ISL98604IRTZ-EVZ [RENESAS]

6-Channel Integrated LCD Supply;
ISL98604IRTZ-EVZ
型号: ISL98604IRTZ-EVZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

6-Channel Integrated LCD Supply

CD
文件: 总28页 (文件大小:1202K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
NOT RECOMMENDED FOR NEW DESIGNS  
NO RECOMMENDED REPLACEMENT  
contact our Technical Support Center at  
1-888-INTERSIL or www.intersil.com/tsc  
ISL98604  
FN7687  
Rev 1.00  
6-Channel Integrated LCD Supply  
April 9, 2015  
The ISL98604 is a high power, fully programmable 6-Channel  
output control IC targeted at large panel LCD displays. The  
ISL98604 integrates a high power, boost converter and delay  
switch for AVDD generation, one VIO asynchronous buck  
regulator, two synchronous buck regulators for HAVDD and  
Features  
• 8V to 16.5V input supply  
• AVDD boost up to 19.0V, with integrated 4.0A  
FET  
PEAK  
FET  
• HAVDD synchronous buck for 8V with 1A  
• Overvoltage protection (OVP)  
• Internal AVDD delay FET  
PEAK  
VCORE supply generation, and linear regulator controllers for V  
ON  
and V  
OFF  
charge pumps.  
Operating at 750kHz, the AVDD boost converter features a 4.0A  
boost FET and 6-bit resolution programmable from 12.7V to  
19.0V. The delay switch is also integrated for power sequence.  
• Dual linear regulator controllers for V and V  
ON  
OFF  
• V temperature compensation  
ON  
• VIO buck with integrated 2A  
PEAK  
FET  
The asynchronous buck converter for VIO supply features an  
integrated 2A FET. It also operates at 750kHz internal clock and  
compensation features.  
• VCORE synchronous buck with integrated 1A  
• Internal feedback and compensation  
• Programmable output control with IIC  
• Programmable sequencing with IIC  
• UVLO and OTP protection  
FET  
PEAK  
The two synchronous bucks are integrated with controller,  
upper, and lower side switches for HAVDD and VCORE  
generation with internal compensation. The HAVDD and  
VCORE outputs are both programmable ranging from 6.4V to  
9.55V and 0.9V to 2.4V, respectively.  
• Thermally enhanced 5x5 Thin QFN package  
• Pb-free (RoHS compliant)  
Dual linear regulator controllers are provided to allow generation  
of accurate V and V  
charge pumps and bipolar power transistors. V output voltage  
can be compensated adoptively by temperature sensing.  
voltages in conjunction with external  
ON OFF  
Applications  
• LCD TV  
ON  
All output voltages are programmed through IIC and stored in  
EEPROM. Alternative factory set voltages may be available for the  
ISL98604.  
Pin Configuration  
ISL98604  
(40 LD 5x5 TQFN)  
TOP VIEW  
40 39 38 37 36 35 34 33 32 31  
EN  
30  
VCORE  
1
2
29 SDA  
TCOMP  
VDC  
28  
3
SCL  
27  
26  
25  
24  
23  
22  
21  
4
A0  
AGND  
AVIN  
5
PG  
THERMAL  
PAD  
6
NC  
PVIN3  
NC  
7
DRVN  
NC  
8
PHASE1  
HAVDD  
PGND3  
9
FBN  
FBP  
10  
11 12 13 14 15 16 17 18 19 20  
FN7687 Rev 1.00  
April 9, 2015  
Page 1 of 28  
ISL98604  
Table of Contents  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Test Circuits and Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Boost Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
HAVDD Synchronous Buck Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
VIO Buck Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
VCORE Buck Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
V
V
Linear-Regulator Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
ON  
Linear-Regulator Controller and Charge Pump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
OFF  
Calculation of the Linear Regulator Base-Emitter Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
VON/VOFF Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
VON Temperature Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2
I C Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Start-Up Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Layout Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
FN7687 Rev 1.00  
April 9, 2015  
Page 2 of 28  
ISL98604  
Pin Descriptions  
PIN #  
SYMBOL  
DESCRIPTION  
1
2
EN  
IC enable pin; pull high to enable all the outputs.  
TCOMP  
Temperature compensation input, connect NTC resistor in the resistor ladder from VDC to GND to set the curve of V  
temperature.  
vs  
ON  
3
4
5
6
VDC  
AGND  
AVIN  
PVIN3  
NC  
Internal linear regulator output, connected to external 1µF capacitor close to the pin.  
Analog ground pin.  
Internal regulator supply pin; connect to external 10µF capacitor close to the pin.  
HAVDD buck power input pin; connect to external 10µF capacitor close to the pin.  
Not connected.  
7, 19,  
23, 25,  
34, 37,  
40  
8
PHASE1  
HAVDD buck switch node; connect an inductor to the pin for synchronous mode, or connect a inductor and a Schottky diode  
to the pin for asynchronous mode.  
9
10  
HAVDD  
PGND3  
SS  
HAVDD buck output feedback input pin.  
HAVDD buck Power ground.  
11  
AVDD boost and HAVDD buck soft-start timing capacitor connection for step-up.  
AVDD boost compensation pin; connect a 5.6kΩ resistor and 15nF capacitor in series to the pin.  
AVDD boost power ground.  
12  
COMP  
PGND2, 1  
SW2, 1  
SWIN  
SWO  
13, 14  
15, 16  
17  
AVDD boost switch node connection.  
AVDD delay FET input, connect a 10µF capacitor close to the pin.  
AVDD delay FET output, connect a 22µF capacitors close to the pin.  
Positive charge pump LDO transistor driver, connect the base of an external PNP bipolar to the pin.  
Positive charge pump output feedback input pin.  
Negative charge pump output feedback input pin.  
Negative charge pump LDO transistor driver, connect the base of an external NPN bipolar to the pin.  
Power-good output.  
18  
20  
DRVP  
FBP  
21  
22  
FBN  
24  
DRVN  
PG  
26  
27  
A0  
IIC slave address select pin.  
28  
SCL  
IIC clock pin.  
29  
SDA  
IIC data pin.  
30  
VCORE  
PGND4  
PHASE2  
VCORE buck output feedback input pin.  
31  
VCORE buck power ground.  
32  
VCORE buck switch node, connect an inductor to the pin for synchronous mode, or connect a inductor and a Schottky diode  
to the pin for asynchronous mode.  
33  
35, 36  
38, 39  
-
VIO  
VIO buck output feedback input pin.  
SWB1, 2  
PVIN2, 1  
PAD  
VIO asynchronous buck switch node connection.  
VIO buck and VCORE buck power input pin; connect to external 10µF capacitor close to the pin.  
Thermal Pad.  
FN7687 Rev 1.00  
April 9, 2015  
Page 3 of 28  
ISL98604  
Typical Application Circuit  
L1  
4.7µH  
SS34  
D1  
AVDD: 16V  
12.7V~19.0V  
VIN: 12V  
8V~16.5V  
LX  
C1  
10µF  
C4  
10µF  
C02  
20µF  
C03  
20µF  
C04  
10µF  
VIO BUCK  
BOOST  
PVIN1  
PVIN2  
SW1  
SW2  
SWIN  
SWO  
L2  
6.8µH  
SWB1  
SWB2  
VIO: 3.3V  
3.0V~3.7V  
R01  
AVDD  
COMP  
PGND1  
PGND2  
C11  
20µF  
5.6k  
C01  
15nF  
D11  
SS33  
BAT54S  
D61  
LX  
0  
R64  
C63  
1µF  
VIO  
C64  
0.1µF  
SS  
C05  
47nF  
VON C.P.  
VCORE BUCK  
R63  
VON:  
HT: 26V  
700  
7V~32V  
DRVP  
VCORE: 1.8V, 0.9V~2.4V  
LT: 28V, 19V~34V  
C65  
Q1  
VCORE  
fmmt3906  
PHASE2  
L3  
2.2µF  
10µF  
C21  
10µF  
FBP  
TCOMP  
VDC  
PGND4  
R61  
10k  
ASYNC MODE  
TDK NTC 1068 E TYPE 10k  
NTC  
R62  
10k  
SWB1  
VOFF C.P.  
HAVDD BUCK  
PVIN3  
R53  
0  
VIN  
C2  
10µF  
VOFF:  
C53  
HAVDD: 8.0V  
6.4V~9.55V  
5V, -8.1V~1.8V  
0.22µF  
HAVDD  
MMBT3904  
Q2  
D52  
D51  
C51  
PHASE1  
BAT54S  
DRVN  
FBN  
C52  
L4  
6.8µH  
4.7µF  
R54  
100nF  
C31  
4.7µF  
PGND3  
700  
ASYNC MODE  
VIO  
VIO  
VIO  
R42  
10k  
INTERFACE/SEQUENCE  
R43  
100k  
R44  
100k  
PG  
PGOOD  
SCL  
SDA  
VIN  
AVIN  
PC  
C3  
10µF  
A0  
EN  
C40  
1µF  
VDC  
AGND  
FN7687 Rev 1.00  
April 9, 2015  
Page 4 of 28  
ISL98604  
Block Diagram  
COMP  
AGND  
VIO  
SWO  
SW1  
SW2  
FOSC  
750kHz  
PVIN1  
PVIN2  
S
R
Q
REF  
FOSC  
750kHz  
PGND1  
PGND2  
SWIN  
SLOPE  
COMPENSATION  
S
R
Q
SWB1  
SWB2  
DELAY  
FET  
SWO  
PGOOD  
MONITORING  
PG  
VON  
LINEAR  
REGULATOR  
CONTROL  
DRVP  
FBP  
EN  
SS  
I2C INTERFACE  
AND  
EEPROM  
TCOMP  
SCL  
SCA  
SEQUENCE  
CONTROL  
4.5V  
REGULATOR  
REF  
VOFF  
LINEAR  
REGULATOR  
CONTROL  
A0  
DRVN  
FBN  
VDC  
AVIN  
HAVDD  
PVIN3  
VCORE  
VIO  
FOSC  
3MHz  
FOSC  
1MHz  
REF  
REF  
S
R
S
R
Q
Q
Q
Q
PHASE1  
PGND3  
PHASE2  
PGND4  
AVIN  
AVIN  
FN7687 Rev 1.00  
April 9, 2015  
Page 5 of 28  
ISL98604  
Ordering Information  
AVDD HAVDD VIO VCORE  
V
V
TEMP  
ON  
ON  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
BOOST BUCK BUCK BUCK  
LT  
(V)  
HT  
(V)  
V
(V)  
DLY1 DLY2 DLY3 RANGE PACKAGE  
PKG.  
DWG. #  
OFF  
(V)  
16  
(V)  
(V)  
(V)  
(ms)  
(ms)  
(ms)  
(°C)  
(Pb-free)  
ISL98604IRTZ  
ISL9860 4IRZ  
8.0  
3.3  
1.0  
28  
26  
-5  
10  
30  
30  
-40 to 40 Ld  
L40.5x5D  
+85 5x5 TQFN  
ISL98604IRTZ-EVZ Evaluation Board  
NOTES:  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see product information page for ISL98604. For more information on MSL please see techbrief TB363.  
FN7687 Rev 1.00  
April 9, 2015  
Page 6 of 28  
ISL98604  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
DRVP to AGND and PGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +45V  
FBP to AGND and PGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +36V  
FBN to AGND and PGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3V to -10V  
SW1, SW2, SWI, and SWO . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +24V  
