ISLA216P25IR1Z [RENESAS]

16-Bit, 250MSPS/200MSPS/130MSPS ADC;
ISLA216P25IR1Z
型号: ISLA216P25IR1Z
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

16-Bit, 250MSPS/200MSPS/130MSPS ADC

文件: 总35页 (文件大小:1485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISLA216P  
16-Bit, 250MSPS/200MSPS/130MSPS ADC  
FN7574  
Rev 2.00  
December 10, 2012  
The ISLA216P is a family of low power, high performance  
16-bit analog-to-digital converters. Designed with Intersil’s  
proprietary FemtoCharge™ technology on a standard CMOS  
process, the family supports sampling rates of up to  
250MSPS. The ISLA216P is part of a pin-compatible portfolio  
of 12 to 16-bit A/Ds with maximum sample rates ranging from  
130MSPS to 500MSPS.  
Features  
• Single supply 1.8V operation  
• Clock duty cycle stabilizer  
• 75fs Clock jitter  
• 700MHz Bandwidth  
• Programmable built-in test patterns  
• Multi-ADC support  
A serial peripheral interface (SPI) port allows for extensive  
configurability, as well as fine control of various parameters  
such as gain and offset.  
- SPI Programmable fine gain and offset control  
- Support for multiple ADC synchronization  
- Optimized output timing  
Digital output data is presented in selectable LVDS or CMOS  
formats. The ISLA216P is available in a 72-contact QFN  
package with an exposed paddle. Operating from a 1.8V  
supply, performance is specified over the full industrial  
temperature range (-40°C to +85°C).  
• Nap and sleep modes  
- 200µs Sleep wake-up time  
• Data output clock  
Key Specifications  
• SNR @ 250/200/130MSPS  
• DDR LVDS-compatible or LVCMOS outputs  
• Selectable Clock Divider  
- 75.0/76.6/77.5dBFS f = 30MHz  
IN  
Applications  
• Radar array processing  
- 72.1/72.6/72.4dBFS f = 363MHz  
IN  
• SFDR @ 250/200/130MSPS  
- 87/91/96dBc f = 30MHz  
IN  
• Software defined radios  
- 81/80/82dBc f = 363MHz  
IN  
• Total Power Consumption = 786mW @ 250MSPS  
• Broadband communications  
• High-performance data acquisition  
• Communications test equipment  
Pin-Compatible Family  
SPEED  
(MSPS)  
MODEL  
RESOLUTION  
ISLA216P25  
ISLA216P20  
ISLA216P13  
ISLA214P50  
ISLA214P25  
ISLA214P20  
ISLA214P13  
ISLA212P50  
ISLA212P25  
ISLA212P20  
ISLA212P13  
16  
16  
16  
14  
14  
14  
14  
12  
12  
12  
12  
250  
200  
130  
500  
250  
200  
130  
500  
250  
200  
130  
CLKP  
CLKOUTP  
CLKOUTN  
CLOCK  
MANAGEMENT  
CLKN  
VINP  
VINN  
16-BIT  
250 MSPS  
ADC  
SHA  
D[14:0]P  
D[14:0]N  
DIGITAL  
ERROR  
CORRECTION  
+
VCM  
SPI  
CONTROL  
FN7574 Rev 2.00  
December 10, 2012  
Page 1 of 35  
ISLA216P  
Pin Configuration - LVDS MODE  
ISLA216P  
(72 LD QFN)  
TOP VIEW  
72 71 70 69 68 67 66 65 64 63  
62 61 60 59 58 57 56 55  
DNC  
DNC  
1
2
54 DNC  
DNC  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
3
NAPSLP  
VCM  
D6P  
4
D6N  
5
AVSS  
AVDD  
AVSS  
VINN  
DNC  
6
DNC  
7
CLKOUTP  
CLKOUTN  
RLVDS  
OVSS  
D8P  
8
9
VINN  
10  
11  
12  
13  
14  
VINP  
VINP  
AVSS  
AVDD  
AVSS  
CLKDIV  
IPTAT  
DNC  
D8N  
DNC  
DNC  
15  
16  
17  
40  
D10P  
39 D10N  
38  
Thermal Pad Not Drawn to Scale,  
Consult Mechanical Drawing  
for Physical Dimensions  
DNC  
37 DNC  
Connect Thermal Pad to AVSS  
RESETN 18  
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36  
Pin Descriptions - 72 Ld QFN, LVDS Mode  
PIN NUMBER  
LVDS PIN NAME  
LVDS PIN FUNCTION  
1, 2, 17, 28, 29, 33, 34, 37,  
38, 41, 42, 49, 50, 53, 54,  
57, 58  
DNC  
Do Not Connect  
6, 13, 19, 20, 21, 70, 71, 72  
AVDD  
AVSS  
1.8V Analog Supply  
Analog Ground  
5, 7, 12, 14  
27, 32, 62  
26, 45, 61, 65  
3
OVDD  
OVSS  
1.8V Output Supply  
Output Ground  
NAPSLP  
Tri-Level Power Control (Nap, Sleep modes)  
FN7574 Rev 2.00  
December 10, 2012  
Page 2 of 35  
ISLA216P  
Pin Descriptions - 72 Ld QFN, LVDS Mode (Continued)  
PIN NUMBER  
LVDS PIN NAME  
LVDS PIN FUNCTION  
4
VCM  
Common Mode Output  
Analog Input Negative  
Analog Input Positive  
8, 9  
VINN  
10, 11  
VINP  
15  
CLKDIV  
Tri-Level Clock Divider Control  
16  
IPTAT  
Temperature Monitor (Output current proportional to absolute temperature)  
Power On Reset (Active Low)  
18  
RESETN  
22, 23  
CLKP, CLKN  
Clock Input True, Complement  
Synchronous Clock Divider Reset True, Complement  
DDR Logical Bits 14, 15 Complement  
DDR Logical Bits 14, 15 True  
24, 25  
CLKDIVRSTP, CLKDIVRSTN  
30  
D14N  
D14P  
D12N  
D12P  
D10N  
D10P  
D8N  
31  
35  
DDR Logical Bits 12, 13 Complement  
DDR Logical Bits 12, 13 True  
36  
39  
DDR Logical Bits 10, 11 Complement  
DDR Logical Bits 10, 11 True  
40  
43  
DDR Logical Bits 8, 9 Complement  
DDR Logical Bits 8, 9 True  
44  
D8P  
46  
RLVDS  
CLKOUTN, CLKOUTP  
D6N  
LVDS Bias Resistor (Connect to OVSS with 1%10k)  
LVDS Clock Output Complement, True  
DDR Logical Bits 6, 7 Complement  
DDR Logical Bits 6, 7 True  
47, 48  
51  
52  
D6P  
55  
D4N  
DDR Logical Bits 4, 5 Complement  
DDR Logical Bits 4, 5 True  
56  
D4P  
59  
D2N  
DDR Logical Bits 2, 3 Complement  
DDR Logical Bits 2, 3 True  
60  
D2P  
63  
D0N  
DDR Logical Bits 0, 1 Complement  
DDR Logical Bits 0, 1 True  
64  
D0P  
66  
SDO  
SPI Serial Data Output  
67  
CSB  
SPI Chip Select (active low)  
68  
69  
SCLK  
SPI Clock  
SDIO  
SPI Serial Data Input/Output  
Exposed Paddle  
AVSS  
Analog Ground  
FN7574 Rev 2.00  
December 10, 2012  
Page 3 of 35  
ISLA216P  
Pin Configuration - CMOS MODE  
ISLA216P  
(72 LD QFN)  
TOP VIEW  
72 71 70 69 68 67 66 65 64 63 62 61  
60 59  
58 57 56 55  
DNC  
DNC  
1
2
54 DNC  
DNC  
D6  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
3
NAPSLP  
VCM  
4
DNC  
DNC  
DNC  
CLKOUT  
DNC  
RLVDS  
OVSS  
D8  
5
AVSS  
AVDD  
AVSS  
VINN  
VINN  
VINP  
VINP  
AVSS  
AVDD  
AVSS  
CLKDIV  
IPTAT  
DNC  
6
7
8
9
10  
11  
12  
13  
14  
DNC  
DNC  
DNC  
D10  
15  
16  
17  
40  
39  
38  
DNC  
DNC  
Thermal Pad Not Drawn to Scale,  
Consult Mechanical Drawing  
for Physical Dimensions  
Connect Thermal Pad to AVSS  
RESETN 18  
37 DNC  
19 20 21 22 23 24 25 26  
27 28 29 30 31 32 33 34 35 36  
Pin Descriptions - 72 Ld QFN, CMOS Mode  
PIN NUMBER  
CMOS PIN NAME  
CMOS PIN FUNCTION  
1, 2, 17, 28, 29, 30, 33, 34,  
35, 37, 38, 39, 41, 42, 43,  
47, 49, 50, 51, 53, 54, 55,  
57, 58, 59, 63  
DNC  
Do Not Connect  
6, 13, 19, 20, 21, 70, 71, 72  
AVDD  
AVSS  
1.8V Analog Supply  
Analog Ground  
5, 7, 12, 14  
27, 32, 62  
26, 45, 61, 65  
3
OVDD  
OVSS  
1.8V Output Supply  
Output Ground  
NAPSLP  
Tri-Level Power Control (Nap, Sleep modes)  
FN7574 Rev 2.00  
December 10, 2012  
Page 4 of 35  
ISLA216P  
Pin Descriptions - 72 Ld QFN, CMOS Mode (Continued)  
PIN NUMBER  
CMOS PIN NAME  
CMOS PIN FUNCTION  
4
VCM  
Common Mode Output  
Analog Input Negative  
Analog Input Positive  
8, 9  
VINN  
10, 11  
VINP  
15  
CLKDIV  
Tri-Level Clock Divider Control  
16  
IPTAT  
Temperature Monitor (Output current proportional to absolute temperature)  
Power On Reset (Active Low)  
Clock Input True, Complement  
Synchronous Clock Divider Reset True, Complement  
DDR Logical Bits 14, 15  
18  
RESETN  
22, 23  
CLKP, CLKN  
24, 25  
CLKDIVRSTP, CLKDIVRSTN  
31  
D14  
D12  
D10  
D8  
36  
DDR Logical Bits 12, 13  
40  
DDR Logical Bits 10, 11  
44  
DDR Logical Bits 8, 9  
46  
RLVDS  
CLKOUT  
D6  
LVDS Bias Resistor (Connect to OVSS with 1%10k)  
CMOS Clock Output  
48  
52  
DDR Logical Bits 6, 7  
56  
D4  
DDR Logical Bits 4, 5  
60  
D2  
DDR Logical Bits 2, 3  
64  
D0  
DDR Logical Bits 0, 1  
66  
SDO  
CSB  
SPI Serial Data Output  
67  
SPI Chip Select (active low)  
SPI Clock  
68  
69  
SCLK  
SDIO  
AVSS  
SPI Serial Data Input/Output  
Analog Ground  
Exposed Paddle  
Ordering Information  
PART NUMBER  
(Notes 1, 2)  
PART  
MARKING  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
ISLA216P13IRZ  
ISLA216P20IRZ  
ISLA216P25IRZ  
ISLA216P13 IRZ  
ISLA216P20 IRZ  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
72 Ld QFN  
L72.10x10E  
72 Ld QFN  
72 Ld QFN  
L72.10x10E  
L72.10x10E  
ISLA216P25 IRZ  
ISLA216P13 IR1Z  
ISLA216P20 IR1Z  
Coming Soon  
ISLA216P13IR1Z  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
48 Ld QFN  
48 Ld QFN  
48 Ld QFN  
TBD  
TBD  
TBD  
Coming Soon  
ISLA216P20IR1Z  
Coming Soon  
ISLA216P25IR1Z  
ISLA216P25 IR1Z  
ISLA216IR72EV1Z  
Evaluation Board (72 pin QFN ADC)  
NOTES:  
1. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate-e4  
termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
2. For Moisture Sensitivity Level (MSL), please see device information page for ISLA216P. For more information on MSL please see techbrief TB363.  
