can cause some voltage spike at the DCIN node. This voltage spike can damage  
the associated pins and the ISL95338 internal LDO. Therefore, a simple R-C filter must be connected at the DCIN  
pin to minimize the effect of the voltage spike. Renesas recommends using a 4.7Ω resistor and a 4.7μF ceramic  
capacitor as the R-C filter at the DCIN pin. The effective capacitance of the MLCC at 20V must be at least 0.4μF  
after derating. Use a X7R or X5R ceramic capacitor.  
FN8896 Rev.4.01  
Sep.17.20  
Page 45 of 50  
ISL95338  
8. Layout  
8. Layout  
Pin Number  
Pin Name  
Layout Guidelines  
BOTTOM PAD  
GND  
Connect this ground pad to the ground plane through a low impedance path. Renesas  
recommends using at least five vias to connect to the ground planes in the PCB to ensure  
sufficient thermal dissipation directly under the IC.  
1
2
CSON  
CSOP  
Run two dedicated traces with sufficient width in parallel (close to each other to minimize the  
loop area) from the two terminals of the battery current-sensing resistor to the IC. Place the  
differential mode and common-mode RC filter components in the general proximity of the  
controller.  
Route the current-sensing traces through vias to connect the center of the pads; or route the  
traces into the pads from the inside of the current-sensing resistor. The following drawings show  
the two preferred ways of routing current-sensing traces.  
Vias  
Current-Sensing Traces  
Current-Sensing Traces  
3
4
VOUTS  
BOOT2  
Signal pin that provides feedback for the forward system bus voltage. Run a dedicated trace  
from the system bus to the pin and do not route near the switching traces. Do not share the same  
trace with the signal routing to the DCIN pin OR diodes.  
Switching pin. Place the bootstrap capacitor in the general proximity of the controller. Use  
sufficiently wide trace. Avoid any sensitive analog signal trace from crossing over or getting  
close.  
5
6
UGATE2  
PHASE2  
Run these two traces in parallel with sufficient width. Avoid any sensitive analog signal trace from  
crossing over or getting close. Renesas recommends routing the PHASE2 trace to high-side  
MOSFET source pin instead of general copper.  
Place the IC close to the switching MOSFETs gate terminals and keep the gate drive signal  
traces short for a clean MOSFET drive. The IC can be placed on the opposite side of the  
switching MOSFETs.  
Place the output capacitors as close as possible to the switching high-side MOSFET drain and  
the low-side MOSFET source; and use the shortest PCB trace connection. Place these  
capacitors on the same PCB layer as the MOSFETs instead of on different layers and using vias  
to make the connection.  
Place the inductor terminal to the switching high-side MOSFET drain and low-side MOSFET  
source terminal as close as possible. Minimize this phase node area to lower the electrical and  
magnetic field radiation, but make this phase node area large enough to carry the current. Place  
the inductor and the switching MOSFETs on the same layer of the PCB.  
7
LGATE2  
Switching pin. Run the LGATE2 trace in parallel with the UGATE2 and PHASE2 traces on the  
same PCB layer. Use sufficient width. Avoid any sensitive analog signal trace from crossing over  
or getting close.  
8
9
VDDP  
Place the decoupling capacitor in the general proximity of the controller. Run the trace  
connecting to the VDD pin with sufficient width.  
LGATE1  
Switching pin. Run the LGATE1 trace in parallel with the UGATE1 and PHASE1 traces on the  
same PCB layer. Use sufficient width. Avoid any sensitive analog signal trace from crossing over  
or getting close.  
FN8896 Rev.4.01  
Sep.17.20  
Page 46 of 50  
ISL95338  
8. Layout  
Pin Number  
Pin Name  
PHASE1  
UGATE1  
Layout Guidelines  
10  
11  
Run these two traces in parallel with sufficient width. Avoid any sensitive analog signal trace from  
crossing over or getting close. Renesas recommends routing the PHASE1 trace to the high-side  
MOSFET source pin instead of general copper.  
Place the IC close to the switching MOSFET’s gate terminals and keep the gate drive signal  
traces short for a clean MOSFET drive. The IC can be placed on the opposite side of the  
switching MOSFETs.  
Place the input capacitors as close as possible to the switching high-side MOSFET drain and the  
low-side MOSFET source; and use the shortest PCB trace connection. Place these capacitors  
on the same PCB layer as the MOSFETs instead of on different layers and using vias to make  
the connection.  
Place the inductor terminal to the switching high-side MOSFET drain and low-side MOSFET  
source terminal as close as possible. Minimize this phase node area to lower the electrical and  
magnetic field radiation but make this phase node area large enough to carry the current. Place  
the inductor and the switching MOSFETs on the same layer of the PCB.  
12  
BOOT1  
Switching pin. Place the bootstrap capacitor in the general proximity of the controller. Use  
sufficiently wide trace. Avoid any sensitive analog signal trace from crossing over or getting  
close.  
13  
14  
15  
ADPS  
CSIN  