PVIN1, PVIN2, AVIN, SWB1, SWB2, PHASE1, PHASE2, HAVDD, and EN to  
AGND and PGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +18.6V  
DRVN, VDC, VCORE, SS, PGOOD, SCL, SDA, and A0  
to AGND and PGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +5.5V  
Voltage between AGND and PGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.5V  
All other pins to GND, AGND and PGND . . . . . . . . . . . . . . . . -0.5V to +5.5V  
ESD Rating  
Thermal Resistance (Typical)  
5x5 TQFN Package (Notes 4, 5) . . . . . . . . .  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
JA (°C/W)  
32  
JC (°C/W)  
2.4  
Recommended Operating Conditions  
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.0V to 16.5V  
Human Body Model (Tested per JESD22-A114E). . . . . . . . . . . . . . .2.5kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . 200V  
Charged Device Model (Tested per JESD22-C101). . . . . . . . . . . . . 750V  
Latch-up (Tested per JESD-78B; Class II, Level A). . . . . . . . . . . . . . . 100mA  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications V = 12V, EN = VDC, AVDD = 16V, V = 28V, V  
= -5V, HAVDD = 8.0V, VIO = 3.3V, VCORE = 1.0V. Boldface  
limits apply across the operating temperature range, T = -40°C to +85°C, unless otherwise noted.  
IN  
ON  
OFF  
A
MIN  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 6)  
TYP (Note 6) UNITS  
SUPPLY PINS  
P
+SUP  
Supply Voltage  
8
12  
1.25  
8
16.5  
V
VIN  
IV +SUP  
Supply Current when Disabled  
Supply Current when Enabled  
Enable Input Bias Current  
EN = 0V  
mA  
mA  
µA  
µA  
V
IN  
IV +SUP  
IN  
EN = VDC, no loading on all channels  
IEN  
EN = 0  
0.01  
10  
0.1  
15  
EN = VDC  
V
Internal LDO Output Voltage  
4.5  
LDO  
AVDD BOOST  
V
Output Voltage Range  
Output Voltage Accuracy  
Switch Peak Current Limit  
Peak Efficiency  
1.14*VIN  
16  
19.0  
2
V
%
A
AVDD  
ACC  
AVDD = 16V, I  
= 100mA  
Boost Peak Current limit  
-2  
AVDD  
LOAD  
I
3.5  
4
4.5  
SWPL_AVDD  
EFF  
93  
%
µA  
Ω
AVDD  
I
Switch Leakage Current  
Switch ON-Resistance  
Line Regulation  
22  
SWLK_AVDD  
r
T
= +25°C, I  
= 500mA  
0.125  
0.08  
0.19  
DS(ON)_AVDD  
A SW  
DV  
/DV  
9.5V < PVIN < 13.5V,  
= 200mA,  
%
AVDD  
IN  
I
LOAD  
DV  
/DI  
Load Regulation  
100mA < I  
< 500mA  
LOAD  
0.5  
87  
%
%
AVDD  
OUT  
D
D
Maximum Duty Cycle  
Minimum Duty Cycle  
Oscillator Frequency  
F
= 750kHz  
= 750kHz  
82  
MAX_AVDD  
MIN_AVDD  
OSC  
F
12  
16  
%
OSC  
F
Internal OSC  
675  
750  
825  
kHz  
OSC_AVDD  
AVDD DELAY SWITCH  
Switch ON-Resistance  
r
0.15  
0.24  
Ω
DS(ON)_DLY  
FN7687 Rev 1.00  
April 9, 2015  
Page 7 of 28  
ISL98604  
Electrical Specifications V = 12V, EN = VDC, AVDD = 16V, V = 28V, V  
= -5V, HAVDD = 8.0V, VIO = 3.3V, VCORE = 1.0V. Boldface  
limits apply across the operating temperature range, T = -40°C to +85°C, unless otherwise noted. (Continued)  
IN  
ON  
OFF  
A
MIN  
MAX  
SYMBOL  
PARAMETER  
Switch Peak Current Limit  
TEST CONDITIONS  
(Note 6)  
TYP (Note 6) UNITS  
I
2.3  
3.1  
1
3.8  
A
ms  
A
SWPL_DLY  
FET timeout  
Delay FET Fault Timeout  
I
> I  
SWO DLY  
I
I
Switch High Current Limit, Immediate Shut Down  
Once Triggered  
6.0  
SWPL_Immed  
Leakage Current When Disabled  
V
= 16.5V, V  
SWIN  
= 19V, V  
= 0V,  
5
8
20  
µA  
SWLK_ DLY  
IN  
EN = 0V  
SWO  
HAVDD SYNC BUCK  
V
Output Voltage Range  
Output voltage accuracy  
Switching Peak Current Limit  
Lower Switch Reverse Current Limit  
Peak Efficiency  
Internal feedback  
HAVDD = 8V  
6.4  
-1.6  
1
9.55  
1.6  
V
%
HAVDD  
ACC  
HAVDD  
I
I
A
SWPL_HAVDD  
SWRL_HAVDD  
0.65  
0.9  
93  
1.15  
A
EFF  
%
HAVDD  
r
r
Upper Switch ON-Resistance  
Lower Switch ON-Resistance  
Feedback Input Current  
Line Regulation  
T
= +25°C , I  
= +25°C , I  
= 500mA  
= 500mA  
0.3  
0.3  
11  
0.37  
0.37  
Ω
DS(ON)_U_HAVDD  
DS(ON)_L_HAVDD  
FB_HAVDD  
A
SW  
T
Ω
A
SW  
I
µA  
%
DV  
/DV  
9.5V < PV < 13.5V, I  
IN LOAD  
= 200mA  
0.3  
0.3  
5
HAVDD  
IN  
DV  
/DI  
Load Regulation  
200mA < I  
< 1000mA  
%
HAVDD  
OUT  
LOAD  
= +25°C  
A
I
Switch Leakage Current  
Maximum Duty Cycle  
Minimum Duty Cycle  
T
20  
µA  
%
SWLK_HAVDD  
DMAX_HAVDD  
F
= 750kHz  
= 750kHz  
OSC  
85  
90  
OSC  
D
F
15  
%
MIN_HAVDD  
F
Oscillator Frequency  
Internal OSC  
675  
750  
825  
kHz  
OSC_HAVDD  
VIO BUCK  
V
Output Voltage Range  
Output Voltage Accuracy  
Output Current  
Internal feedback  
= 3.3V  
3.0  
3.3  
0.7  
86  
3.7  
V
%
A
IO  
ACC  
V
-2.25  
2.25  
VIO  
IO  
I
I
Internal feedback  
Current limit  
VIO  
SWPL_VIO  
Switch Peak Current Limit  
Peak Efficiency  
2
A
EFF  
See graphs and “Applications Information”  
on page 15 for component  
recommendations  
%
VIO  
r
Switch On-Resistance  
Line Regulation  
T
= +25°C, I  
= 500mA  
0.200 0.300  
Ω
%
DS(ON)_VIO  
A SW  
DV /DV  
VIO  
9.5V < PV < 13.5V, I  
IN LOAD  
= 200mA  
0.3  
0.3  
IN  
DV /DI  
VIO  
Load Regulation  
200mA < I < 1000mA  
%
OUT  
LOAD  
I
Feedback Input Current  
Switch Leakage Current  
Maximum Duty Cycle  
Minimum Duty Cycle  
Oscillator Frequency  
2.5  
5
100  
nA  
µA  
%
FB_VIO  
SWLK_VIO  
I
T
= +25°C  
20  
A
D
F
= 750kHz  
= 750kHz  
85  
86  
10  
750  
MAX_VIO  
MIN_VIO  
OSC  
D
F
15.5  
825  
%
OSC  
F
Internal OSC  
675  
kHz  
OSC_VIO  
VCORE BUCK  
V
Output Voltage Range  
Internal feedback  
= 1.0V  
0.9  
1.0  
2.4  
2.5  
V
CORE  
ACC  
Output Voltage Accuracy  
V
-2.5  
%
VCORE  
CORE  
FN7687 Rev 1.00  
April 9, 2015  
Page 8 of 28  
ISL98604  
Electrical Specifications V = 12V, EN = VDC, AVDD = 16V, V = 28V, V  
= -5V, HAVDD = 8.0V, VIO = 3.3V, VCORE = 1.0V. Boldface  
limits apply across the operating temperature range, T = -40°C to +85°C, unless otherwise noted. (Continued)  
IN  
ON  
OFF  
A
MIN  
MAX  
SYMBOL  
CORE  
SWPL_VCORE  
PARAMETER  
TEST CONDITIONS  
(Note 6)  
TYP (Note 6) UNITS  
I
I
Output Current  
0.5  
A
A
Switch Peak Current Limit  
Peak Efficiency  
Current limit  
1
EFF  
See graphs and “Applications Information”  
on page 15 for component  
recommendations  
86  
%
VCORE  
r
r
Upper Switch ON-Resistance  
Lower Switch ON-Resistance  
Line Regulation of VCORE Buck  
Load Regulation of VCORE Buck  
Feedback Input Current  
Switch leakage current  
Maximum Duty Cycle  
T
= +25°C , I  
= 500mA  
= 500mA  
0.18  
0.18  
0.1  
0.3  
5
Ω
Ω
DS(ON)_U_VCORE  
A
SW  
SW  
T
= +25°C , I  
DS(ON)_L_VCORE  
A
DV  
DV  
/DV  
9.5V < PV < 13.5V, I  
IN LOAD  
= 200mA  
%
VCORE  
IN  
/DI  
200mA < I  
< 500mA  
%
VCORE  
OUT  
LOAD  
= 1.8V  
VCORE  
I
I
V
µA  
µA  
%
FB_VCORE  
SWLK_VCORE  
3
10  
D
F
= 3MHz  
= 3MHz  
85  
90  
MAX_VCORE  
MIN_VCORE  
OSC  
D
Minimum Duty Cycle  
F
8
%
OSC  
F
Oscillator Frequency  
Internal OSC  
1.32  
1.50  
1.68  
MHz  
OSC_VCORE  
V
LDO  
ON  
V
Output Voltage Range  
Low temperature  
High temperature  
19  
17  
28  
26  
34  
32  
V
V
VON  
ACC  
VON  
Output Voltage Accuracy  
Load Regulation  
V
= 28V  
-2.1  
2.1  
%
%
ON  
DV /DI  
ON OUT  
I
= 60µA to 120µA with MMBT3906  
0.64  
DRVP  
PNP, related resistors are shown in the  
application circuit  
DV /DV  
ON IN  
Line Regulation  
I
= 100µA, V = 9.5V to 14V  
IN  
0.5  
6
%
mA  
µA  
V
DRVP  
I
Positive Source Current (Max)  
DRVP Off Leakage Current  
Threshold Voltage in Temp. Compensation  
V
= 1.15V, V  
= 10V  
= 30V  
3
DRVP  
LEAK_DRVP  
FBP  
FBP  
DRVN  
DRVN  
I
V
= 1.40V, V  
0.1  
10  
V
1.265  
TCOMP_TH  
(Note 7)  
V
Hysteresis Voltage in Temp. Compensation  
V
= 1.265V  
= -5V  
20  
-5  
mV  
TCOMP_HYST  
REF  
V
LDO  
VOFF  
OFF  
V
Output Voltage Range  
Output Voltage Accuracy  
LDO Input Bias Current  
Load Regulation  
-8.1  
-1.8  
V
%
VOFF  
ACC  
V
-3.75  
3.75  
OFF  
I
V
-5V  
11  
µA  
%
FBN  
FBN =  
DV /DI  
I
= 60µA to 120µA with MMBT3904  
2.7  
OFF OUT  
DRVN  
NPN, related resistors are shown in the  
application circuit, I = 200mA  
OUT  
I
I
Negative Source Current  
DRVN Off Leakage Current  
V
V
= 0.6V, V  
= 0.5V, V  
= -10V  
= -6V  
3
5
mA  
µA  
DRVN  
FBN  
DRVN  
0.1  
10  
LEAK_DRVN  
FBN  
DRVN  
FN7687 Rev 1.00  
April 9, 2015  
Page 9 of 28  
ISL98604  
Electrical Specifications V = 12V, EN = VDC, AVDD = 16V, V = 28V, V  
= -5V, HAVDD = 8.0V, VIO = 3.3V, VCORE = 1.0V. Boldface  
limits apply across the operating temperature range, T = -40°C to +85°C, unless otherwise noted. (Continued)  
IN  
ON  
OFF  
A
MIN  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 6)  
TYP (Note 6) UNITS  
LOGIC INPUTS  
V
Logic “HIGH”  
Logic “LOW”  
SCL, SDA, A0  
EN  
1.85  
1.6  
V
V
HI  
V
SCL, SDA, A0  
EN  
0.85  
0.675  
25  
V
V
LO  
I
Logic Pin Pull-Down Current  
SCL Frequency  
V
> V  
µA  
LG_PD  
2
LG LO  
I C (Note 7)  
f
t
400  
50  
kHz  
ns  
SCL  
Pulse Width Suppression Time at SDA and SCL  
Inputs  
Any pulse narrower than max spec is  
suppressed  
iN  
t
SCL Falling Edge to SDA Output Data Valid  
SCL falling edge crossing 30% of VO_LDO,  
until SDA exits the 30% to 70% of VO_LDO  
window  
900  
ns  
ns  
AA  
t
Time the Bus Must Be Free before the Start of a New SDA crossing 70% of VO_LDO during a STOP  
1300  
BUF  
Transmission  
condition, to SDA crossing 70% of VO_LDO  
during the following START condition  
t
t
t
Clock LOW Time  
Measured at the 30% of VO_LDO crossing  
Measured at the 70% of VO_LDO crossing  
1300  
600  
ns  