FN7574 Rev 2.00  
December 10, 2012  
Page 5 of 35  
ISLA216P  
Table of Contents  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7
Digital Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Switching Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power-On Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
User Initiated Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Temperature Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Digital Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Nap/Sleep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Clock Divider Synchronous Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SPI Physical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SPI Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Device Configuration/Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Global Device Configuration/Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Digital Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SPI Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Equivalent Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
A/D Evaluation Platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Split Ground and Power Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Clock Input Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Exposed Paddle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Bypass and Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
LVDS Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
LVCMOS Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Unused Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
FN7574 Rev 2.00  
December 10, 2012  
Page 6 of 35  
ISLA216P  
Absolute Maximum Ratings  
Thermal Information  
AVDD to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.4V to 2.1V  
OVDD to OVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.4V to 2.1V  
AVSS to OVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 0.3V  
Analog Inputs to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to AVDD + 0.3V  
Clock Inputs to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to AVDD + 0.3V  
Logic Input to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to OVDD + 0.3V  
Logic Inputs to OVSS . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to OVDD + 0.3V  
Latchup (Tested per JESD-78C;Class 2,Level A) . . . . . . . . . . . . . . . . 100mA  
Thermal Resistance (Typical)  
72 Ld QFN (Notes 3, 4) . . . . . . . . . . . . . . . .  
48 Ld QFN (Notes 3, 4) . . . . . . . . . . . . . . . .  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
(°C/W)  
23  
24  
(°C/W)  
0.9  
1.0  
JA  
JC  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
3. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
4. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD = 1.8V, OVDD = 1.8V,  
T
= -40°C to +85°C (typical specifications at +25°C), A = -2dBFS, f  
= Maximum Conversion Rate (per speed grade). Boldface limits apply  
SAMPLE  
A
IN  
over the operating temperature range, -40°C to +85°C.  
ISLA216P25  
MIN MAX  
ISLA216P20  
MIN MAX  
ISLA216P13  
MIN MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
(Note 5) TYP (Note 5) (Note 5) TYP (Note 5) (Note 5) TYP (Note 5) UNITS  
DC SPECIFICATIONS (Note 6)  
Analog Input  
Full-Scale Analog Input  
Range  
V
Differential  
1.95  
2.0  
2.2  
1.95  
2.0  
2.2  
1.95  
2.0  
2.2  
V
P-P  
FS  
Input Resistance  
Input Capacitance  
R
C
Differential  
Differential  
Full Temp  
300  
9
300  
9
300  
9
IN  
pF  
IN  
Full Scale Range Temp.  
Drift  
A
180  
180  
180  
ppm/°C  
VTC  
Input Offset Voltage  
V
-5.0  
-1.7  
5.0  
-5.0  
-1.7  
5.0  
-5.0  
-1.7  
5.0  
mV  
V
OS  
Common-Mode Output  
Voltage  
V
0.94  
0.94  
0.94  
CM  
Common-Mode Input  
Current (per pin)  
I
5.2  
5.2  
5.2  
µA/MSPS  
CM  
Clock Inputs  
Inputs Common Mode  
Voltage  
0.9  
1.8  
0.9  
1.8  
0.9  
1.8  
V
V
CLKP,CLKN Input Swing  
Power Requirements  
1.8V Analog Supply  
Voltage  
AVDD  
OVDD  
1.7  
1.7  
1.8  
1.8  
372  
64  
1.9  
1.9  
397  
73  
1.7  
1.7  
1.8  
1.8  
342  
58  
1.9  
1.9  
360  
68  
1.7  
1.7  
1.8  
1.8  
293  
50  
1.9  
1.9  
310  
58  
V
1.8V Digital Supply  
Voltage  
V
1.8V Analog Supply  
Current  
I
I
mA  
mA  
dB  
AVDD  
1.8V Digital Supply  
Current (Note 6)  
3mA LVDS  
OVDD  
Power Supply Rejection  
Ratio  
PSRR  
30MHz, 50mVP-Psignal  
on AVDD  
-65  
-65  
-65  
FN7574 Rev 2.00  
December 10, 2012  
Page 7 of 35  
ISLA216P  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD = 1.8V, OVDD = 1.8V,  
T
= -40°C to +85°C (typical specifications at +25°C), A = -2dBFS, f  
= Maximum Conversion Rate (per speed grade). Boldface limits apply  
SAMPLE  
A
IN  
over the operating temperature range, -40°C to +85°C. (Continued)  
ISLA216P25  
MIN MAX  
ISLA216P20  
MIN MAX  
ISLA216P13  
MIN MAX  
PARAMETER  
Total Power Dissipation  
Normal Mode  
SYMBOL  
CONDITIONS  
(Note 5) TYP (Note 5) (Note 5) TYP (Note 5) (Note 5) TYP (Note 5) UNITS  
P
2mA LVDS  
771  
786  
760  
88  
706  
720  
685  
83  
603  
616  
580  
77  
mW  
mW  
mW  
mW  
mW  
µs  
D
3mA LVDS  
CMOS  
846  
770  
662  
Nap Mode  
P
P
103  
19  
99  
19  
94  
19  
D
Sleep Mode  
CSB at logic high  
7
7
7
D
Nap/Sleep Mode  
Wakeup Time  
Sample Clock Running  
200  
400  
630  
AC SPECIFICATIONS  
Differential Nonlinearity  
DNL  
INL  
f
= 30MHz  
-0.99 ±0.35  
±10  
-0.99 ±0.25  
±6  
-0.99 ±0.25  
±5  
LSB  
IN  
No Missing Codes  
Integral Nonlinearity  
f
= 30MHz  
LSB  
IN  
Minimum Conversion  
Rate (Note 7)  
f
MIN  
40  
40  
40  
MSPS  
S
Maximum Conversion  
Rate  
f
MAX  
250  
200  
130  
MSPS  
S
Signal-to-Noise Ratio  
(Note 8)  
SNR  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
= 30MHz  
75.0  
76.6  
77.5  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
Bits  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 105MHz  
= 190MHz  
= 363MHz  
= 461MHz  
= 605MHz  
= 30MHz  
71.7  
74.9  
74.2  
72.1  
71.1  
69.2  
74.7  
74.1  
73.1  
71.6  
69.2  
65.7  
12.12  
74.8  
76.4  
75.3  
72.6  
71.1  
69.2  
76.5  
76.1  
74.7  
71.7  
68.6  
64.9  
12.42  
75.5  
76.9  
75.3  
72.4  
70.8  
68.9  
77.4  
76.1  
74.6  
71.9  
67.9  
66.3  
12.56  
Signal-to-Noise and  
Distortion  
(Note 8)  
SINAD  
= 105MHz  
= 190MHz  
= 363MHz  
= 461MHz  
= 605MHz  
= 30MHz  
70.0  
73.2  
72.6  
Effective Number of Bits  
(Note 8)  
ENOB  
= 105MHz  
= 190MHz  
= 363MHz  
= 461MHz  
= 605MHz  
11.34 12.02  
11.85  
11.87 12.35  
12.12  
11.77 12.35  
12.10  
Bits  
Bits  
11.60  
11.62  
11.65  
Bits  
11.20  
11.10  
10.99  
Bits  
10.62  
10.49  
10.72  
Bits  
FN7574 Rev 2.00  
December 10, 2012  
Page 8 of 35  
ISLA216P  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD = 1.8V, OVDD = 1.8V,  
T
= -40°C to +85°C (typical specifications at +25°C), A = -2dBFS, f  
= Maximum Conversion Rate (per speed grade). Boldface limits apply  
SAMPLE  
A
IN  
over the operating temperature range, -40°C to +85°C. (Continued)  
ISLA216P25  
MIN MAX  
ISLA216P20  
MIN MAX  
ISLA216P13  
MIN MAX  
PARAMETER  
SYMBOL  
SFDR  
CONDITIONS  
= 30MHz  
(Note 5) TYP (Note 5) (Note 5) TYP (Note 5) (Note 5) TYP (Note 5) UNITS  
Spurious-Free Dynamic  
Range  
(Note 8)  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
87  
83  
81  
81  
73  
67  
89  
92  
88  
83  
82  
79  
94  
87  
91  
89  
84  
80  
72  
67  
91  
93  
92  
87  
85  
82  
92  
87  
96  
83  
83  
82  
70  
67  
99  
96  
96  
94  
91  
89  
88  
87  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBFS  
dBFS  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 105MHz  
= 190MHz  
= 363MHz  
= 461MHz  
= 605MHz  
= 30MHz  
74  
74  
72  
Spurious-Free Dynamic SFDRX23  
Range Excluding H2, H3  
(Note 8)  
= 105MHz  
= 190MHz  
= 363MHz  
= 461MHz  
= 605MHz  
= 70MHz  
80  
82  
82  
Intermodulation  
Distortion  
IMD  
= 170MHz  
-12  
-12  
-12  
Word Error Rate  
Full Power Bandwidth  
NOTES:  
WER  
10  
700  
10  
700  
10  
700  
FPBW  
MHz  
5. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
6. Digital Supply Current is dependent upon the capacitive loading of the digital outputs. I  
7. The DLL Range setting must be changed for low-speed operation.  
8. Minimum specification guaranteed when calibrated at +85°C.  
specifications apply for 10pF load on each digital output.  
OVDD  
Digital Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
(Note 5)  
TYP  
(Note 5) UNITS  
INPUTS  
Input Current High (RESETN)  
Input Current Low (RESETN)  
Input Current High (SDIO)  
Input Current Low (SDIO)  
Input Current High (CSB)  
Input Current Low (CSB)  
I
V
V
V
V
V
V
= 1.8V  
= 0V  
0
1
-12  
4
10  
-7  
µA  
µA  
µA  
µA  
µA  
µA  
V
IH  
IN  
IN  
IN  
IN  
IN  
IN  
I
-25  
IL  
I
= 1.8V  
= 0V  
12  
IH  
I
-600  
40  
-415  
58  
5
-300  
75  
IL  
I
= 1.8V  
= 0V  
IH  
I
10  
IL  
Input Voltage High (SDIO, RESETN)  
Input Voltage Low (SDIO, RESETN)  
Input Current High (CLKDIV) (Note 9)  
Input Current Low (CLKDIV)  
V
1.17  
IH  
V
0.63  
34  
V
IL  
I
16  
25  
-25  
4
µA  
µA  
pF  
IH  
I
-34  
-16  
IL  
Input Capacitance  
C
DI  
FN7574 Rev 2.00  
December 10, 2012  
Page 9 of 35  
ISLA216P  
Digital Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
MIN  
(Note 5)  
MAX  
(Note 5) UNITS  
PARAMETER  
LVDS INPUTS (CLKDIVRSTP,CLKDIVRSTN)  
Input Common Mode Range  
Input Differential Swing (peak to peak, single-ended)  
CLKDIVRSTP Input Pull-down Resistance  
CLKDIVRSTN Input Pull-up Resistance  
LVDS OUTPUTS  
SYMBOL  
CONDITIONS  
TYP  
V
825  
250  
1575  
450  
mV  
mV  
k  
k  
ICM  
V
ID  
R
R
100  
100  
Ipd  
Ipu  
Differential Output Voltage (Note 10)  
Output Offset Voltage  
V
3mA Mode  
3mA Mode  
612  
1150  
240  
mV  
P-P  
T
V
1120  
1200  
mV  
ps  
OS  
Output Rise Time  
t
R
Output Fall Time  
t
240  
ps  
F
CMOS OUTPUTS  
Voltage Output High  
V
I
I
= -500µA  
= 1mA  
OVDD - 0.3 OVDD - 0.1  
V
V
OH  
OH  
Voltage Output Low  
V
0.1  
1.8  
1.4  
0.3  
OL  
OL  
Output Rise Time  
t
ns  
ns  
R
Output Fall Time  
t
F
NOTES:  
9. The Tri-Level Inputs internal switching thresholds are approximately. 0.43V and 1.34V. It is advised to float the inputs, tie to ground or AVDD depending  
on desired function.  