CSIP  
Run this trace with sufficient width parallel to the ADP pin trace.  
Run two dedicated traces with sufficient width in parallel (close to each other to minimize the  
loop area) from the two terminals of the adapter current-sensing resistor to the IC. Place the  
Differential mode and common-mode RC filter components in the general proximity of the  
controller.  
Route the current-sensing traces through vias to connect the center of the pads; or route the  
traces into the pads from the inside of the current-sensing resistor. The following drawings show  
the two preferred ways of routing current-sensing traces.  
Vias  
Current-Sensing Traces  
Current-Sensing Traces  
16  
17  
ADP  
Run this trace with sufficient width parallel to the ADPS pin trace.  
DCIN  
Place the OR diodes and the RC filter in the general proximity of the controller. Run the VADP  
trace and VSYS trace to the OR diodes with sufficient width.  
18  
VDD  
Place the RC filter connecting with the VDDP pin in the general proximity of the controller. Run  
the trace connecting to the VDDP pin with sufficient width.  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
FRWEN  
RVSEN  
SDA  
No special consideration.  
No special consideration.  
Digital pins. No special consideration. Run the SDA and SCL traces in parallel.  
SCL  
PROCHOT#  
FRWPG  
ADDR0  
RVSPG  
PROG  
Digital pin, open-drain output. No special consideration.  
Digital pin, open-drain output. No special consideration.  
No special consideration.  
Digital pin, open-drain output. No special consideration.  
Signal pin. Place the PROG programming resistor in the general proximity of the controller.  
COMPF  
Place the compensation components in the general proximity of the controller. Avoid any  
switching signal from crossing over or getting close.  
FN8896 Rev.4.01  
Sep.17.20  
Page 47 of 50  
ISL95338  
8. Layout  
Pin Number  
Pin Name  
REF  
Layout Guidelines  
29  
30  
Place the reference capacitor in the general proximity of the controller.  
COMPR  
Place the compensation components in the general proximity of the controller. Avoid any  
switching signal from crossing over or getting close.  
31  
32  
VOUT  
Run a dedicated trace from the system bus to the pin and do not route near the switching traces.  
No special consideration.  
ADDR1  
FN8896 Rev.4.01  
Sep.17.20  
Page 48 of 50  
ISL95338  
9. Revision History  
9. Revision History  
Rev.  
4.01  
4.00  
Date  
Description  
Sep.17.20  
Jul.18.19  
Updated Figure 23.  
Fixed incorrect cross references to Figure 23 throughout document.  
Updated block diagram (Figure 2 on page 5).  
Updated pin descriptions for pins 8, 17, and 18 on pages 7 and 8.  
Updated Figure 19 on page 17.  
Updated ForwardInputCurrent register’s default value to 1.5A on page 20.  
Changed “<12:4>” to “12:2>” in Tables 5 and 6 on page 23.  
Added a paragraph to section 6.17 on page 40 and section 7.4 on page 44.  
Added section 7.6 “Selecting the DCIN Filter” on page 45.  
Added section 8 “Layout” on pages 46 through 48.  
Applied new template.  
3.00  
Oct.26.18  
Changed 24V to 20V in the description on page 1.  
Updated the Ordering Information table on page 6 by adding tape and reel information to the table, updating  
Note 1, removing Note 2, and updating the package drawing information.  
Under “Absolute Maximum Ratings” on page 9 updated the following:  
- Changed VOUT, VOUTS, CSOP, CSON maximum specification from +27V to +24V.  
- Changed BOOT1, BOOT2 maximum specification from VDDP + 27V to VDDP + 25V.  
- Changed BOOT1-PHASE1, BOOT2-PHASE2 maximum specification from +0.3V to +6.5V and moved it up  
in the table.  
- Updated CSIP-CSIN, CSOP-CSON by adding a minimum specification and changing the maximum  
specification from 2mA to +0.3V.  
- Added a new row (RVSEN, FRWEN, SDA, SCL, FRWPG, RVSPG, PROCHOT#).  
Replaced POD L32.4x4A with the L32.4x4D.  
Removed About Intersil section and updated the disclaimer.  
2.00  
1.00  
0.00  
Nov.30.17  
Oct.5.17  
Added Way Overcurrent Protection (WOCP) function to datasheet.  
Removed Way Overcurrent Protection (WOCP) function  
Initial release  
Aug.15.17  
FN8896 Rev.4.01  
Sep.17.20  
Page 49 of 50  
ISL95338  
10. Package Outline Drawing  
For the most recent package outline drawing, see L32.4x4D.  
10. Package Outline Drawing  
L32.4x4D  
32 LEAD THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 2, 10/16  
2.80  
6
4.00  
A
28X 0.40  
PIN #1  
INDEX AREA  
B
6
PIN 1  
INDEX AREA  
4.00  
2.70 ±0.10  
(4X)  
0.10  
32X 0.20  
32X 0.30  
0.10  
M
C
A B  
b
4
TOP VIEW  
BOTTOM VIEW  
(3.90 TYP)  
(2.80)  
0.75  
SEE DETAIL “X”  
// 0.10 C  
C
BASE PLANE  
SEATING PLANE  
0.08 C  
SIDE VIEW  
(
2.70)  
(28X 0.40)  
(32X 0.20)  
5
C
0.00 MIN  
0.05 MAX  
0.035 NOMINAL  
(32X 0.50)  
TYPICAL RECOMMENDED LAND PATTERN  
0.2 REF  
DETAIL “X”  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance: Decimal ±0.05.  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.25mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN8896 Rev.4.01  
Sep.17.20  
Page 50 of 50  
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