ns  
ns  
LOW  
Clock HIGH Time  
HIGH  
SU:STA  
START Condition Setup Time  
SCL rising edge to SDA falling edge. Both  
crossing 70% of VO_LDO  
600  
t
t
t
START Condition Hold Time  
Input Data Setup Time  
Input Data Hold Time  
SDA falling edge crossing 30% of VO_LDO to  
SCL falling edge crossing 70% of VO_LDO  
600  
100  
0
ns  
ns  
ns  
HD:STA  
SU:DAT  
HD:DAT  
From SDA exiting the 30% to 70% of V  
CC  
window, to SCL rising edge cross 30% of V  
CC  
From SCL falling edge crossing 70% of V  
CC  
900  
to SDA entering the 30% to 70% of V  
CC  
window  
t
t
t
Stop Condition Setup Time  
Stop Condition Hold Time  
Output Data Hold Time  
From SCL rising edge crossing 70% of V  
to SDA rising edge cross 30% of V  
CC  
,
600  
600  
0
ns  
ns  
ns  
SU:STO  
HD:ST0  
DH  
CC  
From SDA rising edge to SCL falling edge.  
Both crossing 70% of V  
CC  
From SCL falling edge crossing 30% of V  
CC,  
until SDA enters the 30% to 70% of V  
window  
CC  
t
t
SDA and SCL Rise Time  
Depend on Load  
1000  
ns  
ns  
R
nWR Condition Setup Time  
From nWR rising/falling edge crossing  
70/30% of V , to SDA falling edge cross  
600  
800  
SU:A  
CC  
30% of V (START)  
CC  
t
nWR Data Hold Time  
From SDA rising edge crossing 70% of V  
(STOP) to nWR rising/falling edge crossing  
ns  
HD:A  
F
CC  
70/30% of V window  
CC  
t
SDA and SCL Fall Time  
300  
400  
ns  
pF  
pF  
2
Cb  
I C Bus Capacitive Load  
C
Capacitance on SDA  
5
SDA  
FN7687 Rev 1.00  
April 9, 2015  
Page 10 of 28  
ISL98604  
Electrical Specifications V = 12V, EN = VDC, AVDD = 16V, V = 28V, V  
= -5V, HAVDD = 8.0V, VIO = 3.3V, VCORE = 1.0V. Boldface  
limits apply across the operating temperature range, T = -40°C to +85°C, unless otherwise noted. (Continued)  
IN  
ON  
OFF  
A
MIN  
MAX  
SYMBOL  
SCL  
PARAMETER  
Capacitance on SCL  
TEST CONDITIONS  
(Note 6)  
TYP (Note 6) UNITS  
C
nWR = 0  
nWR = 1  
5
5
pF  
pF  
t
Nonvolatile Write Cycle Time  
12  
20  
ms  
WP  
EEPROM  
t
EEPROM Programming Time  
EEPROM Memory Retention  
EEPROM Read/Write Cycles  
T
= +25°C  
= +25°C  
= +25°C  
90  
88  
1
ms  
EEPROM  
A
R
T
kHrs  
kCyc  
EEPROM  
A
C
T
A
EEPROM  
FAULT DETECTION THRESHOLD  
OVP Overvoltage Protection Off Threshold to Shutdown IC  
20.5  
7.5  
V
V
V
Undervoltage Lock Out Threshold  
PV rising  
IN  
7.2  
6.0  
7.9  
6.6  
UVLO  
PV falling  
IN  
6.3  
V
T
Thermal Shutdown All Channels  
Temperature rising  
140  
°C  
OFF  
START-UP AND SOFT-START  
I
Soft-Start Current  
C
C
= 47nF  
= 47nF  
6
µA  
ms  
ms  
ms  
ms  
ms  
ms  
SS_AVDD  
SS  
t
t
t
t
t
t
Boost and HAVDD Buck Soft-Start Time  
Positive Charge Pump Soft-Start Period  
Negative Charge Pump Soft-Start Period  
Delay Time from VIO to /RST Start  
10  
6.4  
SS_HAVDD  
SS_VON  
SS_VOFF  
DLY1  
SS  
t
= -1.6*V -15  
OFF  
1.6  
0
9
SS_VOFF  
From 90% of VIO  
From 90% of V  
10  
30  
30  
Delay Time from V  
OFF  
to AVDD Start  
0
DLY2  
OFF  
Delay Time from AVDD to V Start  
ON  
From 90% of AVDD  
0
DLY3  
POWER GOOD BLOCK  
V
PGOOD Output Low Voltage  
PGOOD Leakage Current  
IPGOOD = 1mA  
VPGOOD = 3V  
0.007 0.025  
V
PGOOD  
I
0.05  
µA  
PGLEAK  
NOTES:  
6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
7. Limits established by design or characterization but not production tested.  
FN7687 Rev 1.00  
April 9, 2015  
Page 11 of 28  
ISL98604  
Typical Performance Curves  
95  
94  
93  
92  
91  
90  
89  
88  
87  
0.04  
0.02  
V
= 12V  
IN  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
V
= 12V  
IN  
86  
85  
84  
L = RLF7030T-4R7M3R4  
D = SS34  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0.1  
0.3  
0.5  
0.7  
0.9  
1.1  
I_AVDD (A)  
I_AVDD (A)  
FIGURE 1. AVDD BOOST EFFICIENCY  
FIGURE 2. AVDD BOOST LOAD REGULATION  
0.01  
0.01  
I
= 200mA  
AVDD  
AVDD RIPPLE (500mV/DIV)  
0.00  
-0.01  
-0.01  
-0.02  
-0.02  
-0.03  
I
(100mA/DIV)  
AVDD  
9
10  
11  
12  
13  
14  
V
(V)  
V
= 12V  
IN  
IN  
FIGURE 3. AVDD BOOST LINE REGULATION  
FIGURE 4. AVDD BOOST TRANSIENT RESPONSE  
0.04  
0.02  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 12V  
IN  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
V
= 12V  
IN  
L = RLF7030T-6R8M2R8  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.2  
0.4  
0.6  
0.8  
I_HAVDD (A)  
I_HAVDD (A)  
FIGURE 5. HAVDDBUCK EFFICIENCY  
FIGURE 6. HAVDD BUCK REGULATION  
FN7687 Rev 1.00  
April 9, 2015  
Page 12 of 28  
ISL98604  
Typical Performance Curves(Continued)  
0.10  
HAVDD RIPPLE (50mV/DIV)  
I
= 200mA  
HAVDD  
0.05  
0.00  
I
(100mA/DIV)  
HAVDD  
-0.05  
-0.10  
9.5  
10.0 10.5  
11.0 11.5  
(V)  
12.0 12.5  
13.0 13.5  
V
IN  
FIGURE 7. HAVDD BUCK LINE REGULATION  
FIGURE 8. HAVDD BUCK TRANSIENT RESPONSE  
90  
85  
80  
75  
70  
65  
60  
0.05  
0.00  
V
= 12V  
IN  
-0.05  
-0.10  
-0.15  
V
= 12V  
IN  
L = RLF7030T-6R8M2R8  
D = SS33  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.5  
1.0  
I_VIO (A)  
1.5  
2.0  
I_VIO (A)  
FIGURE 9. VIO BUCK EFFICIENCY  
FIGURE 10. VIO BUCK LOAD REGULATION  
0.04  
0.03  
0.03  
0.02  
0.02  
0.01  
0.01  
0.00  
I
= 200mA  
VIO  
VIO RIPPLE (50mV/DIV)  
I
(100mA/DIV)  
VIO  
V
= 12V  
9.5  
10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5  
(V)  
IN  
V
IN  
FIGURE 11. VIO BUCK LINE REGULATION  
FIGURE 12. VIO BUCK TRANSIENT RESPONSE  
FN7687 Rev 1.00  
April 9, 2015  
Page 13 of 28  
ISL98604  
Test Circuits and Waveforms  
95  
93  
91  
89  
87  
85  
83  
81  
79  
0.04  
0.02  
V
= 12V  
IN  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
V
= 12V  
IN  
L = RLF7030T-2R2M5R4  
77  
75  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
I_VCORE (A)  
I_VCORE (A)  
FIGURE 13. VCORE BUCK EFFICIENCY  
FIGURE 14. VCORE BUCK LOAD REGULATION  
0.01  
0.01  
0.01  
0.01  
0.00  
0.00  
0.00  
0.00  
I
= 200mA  
VCORE  
VCORE RIPPLE (50mV/DIV)  
I
(100mA/DIV)  
VCORE  
V = 12V  
IN  
9.5  
10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5  
(V)  
V
IN  
FIGURE 16. VCORE BUCK TRANSIENT RESPONSE  
FIGURE 15. VCORE BUCK LINE REGULATION  
0.10  
0.05  
0.04  
V
= 12V  
I
= 20mA  
IN  
VON  
0.02  
0.00  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
0
0.01  
0.02  
0.03  
0.04  
0.05  
9.5  
10.5  
11.5  
(V)  
12.5  
13.5  
V
I_VON (A)  
IN  
FIGURE 18. V LINE REGULATION  
ON  
FIGURE 17. V LOAD REGULATION  
ON  
FN7687 Rev 1.00  
April 9, 2015  
Page 14 of 28  
ISL98604  
Test Circuits and Waveforms(Continued)  
0.10  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
I
= 20mA  
VOFF  
V
= 12V  
IN  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
9.5  
10.5  
11.5  
(V)  
12.5  
13.5  
0
0.01  
0.02  
0.03  
0.04  
0.05  
V
I_VOFF (A)  
IN  
FIGURE 20. V  
LINE REGULATION  
FIGURE 19. V  
LOAD REGULATION  
OFF  
OFF  
V
Applications Information  
The ISL98604 provides a complete power solution for TFT LCD  
applications. The system consists of one boost converter to  
D
f
SW  
IN  
--------- ----------  
I  
=
(EQ. 3)  
L
L
ISL98604 uses internal feedback resistor divider to divide the  
output voltage down to the nominal reference voltage. The boost  
converter output voltage is programmable through I C control,  
which will be described in more detail in section “I C Control” on  
page 20.  
generate A  
voltage for column drivers, one asynchronous  
VDD  
2
buck converter to provide voltage to logic circuit in the LCD panel,  
two synchronous bucks for core voltage and HAVDD, LDO  
2
controllers for V and V  
charge pump outputs, and A  
ON OFF  
VDD  
delay FET. With the high output current capability, this part is  
ideal for LCD TV and monitor panel application.  
INPUT CAPACITOR  
An input capacitor is used to suppress the voltage ripple injected  
into the boost converter. A ceramic capacitor with low ESR should be  
chosen to minimize the ripple. The voltage rating of input capacitor  
should be larger than the maximum input voltage. Some capacitors  
are recommended in Table 1.  
Boost Converter  
OPERATION  
The AVDD boost converter is a current mode PWM converter  
operating at a fixed switching frequency (750kHz). It can operate  
in both discontinuous conduction mode (DCM) at light loads and  
continuous mode (CCM). In continuous current mode, current  
flows continuously in the inductor during the entire switching  
cycle in steady state operation. The voltage conversion ratio in  
continuous current mode is given by Equation 1:  
TABLE 1. BOOST CONVERTER INPUT CAPACITOR RECOMMENDATION  
CAPACITOR  
10µF/25V  
22µF/25V  
SIZE  
VENDOR  
PART NUMBER  
C3216X7R1E106K  
1206 TDK  
1206 Murata  
GRM31CR61E226KE15L  
V
1
boost  
(EQ. 1)  
------------------  
-------------  
=
V
1 D  
BOOST INDUCTOR  
IN  
The boost inductor is a critical part which influences the output  
voltage ripple, transient response, and efficiency. The selection  
where D is the duty cycle of the switching MOSFET.  
The boost converter uses a summing amplifier architecture for  
voltage feedback, current feedback, and slope compensation. A  
comparator looks at the peak inductor current cycle-by-cycle and  
terminates the PWM cycle if the current limit is triggered. Since  
this comparison is cycle based, the PWM output will be released  
after the peak current goes below the current limit threshold.  
of inductor should be based on its maximum current (I  
)
SAT  