10. The voltage is expressed in peak-to-peak differential swing. The peak-to-peak singled-ended swing is 1/2 of the differential swing.  
Timing Diagrams  
INP  
INN  
tA  
CLKN  
CLKP  
LATENCY = L CYCLES  
tCPD  
CLKOUTN  
CLKOUTP  
tDC  
tPD  
D[14/12/…/2/0]N  
ODD  
N-L  
EVEN  
N-L  
ODD  
N-L+1  
EVEN  
N-L+1  
EVEN  
N-1  
ODD  
N
EVEN  
N
D[14/12/…/2/0]P  
FIGURE 1A. LVDS  
FN7574 Rev 2.00  
December 10, 2012  
Page 10 of 35  
ISLA216P  
Timing Diagrams  
INP  
INN  
tA  
CLKN  
CLKP  
LATENCY = L CYCLES  
tCPD  
CLKOUT  
tDC  
tPD  
ODD  
N-L  
EVEN  
N-L  
ODD  
N-L+1  
EVEN  
N-L+1  
EVEN  
N-1  
ODD  
N
EVEN  
N
D[14/12/…/2/0]  
FIGURE 1B. CMOS  
FIGURE 1. TIMING DIAGRAMS  
Switching Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C.  
MIN  
(Note 5)  
MAX  
(Note 5)  
PARAMETER  
SYMBOL  
CONDITION  
TYP  
UNITS  
ADC OUTPUT  
Aperture Delay  
t
114  
75  
ps  
fs  
A
RMS Aperture Jitter  
j
A
Input Clock to Output Clock Propagation  
Delay  
t
t
AVDD, OVDD = 1.7V to 1.9V,  
1.65  
2.4  
3
ns  
CPD  
T
= -40°C to +85°C  
A
AVDD, OVDD = 1.8V, T = +25°C  
A
1.9  
2.3  
2.75  
450  
ns  
ps  
CPD  
Relative Input Clock to Output Clock  
Propagation Delay (Note 13)  
dt  
AVDD, OVDD = 1.7V to 1.9V,  
-450  
CPD  
T
= -40°C to +85°C  
A
Input Clock to Data Propagation Delay  
t
t
1.65  
-0.1  
2.4  
3.5  
0.5  
ns  
ns  
PD  
Output Clock to Data Propagation Delay,  
LVDS Mode  
Rising/Falling Edge  
Rising/Falling Edge  
0.16  
DC  
Output Clock to Data Propagation Delay,  
CMOS Mode  
t
-0.1  
0.4  
0.2  
0.65  
ns  
ns  
DC  
Synchronous Clock Divider Reset Setup  
Time (with respect to the positive edge of  
CLKP)  
t
0.06  
RSTS  
Synchronous Clock Divider Reset Hold Time  
(with respect to the positive edge of CLKP)  
t
0.02  
52  
0.35  
ns  
µs  
RSTH  
Synchronous Clock Divider Reset Recovery  
Time  
t
DLL recovery time after  
Synchronous Reset  
RSTRT  
L
Latency (Pipeline Delay)  
10  
cycles  
FN7574 Rev 2.00  
December 10, 2012  
Page 11 of 35  
ISLA216P  
Switching Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
MIN  
MAX  
PARAMETER  
Overvoltage Recovery  
SYMBOL  
CONDITION  
(Note 5)  
TYP  
1
(Note 5)  
UNITS  
cycles  
t
OVR  
SPI INTERFACE (Notes 11, 12)  
SCLK Period  
t
Write Operation  
16  
16  
28  
5
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
CLK  
CLK  
t
Read Operation  
Read or Write  
Write  
CSBto SCLKSetup Time  
CSBafter SCLKHold Time  
Data Valid to SCLKSetup Time  
Data Valid after SCLKHold Time  
Data Valid after SCLKTime  
NOTES:  
t
S
t
H
t
Write  
6
DS  
DH  
t
Read or Write  
Read  
4
5
t
DVR  
11. SPI Interface timing is directly proportional to the ADC sample period (t ). Values above reflect multiples of a 4ns sample period, and must be scaled  
S
proportionally for lower sample rates. ADC sample clock must be running for SPI communication.  
12. The SPI may operate asynchronously with respect to the ADC sample clock.  
13. The relative propagation delay is the difference in propagation time between any two devices that are matched in temperature and voltage, and is  
specified over the full operating temperature and voltage range.  
Typical Performance Curves  
All Typical Performance Characteristics apply under the following conditions unless otherwise noted: AVDD = OVDD = 1.8V, T = +25°C, A = -2dBFS,  
A
IN  
f
= 105MHz, f  
= 250MSPS.  
IN  
SAMPLE  
95  
-65  
-70  
HD2 @ 250MSPS  
90  
85  
80  
75  
SFDR @ 130MSPS  
SFDR @ 250MSPS  
-75  
-80  
-85  
HD3 @ 250MSPS  
-90  
70  
65  
60  
SNR @ 130MSPS  
SNR @ 250MSPS  
-95  
HD3 @ 130MSPS  
HD2 @ 130MSPS  
-100  
-105  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
FIGURE 3. HD2 AND HD3 vs f  
FIGURE 2. SNR AND SFDR vs f  
IN  
IN  
100  
-40  
-50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
HD2 (dBc)  
SFDR(dBfs)  
-60  
SNR(dBfs)  
SFDR(dBc)  
-70  
HD3 (dBc)  
-80  
SNR(dBc)  
HD2 (dBfs)  
HD3 (dBfs)  
-90  
-100  
-110  
-60  
-50  
-40  
-30  
-20  
-10  
0
-60  
-50  
-40  
-30  
-20  
-10  
0
INPUT AMPLITUDE (dBFS)  
INPUT AMPLITUDE (dBFS)  
FIGURE 4. SNR AND SFDR vs A  
FIGURE 5. HD2 AND HD3 vs A  
IN  
IN  
FN7574 Rev 2.00  
December 10, 2012  
Page 12 of 35  
ISLA216P  
Typical Performance Curves  
All Typical Performance Characteristics apply under the following conditions unless otherwise noted: AVDD = OVDD = 1.8V, T = +25°C, A = -2dBFS,  
A
IN  
f
= 105MHz, f  
= 250MSPS. (Continued)  
IN  
SAMPLE  
90  
-75  
-80  
SFDR  
H3  
85  
80  
75  
-85  
-90  
-95  
SNR  
H2  
-100  
-105  
70  
70  
90  
110 130 150 170 190 210 230 250  
SAMPLE RATE (MSPS)  
70  
90  
110 130 150 170 190 210 230 250  
SAMPLE RATE (MSPS)  
FIGURE 6. SNR AND SFDR vs f  
FIGURE 7. HD2 AND HD3 vs f  
SAMPLE  
SAMPLE  
1.5  
800  
750  
700  
650  
600  
550  
500  
1.0  
0.5  
0
LVDS  
-0.5  
-1.0  
-1.5  
CMOS  
450  
40  
60  
80 100 120 140 160 180 200 220 240  
SAMPLE RATE (MSPS)  
0
10,000 20,000 30,000 40,000 50,000 60,000  
CODES  
FIGURE 8. POWER vs f  
IN 3mA LVDS MODE  
FIGURE 9. DIFFERENTIAL NONLINEARITY  
SAMPLE  
20  
85  
80  
75  
70  
65  
60  
SFDR  
15  
10  
5
SNR  
0
-5  
-10  
-15  
-20  
0
10,000 20,000 30,000 40,000 50,000 60,000  
CODES  
0.75  
0.85  
0.95  
1.05  
1.15  
INPUT COMMON MODE (V)  
FIGURE 10. INTEGRAL NONLINEARITY  
FIGURE 11. SNR AND SFDR vs VCM  
FN7574 Rev 2.00  
December 10, 2012  
Page 13 of 35  
ISLA216P  
Typical Performance Curves  
All Typical Performance Characteristics apply under the following conditions unless otherwise noted: AVDD = OVDD = 1.8V, T = +25°C, A = -2dBFS,  
A
IN  
f
= 105MHz, f  
= 250MSPS. (Continued)  
IN  
SAMPLE  
0
-20  
25000  
A
= -2 dBFS  
IN  
SNR = 75.4 dBFS  
SFDR = 82 dBc  
SINAD = 74.5 dBFS  
20000  
15000  
10000  
5000  
0
-40  
-60  
-80  
-100  
-120  
0
20  
40  
60  
80  
100  
120  
120  
120  
32696 32700 32704 32708 32712 32716 32720 32724  
CODE  
FREQUENCY (MHz)  
FIGURE 13. SINGLE-TONE SPECTRUM @ 105MHz  
FIGURE 12. NOISE HISTOGRAM  
0
-20  
0
A
= -2 dBFS  
IN  
A
= -2 dBFS  
IN  
SNR = 74.5 dBFS  
SFDR = 81 dBc  
SNR = 72.4 dBFS  
SFDR = 80 dBc  
SINAD = 71.3 dBFS  
-20  
-40  
SINAD = 73.67 dBFS  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 15. SINGLE-TONE SPECTRUM @ 363MHz  
FIGURE 14. SINGLE-TONE SPECTRUM @ 190MHz  
0
0
IMD3 = -94dBFS  
IMD2  
IMD3 = -87dBFS  
IMD2  
IMD3  
2nd Harmonics  
3rd Harmonics  
IMD3  
2nd Harmonics  
3rd Harmonics  
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 16. TWO-TONE SPECTRUM  
(F1 = 70MHz, F2 = 71MHz AT -7dBFS)  
FIGURE 17. TWO-TONE SPECTRUM  
(F1 = 170MHz, F2 = 171MHz AT -7dBFS)  
FN7574 Rev 2.00  
December 10, 2012  
Page 14 of 35  
ISLA216P  
following conditions must be adhered to for the power-on  
calibration to execute successfully:  
Theory of Operation  
Functional Description  
The ISLA216P is based upon a 16-bit, 250MSPS A/D converter  
core that utilizes a pipelined successive approximation  
• A frequency-stable conversion clock must be applied to the  
CLKP/CLKN pins  
• DNC pins must not be connected  
architecture (Figure 18). The input voltage is captured by a  
Sample-Hold Amplifier (SHA) and converted to a unit of charge.  
Proprietary charge-domain techniques are used to successively  
compare the input to a series of reference charges. Decisions  
made during the successive approximation operations determine  
the digital code for each input value. Digital error correction is also  
applied, resulting in a total latency of 10 clock cycles. This is  
evident to the user as a latency between the start of a conversion  
and the data being available on the digital outputs.  