ISL95338HRTZ-T7A

Bidirectional Buck-Boost Voltage Regulator; TQFN32; Temp Range: See Datasheet
RENESAS

ISL95338HRTZ-TK

Bidirectional Buck-Boost Voltage Regulator; TQFN32; Temp Range: See Datasheet
RENESAS

ISL95338IRTZ

Bidirectional Buck-Boost Voltage Regulator; TQFN32; Temp Range: See Datasheet
RENESAS

ISL95338IRTZ-T

Bidirectional Buck-Boost Voltage Regulator; TQFN32; Temp Range: See Datasheet
RENESAS

ISL95338IRTZ-TK

Bidirectional Buck-Boost Voltage Regulator; TQFN32; Temp Range: See Datasheet
RENESAS

ISL95521AHRZ

Hybrid Power Boost (HPB) and Narrow VDC (NVDC) Combo Battery Charger with SMBus Interface
RENESAS

ISL95521AHRZ-T

Hybrid Power Boost (HPB) and Narrow VDC (NVDC) Combo Battery Charger with SMBus Interface
RENESAS

ISL95521AIRZ-T

Hybrid Power Boost (HPB) and Narrow VDC (NVDC) Combo Battery Charger with SMBus Interface
RENESAS

ISL95710

Terminal Voltage 3V or 5V, 128 Taps Up/Down Interface
INTERSIL

ISL95710UIU10Z

Terminal Voltage 3V or 5V, 128 Taps Up/Down Interface
INTERSIL

ISL95710UIU10Z-T

Terminal Voltage 3V or 5V, 128 Taps Up/Down Interface
INTERSIL

ISL95710WIU10Z

Terminal Voltage 3V or 5V, 128 Taps Up/Down Interface
INTERSIL