characteristics, power dissipation (DCR) and size. Values of  
3.3µH to 10µH are recommended to match the internal slope  
compensation as well as to maintain a good transient response  
performance. The inductor must be able to handle the average  
and peak currents shown in Equations 4 and 5:  
I
O
(EQ. 4)  
The current through the MOSFET is limited to 4A peak. This restricts  
the maximum output current (average) based on Equation 2:  
------------------------------  
I
=
LAVG  
1 DxEff  
I  
L
(EQ. 5)  
I  
V
IN  
V
O
--------  
I
= I  
+
LAVG  
L
(EQ. 2)  
LPK  
--------  
---------  
I
=
I
LMT  
2
OMAX  
2
Where Eff is the efficiency of the boost converter; 90% can be used  
in calculation as approximation.  
Where I is peak-to-peak inductor ripple current, and is set by  
L
Equation 3. f is the switching frequency (750kHz).  
SW  
FN7687 Rev 1.00  
April 9, 2015  
Page 15 of 28  
ISL98604  
Some inductors are recommended in Table 2.  
COMPENSATION  
The boost converter of ISL98604 can be compensated by a RC  
network connected from the COMP pin to ground. The resistance  
sets the high -frequency integrator gain for fast transient  
response and the capacitance sets the integrator zero to ensure  
loop stability. On the demo board 5.6k and 15nF RC network is  
used. Stability can be examined by repeatedly changing the load  
between 100mA and a max level that is likely to be used in the  
TABLE 2. BOOST INDUCTOR RECOMMENDATION  
DIMENSIONS  
INDUCTANCE DCR (mΩ)  
(mm)  
VENDOR  
PART NUMBER  
4.7µH/  
31  
7.3x6.8x3.2 TDK  
RLF7030T-4R7M3R4  
3.4A  
PEAK  
4.7µH/  
44.1  
11.2  
4.0x4.0x3.1 Coilcraft XAL4030-472MEB  
12.9x12.9x4 SUMIDA CDEP12D38NP-4R3M  
application. The A  
voltage should be examined with an  
VDD  
4.5A  
PEAK  
oscilloscope set to AC and observe the amount of ringing when  
the load current changes.  
4.3µH/  
6.4A  
PEAK  
SOFT-START  
RECTIFIER DIODE  
The soft-start is provided by an internal current source to charge  
the external soft-start capacitor. The ISL98604 ramps up the  
current limit from 0A up to the full value, as the voltage at the SS  
pin ramps up from 0.8V. Hence, the soft-start time is 2.9ms  
when the soft-start capacitor is 22nF, 6.3ms for 47nF and  
13.3ms for 100nF.  
A high-speed diode is necessary due to the high switching  
frequency. Schottky diodes are recommended because of their  
fast recovery time and low forward voltage. The reverse voltage  
rating of this diode must be higher than the maximum output  
voltage. Also the average/peak current rating of the selected  
Schottky diode must meet the output current and peak inductor  
current requirements. Table 3 shows some recommendations for  
boost converter diodes.  
AVDD DELAY SWITCH  
ISL98604 integrates a disconnect switch for the AVDD boost  
output to disconnect V from AVDD when the EN input is low or  
IN  
TABLE 3. BOOST CONVERTER RECTIFIER DIODE RECOMMENDATION  
when DLY2 is not completed. When EN is taken high and DLY2  
timing is finished, the integrated FET is turned on to connect  
power to the display. The AVDD delay switch circuitry constantly  
monitors both the current flowing through the switch and the  
voltage at SWOUT. The delay switch has two current limits: a low  
current limit and a high current limit. If the current flowing  
through delay switch is higher than the delay switch low current  
limit, the IC faults out after 1ms; if the delay switch high current  
limit is reached, the IC faults out immediately.  
V /I  
AVG  
R
DIODE  
SS34  
RATING  
40V/3A  
30V/3A  
PACKAGE  
DO-214  
VENDOR  
Fairchild  
NXP  
PMEG3030  
SOD128  
OUTPUT CAPACITOR  
The output capacitors smooths the output voltage and supplies  
load current directly during the conduction phase of the power  
switch. Output ripple voltage consists of two components: the  
voltage drop due to the inductor ripple current flowing through  
the ESR of output capacitor, and the charging and discharging of  
the output capacitor.  
HAVDD Synchronous Buck Converter  
OPERATION  
HAVDD synchronous buck converter is a step down converter with  
a fixed switching frequency (750kHz) supplying voltage bias for  
gamma buffer in the LCD system. The ISL98604 integrates two  
MOSFETs to reduce external component count, save cost, and  
improve efficiency. In continuous current mode, the relationship  
between input voltage and output voltage is as shown in Equation 7:  
V
V  
I
O
1
f
s
O
IN  
----------------------- --------------- ---  
V
= I  
ESR +  
LPK  
(EQ. 6)  
RIPPLE  
V
C
O
OUT  
The conservation of charge principle also indicates that, during  
the boost switch Off period, the output capacitor is charged with  
the inductor ripple current, minus a relatively small output  
current in boost topology. As a result, the user must select an  
output capacitor with low ESR and adequate input ripple current  
capability.  
HVDD  
(EQ. 7)  
-----------------  
= D  
V
IN  
where D is the duty cycle of the upper switching MOSFET.  
Because D is always less than 1, the output voltage of the HAVDD  
buck converter is lower than the input voltage.  
Table 4 shows some recommendations of output capacitors.  
The peak current limit of HAVDD buck converter is set to 0.9A,  
which restricts the maximum output current based on  
Equation 8:  
Note: Capacitors have a voltage coefficient that makes their effective  
capacitance drop as the voltage across them increases. C  
in  
OUT  
Equation 6 assumes the effective value of the capacitor at a  
particular voltage and not the manufacturer's stated value,  
measured at 0V.  
I  
P-P  
(EQ. 8)  
---------------  
I
= 0.9 –  
HAVDDMAX  
2
Where I is the ripple current in the buck inductor as shown in  
Equation 9:  
P-P  
TABLE 4. BOOST OUTPUT CAPACITOR RECOMMENDATION  
CAPACITOR  
10µF/50V  
22µF/25V  
SIZE  
1206  
1210  
VENDOR  
TDK  
PART NUMBER  
C3216X5R1H106K  
HAVDD  
----------------------  
I  
=
 1 D  
(EQ. 9)  
P-P  
L f  
SW  
Murata  
GRM32ER71E226KE15L  
FN7687 Rev 1.00  
April 9, 2015  
Page 16 of 28  
ISL98604  
Where L is the buck inductance, f is the switching frequency of  
SW  
HADD buck inductor (750kHz).  
OUTPUT CAPACITOR  
The output ripple and transient response typically drives the  
selection of an output capacitor. A 10µF or a 22µF ceramic  
capacitor is recommended (see Table 7).  
ISL98604 uses internal feedback resistor divider to divide the  
output HAVDD voltage down to the nominal reference voltage. The  
2
HAVDD voltage is programmable through I C control, which will be  
TABLE 7. HAVDD BUCK OUTPUT CAPACITOR RECOMMENDATION  
2
described in more detail in section “I C Control” on page 20.  
CAPACITOR  
22µF/16V  
10µF/25V  
SIZE  
0805  
0805  
VENDOR  
TDK  
PART NUMBER  
C2012X5R1C226K  
C2012X5R1E106M  
INPUT CAPACITOR  
Selection of input capacitance is important for input voltage  
ripple. A ceramic capacitor should be used because of its small  
ESR. Another important criteria when selecting input capacitor is  
that it should be able to support the maximum AC RMS current  
which occurs at D = 0.5 and maximum output current.  
TDK  
VIO Buck Converter  
OPERATION  
I
=
D  1 D  I  
HAVDD  
(EQ. 10)  
ACRMS  
VIO buck converter is an asynchronous step down converter with  
a fixed switching frequency (750kHz) supplying power to the logic  
circuit of the LCD system. In continuous current mode, the  
relationship between input voltage and output voltage, is as shown  
in Equation 11.  
Where I  
is the output current of the buck converter. Table 5  
HAVDD  
shows recommendations for input capacitors.  
TABLE 5. HAVDD BUCK CONVERTER INPUT CAPACITOR  
RECOMMENDATION  
VIO  
(EQ. 11)  
----------  
= D  
V
IN  
CAPACITOR  
10µF/25V  
22µF/25V  
SIZE  
1206  
1206  
VENDOR  
TDK  
PART NUMBER  
C3216X7R1E106K  
where D is the duty cycle of the switching MOSFET.  
Murata  
GRM31CR61E226KE15L  
The peak current limit of VIO buck converter is set to 2A, which  
restricts the maximum output current based on Equation 12:  
I  
P-P  
2
HAVDD BUCK INDUCTOR  
(EQ. 12)  
---------------  
I
= 2 –  
VIOMAX  
The inductance is selected to meet the output voltage ripple  
requirements and minimize the converter’s response time to the  
load transient. Increasing the inductance reduces the ripple  
current and voltage. However, the large inductance values reduce  
the converter’s response time to load transients. Taking all the  
factors into consideration, a 3.3µH to 10µH inductor range is  
recommended for the HAVDD buck converter. Besides the  
inductance, the DC resistance and the saturation current are also  
factors that need to be considered when choosing a buck  
inductor. Low DC resistance can help maintain high efficiency.  
Saturation current rating should be higher than the peak inductor  
current in the application. Table 6 shows some  
Where I  
is the ripple current in the buck inductor as shown in  
P-P  
Equation 13:  
VIO  
-----------------  
I  
=
 1 D  
(EQ. 13)  
P-P  
L f  
SW  
Where L is the buck inductance, f is the switching frequency of  
SW  
VIO buck inductor.  
ISL98604 uses internal feedback resistor divider to divide the  
output VIO voltage down to the nominal reference voltage. The VIO  
voltage is programmable through I C control, which will be  
2
2
described in more detail in section “I C Control” on page 20.  