• SDO has an internal pull-up and should not be driven externally  
• RESETN is pulled low by the ADC internally during POR.  
External driving of RESETN is optional.  
• SPI communications must not be attempted  
A user-initiated reset can subsequently be invoked in the event  
that the above conditions cannot be met at power-up.  
After the power supply has stabilized the internal POR releases  
RESETN and an internal pull-up pulls it high, which starts the  
calibration sequence. If a subsequent user-initiated reset is  
desired, the RESETN pin should be connected to an open-drain  
driver with an off-state/high impedance state leakage of less  
than 0.5mA to assure exit from the reset state so calibration can  
start.  
The ISLA216P family operates by simultaneously sampling the  
input signal with two ADC cores in parallel and summing the  
digital result. Since the input signal is correlated between the two  
cores and noise is not, an increase in SNR is achieved. As a result,  
the offset, gain, or operational mode of both cores should be  
adjusted when a change to the ADC's offset, gain, or operational  
mode is desired.  
The calibration sequence is initiated on the rising edge of  
RESETN, as shown in Figure 19. Calibration status can be  
determined by reading the cal_status bit (LSB) at 0xB6. This bit is  
‘0’ during calibration and goes to a logic ‘1’ when calibration is  
complete. The data outputs produce 0xCCCC during calibration;  
this can also be used to determine calibration status.  
Power-On Calibration  
As mentioned previously, the cores perform a self-calibration at  
start-up. An internal power-on-reset (POR) circuit detects the  
supply voltage ramps and initiates the calibration when the  
analog and digital supply voltages are above a threshold. The  
If the selectable clock divider is set to 1 (default), the output  
clock (CLKOUTP/CLKOUTN) will not be affected by the assertion  
of RESETN. If the selectable clock divider is set to 2 or 4, the  
output clock is set low while RESETN is asserted (low). Normal  
operation of the output clock resumes at the next input clock  
edge (CLKP/CLKN) after RESETN is de-asserted. At 250MSPS the  
nominal calibration time is 200ms, while the maximum  
calibration time is 550ms.  
CLOCK  
GENERATION  
INP  
2.5-BIT  
2.5-BIT  
6- STAGE  
1.5-BIT/ STAGE  
3- STAGE  
1-BIT/ STAGE  
3-BIT  
FLASH  
SHA  
FLASH  
FLASH  
INN  
+
1.25V  
DIGITAL  
ERROR  
CORRECTION  
LVDS/ LVCMOS  
OUTPUTS  
FIGURE 18. A/D CORE BLOCK DIAGRAM  
FN7574 Rev 2.00  
December 10, 2012  
Page 15 of 35  
ISLA216P  
CLKN  
CLKP  
CALIBRATION  
TIME  
RESETN  
CALIBRATION  
BEGINS  
CAL_STATUS  
BIT  
CALIBRATION  
COMPLETE  
CLKOUTP  
FIGURE 19. CALIBRATION TIMING  
User Initiated Reset  
Recalibration of the A/D can be initiated at any time by driving  
the RESETN pin low for a minimum of one clock cycle. An  
open-drain driver with a drive strength in its high impedance  
state of less than 0.5mA is recommended, as RESETN has an  
internal high impedance pull-up to OVDD. As is the case during  
power-on reset, RESETN and DNC pins must be in the proper  
state for the calibration to successfully execute.  
The performance of the ISLA216P25 changes with variations in  
temperature, supply voltage or sample rate. The extent of these  
changes may necessitate recalibration, depending on system  
performance requirements. Best performance will be achieved  
by recalibrating the A/D under the environmental conditions at  
which it will operate.  
A supply voltage variation of <100mV will generally result in an  
SNR change of <0.5dBFS and SFDR change of <3dBc.  
In situations where the sample rate is not constant, best results  
will be obtained if the device is calibrated at the highest sample  
rate. Reducing the sample rate by less than 80MSPS will typically  
result in an SNR change of <0.5dBFS and an SFDR change of  
<3dBc.  
Figures 20 through 25 show the effect of temperature on SNR  
and SFDR performance with power on calibration performed at  
-40°C, +25°C, and +85°C. Each plot shows the variation of  
SNR/SFDR across temperature after a single power on  
calibration at -40°C, +25°C and +85°C. Best performance is  
typically achieved by a user-initiated power on calibration at the  
operating conditions, as stated earlier. However, it can be seen  
that performance drift with temperature is not a very strong  
function of the temperature at which the power on calibration is  
performed; also note that SFDR performance typically improves  
as the analog input level moves away from full-scale as Figure 4  
shows.  
FN7574 Rev 2.00  
December 10, 2012  
Page 16 of 35  
ISLA216P  
Temperature Calibration  
78  
95  
90  
85  
80  
130MSPS  
77  
250MSPS  
130MSPS  
200MSPS  
250MSPS  
200MSPS  
76  
75  
74  
-40  
-35  
-30  
-25  
-20  
-40  
-35  
-30  
-25  
-20  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 21. TYPICAL SFDR PERFORMANCE vs TEMPERATURE,  
FIGURE 20. TYPICAL SNR PERFORMANCE vs TEMPERATURE,  
DEVICE CALIBRATED AT -40°C, f = 105MHz, -2dBFS  
DEVICE CALIBRATED AT -40°C, f = 105MHz, -2dBFS  
IN  
IN  
78  
77  
76  
75  
74  
95  
130MSPS  
200MSPS  
200MSPS  
90  
130MSPS  
85  
250MSPS  
10  
250MSPS  
80  
5
15  
20  
25  
30  
35  
40  
45  
5
10  
15  
20  
25  
30  
35  
40  
45  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 22. TYPICAL SNR PERFORMANCE vs TEMPERATURE,  
FIGURE 23. TYPICAL SFDR PERFORMANCE vs TEMPERATURE,  
DEVICE CALIBRATED AT +25°C, f = 105MHz, -2dBFS  
DEVICE CALIBRATED AT +25°C, f = 105MHz, -2dBFS  
IN  
IN  
95  
90  
85  
80  
78  
77  
76  
75  
74  
130MSPS  
200MSPS  
200MSPS  
250MSPS  
130MSPS  
250MSPS  
65  
67  
69  
71  
73  
75  
77  
79  
81  
83  
85  
65  
70  
75  
80  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 25. TYPICAL SFDR PERFORMANCE vs TEMPERATURE,  
FIGURE 24. TYPICAL SNR PERFORMANCE vs TEMPERATURE,  
DEVICE CALIBRATED AT +85°C, f = 105MHz, -2dBF  
DEVICE CALIBRATED AT +85°C, f = 105MHz, -2dBFS  
IN  
IN  
FN7574 Rev 2.00  
December 10, 2012  
Page 17 of 35  
ISLA216P  
Analog Input  
A single fully differential input (VINP/VINN) connects to the  
sample and hold amplifier (SHA) of each unit A/D. The ideal  
full-scale input voltage is 2.0V, centered at the VCM voltage of  
0.94V as shown in Figure 26.  
1.8  
1.4  
1.0  
0.6  
0.2  
VINN  
VINP  
VCM  
0.94V  
1.0V  
FIGURE 26. ANALOG INPUT RANGE  
Best performance is obtained when the analog inputs are driven  
differentially. The common-mode output voltage, VCM, should be  
used to properly bias the inputs as shown in Figures 27 through  
29. An RF transformer will give the best noise and distortion  
performance for wideband and/or high intermediate frequency  
(IF) inputs. Two different transformer input schemes are shown in  
Figures 27 and 28.  
ADT1-1WT  
ADT1-1WT  
1000pF  
A/D  
VCM  
0.1µF  
FIGURE 27. TRANSFORMER INPUT FOR GENERAL PURPOSE  
APPLICATIONS  
TX-2-5-1  
ADTL1-12  
1000pF  
A/D  
VCM  
1000pF  
FIGURE 28. TRANSMISSION-LINE TRANSFORMER INPUT FOR  
HIGH IF APPLICATIONS  
FN7574 Rev 2.00  
December 10, 2012  
Page 18 of 35  
ISLA216P  
This dual transformer scheme is used to improve common-mode  
rejection, which keeps the common-mode level of the input  
matched to VCM. The value of the shunt resistor should be  
determined based on the desired load impedance. The  
differential input resistance of the ISLA216P25 is 300.  
1000pF  
TC4-19G2+  
CLKP  
200  
0.01µF  
The SHA design uses a switched capacitor input stage (see  
Figure 42), which creates current spikes when the sampling  
capacitance is reconnected to the input voltage. This causes a  
disturbance at the input which must settle before the next  
sampling point. Lower source impedance will result in faster  
settling and improved performance. Therefore a 2:1 or 1:1  
transformer and low shunt resistance are recommended for  
optimal performance.  
CLKN  
1000pF  
1000pF  
FIGURE 30. RECOMMENDED CLOCK DRIVE  
A selectable 2x or 4x frequency divider is provided in series with  
the clock input. The divider can be used in the 2x mode with a  
sample clock equal to twice the desired sample rate or in 4x  
mode with a sample clock equal to four times the desired  
sample rate. This allows the use of the Phase Slip feature, which  
enables synchronization of multiple ADCs. The Phase Slip feature  
can be used as an alternative to using the CLKDIVRST pins to  
synchronize ADCs in a multiple ADC system.  
A/D  
TABLE 1. CLKDIV PIN SETTINGS  
CLKDIV PIN  
AVSS  
DIVIDE RATIO  
2
1
4
FIGURE 29. DIFFERENTIAL AMPLIFIER INPUT  
Float  
A differential amplifier, as shown in the simplified block diagram  
in Figure 29, can be used in applications that require  
AVDD  
The clock divider can also be controlled through the SPI port,  
which overrides the CLKDIV pin setting. See “SPI Physical  
Interface” on page 24. A delay-locked loop (DLL) generates  
internal clock signals for various stages within the charge  
pipeline. If the frequency of the input clock changes, the DLL may  
take up to 52μs to regain lock at 250MSPS. The lock time is  
inversely proportional to the sample rate.  
DC-coupling. In this configuration, the amplifier will typically  
dominate the achievable SNR and distortion performance.  
Intersil’s new ISL552xx differential amplifier family can also be  
used in certain AC applications with minimal performance  
degradation. Contact the factory for more information.  
Clock Input  
The clock input circuit is a differential pair (see Figure 43).  
The DLL has two ranges of operation, slow and fast. The slow  
range can be used for sample rates between 40MSPS and  
100MSPS, while the default fast range can be used from  
80MSPS to the maximum specified sample rate.  
Driving these inputs with a high level (up to 1.8V  
on each  
P-P  
input) sine or square wave will provide the lowest jitter  
performance. A transformer with 4:1 impedance ratio will  
provide increased drive levels. The clock input is functional with  
AC-coupled LVDS, LVPECL, and CML drive levels. To maintain the  
lowest possible aperture jitter, it is recommended to have high  
slew rate at the zero crossing of the differential clock input  
signal.  
Jitter  
In a sampled data system, clock jitter directly impacts the  
achievable SNR performance. The theoretical relationship  
between clock jitter (t ) and SNR is shown in Equation 1 and is  
J
illustrated in Figure 31.  
The recommended drive circuit is shown in Figure 30. A duty  
range of 40% to 60% is acceptable. The clock can be driven  
single-ended, but this will reduce the edge rate and may impact  
SNR performance. The clock inputs are internally self-biased to  
AVDD/2 to facilitate AC coupling.  
1
-------------------  
SNR = 20 log  
(EQ. 1)  
10  
2f  
t
IN J  
FN7574 Rev 2.00  
December 10, 2012  
Page 19 of 35  
ISLA216P  
Nap/Sleep  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
Portions of the device may be shut down to save power during  
times when operation of the A/D is not required. Two power saving  
modes are available: Nap, and Sleep. Nap mode reduces power  
dissipation to <103mW while Sleep mode reduces power  
dissipation to <19mW.  
tj = 0.1ps  
14 BITS  
12 BITS  
tj = 1ps  
All digital outputs (Data, CLKOUT and OR) are placed in a high  
impedance state during Nap or Sleep. The input clock should  
remain running and at a fixed frequency during Nap or Sleep, and  
CSB should be high. Recovery time from Nap mode will increase  
if the clock is stopped, since the internal DLL can take up to 52µs  
to regain lock at 250MSPS.  
tj = 10ps  
10 BITS  
tj = 100ps  
50  
1M  
10M  
100M  
1G  
INPUT FREQUENCY (Hz)  
FIGURE 31. SNR vs CLOCK JITTER  
By default after the device is powered on, the operational state is  
controlled by the NAPSLP pin as shown in Table 2.  
This relationship shows the SNR that would be achieved if clock  
jitter were the only non-ideal factor. In reality, achievable SNR is  
limited by internal factors such as linearity, aperture jitter and  
thermal noise. Internal aperture jitter is the uncertainty in the  
sampling instant shown in Figure1A. The internal aperture jitter  
combines with the input clock jitter in a root-sum-square fashion,  
since they are not statistically correlated, and this determines  
the total jitter in the system. The total jitter, combined with other  
noise sources, then determines the achievable SNR.  
TABLE 2. NAPSLP PIN SETTINGS  
NAPSLP PIN  
AVSS  
MODE  
Normal  
Sleep  
Nap  
Float  
AVDD  
The power-down mode can also be controlled through the SPI  
port, which overrides the NAPSLP pin setting. Details on this are  
contained in “Serial Peripheral Interface” on page 24.  
Voltage Reference  
A temperature compensated internal voltage reference provides  
the reference charges used in the successive approximation  
operations. The full-scale range of each A/D is proportional to the  
reference voltage. The nominal value of the voltage reference is  
1.25V.  
Data Format  
Output data can be presented in three formats: two’s  
complement (default), Gray code and offset binary. The data  
format can also be controlled through the SPI port, by writing to  
address 0x73. Details on this are contained in “Serial Peripheral  
Interface” on page 24.  
Digital Outputs  
Output data is available as a parallel bus in LVDS-compatible  
(default) or CMOS modes. In either case, the data is presented in  
double data rate (DDR) format. Figures 1A and 1B show the timing  
relationships for LVDS and CMOS modes, respectively.  
Offset binary coding maps the most negative input voltage to  
code 0x000 (all zeros) and the most positive input to 0xFFF (all  
ones). Two’s complement coding simply complements the MSB  
of the offset binary representation.  
Additionally, the drive current for LVDS mode can be set to a  
nominal 3mA(default) or a power-saving 2mA. The lower current  
setting can be used in designs where the receiver is in close  
physical proximity to the A/D. The applicability of this setting is  
dependent upon the PCB layout, therefore the user should  
experiment to determine if performance degradation is  
observed.  
When calculating Gray code the MSB is unchanged. The  
remaining bits are computed as the XOR of the current bit  
position and the next most significant bit. Figure 32 shows this  
operation.  
BINARY  
15  
14  
13  
1
0
• • • •  
The output mode can be controlled through the SPI port, by  
writing to address 0x73, see “Serial Peripheral Interface” on  
page 24.  
An external resistor creates the bias for the LVDS drivers. A 10k,  
1% resistor must be connected from the RLVDS pin to OVSS.  
• • • •  
• • • •  
Power Dissipation  
GRAY CODE  
15  
14  
13  
1
0
The power dissipated by the ISLA216P25 is primarily dependent  
on the sample rate and the output modes: LVDS vs CMOS and  
DDR vs SDR. There is a static bias in the analog supply, while the  
remaining power dissipation is linearly related to the sample  
rate. The output supply dissipation changes to a lesser degree in  
LVDS mode, but is more strongly related to the clock frequency in  
CMOS mode.  
FIGURE 32. BINARY TO GRAY CODE CONVERSION  
FN7574 Rev 2.00  
December 10, 2012  
Page 20 of 35  
ISLA216P  
Converting back to offset binary from Gray code must be done  
recursively, using the result of each bit for the next lower bit as  
shown in Figure 33.  
Clock Divider Synchronous Reset  
If the selectable clock divider is used, the ADC's internal sample  
clock will be at half the frequency (DIV=2) or one quarter the  
frequency (DIV=4) of the device clock. The phase relationship  
between the sample clock and the device clock is initially  
indeterminate. An output clock (CLKOUTP, CLKOUTN) is provided  
to facilitate latching of the sampled data and estimation of the  
internal sample clock's phase. The output clock has a fixed  
phase relationship to the sample clock. When the selectable  
clock divider is set to 2 or 4, the output clock's phase relationship  
to the sample clock remains fixed but is initially indeterminate  
with respect to the device clock. When the selectable clock  
divider is set to 2 or 4, the synchronous clock divider reset  
feature allows the phase of the internal sample clock and the  
output clock to be synchronized (refer to Figure 34) with respect  
to the device clock. This simplifies data capture in systems  
employing multiple A/Ds where sampling of the inputs is desired  
to be synchronous.  
GRAY CODE  
15  
14  
13  
1
0
• • • •  
• • • •  
• • • •  
• • • •  
The reset signal must be well-timed with respect to the sample  
clock (See “Switching Specifications” on page 11).  
A 100differential termination resistor must be supplied  
between CLKDIVRSTP and CLKDIVRSTN, external to the ADC, (on  
the PCB) and should be located as close to the CLKDIVRSTP/N  
pins as possible.  
BINARY  
15  
14  
13  
1
0
FIGURE 33. GRAY CODE TO BINARY CONVERSION  
Mapping of the input voltage to the various data formats is  
shown in Table 3.  
TABLE 3. INPUT VOLTAGE TO OUTPUT CODE MAPPING  
INPUT  
TWO’S  
VOLTAGE  
OFFSET BINARY  
COMPLEMENT  
GRAY CODE  
–Full Scale 0000 0000 0000  
0000  
1000 0000 0000  
0000  
0000 0000 0000  
0000  
–Full Scale 0000 0000 0000  
1000 0000 0000  
0001  
0000 0000 0000  
0001  
+ 1LSB  
0001  
Mid–Scale 1000 0000 0000  
0000  
0000 0000 0000  
0000  
1100 0000 0000  
0000  
+Full Scale 1111 1111 1111  
0111 1111 1111  
1110  
1000 0000 0000  
0001  
– 1LSB  
1110  
+Full Scale 1111 1111 1111  
1111  
0111 1111 1111  
1111  
1000 0000 0000  
0000  
FN7574 Rev 2.00  
December 10, 2012  
Page 21 of 35  
ISLA216P  
DEVICE CLOCK INPUT  
ANALOG INPUT  
(Note 14)  
L+td  
s1  
tRSTH  
(Note 15)  
CLKDIVRSTP  
tRSTS  
tRSTRT  
ADC1 OUTPUT DATA  
s0  
S0  
s1  
s1  
ODD  
EVEN  
ODD  
EVEN  
ADC1 CLKOUTP  
S0  
EVEN  
S1  
EVEN  
s0  
ODD  
s1  
ODD  
ADC2 OUTPUT DATA  
ADC2 CLKOUTP  
(Note 16)  
(PHASE 1)  
ADC2 CLKOUTP  
(PHASE 2)  
(Note 16)  
FIGURE 34. SYNCHRONOUS RESET OPERATION, CLOCK DIVIDE = 2  
NOTES:  
14. Delay equals fixed pipeline latency (L cycles of sample clock) plus fixed analog propagation delay, td.  
15. CLKDIVRSTP setup and hold times are with respect to input sample clock rising edge.CLKDIVRSTN is not  
shown, but must be driven, and is the compliment of CLKDIVRSTP.  
16. Either Output Clock Phase (phase 1 or phase 2 ) equally likely prior to synchronization.  
CSB  
SCLK  
SDIO  
R/W  
W1  
W0  
A12  
A11  
A10  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FIGURE 35. MSB-FIRST ADDRESSING  
FN7574 Rev 2.00  
December 10, 2012  
Page 22 of 35  
ISLA216P  
CSB  
SCLK  
SDIO  
A0  
A1  
A2  
A11  
A12  
W0  
W1  
R/W  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
FIGURE 36. LSB-FIRST ADDRESSING  
t
DSW  
t
t
t
CLK  
HI  
H
t
DHW  
CSB  
t
t
S
LO  
SCLK  
SDIO  
R/W W1 W0 A12 A11 A10 A9  
A8  
A7  
D0  
D5  
D4  
D3  
D2  
D1  
SPI WRITE  
FIGURE 37. SPI WRITE  
tDSW  
tCLK  
tH  
tHI  
tDVR  
tS  
CSB  
tDHW  
tLO  
SCLK  
WRITING A READ COMMAND  
READING DATA  
)
( 3 WIRE MODE  
D2 D1 D0  
SDIO  
SDO  
R/W  
W1 W0  
A12 A11  
A10  
A9  
A2  
A1  
A0  
D7  
D6  
D3  
( 4 WIRE MODE)  
D3 D2 D1 D0  
D7  
SPI READ  
FIGURE 38. SPI READ  
CSB STALLING  
CSB  
SCLK  
SDIO  
INSTRUCTION/ADDRESS  
DATA WORD 1  
DATA WORD 2  
FIGURE 39. 2-BYTE TRANSFER  
FN7574 Rev 2.00  
December 10, 2012  
Page 23 of 35  
ISLA216P  
LAST LEGAL  
CSB STALLING  
CSB  
SCLK  
SDIO  
INSTRUCTION/ADDRESS  
DATA WORD 1  
DATA WORD N  
FIGURE 40. N-BYTE TRANSFER  
MSB-first mode, the address is incremented for multi-byte  
transfers, while in LSB-first mode it’s decremented.  
Serial Peripheral Interface  
A serial peripheral interface (SPI) bus is used to facilitate  
In the default mode, the MSB is R/W, which determines if the  
data is to be read (active high) or written. The next two bits, W1  
and W0, determine the number of data bytes to be read or  
written (see Table 4). The lower 13 bits contain the first address  
for the data transfer. This relationship is illustrated in Figure 37,  
and timing values are given in “Switching  
configuration of the device and to optimize performance. The SPI  
bus consists of chip select (CSB), serial clock (SCLK) serial data  
output (SDO), and serial data input/output (SDIO). The maximum  
SCLK rate is equal to the A/D sample rate (f  
) divided by 16  
SAMPLE  
for both write operations and read operations. At f  
=
SAMPLE  
250MHz, maximum SCLK is 15.63MHz for writing and read  
operations. There is no minimum SCLK rate.  
Specifications Boldface limits apply over the operating  
temperature range, -40°C to +85°C.” on page 11.  
The following sections describe various registers that are used to  
configure the SPI or adjust performance or functional parameters.  
Many registers in the available address space (0x00 to 0xFF) are  
not defined in this document. Additionally, within a defined  
register there may be certain bits or bit combinations that are  
reserved. Undefined registers and undefined values within defined  
registers are reserved and should not be selected. Setting any  
reserved register or value may produce indeterminate results.  