recommendations for the HAVDD buck inductor.  
INPUT CAPACITOR  
TABLE 6. HAVDD BUCK INDUCTOR RECOMMENDATION  
Selection of input capacitance is important for input voltage  
ripple. A ceramic capacitor should be used because of its small  
ESR. Another important criteria when selecting input capacitor is  
that it should be able to support the maximum AC RMS current,  
which occurs at D = 0.5 and maximum output current.  
DCR  
(mΩ)  
DIMENSIONS  
(mm)  
PART  
NUMBER  
INDUCTANCE  
6.8µH/  
VENDOR  
Coilcraft  
74.1  
4.0x4.0x3.1  
XAL4030-  
682MEB  
3.6A  
PEAK  
6.8µH/  
45  
7.3x6.8x3.2  
TDK  
RLF7030T-  
6R8M2R8  
I
=
D  1 D  I  
VIO  
(EQ. 14)  
2.8A  
ACRMS  
PEAK  
Where I  
is the output current of the VIO buck converter. Table 8  
VIO  
shows recommendations for input capacitors.  
TABLE 8. VIO BUCK CONVERTER INPUT CAPACITOR RECOMMENDATION  
CAPACITOR  
10µF/25V  
22µF/25V  
SIZE  
1206  
1206  
VENDOR  
TDK  
PART NUMBER  
C3216X7R1E106K  
Murata  
GRM31CR61E226KE15L  
FN7687 Rev 1.00  
April 9, 2015  
Page 17 of 28  
ISL98604  
VIO BUCK INDUCTOR  
VCORE Buck Converter  
The inductance is selected to meet the output voltage ripple  
requirements and minimize the converter’s response time to the  
load transient. Increasing the inductance reduces the ripple  
current and voltage. However, the large inductance values reduce  
the converter’s response time to load transients. Taking all the  
factors into consideration, a 3.3µH to 10µH inductor range is  
recommended for the VIO buck converter. Besides the  
inductance, the DC resistance and the saturation current are also  
factors that need to be considered when choosing a buck  
inductor. Low DC resistance can help maintain high efficiency.  
Saturation current rating should be higher than the peak inductor  
current in the application. Table 9 shows some  
OPERATION  
VCORE buck converter is a synchronous step-down converter with  
a fixed switching frequency (1.5MHz) to generate voltage and  
supply current to the core circuit of the LCD system. In continuous  
current mode, the relationship between input voltage and output  
voltage is as shown in Equation 16.  
VCORE  
(EQ. 16)  
----------------------  
= D  
V
IN  
where D is the duty cycle of the upper MOSFET and V of the  
IN  
VCORE buck converter is the output voltage of the VIO buck  
converter.  
recommendations for the VIO buck inductor.  
TABLE 9. VIO BUCK INDUCTOR RECOMMENDATION  
The peak current limit of the VCORE buck converter is set to 1A,  
which restricts the maximum output current based on  
Equation 17:  
DCR  
(mΩ)  
DIMENSIONS  
(mm)  
PART  
INDUCTANCE  
6.8µH/  
VENDOR  
Coilcraft  
NUMBER  
I  
P-P  
74.1  
4.0x4.0x3.1  
XAL4030-  
682MEB  
(EQ. 17)  
--------------  
I
= 1 –  
VCOREMAX  
2
3.6A  
PEAK  
6.8µH/  
2.8A  
45  
7.3x6.8x3.2  
TDK  
RLF7030T-  
6R8M2R8  
Where I is the ripple current in the buck inductor, as shown in  
Equation 18:  
P-P  
PEAK  
VCORE  
----------------------  
I  
=
 1 D  
(EQ. 18)  
VIO BUCK DIODE  
P-P  
L f  
SW  
A Schottky diode is recommended for its fast recovery time and  
low forward voltage. The reverse voltage rating should be higher  
than the maximum input voltage. The peak current rating should  
be higher than the current limit of the VIO switch, and the  
average current rating should be higher than the value given by  
Equation 15.  
Where L is the buck inductance and f is the switching frequency  
SW  
of the VCORE buck inductor.  
The ISL98604 uses internal feedback resistor divider to divide the  
output VCORE voltage down to the nominal reference voltage. The  
2
VCORE voltage is programmable through I C control, which will be  
2
I
= 1 D*I  
VIO  
(EQ. 15)  
described in more detail in section “I C Control” on page 20.  
AVG  
INPUT CAPACITOR  
Where I  
is the output current of the VIO buck converter. Table 10  
shows diode recommendations..  
VIO  
The input of the VCORE buck converter is internally connected to  
the output of VIO buck converter. Therefore, the output  
capacitors of the VIO buck converter also plays the role of input  
capacitor of the VCORE buck converter. Please refer to the  
“Output Capacitor” section of the “VIO Buck Converter” on  
page 17 for selection of input capacitors for the VCORE buck  
converter.  
TABLE 10. VIO BUCK DIODE RECOMMENDATION  
V /I  
R
AVG  
DIODE  
PMEG2020EJ  
SS22  
RATING  
20V/2A  
20V/2A  
PACKAGE  
SOD323F  
SMB  
VENDOR  
NXP Semiconductors  
Fairchild Semiconductor  
VCORE BUCK INDUCTOR  
The inductance is selected to meet the output voltage ripple  
requirements and minimize the converter’s response time to the  
load transient. Increasing the inductance reduces the ripple  
current and voltage. However, the large inductance values reduce  
the converter’s response time to load transients. Besides the  
inductance, the DC resistance and the saturation current are also  
factors that need to be considered when choosing a buck  
inductor. Low DC resistance can help maintain high efficiency.  
Saturation current rating should be higher than the peak inductor  
current in the application. Taking all the factors into  
OUTPUT CAPACITOR  
The output ripple and transient response typically drives the  
selection of output capacitor. 10µF or 22µF ceramic capacitors  
(Table 11) are recommended.  
.
TABLE 11. VIO BUCK OUTPUT CAPACITOR RECOMMENDATION  
CAPACITOR  
10µF/10V  
10µF/10V  
22µF/10V  
SIZE  
0805  
0805  
0805  
VENDOR  
TDK  
PART NUMBER  
C2012X7R1A106K  
GRM21BR71A106KE51L  
C2012X5R1A226M  
Murata  
TDK  
consideration, 2.2µH inductors as shown in Table 12 are  
recommended for the VCORE buck inductor.  
FN7687 Rev 1.00  
April 9, 2015  
Page 18 of 28  
ISL98604  
TABLE 12. VCORE BUCK INDUCTOR RECOMMENDATION  
Calculation of the Linear Regulator  
Base-Emitter Resistors  
For the pass transistor of the linear regulator, DC current gain (Hfe)  
and unity gain frequency (fT) are usually specified in the datasheet.  
The pass transistor adds a pole to the loop transfer function at  
fp = fT/Hfe. Therefore, in order to maintain phase margin at low  
frequency, the best choice for a pass device is often a high  
frequency, low gain switching transistor. Further improvement can  
DCR  
(mΩ)  
DIMENSIONS  
(mm)  
PART  
NUMBER  
INDUCTANCE  
2.2µH/  
VENDOR  
TDK  
55  
35.2  
12  
3.0x2.5x1.2  
4.0x4.0x2.1  
7.3x6.8x3.2  
VLF302512M  
T-2R2M  
1.26A  
PEAK  
2.2µH/  
Coilcraft  
TDK  
XAL4020-  
222ME  
5.6A  
PEAK  
2.2µH/  
5.5A  
RLF7030T-  
2R2M5R4  
be obtained by adding a base-emitter resistor R , which increases  
BE  
PEAK  
the pole frequency to: fp = fT * (1 + Hfe * re/R )/Hfe, where  
BE  
re = KT/qIc. Therefore, choose the lowest value R in the design as  
long as there is still enough base current (I ) to support the  
B
BE  
OUTPUT CAPACITOR  
maximum output current (I ).  
The output ripple and transient response typically drives the  
selection of output capacitor. 10µF or 22µF ceramic capacitors  
(Table 13) are recommended.  
C
For example, the V linear regulator. If a Fairchild MMBT3906 PNP  
ON  
transistor is used as the external pass transistor (Q7 in the “Typical  
Application Circuit” on page 4), then for a maximum V operating  
TABLE 13. VIO BUCK OUTPUT CAPACITOR RECOMMENDATION  
ON  
requirement of 50mA, the data sheet indicates Hfe_min = 60. The  
base-emitter saturation voltage is: Vbe_max = 0.7V.  
CAPACITOR  
10µF/6.3V  
10µF/6.3V  
22µF/6.3V  
SIZE  
0603  
0402  
0603  
VENDOR  
MURATA  
TDK  
PART NUMBER  
GRM188R60J106ME47D  
C1005X5R0J106M  
C1608X5R0J226M  
For the ISL98604, the minimum drive current is:  
I_DRVP_min = 3mA.  
TDK  
The minimum base-emitter resistor, R , can now be calculated as  
BP  
Equation 19:  
VON Linear-Regulator Controller  
RBP_min= VBE_max (I_DRVP_min - Ic/Hfe_min =  
(EQ. 19)  
The ISL98604 includes two independent linear-regulator controllers  
0.7V  3mA 50mA  60= 325  
for positive output voltage (V ) and negative voltage (V ). The  
ON OFF  
linear-regulator controller subcircuit is shown in the  
V
and V  
ON  
OFF  
This is the minimum value that can be used so, we now choose a  
convenient value greater than this minimum value (e.g., 400W).  
Larger values may be used to reduce quiescent current, however,  
“Typical Application Circuit” on page 4.  
The V power supply is used to power the positive supply of the row  
ON  
regulation may be adversely affected by supply noise if R is made  
BP  
driver in the LCD panel. It consists of an external charge pump  
powered from the switching node (LX) of the boost converter,  
followed by a low dropout linear regulator (LDO_ON). The LDO_ON  
regulator uses an external PNP transistor as the pass element. The  
onboard LDO controller is a wide band (>10MHz) transconductance  
amplifier capable of 5mA output current, which is sufficient for up to  
50mA or more output current under the low dropout condition  
too high in value.  
V
/V  
Charge Pump  
ON OFF  
Single or multiple stages of charge pumps are needed to generate  
output voltage higher than V and negative voltage. The charge  
BOOST  
pumps can be driven by switching node of the boost converter and  
VIO buck converter, as shown in “Typical Application Circuit” on  
page 4.  
(forced beta of 10). Typical V voltage supported by ISL98604 is  
ON  
2