After the instruction/address bytes have been read, the  
appropriate number of data bytes are written to or read from the  
A/D (based on the R/W bit status). The data transfer will  
continue as long as CSB remains low and SCLK is active. Stalling  
of the CSB pin is allowed at any byte boundary  
(instruction/address or data) if the number of bytes being  
transferred is three or less. For transfers of four bytes or more,  
CSB is allowed to stall in the middle of the instruction/address  
bytes or before the first data byte. If CSB transitions to a high  
state after that point the state machine will reset and terminate  
the data transfer.  
SPI Physical Interface  
The serial clock pin (SCLK) provides synchronization for the data  
transfer. By default, all data is presented on the serial data  
input/output (SDIO) pin in three-wire mode. The state of the SDIO  
pin is set automatically in the communication protocol  
(described in the following). A dedicated serial data output pin  
(SDO) can be activated by setting 0x00[7] high to allow operation  
in four-wire mode.  
TABLE 4. BYTE TRANSFER SELECTION  
[W1:W0]  
00  
BYTES TRANSFERRED  
1
01  
2
3
The SPI port operates in a half duplex master/slave  
configuration, with the ISLA216P25 functioning as a slave.  
Multiple slave devices can interface to a single master in  
three-wire mode only, since the SDO output of an unaddressed  
device is asserted in four wire mode.  
10  
11  
4 or more  
Figures 39 and 40 illustrate the timing relationships for 2-byte  
and N-byte transfers, respectively. The operation for a 3-byte  
transfer can be inferred from these diagrams.  
The chip-select bar (CSB) pin determines when a slave device is  
being addressed. Multiple slave devices can be written to  
concurrently, but only one slave device can be read from at a  
given time (again, only in three-wire mode). If multiple slave  
devices are selected for reading at the same time, the results will  
be indeterminate.  
SPI Configuration  
ADDRESS 0X00: CHIP_PORT_CONFIG  
Bit ordering and SPI reset are controlled by this register. Bit order  
can be selected as MSB to LSB (MSB first) or LSB to MSB (LSB  
first) to accommodate various micro controllers.  
The communication protocol begins with an instruction/address  
phase. The first rising SCLK edge following a high-to-low  
Bit 7 SDO Active  
Bit 6 LSB First  
transition on CSB determines the beginning of the two-byte  
instruction/address command; SCLK must be static low before  
the CSB transition. Data can be presented in MSB-first order or  
LSB-first order. The default is MSB-first, but this can be changed  
by setting 0x00[6] high. Figures 35 and 36 show the appropriate  
bit ordering for the MSB-first and LSB-first modes, respectively. In  
Setting this bit high configures the SPI to interpret serial data  
as arriving in LSB to MSB order.  
FN7574 Rev 2.00  
December 10, 2012  
Page 24 of 35  
ISLA216P  
Bit 5 Soft Reset  
ADDRESS 0X22: GAIN_COARSE_ADC0  
ADDRESS 0X23: GAIN_MEDIUM_ADC0  
ADDRESS 0X24: GAIN_FINE_ADC0  
Setting this bit high resets all SPI registers to default values.  
Bit 4 Reserved  
This bit should always be set high.  
Gain of the A/D core can be adjusted in coarse, medium and fine  
steps. Coarse gain is a 4-bit adjustment while medium and fine  
are 8-bit. Multiple Coarse Gain Bits can be set for a total  
adjustment range of ±4.2%. (‘0011’ -4.2% and ‘1100’ +4.2%)  
It is recommended to use one of the coarse gain settings (-4.2%,  
-2.8%, -1.4%, 0, 1.4%, 2.8%, 4.2%) and fine-tune the gain using the  
registers at 0x0023 and 0x24.  
Bits 3:0 These bits should always mirror bits 4:7 to avoid  
ambiguity in bit ordering.  
ADDRESS 0X02: BURST_END  
If a series of sequential registers are to be set, burst mode can  
improve throughput by eliminating redundant addressing. The  
burst is ended by pulling the CSB pin high. Setting the burst_end  
address determines the end of the transfer. During a write  
operation, the user must be cautious to transmit the correct  
number of bytes based on the starting and ending addresses.  
The default value of each register will be the result of the self-  
calibration after initial power-up. If a register is to be  
incremented or decremented, the user should first read the  
register value then write the incremented or decremented value  
back to the same register. Bit 0 in register 0xFE must be set high  
to enable updates written to 0x23 and 0x24 to be used by the  
ADC (see description for 0xFE).  
Bits 7:0 Burst End Address  
This register value determines the ending address of the burst  
data.  
TABLE 6. COARSE GAIN ADJUSTMENT  
Device Information  
0x22[3:0] core 0  
0x26[3:0] core 1  
NOMINAL COARSE GAIN ADJUST  
(%)  
ADDRESS 0X08: CHIP_ID  
Bit3  
Bit2  
Bit1  
Bit0  
+2.8  
+1.4  
-2.8  
ADDRESS 0X09: CHIP_VERSION  
The generic die identifier and a revision number, respectively, can  
be read from these two registers.  
-1.4  
Device Configuration/Control  
A common SPI map, which can accommodate single-channel or  
multi-channel devices, is used for all Intersil A/D products.  
TABLE 7. MEDIUM AND FINE GAIN ADJUSTMENTS  
0x23[7:0]  
0x24[7:0]  
PARAMETER  
Steps  
MEDIUM GAIN  
FINE GAIN  
ADDRESS 0X20: OFFSET_COARSE_ADC0  
ADDRESS 0X21: OFFSET_FINE_ADC0  
256  
-2%  
256  
–Full Scale (0x00)  
Mid–Scale (0x80)  
+Full Scale (0xFF)  
Nominal Step Size  
-0.20%  
0.00%  
The input offset of the A/D core can be adjusted in fine and  
coarse steps. Both adjustments are made via an 8-bit word as  
detailed in Table 5. The data format is twos complement.  
0.00%  
+2%  
+0.2%  
0.016%  
0.0016%  
The default value of each register will be the result of the self-  
calibration after initial power-up. If a register is to be  
incremented or decremented, the user should first read the  
register value then write the incremented or decremented value  
back to the same register. Bit 0 in register 0xFE must be set high  
to enable updates written to 0x20 and 0x21 to be used by the  
ADC (see description for 0xFE).  
ADDRESS 0X25: MODES  
Two distinct reduced power modes can be selected. By default,  
the tri-level NAPSLP pin can select normal operation, nap or  
sleep modes (refer to“Nap/Sleep” on page 20). This functionality  
can be overridden and controlled through the SPI. This is an  
indexed function when controlled from the SPI, but a global  
function when driven from the pin. This register is not changed by  
a Soft Reset.  
TABLE 5. OFFSET ADJUSTMENTS  
0x20[7:0]  
0x21[7:0]  
PARAMETER  
Steps  
COARSE OFFSET  
FINE OFFSET  
TABLE 8. POWER-DOWN CONTROL  
0x25[2:0]  
255  
255  
–Full Scale (0x00)  
Mid–Scale (0x80)  
+Full Scale (0xFF)  
Nominal Step Size  
-133LSB (-47mV)  
0.0LSB (0.0mV)  
+133LSB (+47mV)  
1.04LSB (0.37mV)  
-5LSB (-1.75mV)  
0.0LSB  
VALUE  
000  
001  
POWER DOWN MODE  
Pin Control  
+5LSB (+1.75mV)  
0.04LSB (0.014mV)  
Normal Operation  
Nap Mode  
010  
100  
Sleep Mode  
FN7574 Rev 2.00  
December 10, 2012  
Page 25 of 35  
ISLA216P  
controlled through the SPI, as shown in Table 9. This register is  
not changed by a Soft Reset.  
ADDRESS 0X26: OFFSET_COARSE_ADC1  
ADDRESS 0X27: OFFSET_FINE_ADC1  
TABLE 9. CLOCK DIVIDER SELECTION  
The input offset of A/D core#1 can be adjusted in fine and  
coarse steps in the same way that offset for core#0 can be  
adjusted. Both adjustments are made via an 8-bit word as  
detailed in Table 5. The data format is two’s complement.  
0x72[2:0]  
VALUE  
000  
CLOCK DIVIDER  
Pin Control  
The default value of each register will be the result of the self-  
calibration after initial power-up. If a register is to be incremented or  
decremented, the user should first read the register value then write  
the incremented or decremented value back to the same register.  
Bit 0 in register 0xFE must be set high to enable updates written to  
0x26 and 0x27 to be used by the ADC (see description for 0xFE).  
001  
Divide by 1  
010  
Divide by 2  
other  
Not Allowed  
ADDRESS 0X73: OUTPUT_MODE_A  
The output_mode_A register controls the physical output format  
of the data, as well as the logical coding. The ISLA216P25 can  
present output data in two physical formats: LVDS (default) or  
LVCMOS. Additionally, the drive strength in LVDS mode can be set  
high (default,3mA or low (2mA).  
ADDRESS 0X28: GAIN_COARSE_ADC1  
ADDRESS 0X29: GAIN_MEDIUM_ADC1  
ADDRESS 0X2A: GAIN_FINE_ADC1  
Gain of A/D core #1 can be adjusted in coarse, medium and fine  
steps in the same way that core #0 can be adjusted. Coarse gain is  
a 4-bit adjustment while medium and fine are 8-bit. Multiple  
Coarse Gain Bits can be set for a total adjustment range of ±4.2.  
Bit 0 in register 0xFE must be set high to enable updates written to  
0x29 and 0x2A to be used by the ADC (see description for 0xFE).  
Data can be coded in three possible formats: two’s complement  
(default), Gray code or offset binary. See Table 11.  
This register is not changed by a Soft Reset.  
TABLE 10. OUTPUT MODE CONTROL  
0x73[7:5]  
VALUE  
000  
OUTPUT MODE  
LVDS 3mA (Default)  
LVDS 2mA  
Global Device Configuration/Control  
ADDRESS 0X71: PHASE_SLIP  
001  
The output data clock is generated by dividing down the A/D input  
sample clock. Some systems with multiple A/Ds can more easily latch  
the data from each A/D by controlling the phase of the output data  
clock. This control is accomplished through the use of the phase_slip  
SPI feature, which allows the rising edge of the output data clock to be  
advanced by one input clock period, as shown in the Figure 41.  
Execution of a phase_slip command is accomplished by first writing a  
'0' to bit 0 at address 0x71, followed by writing a '1' to bit 0 at address  
0x71.  
100  
LVCMOS  
TABLE 11. OUTPUT FORMAT CONTROL  
0x73[2:0]  
VALUE  
OUTPUT FORMAT  
Two’s Complement (Default)  
Gray Code  
000  
010  
100  
Offset Binary  
ADC Input  
Clock (500MHz)  
ADDRESS 0X74: OUTPUT_MODE_B  
2ns  
4ns  
Output Data  
Clock (250MHz)  
No clock_slip  
Bit 6 DLL Range  
2ns  
This bit sets the DLL operating range to fast (default) or slow.  
Output Data  
Clock (250MHz)  
1 clock_slip  
Internal clock signals are generated by a delay-locked loop (DLL),  
which has a finite operating range. Table 12 shows the allowable  
sample rate ranges for the slow and fast settings.Note that Bit 4  
at 0x74 is reserved and must not change value. A user writing to  
Bit 6 should first read 0x74 to determine proper value to write  
back to Bit 4 when writing to 0x74  
Output Data  
Clock (250MHz)  
2 clock_slip  
FIGURE 41. PHASE SLIP  
TABLE 12. DLL RANGES  
DLL RANGE  
Slow  
MIN  
40  
MAX  
100  
250  
UNIT  
MSPS  
MSPS  
ADDRESS 0X72: CLOCK_DIVIDE  
The ISLA216P25 has a selectable clock divider that can be set to  
divide by two or one (no division). By default, the tri-level CLKDIV  
pin selects the divisor This functionality can be overridden and  
Fast  
80  
FN7574 Rev 2.00  
December 10, 2012  
Page 26 of 35  
ISLA216P  
ADDRESS 0XB6: CALIBRATION STATUS  
ADDRESS 0XC3: USER_PATT2_LSB  
ADDRESS 0XC4: USER_PATT2_MSB  
The LSB at address 0xB6 can be read to determine calibration  
status. The bit is ‘0’ during calibration and goes to a logic ‘1’  
when calibration is complete.This register is unique in that it can  
be read after POR at calibration, unlike the other registers on  
chip, which can’t be read until calibration is complete.  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 2  
ADDRESS 0XC5: USER_PATT3_LSB  
ADDRESS 0XC6: USER_PATT3_MSB  
DEVICE TEST  
The ISLA216P25 can produce preset or user defined patterns on  
the digital outputs to facilitate in-situ testing. A user can pick  
from preset built-in patterns by writing to the output test mode  
field [7:4] at 0xC0 or user defined patterns by writing to the user  
test mode field [2:0] at 0xC0. The user defined patterns should  
be loaded at address space 0xC1 through 0xD0, see the “SPI  
Memory Map” on page 29 for more detail.The predefined  
patterns are shown in Table 13. The test mode is enabled  
asynchronously to the sample clock, therefore several sample  
clock cycles may elapse before the data is present on the output  
bus.  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 3  
ADDRESS 0XC7: USER_PATT4_LSB  
ADDRESS 0XC8: USER_PATT4_MSB  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 4.  
ADDRESS 0XC9: USER_PATT5_LSB  
ADDRESS 0XCA: USER_PATT5_MSB  
ADDRESS 0XC0: TEST_IO  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 5.  
Bits 7:4 Output Test Mode  
These bits set the test mode according to Table 13. Other  
values are reserved.User test patterns loaded at 0xC1 through  
0xD0 are also available by writing ‘1000’ to [7:4] at 0xC0 and a  
pattern depth value to [2:0] at 0xC0. See “SPI Memory Map”  
on page 29.  
ADDRESS 0XCB: USER_PATT6_LSB  
ADDRESS 0XCC: USER_PATT6_MSB  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 6  
Bits 2:0 User Test Mode  
ADDRESS 0XCD: USER_PATT7_LSB  
ADDRESS 0XCE: USER_PATT7_MSB  
The three LSBs in this register determine the test pattern in  
combination with registers 0xC1 through 0xD0. Refer to the  
“SPI Memory Map” on page 29.  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 7.  
TABLE 13. OUTPUT TEST MODES  
0xC0[7:4]  
ADDRESS 0XCF: USER_PATT8_LSB  
ADDRESS 0XD0: USER_PATT8_MSB  
VALUE  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
OUTPUT TEST MODE  
WORD 1  
WORD 2  
Off  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 8.  
Midscale  
0x8000  
0xFFFF  
0x0000  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Positive Full-Scale  
Negative Full-Scale  
Reserved  
ADDRESS 0XFE: OFFSET/GAIN_ADJUST_ENABLE  
Bit 0 at this register must be set high to enable adjustment of  
offset coarse and fine adjustments ADC0 (0x20 and 0x21), ADC1  
(0x26 and 0x27) and gain medium and gain fine adjustments  
ADC0 (0x23 and 0x24), ADC1 (0x29 and 0x2A). It is  
recommended that new data be written to the offset and gain  
adjustment registers ADC0(0x20, 0x21, 0x23, 0x24) and  
ADC1(0x26, 0x27, 0x29, 0x2A) while Bit 0 is a '0'. Subsequently,  
Bit 0 should be set to '1' to allow the values written to the  
aforementioned registers to be used by the ADC. Bit 0 should be  
set to a '0' upon completion  
Reserved  
N/A  
Reserved  
N/A  
Reserved  
User Pattern  
Reserved  
user_patt1  
N/A  
user_patt2  
N/A  
Ramp  
N/A  
N/A  
Digital Temperature Sensor  
ADDRESS 0XC1: USER_PATT1_LSB  
ADDRESS 0XC2: USER_PATT1_MSB  
ADDRESS 0X4B: TEMP_COUNTER_HIGH  
Bits [2:0] of this register hold the 3 MSBs of the 11-bit  
temperature code.  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 1.  
FN7574 Rev 2.00  
December 10, 2012  
Page 27 of 35  
ISLA216P  
Bit [7] of this register indicates a valid temperature_counter read  
was performed. A logic ‘1’ indicates a valid read.  
ADDRESS 0X4C: TEMP_COUNTER_LOW  
Bits [7:0] of this register hold the lower 8 LSBs of the 11-bit  
temperature code.  
ADDRESS 0X4D: TEMP_COUNTER_CONTROL  
Bit [7] Measurement mode select bit, set to ‘1’ for recommended  
PTAT mode. ‘0’ (default) is IPTAT mode and is less accurate and  
not recommended.  
Bit [6] Temperature counter enable bit. Set to ‘1’ to enable.  
Bit [5] Temperature counter power down bit. Set to ‘1’ to  
power-down temperature counter.  
Bit [4] Temperature counter reset bit. Set to ‘1’ to reset count.  
Bit [3:1] Three bit frequency divider field. Sets temperature  
counter update rate. Update rate is proportional to ADC sample  
clock rate and divide ratio. A ‘101’ updates the temp counter  
every ~ 66µs (for 250MSPS). Faster updates rates result in lower  
precision.  
Bit [0] Select sampler bit. Set to ‘0’.  
This set of registers provides digital access to an PTAT or  
IPTAT-based temperature sensor, allowing the system to  
estimate the temperature of the die, allowing easy access to  
information that can be used to decide when to recalibrate the  
A/D as needed.  
The nominal transfer function of the temperature monitor should  
be estimated for each device by reading the temperature sensor  
at two temperatures and extrapolating a line through these two  
points.  
A typical temperature measurement can occur as follows:  
1. Write ‘0xCA’ to address 0x4D - enable temp counter,  
divide=’101’  
2. Wait 132µs (at 250Msps) - longer wait time ensures the  
sensor completes one valid cycle.  
3. Write ‘0x20’ to address 0x4D - power down, disable temp  
counter-recommended between measurements. This  
ensures that the output does not change between MSB and  
LSB reads.  
4. Read address 0x4B (MSBs)  
5. Read address 0x4C (LSBs)  
6. Record temp code value  
7. Write ‘0x20’ to address 0x4D - power-down, disable temp  
counter. Contact the factory for more information if needed.  
FN7574 Rev 2.00  
December 10, 2012  
Page 28 of 35  
ISLA216P  
SPI Memory Map  
ADDR.  
DEF. VALUE  
(HEX)  
(Hex)  
PARAMETER NAME  
port_config  
Reserved  
BIT 7 (MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0 (LSB)  
00  
SDO Active LSB First Soft Reset  
Mirror (bit5) Mirror (bit6) Mirror (bit7)  
00h  
01  
Reserved  
02  
burst_end  
Burst end address [7:0]  
Reserved  
00h  
03-07  
Reserved  
08  
09  
chip_id  
chip_version  
Chip ID #  
Chip Version #  
Reserved  
Read only  
Read only  
0A-0F  
10-1F  
20  
Reserved  
Reserved  
Reserved  
offset_coarse_adc0  
offset_fine_adc0  
gain_coarse_adc0  
gain_medium_adc0  
gain_fine_adc0  
modes_adc0  
Coarse Offset  
Fine Offset  
cal. value  
cal. value  
cal. value  
cal. value  
cal. value  
21  
22  
Reserved  
Reserved  
Coarse Gain  
23  
Medium Gain  
Fine Gain  
24  
25  
Power Down Mode ADC0 [2:0]  
000 = Pin Control  
001 = Normal Operation  
010 = Nap  
00h  
NOT reset by  
Soft Reset  
100 = Sleep  
Other codes = Reserved  
26  
27  
28  
29  
2A  
2B  
offset_coarse_adc1  
offset_fine_adc1  
gain_coarse_adc1  
gain_medium_adc1  
gain_fine_adc1  
Coarse Offset  
Fine Offset  
cal. value  
cal. value  
cal. value  
cal. value  
cal. value  
Reserved  
Reserved  
Coarse Gain  
Medium Gain  
Fine Gain  
modes_adc1  
Power Down Mode ADC1 [2:0]  
000 = Pin Control  
001 = Normal Operation  
010 = Nap  
00h  
NOT reset by  
Soft Reset  
100 = Sleep  
Other codes = Reserved  
2C-2F  
30-4A  
4B  
Reserved  
Reserved  
Reserved  
Reserved  
temp_counter_high  
temp_counter_low  
temp_counter_control  
Reserved  
Temp Counter [10:8]  
Read only  
Read only  
00h  
4C  
Temp Counter [7:0]  
Reset  
4D  
Enable  
PD  
Divider [2:0]  
Select  
4E-6F  
70  
Reserved  
skew_diff  
Differential Skew  
Reserved  
80h  
00h  
71  
phase_slip  
Next Clock  
Edge  
72  
clock_divide  
Clock Divide [2:0]  
00h  
000 = Pin Control  
001 = divide by 1  
NOT reset by  
Soft Reset  
010 = divide by 2  
100 = divide by 4  
Other codes = Reserved  
FN7574 Rev 2.00  
December 10, 2012  
Page 29 of 35  
ISLA216P  
SPI Memory Map (Continued)  
ADDR.  
DEF. VALUE  
(HEX)  
(Hex)  
PARAMETER NAME  
output_mode_A  
BIT 7 (MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0 (LSB)  
73  
Output Mode [7:5]  
Output Format [2:0]  
00h  
000 = LVDS 3mA (Default)  
001 = LVDS 2mA  
100 = LVCMOS  
Other codes = Reserved  
000 = Two’s Complement (Default) NOT reset by  
010 = Gray Code  
100 = Offset Binary  
Other codes = Reserved  
Soft Reset  
74  
output_mode_B  
DLL Range  
0 = Fast  
1 = Slow  
Reserved  
00h  
NOT reset by  
Soft Reset  
Default=’0’  
75-B5  
B6  
Reserved  
cal_status  
Reserved  
Calibration  
Done  
Read Only  
00h  
B7-BF  
C0  
Reserved  
test_io  
Output Test Mode [7:4]  
User Test Mode [2:0]  
0 = user pattern 1 only  
0 = Off (Note 17)  
1 = Midscale Short  
2 = +FS Short  
1 = cycle pattern 1,3  
2 = cycle pattern 1,3,5  
3 = cycle pattern 1,3,5,7  
4-7 = NA  
3 = -FS Short  
4 = Reserved (Note18)  
5-6 = Reserved  
7 = Reserved (Note19)  
8 = User Pattern (1 to 4 deep)  
9 = Reserved  
10 = Ramp  
11-15 = Reserved  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
user_patt1_lsb  
user_patt1_msb  
user_patt2_lsb  
user_patt2_msb  
user_patt3_lsb  
user_patt3_msb  
user_patt4_lsb  
user_patt4_msb  
user_patt5_lsb  
user_patt5_msb  
user_patt6_lsb  
user_patt6_msb  
user_patt7_lsb  
user_patt7_msb  
user_patt8_lsb  
user_patt8_msb  
Reserved  
B7  
B15  
B7  
B6  
B14  
B6  
B5  
B13  
B5  
B4  
B12  
B4  
B3  
B11  
B3  
B2  
B10  
B2  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
0x00  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
CD  
CE  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
CF  
D0  
D1-FD  
FE  
B15  
B14  
B13  
B12  
B11  
B10  
Reserved  
Reserved  
Offset/Gain_Adjust_Enable  
Enable  
00h  
1 = Enable  
FF  
Reserved  
Reserved  
NOTES:  
17. During Calibration xCCCC (MSB justified) is presented at the output data bus, toggling on the LSB (and higher) data bits occurs at completion of  
calibration. This behavior can be used as an option to determine calibration state.  