programmable from +19V to +34V through I C control, which will be  
2
described in more detail in section “I C Control” on page 20.  
The number of the charge pump stages can be calculated using  
Equations 20 and 21.  
VOFF Linear-Regulator Controller and Charge  
Pump  
VOFF  
= N V 2 N V VOFF 0  
IN d  
(EQ. 20)  
HEADROOM  
The V  
power supply is used to power the negative supply of the  
OFF  
row driver in the LCD panel. It consists of an external diode-capacitor  
charge pump powered from the switching node of the VIO buck  
converter, followed by a low dropout linear regulator (LDO_OFF). The  
LDO_OFF regulator uses an external NPN transistor as the pass  
element. The onboard LDO controller is a wide band (>10MHz)  
transconductance amplifier capable of 5mA output current, which is  
sufficient for up to 50mA or more output current under the low  
VON  
= N + 1  AVDD N V VON 0  
(EQ. 21)  
HEADROOM  
d
Where N is the number of the charge pump stages, V is the  
d
forward voltage drop of one Schottky diode used in the charge  
pumps. V is varied with forward current and ambient  
temperature, so it should be the maximum value in the diode  
datasheet according to max forward current and lowest  
temperature in the application condition.  
d
dropout condition (forced beta of 10). Typical V  
voltage  
OFF  
supported by ISL98604 is programmable from -8.1V to -1.8V  
2
through I C control, which will be described in more detail in section  
2
“I C Control” on page 20.  
Once the number of the charge pump stages is determined, the  
relationship between output voltages and the maximum current  
that the charge pump can deliver can be calculated using  
Equations 22 and 23 as follows:  
FN7687 Rev 1.00  
April 9, 2015  
Page 19 of 28  
ISL98604  
2
The I C protocol defines any device that sends data on to the bus  
(EQ. 22)  
 Freq C   
V
V
= N  VIN + 2 V + I  
 Freq C   
OFF  
ON  
d
VOFF fly  
as a transmitter and the receiving device as the receiver. The  
device controlling the transfer is a master and the device being  
controlled is the slave. The master always initiates data transfers  
and provides the clock for both transmit and receive operations.  
Therefore, ISL98604 operates as a slave device in all  
= AVDD + N  AVDD 2 V I  
d
VON  
fly  
(EQ. 23)  
Where Freq is the switching frequency of the AVDD boost, C_fly is  
the flying capacitance (C64, C53 in the application diagram).  
applications. The fall and rise time of SDA and SCL signal should  
be in the range listed in Table 14. The capacitive load on the I C  
I
and I  
are the loadings of V and V  
.
2
VON  
VOFF  
ON OFF  
bus is also specified in Table 14.  
CHARGE PUMP OUTPUT CAPACITORS  
2
All communication over the I C interface is conducted by sending  
A ceramic capacitor with low ESR is recommended. With ceramic  
capacitors, the output ripple voltage is dominated by the  
capacitance value. The capacitance value can be chosen by  
Equation 24:  
the MSB of each byte of data first.  
2
TABLE 14. I C INTERFACE SPECIFICATION  
PARAMETER  
SDA and SCL Rise Time  
SDA and SCL Fall Time  
MIN  
TYP  
MAX  
1000  
300  
UNITS  
ns  
I
OUT  
(EQ. 24)  
------------------------------------------------------  
C
OUT  
2 V  
f  
OSC  
RIPPLE  
ns  
For V charge pump, f  
is the switching frequency of boost  
charge pump, f is the switching frequency of  
ON OSC  
2
converter; for V  
I C Bus Capacitive Load  
400  
pF  
OFF OSC  
VIO buck converter.  
PROTOCOL CONVENTIONS  
V
Temperature Compensation  
ON  
Data states on the SDA line can change only during SCL LOW  
periods. SDA state changes during SCL HIGH are reserved for  
indicating START and STOP conditions (see Figure 22). On  
power-up, the SDA pin is in the input mode.  
The ISL98604 can output two levels of V voltages depending  
ON  
on the temperature. A voltage divider which consists of two  
resistors (R61 and R62) and a thermistor, as shown in the  
“Typical Application Circuit” on page 4 connected to TCOMP pin is  
2
used to determine the V voltage.  
All I C interface operations must begin with a START condition,  
ON  
which is a HIGH to LOW transition of SDA while SCL is HIGH.  
ISL98604 continuously monitors the SDA and SCL lines for the  
START condition and does not respond to any command until this  
Figure 21 shows that the V voltage will be VON_LT when the  
ON  
TCOMP voltage is above the compensation threshold voltage. If  
the TCOMP voltage is below the compensation threshold voltage,  
2
condition is met (see Figure 22). All I C interface must be  
the V voltage will be VON_HT. There is a 20mV hysteresis  
ON  
terminated by a STOP condition, which is a LOW to HIGH  
transition of SDA while SCL is high (see Figure 22). An ACK  
(Acknowledge) is a software convention used to indicate a  
successful data transfer. The transmitting device, either master or  
slave, releases the SDA bus after transmitting eight bits. During the  
ninth clock cycle, the receiver pulls the SDA line LOW to  
between the threshold when TCOMP voltage rises and the  
threshold when TCOMP voltage falls. R61, R62, and thermistor  
values are selected to set the V voltage at desired  
ON  
temperature. VON_LT and VON_HT are programmable through  
2
2
I C control, which will be described in more detail in section “I C  
Control” in the following.  
acknowledge the reception of the eight bits of data (see Figure 23).  
FBP  
VDC  
WRITE OPERATION  
To write into a DAC register (DR), it requires a START condition  
VON_LT  
R61  
R62  
from the Master, followed by 7-bit device address (010000A ),  
0
TCOMP  
R/W bit (= 0 when writing), a valid DAC register address Byte  
(01h-09h), a data byte, and a STOP condition. After each of the  
three bytes, the ISL98604 responds with an ACK. At this time, if  
the data byte is to be written only to volatile registers, the device  
enters its standby state.  
NTC  
VON_HT  
TEMPERATURE WHEN TCOMP VOLTAGE  
> V = 1.265V  
Example: Writing 21h to register address 01h (HAVDD)  
TCOMP_TH  
TEMPERATURE (°C)  
TEMPERATURE HYSTERESIS RESULTED FROM V  
To write data in the DAC registers into EEPROM, it requires a  
START condition from the Master, followed by 7-bit device  
address, R/W bit (= 0 when writing), Control Register (CR)  
address byte (FFh), a data byte of 80h to write data in DRs to  
EEPROM and a STOP condition. After each of the three bytes,  
ISL98604 responds with an ACK. If the Data Byte is to be written  
to EEPROM, ISL98604 begins its internal write cycle, which takes  
25ms to finish. During the internal EEPROM write cycle, the  
device ignores transitions at the SDA and SCL pins and the SDA  
output is at high impedance state. When the internal EEPROM  
write cycle is completed, the ISL98604 enters its standby state.  
= 20mV  
TCOMP_HYST  
FIGURE 21. V TEMPERATURE COMPENSATION  
ON  
2
I C Control  
2
The ISL98604 supports all rail outputs with fully programmable I C  
control. The programmed output values can be stored into EEPROM  
during the operation and read out.  
FN7687 Rev 1.00  
April 9, 2015  
Page 20 of 28  
ISL98604  
Example: Writing current data in DRs into EEPROM.  
Example: Reading data from DR address 06h (V ).  
OFF  
To read from EEPROM first, it first requires to write 01 into the  
Control Register (CR) (FFh) to specify that the data is read from  
EEPROM. Then it sends the desired DR address to be read  
(00h-09h). Finally, it reads data from DR, which requires a START  
condition from Master, followed by 7-bit device address  
READ OPERATION  
To read from the DAC register (DR), it first requires to write 00  
into the Control Register (CR) (FFh) to specify that the data is  
read from DR. Then it sends desired DR address to be read  
(00h-09h). Finally, it reads data from DR, which requires a START  
condition from Master, followed by 7-bit device address  
(010000A ), R/W bit (= 1 when reading); the second byte  
0
contains the data read from EEPROM. Note that the Master will  
not acknowledge this byte. Finally, the last Master sends STOP  
condition.  
(010000A ), R/W bit (= 1 when reading); the second byte  
0
contains the data read from the specified DR. Note that the  
Master will not acknowledge this byte. Finally, the last Master  
sends STOP condition.  
Example: Reading data from EEPROM address 06h (V ).  
OFF  
SCL  
SDA  
START  
DATA  
STABLE  
DATA  
CHANGE STABLE  
DATA  
STOP  
FIGURE 22. VALID DATA CHANGES, START, AND STOP CONDITION  
SCL FROM  
MASTER  
1
8
9
SDA OUTPUT FROM  
TRANSMITTER  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
SDA OUTPUT FROM  
RECEIVER  
START  
ACK  
FIGURE 23. ACKNOWLEDGE RESPONSE FROM RECEIVER  
FN7687 Rev 1.00  
April 9, 2015  
Page 21 of 28  
ISL98604  
REGISTER MAP AND REGISTER VALUES  
TABLE 16. DATA FORMAT OF DAC REGISTER AND EEPROM  
AVDD (Default Data: 21h)  
Table 15 shows the address of the DAC registers and their  
default values. Table 16 shows the data format of each register.  
Table 17 shows the parameters corresponding to different  
register values.  
MSB  
R
LSB  
1
R
1
0
0
0
R
0
1
1
0
R
R
R
0
0
0
0
0
0
0
0
0
0
R
0
0
1
0
0
0
0
0
1
1
R
HAVDD (Default Data: 20h)  
MSB  
TABLE 15. MEMORY MAP OF DAC REGISTER AND EEPROM  
LSB  
0
DATA  
R
R
1
0
(VOLATILE/  
NONVOLATILE)  
FACTORY DEFAULT  
(POWER-UP)  
REGISTER ADDRESS  
VIO (Default Data: 03h)  
MSB  
AVDD  
HAVDD  
VIO  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
FFh  
6-bit Nonvolatile  
6-bit Nonvolatile  
3-bit Nonvolatile  
4-bit Nonvolatile  
4-bit Nonvolatile  
4-bit Nonvolatile  
6-bit Nonvolatile  
3-bit Nonvolatile  
3-bit Nonvolatile  
3-bit Nonvolatile  
Volatile  
21h  
20h  
03h  
01h  
09h  
09h  
20h  
01h  
03h  
03h  
00h  
LSB  
1
R
R
R
R
VCORE (Default Data: 01h)  
MSB  
VCORE  
VON_LT  
VON_HT  
LSB  
1
R
R
R
R
VON_LT (Default Data: 09h)  
MSB  
V
OFF  
LSB  
1
DLY1  
DLY2  
DLY3  
CR  
R
R
R
R
VON_HT (Default Data: 09h)  
MSB  
LSB  
1
R
R
R
R
V
(Default Data: 20h)  
OFF  
MSB  
LSB  
0
R
R
1
0
DLY1 (Default Data: 01h)  
MSB  
LSB  
1
R
R
R
R
DLY2 (Default Data: 03h)  
MSB  
LSB  
1
R
R
R
R
DLY3 (Default Data: 03h)  
MSB  
LSB  
1
R
R
R
R
Control Register (Default Data: 00h)  
MSB  
LSB  
Write  
EEPROM  
Data  
R
R
R
R
Read EEPROM  
or DR data  
R: Reserved  
<Contol Register Data>  
0h: Read DAC register data only  
01h: ead EEPROM data only  
80h Write all DAC Register data to EEPROM  
FN7687 Rev 1.00  
April 9, 2015  
Page 22 of 28  
ISL98604  
TABLE 17. PARAMETER VALUES CORRESPONDING TO REGISTER VALUES  
ADDRESS  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
AVDD  
(V)  
HAVDD  
(V)  
VIO  
(V)  
VCORE  
(V)  
VON_LT  
(V)  
VON_HT  
(V)  
VOFF  
(V)  
DLY1  
(ms)  
DLY2  
(ms)  
DLY3  
(ms)  
STEP HEX  
0
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
12.7  
12.8  
12.9  
13.0  
13.1  
13.2  
13.3  
13.4  
13.5  
13.6  
13.7  
13.8  
13.9  
14.0  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.7  
14.8  
14.9  
15.0  
15.1  
15.2  
15.3  
15.4  
15.5  
15.6  
15.7  
15.8  
15.9  
16.0  
16.1  
16.2  
16.3  
16.4  
6.40  
6.45  
6.50  
6.55  
6.60  
6.65  
6.70  
6.75  
6.80  
6.85  
6.90  
6.95  
7.00  
7.05  
7.10  
7.15  
7.20  
7.25  
7.30  
7.35  
7.40  
7.45  
7.50  
7.55  
7.60  
7.65  
7.70  
7.75  
7.80  
7.85  
7.90  
7.95  
8.00  
8.05  
8.10  
8.15  
8.20  
8.25  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
-1.8  
-1.9  
-2.0  
-2.1  
-2.2  
-2.3  
-2.4  
-2.5  
-2.6  
-2.7  
-2.8  
-2.9  
-3.0  
-3.1  
-3.2  
-3.3  
-3.4  
-3.5  
-3.6  
-3.7  
-3.8  
-3.9  
-4.0  
-4.1  
-4.2  
-4.3  
-4.4  
-4.5  
-4.6  
-4.7  
-4.8  
-4.9  
-5.0  
-5.1  
-5.2  
-5.3  
-5.4  
-5.5  
0
0
0
1
10  
20  
30  
40  
50  
60  
70  
10  
20  
30  
40  
50  
60  
70  
10  
20  
30  
40  
50  
60  
70  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
FN7687 Rev 1.00  
April 9, 2015  
Page 23 of 28  
ISL98604  
TABLE 17. PARAMETER VALUES CORRESPONDING TO REGISTER VALUES (Continued)  
ADDRESS  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
AVDD  
(V)  
HAVDD  
(V)  
VIO  
(V)  
VCORE  
(V)  
VON_LT  
(V)  
VON_HT  
(V)  
VOFF  
(V)  
DLY1  
(ms)  
DLY2  
(ms)  
DLY3  
(ms)  
STEP HEX  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
16.5  
16.6  
16.7  
16.8  
16.9  
17.0  
17.1  
17.2  
17.3  
17.4  
17.5  
17.6  
17.7  
17.8  
17.9  
18.0  
18.1  
18.2  
18.3  
18.4  
18.5  
18.6  
18.7  
18.8  
18.9  
19.0  
8.30  
8.35  
8.40  
8.45  
8.50  
8.55  
8.60  
8.65  
8.70  
8.75  
8.80  
8.85  
8.90  
8.95  
9.00  
9.05  
9.10  
9.15  
9.20  
9.25  
9.30  
9.35  
9.40  
9.45  
9.50  
9.55  
-5.6  
-5.7  
-5.8  
-5.9  
-6.0  
-6.1  
-6.2  
-6.3  
-6.4  
-6.5  
-6.6  
-6.7  
-6.8  
-6.9  
-7.0  
-7.1  
-7.2  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
-7.8  
-7.9  
-8.0  
-8.1  
NOTE: Shaded numbers are the factory default at power-up.  
PROTECTIONS  
The ISL98604 integrates overcurrent protection (OCP), overvoltage  
protection (OVP), and over-temperature protection (OTP). The  
protection threshold and the reaction of the chip are listed in  
Table 18.  
FN7687 Rev 1.00  
April 9, 2015  
Page 24 of 28  
ISL98604  
TABLE 18. ISL98604 PROTECTION TABLE  
CONTINUED FAUTL TIME  
RE-ENABLE  
CATEGORY  
CHANNEL  
AVDD  
TRIP LEVEL (TYP)  
TO SHUTDOWN  
CHIP REACTION  
Terminate PWM  
MECHANISM  
OCP  
Switch peak current  
higher than 4A  
NA  
NA  
AVDD delay FET  
IDS current higher than  
3.1A during operation  
1ms  
Shut down whole IC  
Shut down whole IC  
Power Cycle  
Power Cycle  
IDS current higher than  
6A at start-up and  
normal operation  
Immediately  
HAVDD  
Switch peak current  
higher than 1A or lower  
switch peak current  
higher than 0.9A  
NA  
Terminate PWM  
NA  
VIO  
VCORE  
Switch peak current  
higher than 2A  
NA  
Terminate PWM  
Terminate PWM  
NA  
Switch peak current  
higher than 1A  
NA  
NA  
OVP  
OTP  
AVDD  
Higher than 20.5V on  
SWI pin  
Immediately  
Immediately  
Shut down whole IC  
Shut down whole IC  
Power Cycle  
Power Cycle  
Junction Temp  
Temperature higher  
than +140°C  
6. The exposed die plate, on the underside of the package,  
should be soldered to an equivalent area of metal on the PCB.  
This contact area should have multiple via connections to the  
back of the PCB as well as connections to intermediate PCB  
layers, if available, to maximize thermal dissipation away  
from the IC.  
Start-Up Sequence  
When VIN rising exceeds UVLO and EN is high, VIO and VCORE  
start-up. When VIO and VCORE reach 90% of the their target  
values, after a delay time of DLY1, PGOOD rises up and VOFF  
soft-starts; when VOFF reaches 90% of its target value, after a  
delay time of DLY2, AVDD and HAVDD start to rise up. The  
soft-start time of AVDD and HAVDD depends on the capacitance  
on the soft-start pin. When AVDD and HAVDD reach 90% of their  
target values, after a delay time of DLY3, V starts to rise up.  
DLY1, DLY2 and DLY3 are programmable through I C control,  
which is described in section “I C Control” on page 20. The detailed  
start-up sequence is shown in Figure 24.  
7. To minimize the thermal resistance of the package when  
soldered to a multilayer PCB, the amount of copper track and  
ground plane area connected to the exposed die plate should  
be maximized and spread out as far as possible from the IC.  
The bottom and top PCB areas especially should be  
ON  
2
2
maximized to allow thermal dissipation to the surrounding air.  
8. Minimize feedback input track lengths to avoid switching  
noise pick-up.  
Layout Recommendation  
PCB layout is critical especially at high switching frequency. The  
device's performance, including efficiency, output noise,  
transient response and control loop stability is dramatically  
affected by the PCB layout.  
A demo board is available to illustrate the proper layout  
implementation.  
There are some general guidelines for layout:  
1. Place the external power components (the input capacitors,  
output capacitors, boost inductor and output diodes, etc.) in  
close proximity to the device. Traces to these components  
should be kept as short and wide as possible to minimize  
parasitic inductance and resistance.  
2. Place V and V  
DC REF  
bypass capacitors close to the pins.  
3. Reduce the loop with large AC amplitudes and fast slew rate.  
4. The feedback network should sense the output voltage  
directly from the point of load, and be as far away from the LX  
node as possible.  
5. The power ground (PGND) and signal ground (SGND) pins  
should be connected at the ISL98604 exposed die plate area.  
FN7687 Rev 1.00  
April 9, 2015  
Page 25 of 28  
ISL98604  
UVLO  
VHI  
U VLO  
VLO  
VIN  
VD C  
EN  
VIO  
90%  
VC O R E  
D LY1  
PG O O D  
VO FF  
90%  
90%  
50%  
D LY2  
A VD D  
50%  
H A VD D  
D LY3  
VO N  
NOTES:  
8. VIO and VCORE start when EN is enabled and 90% rising point will occur at the same time.  
The timing gap between VIO and VCORE at 90% rising point will be less than 3ms.  
9. PGOOD and V  
OFF  
will be triggered after VIO and VCORE rise and not before delay time DLY1.  
10. AVDD and HAVDD start-up after delay time DLY2. Both are synchronized at 50% rising point.  
11. V will be triggered after AVDD and HAVDD rise and not before delay time DLY3.  
ON  
FIGURE 24. ISL98604 START-UP SEQUENCE  
FN7687 Rev 1.00  
April 9, 2015  
Page 26 of 28  
ISL98604  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
FN7687.1  
CHANGE  
April 9, 2015  
Removed "please contact Consumer Product Marketing via email at Consumer-All@intersil.com"  
Updated About Intersil verbiage, Added word datasheet on page 1 and submit feedback button.  
Changed switching frequency fs to fsw to be consistent throughout document.  
December 17, 2012  
FN7687.0  
Initial Release.  
About Intersil  
IIntersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support  
© Copyright Intersil Americas LLC 2012-2015. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7687 Rev 1.00  
April 9, 2015  
Page 27 of 28  
ISL98604  
Package Outline Drawing  
L40.5x5D  
40 LEAD THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 0, 9/10  
4X 3.60  
36X 0.40  
5.00  
A
B
6
6
PIN #1 INDEX AREA  
PIN 1  
INDEX AREA  
(4X)  
0.15  
40X 0.4± 0.1  
0.20  
4
0.10 M  
C A B  
b
TOP VIEW  
BOTTOM VIEW  
PACKAGE OUTLINE  
0.40  
SEE DETAIL "X"  
0.750  
0.10C  
//  
C
BASE PLANE  
SEATING PLANE  
0.08 C  
0.050  
SIDE VIEW  
(36X 0.40)  
(40X 0.20)  
(40X 0.60)  
5
0.2 REF  
C
0.00 MIN  
0.05 MAX  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.27mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
JEDEC reference drawing: MO-220WHHE-1  
7.  
FN7687 Rev 1.00  
April 9, 2015  
Page 28 of 28  

相关型号:

ISL98608

High Efficiency Single Inductor Positive/Negative Power Supply
RENESAS

ISL98608HEVAL1Z

High Efficiency Single Inductor Positive/Negative Power Supply
RENESAS

ISL98608II55Z-T

High Efficiency Power Supply for Small Size Displays
RENESAS

ISL98608IIH

High Efficiency Single Inductor Positive/Negative Power Supply
RENESAS

ISL98608IIHZ-T

High Efficiency Single Inductor Positive/Negative Power Supply
RENESAS

ISL98608IIZ-EVZ

High Efficiency Power Supply for Small Size Displays
RENESAS

ISL9860PF2

8A, 600V Stealth Diode
FAIRCHILD

ISL9860PF2

8A, 600V Stealth Diode
SAMSUNG

ISL98611

High Efficiency Display Power and LED Driver for Smart Phones
RENESAS

ISL98611II56Z-T

High Efficiency Display Power and LED Driver for Smart Phones
RENESAS

ISL98611IIZ-T

High Efficiency Display Power and LED Driver for Smart Phones
RENESAS

ISL98665IRTZ

1-CHANNEL POWER SUPPLY SUPPORT CKT, PQCC28, 4 X 5 MM, ROHS COMPLIANT, PLASTIC, TQFN-28
RENESAS