18. Use test_io = 0x80 and User Pattern 1 = 0x9999 for Checkerboard outputs on DDR Outputs.  
19. Use test_io = 0x80 and User Pattern 1 = 0xAAAA for all ones/zeroes outputs on DDR Outputs  
FN7574 Rev 2.00  
December 10, 2012  
Page 30 of 35  
ISLA216P  
Equivalent Circuits  
AVDD  
AVDD  
TO  
CLOCK-PHASE  
GENERATION  
CLKP  
AVDD  
AVDD  
CSAMP  
9pF  
TO  
11k  
11k  
INP  
INN  
CHARGE  
PIPELINE  
18k  
E2  
E3  
E3  
E1  
300  
AVDD  
CSAMP  
9pF  
18k  
AVDD  
TO  
CHARGE  
PIPELINE  
E2  
CLKN  
E1  
FIGURE 42. ANALOG INPUTS  
FIGURE 43. CLOCK INPUTS  
AVDD  
AVDD  
(20k PULL-UP  
ON RESETN  
ONLY)  
OVDD  
AVDD  
75k  
OVDD  
AVDD  
TO  
SENSE  
LOGIC  
75k  
280  
OVDD  
20k  
INPUT  
INPUT  
TO  
LOGIC  
280  
75k  
75k  
FIGURE 44. TRI-LEVEL DIGITAL INPUTS  
FIGURE 45. DIGITAL INPUTS  
OVDD  
2mA OR  
3mA  
OVDD  
DATA  
DATA  
OVDD  
OVDD  
D[14:0]P  
OVDD  
DATA  
D[14:0]  
D[14:0]N  
DATA  
DATA  
2mA OR  
3mA  
FIGURE 47. CMOS OUTPUTS  
FIGURE 46. LVDS OUTPUTS  
FN7574 Rev 2.00  
December 10, 2012  
Page 31 of 35  
ISLA216P  
Equivalent Circuits(Continued)  
AVDD  
VCM  
+
0.94V  
FIGURE 48. VCM_OUT OUTPUT  
LVDS Outputs  
A/D Evaluation Platform  
Output traces and connections must be designed for 50(100  
differential) characteristic impedance. Keep traces direct and  
minimize bends where possible. Avoid crossing ground and  
power-plane breaks with signal traces.  
Intersil offers an A/D Evaluation platform which can be used to  
evaluate any of Intersil’s high speed A/D products. The platform  
consists of a FPGA based data capture motherboard and a family  
of A/D daughtercards. This USB based platform allows a user to  
quickly evaluate the A/D’s performance at a user’s specific  
application frequency requirements. More information is  
available at  
LVCMOS Outputs  
Output traces and connections must be designed for 50  
http://www.intersil.com/converters/adc_eval_platform/  
characteristic impedance.  
Unused Inputs  
Layout Considerations  
Standard logic inputs (RESETN, CSB, SCLK, SDIO, SDO) which will  
not be operated do not require connection to ensure optimal A/D  
performance. These inputs can be left floating if they are not  
used. Tri-level inputs (NAPSLP) accept a floating input as a valid  
state, and therefore should be biased according to the desired  
functionality.  
Split Ground and Power Planes  
Data converters operating at high sampling frequencies require  
extra care in PC board layout. Many complex board designs  
benefit from isolating the analog and digital sections. Analog  
supply and ground planes should be laid out under signal and  
clock inputs. Locate the digital planes under outputs and logic  
pins. Grounds should be joined under the chip.  
Definitions  
Analog Input Bandwidth is the analog input frequency at which  
the spectral output power at the fundamental frequency (as  
determined by FFT analysis) is reduced by 3dB from its full-scale  
low-frequency value. This is also referred to as Full Power  
Bandwidth.  
Clock Input Considerations  
Use matched transmission lines to the transformer inputs for the  
analog input and clock signals. Locate transformers and  
terminations as close to the chip as possible.  
Aperture Delay or Sampling Delay is the time required after the  
rise of the clock input for the sampling switch to open, at which  
time the signal is held for conversion.  
Exposed Paddle  
The exposed paddle must be electrically connected to analog  
ground (AVSS) and should be connected to a large copper plane  
using numerous vias for optimal thermal performance.  
Aperture Jitter is the RMS variation in aperture delay for a set of  
samples.  
Bypass and Filtering  
Clock Duty Cycle is the ratio of the time the clock wave is at logic  
high to the total time of one clock period.  
Bulk capacitors should have low equivalent series resistance.  
Tantalum is a good choice. For best performance, keep ceramic  
bypass capacitors very close to device pins. Longer traces will  
increase inductance, resulting in diminished dynamic  
performance and accuracy. Make sure that connections to  
ground are direct and low impedance. Avoid forming ground  
loops.  
Differential Non-Linearity (DNL) is the deviation of any code width  
from an ideal 1 LSB step.  
FN7574 Rev 2.00  
December 10, 2012  
Page 32 of 35  
ISLA216P  
Effective Number of Bits (ENOB) is an alternate method of  
specifying Signal to Noise-and-Distortion Ratio (SINAD). In dB, it  
is calculated as: ENOB = (SINAD - 1.76)/6.02  
Gain Error is the ratio of the difference between the voltages that  
cause the lowest and highest code transitions to the full-scale  
voltage less than 2 LSB. It is typically expressed in percent.  
I2E The Intersil Interleave Engine. This highly configurable  
circuitry performs estimates of offset, gain, and sample time  
skew mismatches between the core converters, and updates  
analog adjustments for each to minimize interleave spurs.  
Integral Non-Linearity (INL) is the maximum deviation of the  
A/D’s transfer function from a best fit line determined by a least  
squares curve fit of that transfer function, measured in units of  
LSBs.  
Least Significant Bit (LSB) is the bit that has the smallest value or  
weight in a digital word. Its value in terms of input voltage is  
N
V
/(2 -1) where N is the resolution in bits.  
FS  
Missing Codes are output codes that are skipped and will never  
appear at the A/D output. These codes cannot be reached with  
any input value.  
Most Significant Bit (MSB) is the bit that has the largest value or  
weight.  
Pipeline Delay is the number of clock cycles between the  
initiation of a conversion and the appearance at the output pins  
of the data.  
Power Supply Rejection Ratio (PSRR) is the ratio of the observed  
magnitude of a spur in the A/D FFT, caused by an AC signal  
superimposed on the power supply voltage.  
Signal to Noise-and-Distortion (SINAD) is the ratio of the RMS  
signal amplitude to the RMS sum of all other spectral  
components below one half the clock frequency, including  
harmonics but excluding DC.  
Signal-to-Noise Ratio (without Harmonics) is the ratio of the RMS  
signal amplitude to the RMS sum of all other spectral  
components below one-half the sampling frequency, excluding  
harmonics and DC.  
SNR and SINAD are either given in units of dB when the power of  
the fundamental is used as the reference, or dBFS (dB to full  
scale) when the converter’s full-scale input power is used as the  
reference.  
Spurious-Free-Dynamic Range (SFDR) is the ratio of the RMS  
signal amplitude to the RMS value of the largest spurious  
spectral component. The largest spurious spectral component  
may or may not be a harmonic.  
FN7574 Rev 2.00  
December 10, 2012  
Page 33 of 35  
ISLA216P  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev.  
DATE  
REVISION  
FN7574.2  
FN7574.1  
CHANGE  
November 28, 2012  
April 15, 2011  
Datasheet update for better accuracy and clarity.  
-Updated Ordering Information by Changing Eval board name from ISLA216P25EVAL TO ISLA216IR72EV1Z  
and updating description  
-Electrical Specifications Table change:  
DC Specifications ->Analog Input->Common-Mode Input Current (per pin) -> TYP "10.8" to "5.2"  
Added CMOS Power Typical Specs under Total Power Dissipation ->Normal Mode  
Digital Specifications Table ->Input Capacitance->TYP "3" to "4"  
Digital Specifications Table ->LVDS INPUTS (CLKRSTP, CLKRSTN) TO LVDS INPUTS (CLKDIVRSTP,  
CLKDIVRSTN)  
-Updated temperature calibration curves  
-Added clkdiv description in Clock Input Section  
-Removed '2-wire mode' text in "Address 0x02:Burst_End" section  
-Updated Bit6 at Address 0x74:Output_Mode_B section  
January 13, 2011  
FN7574.0  
Initial Release  
About Intersil  
Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management  
semiconductors. The company's products address some of the fastest growing markets within the industrial and infrastructure,  
personal computing and high-end consumer markets. For more information about Intersil or to find out how to become a member of  
our winning team, visit our website and career page at www.intersil.com.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective product information page.  
Also, please check the product information page to ensure that you have the most updated datasheet: ISLA216P  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
Reliability reports are available from our website at: http://rel.intersil.com/reports/search.php  
© Copyright Intersil Americas LLC 2012. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7574 Rev 2.00  
December 10, 2012  
Page 34 of 35  
ISLA216P  
Package Outline Drawing  
L72.10x10E  
72 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 0, 11/09  
10.00  
A
Z
X
6
EXPOSED  
PAD AREA  
9.75  
B
PIN #1  
72  
72  
INDEX AREA  
1
1
6
PIN 1  
INDEX AREA  
9.75  
10.00  
0.100 M C A B  
(4X)  
0.15  
4.150 REF.  
7.150 REF.  
TOP VIEW  
9.75 ±0.10  
0.100 M C A B  
BOTTOM VIEW  
11°  
Y
ALL AROUND  
C0.400X45° (4X)  
10.00 ±0.10  
SIDE VIEW  
(0.350)  
R0.200  
(7.15)  
(4.15 REF)  
1
0.500 ±0.100  
R0.115 TYP.  
72  
(4X 9.70)  
(4X 8.50)  
(3.00 )  
DETAIL "X"  
DETAIL "Z"  
(6.00)  
R0.200 MAX.  
ALL AROUND  
( 72X 0 .23)  
0.100 C  
( 72X 0 .70)  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
SEATING  
PLANE  
0.080C  
0.190~0.245  
0.23 ±0.050  
2. Dimensioning and tolerancing conform to ANSI Y14.5m-1994.  
0.50  
C
0.025 ±0.020  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.10  
Angular ±2.50°  
0.100M C A B  
0.050M C  
4. Dimension applies to the metallized terminal and is measured  
between 0.015mm and 0.30mm from the terminal tip.  
DETAIL "Y"  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
Package outline compliant to JESD-M0220.  
7.  
FN7574 Rev 2.00  
December 10, 2012  
Page 35 of 35  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY