M38063ED-FP [RENESAS]

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER; 单片8位CMOS微机
M38063ED-FP
型号: M38063ED-FP
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
单片8位CMOS微机

计算机
文件: 总58页 (文件大小:798K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To all our customers  
Regarding the change of names mentioned in the document, such as Mitsubishi  
Electric and Mitsubishi XX, to Renesas Technology Corp.  
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas  
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog  
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)  
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi  
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names  
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.  
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been  
made to the contents of the document, and these changes do not constitute any alteration to the  
contents of the document itself.  
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices  
and power devices.  
Renesas Technology Corp.  
Customer Support Dept.  
April 1, 2003  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
DESCRIPTION  
The 3806 group is 8-bit microcomputer based on the 740 family  
Clock generating circuit ....................... Internal feedback resistor  
(connect to external ceramic resonator or quartz-crystal)  
core technology.  
Memory expansion possible  
The 3806 group is designed for controlling systems that require  
analog signal processing and include two serial I/O functions, A-D  
converters, and D-A converters.  
Specification  
(unit)  
Extended operating High-speed  
Standard  
0.5  
temperature version  
version  
The various microcomputers in the 3806 group include variations  
of internal memory size and packaging. For details, refer to the  
section on part numbering.  
Minimum instruction  
0.5  
0.4  
execution time  
(µs)  
For details on availability of microcomputers in the 3806 group, re-  
fer to the section on group expansion.  
Oscillation frequency  
(MHz)  
8
8
10  
Power source voltage  
(V)  
FEATURES  
3.0 to 5.5  
32  
4.0 to 5.5  
32  
2.7 to 5.5  
40  
Basic machine-language instructions ....................................... 71  
Memory size  
Power dissipation  
(mW)  
ROM ................................................................ 12 K to 48 K bytes  
RAM ................................................................. 384 to 1024 bytes  
Operating temperature  
–20 to 85  
–40 to 85  
–20 to 85  
Programmable input/output ports ............................................. 72  
range  
(°C)  
Interrupts .................................................. 16 sources, 16 vectors  
Timers ............................................................................. 8 bit 4  
Serial I/O1 .................... 8-bit 1 (UART or Clock-synchronized)  
Serial I/O2 ....................................8-bit 1 (Clock-synchronized)  
APPLICATIONS  
Office automation, VCRs, tuners, musical instruments, cameras,  
A-D converter .................................................. 8-bit 8 channels  
D-A converter .................................................. 8-bit 2 channels  
air conditioners, etc.  
PIN CONFIGURATION (TOP VIEW)  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P8  
P8  
P8  
P8  
P8  
P8  
7
6
5
4
3
2
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
0
1
2
3
4
5
6
7
/DB  
/DB  
/DB  
/DB  
/DB  
/DB  
/DB  
/DB  
0
1
2
3
4
5
6
7
P8  
P8  
1
0
V
CC  
V
X
X
SS  
M38063M6-XXXFP  
V
REF  
OUT  
IN  
AVSS  
/AN  
/AN  
/AN  
/AN  
/AN3  
P6  
7
7
P4  
P4  
RESET  
CNVSS  
P42/INT0  
0
P66  
6
1
P6  
P6  
P6  
5
5
4
4
79  
80  
3
Package type : 80P6N-A  
80-pin plastic-molded QFP  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN CONFIGURATION (TOP VIEW)  
P31  
P30  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
40  
39  
38  
37  
P16/AD14  
P17/AD15  
P20/DB0  
P21/DB1  
P22/DB2  
P23/DB3  
P24/DB4  
P25/DB5  
P26/DB6  
P27/DB7  
Vss  
P87  
P86  
P85  
P84  
P83  
P82  
P81  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
P80  
VCC  
VREF  
M38063M6-XXXGP  
M38063M6AXXXHP  
XOUT  
XIN  
P40  
P41  
AVSS  
P67/AN7  
P66/AN6  
P65/AN5  
P64/AN4  
P63/AN3  
P62/AN2  
RESET  
CNVSS  
P42/INT0  
P43/INT1  
23  
22  
21  
78  
79  
80  
P61/AN1  
P44/RXD  
Package type : 80P6S-A/80P6D-A  
80-pin plastic-molded QFP  
2
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
3
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION  
Pin  
Name  
Function  
Function except a port function  
VCC  
VSS  
Power source  
• Apply voltage of 3.0 V to 5.5 V to VCC, and 0 V to VSS.  
(Extended operating temperature version : 4.0 V to 5.5 V)  
(High-speed version : 2.7 V to 5.5 V)  
CNVSS  
CNVSS  
• This pin controls the operation mode of the chip.  
• Normally connected to VSS.  
• If this pin is connected to VCC, the internal ROM is inhibited and external memory is accessed.  
VREF  
AVSS  
Analog reference • Reference voltage input pin for A-D and D-A converters  
voltage  
Analog power  
source  
• GND input pin for A-D and D-A converters  
• Connect to VSS.  
______  
RESET  
Reset input  
Clock input  
• Reset input pin for active “L”  
XIN  
• Input and output signals for the internal clock generating circuit.  
• Connect a ceramic resonator or quartz-crystal oscillator between the XIN and XOUT pins to set the  
oscillation frequency.  
XOUT  
Clock output  
• If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open.  
• The clock is used as the oscillating source of system clock.  
P00 – P07  
P10 – P17  
P20 – P27  
P30 – P37  
P40, P41  
I/O port P0  
I/O port P1  
I/O port P2  
I/O port P3  
I/O port P4  
• 8 bit CMOS I/O port  
• I/O direction register allows each pin to be individually programmed as either input or output.  
• At reset this port is set to input mode.  
• In modes other than single-chip, these pins are used as address, data, and control bus I/O pins.  
• CMOS compatible input level  
• CMOS 3-state output structure  
• 8-bit CMOS I/O port with the same function as port P0  
• CMOS compatible input level  
P42/INT0,  
P43/INT1  
• CMOS 3-state output structure  
• External interrupt input pin  
P44/RXD,  
P45/TXD,  
• Serial I/O1 I/O pins  
P46/SCLK1,  
_____  
P47/SRDY1  
P50  
I/O port P5  
• 8-bit CMOS I/O port with the same function as port P0  
• CMOS compatible input level  
P51/INT2 –  
P53/INT4  
• CMOS 3-state output structure  
• External interrupt input pin  
P54/CNTR0,  
P55/CNTR1  
• Timer X and Timer Y I/O pins  
• D-A conversion output pins  
• A-D conversion input pins  
P56/DA1,  
P57/DA2  
P60/AN0 –  
P67/AN7  
I/O port P6  
• 8-bit CMOS I/O port with the same function as  
port P0  
• CMOS compatible input level  
• CMOS 3-state output structure  
4
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION (Continued)  
Pin  
Name  
Function  
Function except a port function  
• Serial I/O2 I/O pins  
P70/SIN2,  
P71/SOUT2,  
I/O port P7  
• 8-bit I/O port with the same function as port P0  
• CMOS compatible input level  
P72/SCLK2,  
• N-channel open-drain output structure  
_____  
P73/SRDY2  
P74 – P77  
P80 – P87  
I/O port P8  
• 8-bit CMOS I/O port with the same function as port P0  
• CMOS compatible input level  
• CMOS 3-state output structure  
PART NUMBERING  
Product  
M3806 3 M 6 - XXX FP  
Package type  
FP : 80P6N-A package  
GP : 80P6S-A package  
FS : 80D0 package  
ROM number  
Omitted in some types.  
Normally, using hyphen  
When electrical characteristic, or division of quality  
identification code using alphanumeric character  
– : standard  
D : Extended operating temperature version  
A : High-speed version  
ROM/PROM size  
: 4096 bytes  
: 8192 bytes  
: 12288 bytes  
: 16384 bytes  
: 20480 bytes  
: 24576 bytes  
: 28672 bytes  
: 32768 bytes  
: 36864 bytes  
: 40960 bytes  
: 45056 bytes  
: 49152 bytes  
: 53248 bytes  
: 57344 bytes  
: 61440 bytes  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
The first 128 bytes and the last 2 bytes of ROM  
are reserved areas ; they cannot be used.  
Memory type  
M : Mask ROM version  
E : EPROM or One Time PROM version  
RAM size  
: 192 bytes  
: 256 bytes  
: 384 bytes  
: 512 bytes  
: 640 bytes  
: 768 bytes  
: 896 bytes  
: 1024 bytes  
0
1
2
3
4
5
6
7
5
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION  
(2) Packages  
Mitsubishi plans to expand the 3806 group as follows:  
(1) Support for mask ROM, One Time PROM, and EPROM  
versions  
80P6N-A............................. 0.8 mm-pitch plastic molded QFP  
80P6S-A ........................... 0.65 mm-pitch plastic molded QFP  
80D0 ................ 0.8 mm-pitch ceramic LCC (EPROM version)  
ROM/PROM capacity ................................ 12 K to 48 K bytes  
RAM capacity .............................................. 384 to 1024 bytes  
Memory Expansion Plan  
Mass product  
ROM size (bytes)  
48K  
M38067MC/EC  
Mass product  
M38067M8  
32K  
28K  
Mass product  
24K  
20K  
16K  
12K  
8K  
M38063M6/E6  
Mass product  
Mass product  
M38062M4  
M38062M3  
4K  
192 256  
384  
512  
RAM size (bytes)  
640  
768  
896  
1024  
Products under development : the development schedule and specification may be revised without notice.  
Currently supported products are listed below  
As of May 1996  
(P) ROM size (bytes)  
ROM size for User in ( )  
Product name  
RAM size (bytes)  
Package  
Remarks  
M38062M3-XXXFP  
M38062M3-XXXGP  
M38062M4-XXXFP  
M38062M4-XXXGP  
M38063M6-XXXFP  
M38063E6-XXXFP  
M38063E6FP  
80P6N-A Mask ROM version  
80P6S-A Mask ROM version  
80P6N-A Mask ROM version  
80P6S-A Mask ROM version  
Mask ROM version  
12288  
(12158)  
384  
384  
16384  
(16254)  
80P6N-A One Time PROM version  
One Time PROM version (blank)  
Mask ROM version  
24576  
(24446)  
M38063M6-XXXGP  
M38063E6-XXXGP  
M38063E6GP  
512  
80P6S-A One Time PROM version  
One Time PROM version (blank)  
M38063E6FS  
80D0  
EPROM version  
M38067M8-XXXFP  
M38067M8-XXXGP  
M38067MC-XXXFP  
M38067EC-XXXFP  
M38067ECFP  
80P6N-A Mask ROM version  
80P6S-A Mask ROM version  
Mask ROM version  
32768  
(32638)  
1024  
1024  
80P6N-A One Time PROM version  
One Time PROM version (blank)  
Mask ROM version  
49152  
(49022)  
M38067MC-XXXGP  
M38067EC-XXXGP  
M38067ECGP  
80P6S-A One Time PROM version  
One Time PROM version (blank)  
6
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION  
(2) Packages  
(EXTENDED OPERATING TEMPERATURE VERSION)  
Mitsubishi plans to expand the 3806 group (extended operating  
temperature version) as follows:  
80P6N-A............................. 0.8 mm-pitch plastic molded QFP  
(1) Support for mask ROM version  
ROM/PROM capacity ................................ 12 K to 48 K bytes  
RAM capacity .............................................. 384 to 1024 bytes  
Memory Expansion Plan  
New product  
M38067ECD  
Mass product  
M38067MCD  
ROM size (bytes)  
48K  
Mass product  
M38067M8D  
32K  
28K  
Mass product  
M38063M6D  
24K  
20K  
16K  
12K  
8K  
Mass product  
Mass product  
M38062M4D  
M38062M3D  
4K  
192 256  
384  
512  
640  
768  
896  
1024  
RAM size (bytes)  
Currently supported products are listed below.  
As of May 1996  
(P) ROM size (bytes)  
Product name  
RAM size (bytes)  
Package  
Remarks  
ROM size for User in (  
12288(12158)  
16384(16254)  
24576(24446)  
32768(32638)  
)
M38062M3DXXXFP  
M38062M4DXXXFP  
M38063M6DXXXFP  
M38067M8DXXXFP  
M38067MCDXXXFP  
M38067ECDXXXFP  
M38067ECDFP  
384  
384  
Mask ROM version  
Mask ROM version  
Mask ROM version  
512  
1024  
80P6N-A Mask ROM version  
Mask ROM version  
49152(49022)  
1024  
One Time PROM version  
One Time PROM version (blank)  
7
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION  
(2) Packages  
(HIGH-SPEED VERSION)  
80P6N-A............................. 0.8 mm-pitch plastic molded QFP  
80P6S-A ........................... 0.65 mm-pitch plastic molded QFP  
80P6D-A............................. 0.5 mm-pitch plastic molded QFP  
80D0 ................ 0.8 mm-pitch ceramic LCC (EPROM version)  
Mitsubishi plans to expand the 3806 group (high-speed version)  
as follows:  
(1) Support for mask ROM, One Time PROM, and EPROM  
versions  
ROM/PROM capacity ................................ 24 K to 48 K bytes  
RAM capacity .............................................. 512 to 1024 bytes  
Memory Expansion Plan  
New product  
ROM size (bytes)  
48K  
M38067MCA/ECA  
New product  
M38067M8A  
32K  
28K  
New product  
24K  
20K  
16K  
12K  
8K  
M38063M6A  
4K  
192 256  
384  
512  
640  
768  
896  
1024  
RAM size (bytes)  
Products under development: the development schedule and specification may be revised without notice.  
Currently supported products are listed below.  
As of May 1996  
(P) ROM size (bytes)  
Product name  
RAM size (bytes)  
Package  
Remarks  
ROM size for User in (  
)
M38063M6AXXXFP  
M38063M6AXXXGP  
M38063M6AXXXHP  
M38067M8AXXXFP  
M38067M8AXXXGP  
M38067MCAXXXFP  
M38067ECAXXXFP  
M38067ECAFP  
80P6N-A Mask ROM version  
80P6S-A Mask ROM version  
80P6D-A Mask ROM version  
80P6N-A Mask ROM version  
80P6S-A Mask ROM version  
Mask ROM version  
24576  
(24446)  
512  
32768  
(32638)  
1024  
80P6N-A One Time PROM version  
One Time PROM version (blank)  
Mask ROM version  
49152  
(49022)  
M38067MCAXXXGP  
M38067ECAXXXGP  
M38067ECAGP  
1024  
80P6S-A One Time PROM version  
One Time PROM version (blank)  
M38067ECAFS  
80D0  
EPROM version  
8
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FUNCTIONAL DESCRIPTION  
Central Processing Unit (CPU)  
The 3806 group uses the standard 740 family instruction set. Re-  
fer to the table of 740 family addressing modes and machine in-  
structions or the SERIES 740 <Software> User’s Manual for de-  
tails on the instruction set.  
Machine-resident 740 family instructions are as follows:  
The FST and SLW instruction cannot be used.  
The STP, WIT, MUL, and DIV instruction can be used.  
CPU mode register  
The CPU mode register is allocated at address 003B16.  
The CPU mode register contains the stack page selection bit.  
b7  
b0  
CPU mode register  
(
CPUM : address 003B16)  
Processor mode bits  
b1 b0  
0
0
1
1
0
1
0
1
: Single-chip mode  
: Memory expansion mode  
: Microprocessor mode  
: Not available  
Stack page selection bit  
0
1
: 0 page  
: 1 page  
Not used (return “0” when read)  
Fig. 1 Structure of CPU mode register  
9
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Memory  
Zero page  
Special function register (SFR) area  
The Special Function Register area in the zero page contains con-  
trol registers such as I/O ports and timers.  
The 256 bytes from addresses 000016 to 00FF16 are called the  
zero page area. The internal RAM and the special function regis-  
ters (SFR) are allocated to this area.  
The zero page addressing mode can be used to specify memory  
and register addresses in the zero page area. Access to this area  
with only 2 bytes is possible in the zero page addressing mode.  
RAM  
RAM is used for data storage and for stack area of subroutine  
calls and interrupts.  
Special page  
ROM  
The 256 bytes from addresses FF0016 to FFFF16 are called the  
special page area. The special page addressing mode can be  
used to specify memory addresses in the special page area. Ac-  
cess to this area with only 2 bytes is possible in the special page  
addressing mode.  
The first 128 bytes and the last 2 bytes of ROM are reserved for  
device testing and the rest is user area for storing programs.  
Interrupt vector area  
The interrupt vector area contains reset and interrupt vectors.  
RAM area  
RAM capacity  
(bytes)  
Address  
XXXX16  
000016  
SFR area  
192  
256  
384  
512  
640  
768  
896  
1024  
00FF16  
013F16  
01BF16  
023F16  
02BF16  
033F16  
03BF16  
043F16  
Zero page  
004016  
010016  
RAM  
XXXX16  
Reserved area  
Not used  
044016  
ROM area  
ROM capacity  
(bytes)  
Address  
YYYY16  
Address  
ZZZZ16  
YYYY16  
Reserved ROM area  
(128 bytes)  
4096  
8192  
F00016  
E00016  
D00016  
C00016  
B00016  
A00016  
900016  
800016  
700016  
600016  
500016  
400016  
300016  
200016  
100016  
F08016  
E08016  
D08016  
C08016  
B08016  
A08016  
908016  
808016  
708016  
608016  
508016  
408016  
308016  
208016  
108016  
12288  
16384  
20480  
24576  
28672  
32768  
36864  
40960  
45056  
49152  
53248  
57344  
61440  
ZZZZ16  
ROM  
FF0016  
FFDC16  
Special page  
Interrupt vector area  
Reserved ROM area  
FFFE16  
FFFF16  
Fig. 2 Memory map diagram  
10  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Port P0 (P0)  
Prescaler 12 (PRE12)  
Timer 1 (T1)  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
001116  
001216  
001316  
001416  
001516  
001616  
001716  
001816  
001916  
001A16  
001B16  
001C16  
001D16  
001E16  
001F16  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002916  
002A16  
002B16  
002C16  
002D16  
002E16  
002F16  
003016  
003116  
003216  
003316  
003416  
003516  
003616  
003716  
003816  
003916  
003A16  
003B16  
003C16  
003D16  
003E16  
003F16  
Port P0 direction register (P0D)  
Port P1 (P1)  
Timer 2 (T2)  
Port P1 direction register (P1D)  
Port P2 (P2)  
Timer XY mode register (TM)  
Prescaler X (PREX)  
Timer X (TX)  
Port P2 direction register (P2D)  
Port P3 (P3)  
Prescaler Y (PREY)  
Timer Y (TY)  
Port P3 direction register (P3D)  
Port P4 (P4)  
Port P4 direction register (P4D)  
Port P5 (P5)  
Port P5 direction register (P5D)  
Port P6 (P6)  
Port P6 direction register (P6D)  
Port P7 (P7)  
Port P7 direction register (P7D)  
Port P8 (P8)  
Port P8 direction register (P8D)  
AD/DA control register (ADCON)  
A-D conversion register (AD)  
D-A1 conversion register (DA1)  
D-A2 conversion register (DA2)  
Transmit/Receive buffer register (TB/RB)  
Serial I/O1 status register (SIO1STS)  
Serial I/O1 control register (SIO1CON)  
UART control register (UARTCON)  
Baud rate generator (BRG)  
Interrupt edge selection register (INTEDGE)  
CPU mode register (CPUM)  
Interrupt request register 1(IREQ1)  
Interrupt request register 2(IREQ2)  
Interrupt control register 1(ICON1)  
Interrupt control register 2(ICON2)  
Serial I/O2 control register (SIO2CON)  
Serial I/O2 register (SIO2)  
Fig. 3 Memory map of special function register (SFR)  
11  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
I/O Ports  
If data is read from a pin which is set to output, the value of the  
port output latch is read, not the value of the pin itself. Pins set to  
input are floating. If a pin set to input is written to, only the port  
output latch is written to and the pin remains floating.  
Direction registers  
The 3806 group has 72 programmable I/O pins arranged in nine  
I/O ports (ports P0 to P8). The I/O ports have direction registers  
which determine the input/output direction of each individual pin.  
Each bit in a direction register corresponds to one pin, each pin  
can be set to be input port or output port.  
When “0” is written to the bit corresponding to a pin, that pin be-  
comes an input pin. When “1” is written to that bit, that pin be-  
comes an output pin.  
Pin  
Name  
Input/Output  
I/O Format  
CMOS 3-state output  
CMOS compatible  
input level  
Non-Port Function  
Related SFRs  
Ref.No.  
Input/output,  
individual bits  
Address low-order byte  
output  
P00 – P07  
Port P0  
CPU mode register  
CMOS 3-state output  
CMOS compatible  
input level  
Input/output,  
individual bits  
Address high-order  
byte output  
P10 – P17  
P20 – P27  
P30 – P37  
Port P1  
Port P2  
Port P3  
CPU mode register  
CPU mode register  
CPU mode register  
(1)  
CMOS 3-state output  
CMOS compatible  
input level  
Input/output,  
individual bits  
Data bus I/O  
CMOS 3-state output  
CMOS compatible  
input level  
Input/output,  
individual bits  
Control signal I/O  
P40,P41  
P42/INT0,  
P43/INT1  
P44/RXD,  
P45/TXD,  
Interrupt edge selection  
register  
External interrupt input  
Serial I/O1 function I/O  
(2)  
CMOS 3-state output  
CMOS compatible  
input level  
Input/output,  
individual bits  
Port P4  
(3)  
(4)  
(5)  
(6)  
(1)  
Serial I/O1 control  
register  
P46/SCLK1,  
_____  
UART control register  
P47/SRDY1  
P50  
P51/INT2,  
P52/INT3,  
P53/INT4  
P54/CNTR0,  
P55/CNTR1  
P56/DA1,  
P57/DA2  
Interrupt edge selection  
register  
External interrupt input  
(2)  
CMOS 3-state output  
CMOS compatible  
input level  
Input/output,  
individual bits  
Port P5  
Timer X and Timer Y  
function I/O  
Timer XY mode register  
AD/DA control register  
(7)  
(8)  
D-A conversion output  
CMOS 3-state output  
CMOS compatible  
input level  
P60/AN0 –  
P67/AN7  
Input/output,  
individual bits  
Port P6  
Port P7  
Port P8  
A-D conversion input  
(9)  
P70/SIN2,  
(10)  
(11)  
(12)  
(13)  
(14)  
P71/SOUT2,  
N-channel open-drain output  
CMOS compatible  
input level  
Serial I/O2 control  
register  
Input/output,  
individual bits  
Serial I/O2 function I/O  
P72/SCLK2,  
_____  
P73/SRDY2  
P74 – P77  
CMOS 3-state output  
CMOS compatible  
input level  
Input/output,  
individual bits  
P80 – P87  
(1)  
Note 1: For details of the functions of ports P0 to P3 in modes other than single-chip mode, and how to use double-function ports as func-  
tion I/O ports, refer to the applicable sections.  
2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction.  
When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate.  
12  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1) Ports P0, P1, P2, P3, P40, P41, P50, P8  
(2) Ports P42, P43, P51, P52, P53  
Direction register  
Direction register  
Port latch  
Port latch  
Data bus  
Data bus  
Interrupt input  
(3) Port P44  
(4) Port P45  
Serial I/O1 enable bit  
Receive enable bit  
P45/TXD P-channel output disable bit  
Serial I/O1 enable bit  
Transmit enable bit  
Direction register  
Direction register  
Port latch  
Data bus  
Port latch  
Data bus  
Serial I/O1 input  
Serial I/O1output  
(5) Port P46  
(6) Port P47  
Serial I/O1  
synchronous clock selection bit  
Serial I/O1 enable bit  
Serial I/O1 mode selection bit  
Serial I/O1 enable bit  
Serial I/O1 mode selection bit  
Serial I/O1 enable bit  
SRDY1 output enable bit  
Direction register  
Direction register  
Port latch  
Port latch  
Data bus  
Data bus  
Serial I/O1  
external  
Serial I/O1 clock output  
Serial I/O1 ready output  
clock input  
(7) Ports P54, P55  
(8) Ports P56, P57  
Direction register  
Direction register  
Port latch  
Port latch  
Data bus  
Data bus  
Pulse output mode  
Timer output  
D-A conversion output  
DA1 output enable bit (P56)  
DA2 output enable bit (P57)  
Counter input  
Interrupt input  
Fig. 4 Port block diagram (single-chip mode) (1)  
13  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(9) Port P6  
(10) Port P70  
Direction register  
Port latch  
Direction register  
Port latch  
Data bus  
Data bus  
A-D conversion input  
Analog input pin selection bit  
Serial I/O2 input  
(11) Port P71  
(12) Port P72  
Serial I/O2  
transmit completion signal  
Serial I/O2  
synchronous clock selection bit  
Serial I/O2 port selection bit  
Serial I/O2 port selection bit  
Direction register  
Direction register  
Port latch  
Data bus  
Port latch  
Data bus  
Serial I/O2  
external  
clock input  
Serial I/O2 clock output  
Serial I/O2 output  
(13) Port P73  
(14) Ports P74 – Port P77  
Direction register  
SRDY2 output enable bit  
Direction register  
Port latch  
Data bus  
Port latch  
Data bus  
Serial I/O2 ready output  
Fig. 5 Port block diagram (single-chip mode) (2)  
14  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
INTERRUPTS  
Interrupt operation  
Interrupts occur by sixteen sources: seven external, eight internal,  
When an interrupt is received, the contents of the program counter  
and processor status register are automatically stored into the  
stack. The interrupt disable flag is set to inhibit other interrupts  
from interfering.The corresponding interrupt request bit is cleared  
and the interrupt jump destination address is read from the vector  
table into the program counter.  
and one software.  
Interrupt control  
Each interrupt is controlled by an interrupt request bit, an interrupt  
enable bit, and the interrupt disable flag except for the software in-  
terrupt set by the BRK instruction. An interrupt occurs if the corre-  
sponding interrupt request and enable bits are “1” and the inter-  
rupt disable flag is “0”.  
Notes on use  
When the active edge of an external interrupt (INT0 to INT4,  
CNTR0, or CNTR1) is changed, the corresponding interrupt re-  
quest bit may also be set. Therefore, please take following se-  
quence;  
Interrupt enable bits can be set or cleared by software.  
Interrupt request bits can be cleared by software, but cannot be  
set by software.  
The BRK instruction cannot be disabled with any flag or bit. The I  
(interrupt disable) flag disables all interrupts except the BRK in-  
struction interrupt.  
(1) Disable the external interrupt which is selected.  
(2) Change the active edge selection.  
(3) Clear the interrupt request bit which is selected to “0”.  
(4) Enable the external interrupt which is selected.  
Table 1. Interrupt vector addresses and priority  
Interrupt Request  
Remarks  
Vector Addresses (Note 1)  
Interrupt Source  
Reset (Note 2)  
INT0  
Priority  
High  
Low  
Generating Conditions  
1
2
FFFD16  
FFFC16  
At reset  
Non-maskable  
At detection of either rising or  
falling edge of INT0 input  
At detection of either rising or  
falling edge of INT1 input  
At completion of serial I/O1  
data reception  
External interrupt  
FFFB16  
FFF916  
FFF716  
FFFA16  
FFF816  
FFF616  
(active edge selectable)  
External interrupt  
INT1  
3
4
(active edge selectable)  
Serial I/O1  
reception  
Valid when serial I/O1 is selected  
At completion of serial I/O1  
transfer shift or when  
Serial I/O1  
5
FFF516  
FFF416  
Valid when serial I/O1 is selected  
transmission  
transmission buffer is empty  
At timer X underflow  
Timer X  
Timer Y  
Timer 1  
Timer 2  
6
7
8
9
FFF316  
FFF116  
FFEF16  
FFED16  
FFF216  
FFF016  
FFEE16  
FFEC16  
At timer Y underflow  
At timer 1 underflow  
STP release timer underflow  
At timer 2 underflow  
At detection of either rising or  
falling edge of CNTR0 input  
At detection of either rising or  
falling edge of CNTR1 input  
At completion of serial I/O2  
data transfer  
External interrupt  
CNTR0  
CNTR1  
Serial I/O2  
INT2  
10  
11  
12  
13  
14  
FFEB16  
FFE916  
FFE716  
FFE516  
FFE316  
FFEA16  
FFE816  
FFE616  
FFE416  
FFE216  
(active edge selectable)  
External interrupt  
(active edge selectable)  
Valid when serial I/O2 is selected  
At detection of either rising or  
falling edge of INT2 input  
At detection of either rising or  
falling edge of INT3 input  
At detection of either rising or  
falling edge of INT4 input  
At completion of A-D conversion  
External interrupt  
(active edge selectable)  
External interrupt  
INT3  
(active edge selectable)  
External interrupt  
INT4  
15  
16  
17  
FFE116  
FFDF16  
FFDD16  
FFE016  
FFDE16  
FFDC16  
(active edge selectable)  
A-D converter  
BRK instruction  
At BRK instruction execution  
Non-maskable software interrupt  
Note 1: Vector addresses contain interrupt jump destination addresses.  
2: Reset function in the same way as an interrupt with the highest priority.  
15  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Interrupt request bit  
Interrupt enable bit  
Interrupt disable flag (I)  
BRK instruction  
Reset  
Interrupt request  
Fig. 6 Interrupt control  
b7  
b0  
Interrupt edge selection register  
(INTEDGE : address 003A16  
)
INT  
INT  
0
active edge selection bit  
active edge selection bit  
1
Not used (returns “0” when read)  
INT  
INT  
INT  
2
3
4
active edge selection bit  
active edge selection bit  
active edge selection bit  
0 : Falling edge active  
1 : Rising edge active  
Not used (returns “0” when read)  
b7  
b0  
b7 b0  
Interrupt request register 2  
(IREQ2 : address 003D16  
Interrupt request register 1  
)
(IREQ1 : address 003C16  
)
INT  
INT  
0
interrupt request bit  
interrupt request bit  
CNTR  
0
interrupt request bit  
interrupt request bit  
1
CNTR  
1
Serial I/O1 receive interrupt request bit  
Serial I/O1 transmit interrupt request bit  
Timer X interrupt request bit  
Serial I/O2 interrupt request bit  
INT  
INT  
INT  
2
3
4
interrupt request bit  
interrupt request bit  
interrupt request bit  
Timer Y interrupt request bit  
Timer 1 interrupt request bit  
AD converter interrupt request bit  
Not used (returns “0” when read)  
Timer 2 interrupt request bit  
0 : No interrupt request issued  
1 : Interrupt request issued  
b7  
b0 Interrupt control register 1  
(ICON1 : address 003E16  
b7  
b0  
Interrupt control register 2  
(ICON2 : address 003F16  
)
)
CNTR  
0
1
interrupt enable bit  
interrupt enable bit  
INT  
INT  
0
1
interrupt enable bit  
interrupt enable bit  
CNTR  
Serial I/O2 interrupt enable bit  
Serial I/O1 receive interrupt enable bit  
Serial I/O1 transmit interrupt enable bit  
Timer X interrupt enable bit  
INT  
INT  
INT  
2
3
4
interrupt enable bit  
interrupt enable bit  
interrupt enable bit  
Timer Y interrupt enable bit  
AD converter interrupt enable bit  
Not used (returns “0” when read)  
(Do not write “1” to this bit)  
Timer 1 interrupt enable bit  
Timer 2 interrupt enable bit  
0 : Interrupts disabled  
1 : Interrupts enabled  
Fig. 7 Structure of interrupt-related registers  
16  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timers  
Timer 1 and Timer 2  
The 3806 group has four timers: timer X, timer Y, timer 1, and  
The count source of prescaler 12 is the oscillation frequency di-  
vided by 16. The output of prescaler 12 is counted by timer 1 and  
timer 2, and a timer underflow sets the interrupt request bit.  
timer 2.  
All timers are count down. When the timer reaches “0016”, an un-  
derflow occurs at the next count pulse and the corresponding  
timer latch is reloaded into the timer and the count is continued.  
When a timer underflows, the interrupt request bit corresponding  
to that timer is set to “1”.  
Timer X and Timer Y  
Timer X and Timer Y can each be selected in one of four operating  
modes by setting the timer XY mode register.  
The division ratio of each timer or prescaler is given by 1/(n + 1),  
where n is the value in the corresponding timer or prescaler latch.  
Timer Mode  
The timer counts f(XIN)/16 in timer mode.  
Pulse Output Mode  
Timer X (or timer Y) counts f(XIN)/16. Whenever the contents of  
the timer reach “0016”, the signal output from the CNTR0 (or  
CNTR1) pin is inverted. If the CNTR0 (or CNTR1) active edge  
switch bit is “0”, output begins at “ H”.  
b7  
b0  
Timer XY mode register  
(TM : address 002316)  
Timer X operating mode bit  
b1b0  
0 0: Timer mode  
0 1: Pulse output mode  
1 0: Event counter mode  
1 1: Pulse width measurement mode  
If it is “1”, output starts at “L”. When using a timer in this mode, set  
the corresponding port P54 ( or port P55) direction register to out-  
put mode.  
CNTR0 active edge switch bit  
0: Interrupt at falling edge  
Count at rising edge in event  
counter mode  
1: Interrupt at rising edge  
Count at falling edge in event  
counter mode  
Event Counter Mode  
Operation in event counter mode is the same as in timer mode,  
except the timer counts signals input through the CNTR0 or  
CNTR1 pin.  
Timer X count stop bit  
0: Count start  
1: Count stop  
Pulse Width Measurement Mode  
If the CNTR0 (or CNTR1) active edge selection bit is “0”, the timer  
counts at the oscillation frequency divided by 16 while the CNTR0  
(or CNTR1) pin is at “H”. If the CNTR0 (or CNTR1) active edge  
switch bit is “1”, the count continues during the time that the  
CNTR0 (or CNTR1) pin is at “L”.  
Timer Y operating mode bit  
b5b4  
0 0: Timer mode  
0 1: Pulse output mode  
1 0: Event counter mode  
1 1: Pulse width measurement mode  
CNTR1 active edge switch bit  
0: Interrupt at falling edge  
Count at rising edge in event  
counter mode  
1: Interrupt at rising edge  
Count at falling edge in event  
counter mode  
In all of these modes, the count can be stopped by setting the  
timer X (timer Y) count stop bit to “1”. Every time a timer  
underflows, the corresponding interrupt request bit is set.  
Timer Y count stop bit  
0: Count start  
1: Count stop  
Fig. 8 Structure of timer XY register  
17  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Data bus  
Oscillator  
f(XIN  
Divider  
1/16  
Prescaler X latch (8)  
Timer X latch (8)  
)
Timer mode  
Pulse output  
mode  
Pulse width  
measurement  
mode  
Prescaler X (8)  
Timer X (8)  
To timer X interrupt  
request bit  
CNTR0 active  
edge switch bit  
P54/CNTR0 pin  
Event  
counter  
mode  
Timer X count stop bit  
“0”  
To CNTR  
0 interrupt  
request bit  
“1”  
CNTR0 active  
edge switch  
bit  
Q
Q
“1”  
“0”  
Toggle flip- flop  
R
T
Port P5  
latch  
4
Port P5  
direction register  
4
Timer X latch write pulse  
Pulse output mode  
Pulse output  
mode  
Data bus  
Prescaler Y latch (8)  
Timer Y latch (8)  
Timer Y (8)  
Timer mode  
Pulse output  
mode  
Pulse width  
measurement  
mode  
Prescaler Y (8)  
To timer Y interrupt  
request bit  
CNTR1 active  
edge switch bit  
P55/CNTR1 pin  
Event  
counter  
mode  
Timer Y count stop bit  
“0”  
To CNTR  
1 interrupt  
request bit  
“1”  
CNTR1 active  
edge switch  
bit  
Q
Q
“1”  
“0”  
Toggle flip- flop  
R
T
Port P5  
latch  
5
Port P5  
direction register  
5
Timer Y latch write pulse  
Pulse output mode  
Pulse output  
mode  
Data bus  
Prescaler  
12 latch (8)  
Timer 1 latch (8)  
Timer 2 latch (8)  
To timer 2 interrupt  
request bit  
Prescaler 12 (8)  
Timer 1 (8)  
Timer 2 (8)  
To timer 1 interrupt  
request bit  
Fig. 9 Block diagram of timer X, timer Y, timer 1, and timer 2  
18  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Clock synchronous serial I/O mode  
Serial I/O1  
Serial I/O1 can be used as either clock synchronous or asynchro-  
nous (UART) serial I/O. A dedicated timer is also provided for  
baud rate generation.  
Clock synchronous serial I/O1 mode can be selected by setting  
the mode selection bit of the serial I/O1 control register to “1”.  
For clock synchronous serial I/O1, the transmitter and the receiver  
must use the same clock. If an internal clock is used, transfer is  
started by a write signal to the TB/RB (address 001816).  
Data bus  
Serial I/O1 control register  
Address 001A16  
Address 001816  
Receive buffer  
Receive buffer full flag (RBF)  
Receive shift register  
Receive interrupt request (RI)  
P44/RXD  
Shift clock  
Clock control circuit  
P46/SCLK1  
Serial I/O1 synchronous  
clock selection bit  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
f(XIN  
)
Baud rate generator  
Address 001C16  
1/4  
Clock control circuit  
P47/SRDY1  
Falling-edge detector  
F/F  
Shift clock  
Transmit shift register  
Transmit buffer  
Transmit shift completion flag (TSC)  
Transmit interrupt source selection bit  
P45/TXD  
Transmit interrupt request (TI)  
Transmit buffer empty flag (TBE)  
Serial I/O1 status register  
Address 001916  
Address 001816  
Data bus  
Fig. 10 Block diagram of clock synchronous serial I/O1  
Transfer shift clock  
(1/2 to 1/2048 of the internal  
clock, or an external clock)  
Serial output TxD  
Serial input RxD  
D0  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
Receive enable signal SRDY1  
Write pulse to receive/transmit  
buffer (address 001816  
)
RBF = 1  
TSC = 1  
TBE = 0  
TBE = 1  
TSC = 0  
Overrun error (OE)  
detection  
Notes  
1 : The transmit interrupt (TI) can be selected to occur either when the transmit buffer has emptied (TBE=1) or after the  
transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1  
control register.  
2 : If data is written to the transmit buffer when TSC=0, the transmit clock is generated continuously and serial data is  
output continuously from the TxD pin.  
3 : The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” .  
Fig. 11 Operation of clock synchronous serial I/O1 function  
19  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Asynchronous serial I/O (UART) mode  
Clock asynchronous serial I/O mode (UART) can be selected by  
clearing the serial I/O mode selection bit of the serial I/O control  
register to “0”.  
two buffers have the same address in memory. Since the shift reg-  
ister cannot be written to or read from directly, transmit data is  
written to the transmit buffer, and receive data is read from the re-  
ceive buffer.  
Eight serial data transfer formats can be selected, and the transfer  
formats used by a transmitter and receiver must be identical.  
The transmit and receive shift registers each have a buffer, but the  
The transmit buffer can also hold the next data to be transmitted,  
and the receive buffer can hold a character while the next charac-  
ter is being received.  
Data bus  
Address 001816  
Serial I/O1 control register Address 001A16  
Receive buffer  
Character length selection bit  
Receive buffer full flag (RBF)  
Receive interrupt request (RI)  
OE  
P44/RXD  
STdetector  
7 bits  
8 bits  
Receive shift register  
1/16  
UART control register  
PE FE SP detector  
Address 001B16  
Clock control circuit  
Serial I/O1 synchronous clock selection bit  
P46/SCLK1  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
f(XIN  
)
Baud rate generator  
Address 001C16  
ST/SP/PA generator  
1/16  
Transmit shift completion flag (TSC)  
Transmit interrupt source selection bit  
P4  
5
/TX  
D
Transmit shift register  
Transmit interrupt request (TI)  
Character length selection bit  
Transmit buffer empty flag (TBE)  
Transmit buffer  
Address 001816  
Address 001916  
Serial I/O1 status register  
Data bus  
Fig. 12 Block diagram of UART serial I/O  
20  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Transmit or receive clock  
Transmit buffer write  
signal  
TBE=0  
TSC=0  
TBE=1  
TBE=0  
TSC=1✽  
SP  
TBE=1  
Serial output TXD  
ST  
D0  
D1  
D0  
D1  
ST  
SP  
Generated at 2nd bit in 2-stop-bit mode  
1 start bit  
7 or 8 data bit  
1 or 0 parity bit  
1 or 2 stop bit (s)  
Receive buffer read  
signal  
RBF=0  
RBF=1  
SP  
RBF=1  
SP  
ST  
Serial input R  
X
D
D0  
D1  
D1  
ST  
D0  
1: Error flag detection occurs at the same time that the RBF flag becomes "1" (at 1st stop bit, during reception).  
Notes  
2: The transmit interrupt (TI) can be selected to occur when either the TBE or TSC flag becomes "1", depending on the setting of the transmit interrupt  
source selection bit (TIC) of the serial I/O control register.  
3: The receive interrupt (RI) is set when the RBF flag becomes "1".  
4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.  
Fig. 13 Operation of UART serial I/O function  
Serial I/O1 control register (SIO1CON) 001A16  
The serial I/O control register consists of eight control bits for the  
serial I/O function.  
spectively). Writing “0” to the serial I/O enable bit SIOE (bit 7 of  
the Serial I/O Control Register) also clears all the status flags, in-  
cluding the error flags.  
All bits of the serial I/O1 status register are initialized to “0” at re-  
set, but if the transmit enable bit (bit 4) of the serial I/O control reg-  
ister has been set to “1”, the transmit shift completion flag (bit 2)  
and the transmit buffer empty flag (bit 0) become “1”.  
UART control register (UARTCON) 001B16  
The UART control register consists of four control bits (bits 0 to 3)  
which are valid when asynchronous serial I/O is selected and set  
the data format of an data transfer. One bit in this register (bit 4) is  
always valid and sets the output structure of the P45/TXD pin.  
Transmit buffer/Receive buffer register (TB/  
RB) 001816  
Serial I/O1 status register (SIO1STS) 001916  
The read-only serial I/O1 status register consists of seven flags  
(bits 0 to 6) which indicate the operating status of the serial I/O  
function and various errors.  
The transmit buffer and the receive buffer are located at the same  
address. The transmit buffer is write-only and the receive buffer is  
read-only. If a character bit length is 7 bits, the MSB of data stored  
in the receive buffer is “0”.  
Three of the flags (bits 4 to 6) are valid only in UART mode.  
The receive buffer full flag (bit 1) is cleared to “0” when the receive  
buffer is read.  
Baud rate generator (BRG) 001C16  
The baud rate generator determines the baud rate for serial trans-  
If there is an error, it is detected at the same time that data is  
transferred from the receive shift register to the receive buffer, and  
the receive buffer full flag is set. A write to the serial I/O status reg-  
ister clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, re-  
fer.  
The baud rate generator divides the frequency of the count source  
by 1/(n + 1), where n is the value written to the baud rate genera-  
tor.  
21  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
b0  
b7  
Serial I/O1 status register  
Serial I/O1 control register  
(SIO1STS : address 0019 16  
)
(SIO1CON : address 001A 16  
BRG count source selection bit (CSS)  
0: f(XIN  
)
Transmit buffer empty flag (TBE)  
0: Buffer full  
1: Buffer empty  
)
1: f(XIN)/4  
Serial I/O1 synchronous clock selection bit (SCS)  
0: BRG output divided by 4 when clock synchronous  
serial I/O is selected, BRG output divided by 16  
when UART is selected.  
Receive buffer full flag (RBF)  
0: Buffer empty  
1: Buffer full  
1: External clock input when clock synchronous serial  
I/O is selected, external clock input divided by 16  
when UART is selected.  
Transmit shift completion flag (TSC)  
0: Transmit shift in progress  
1: Transmit shift completed  
S
0: P4  
1: P4  
RDY1 output enable bit (SRDY)  
Overrun error flag (OE)  
0: No error  
1: Overrun error  
7
pin operates as ordinaly I/O pin  
pin operates as SRDY1 output pin  
7
Transmit interrupt source selection bit (TIC)  
0: Interrupt when transmit buffer has emptied  
1: Interrupt when transmit shift operation is completed  
Parity error flag (PE)  
0: No error  
1: Parity error  
Transmit enable bit (TE)  
0: Transmit disabled  
1: Transmit enabled  
Framing error flag (FE)  
0: No error  
1: Framing error  
Receive enable bit (RE)  
0: Receive disabled  
1: Receive enabled  
Summing error flag (SE)  
0: (OE) U (PE) U (FE)=0  
1: (OE) U (PE) U (FE)=1  
Serial I/O1 mode selection bit (SIOM)  
0: Clock asynchronous (UART) serial I/O  
1: Clock synchronous serial I/O  
Not used (returns "1" when read)  
b0  
b7  
Serial I/O enable bit (SIOE)  
0: Serial I/O disabled  
UART control register  
(UARTCON : address 001B 16  
)
(pins P4  
1: Serial I/O enabled  
(pins P4 to P4 operate as serial I/O pins)  
4 to P47 operate as ordinary I/O pins)  
Character length selection bit (CHAS)  
0: 8 bits  
1: 7 bits  
4
7
Parity enable bit (PARE)  
0: Parity checking disabled  
1: Parity checking enabled  
Parity selection bit (PARS)  
0: Even parity  
1: Odd parity  
Stop bit length selection bit (STPS)  
0: 1 stop bit  
1: 2 stop bits  
P45/TXD P-channel output disable bit (POFF)  
0: CMOS output (in output mode)  
1: N-channel open drain output (in output mode)  
Not used (return "1" when read)  
Fig. 14 Structure of serial I/O control registers  
22  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Serial I/O2  
b7  
b0  
Serial I/O2 control register  
(SIO2CON : address 001D16  
The serial I/O2 function can be used only for clock synchronous  
)
serial I/O.  
Internal synchronous clock selection bits  
For clock synchronous serial I/O the transmitter and the receiver  
must use the same clock. If the internal clock is used, transfer is  
started by a write signal to the serial I/O2 register.  
b2 b1 b0  
0 0 0: f(XIN)/8  
0 0 1: f(XIN)/16  
0 1 0: f(XIN)/32  
0 1 1: f(XIN)/64  
1 1 0: f(XIN)/128  
1 1 1: f(XIN)/256  
Serial I/O2 control register (SIO2CON) 001D16  
The serial I/O2 control register contains seven bits which control  
various serial I/O functions.  
Serial I/O2 port selection bit  
0: I/O port  
1: SOUT2,SCLK2 signal output  
S
RDY2 output enable bit  
0: I/O port  
1: SRDY2 signal output  
Transfer direction selection bit  
0: LSB first  
1: MSB first  
Serial I/O2 synchronous clock selection bit  
0: External clock  
1: Internal clock  
Not used (returns “0” when read)  
Fig. 15 Structure of serial I/O2 control register  
Internal synchronous  
clock selection bits  
1/8  
1/16  
Data bus  
1/32  
X
IN  
1/64  
1/128  
1/256  
P73 latch  
"0"  
Serial I/O2 synchronous  
clock selection bit  
"1"  
P7  
3
/SRDY2  
SRDY2  
Synchronization circuit  
"1"  
SRDY2 output enable bit  
"0"  
External clock  
P72 latch  
"0"  
P7  
P7  
2
1
/SCLK2  
/SOUT2  
Serial I/O2  
interrupt request  
Serial I/O counter 2 (3)  
"1"  
Serial I/O2 port selection bit  
P71 latch  
"0"  
"1"  
Serial I/O2 port selection bit  
Serial I/O shift register 2 (8)  
P70/SIN2  
Fig. 16 Block diagram of serial I/O2 function  
23  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Transfer clock (Note 1)  
Serial I/O2 register  
write signal  
(Note 2)  
Serial I/O2 output SOUT2  
Serial I/O2 input SIN2  
D2  
D0  
D1  
D3  
D4  
D5  
D6  
D7  
Receive enable signal SRDY2  
Serial I/O2 interrupt request bit set  
Notes 1: When the internal clock is selected as the transfer clock, the divide ratio can be selected by setting bits 0 to 2 of the serial  
I/O2 control register.  
2: When the internal clock is selected as the transfer clock, the SOUT2 pin goes to high impedance after transfer completion.  
Fig. 17 Timing of serial I/O2 function  
24  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
A-D Converter  
[Comparator and Control circuit]  
The functional blocks of the A-D converter are described below.  
The comparator and control circuit compares an analog input volt-  
age with the comparison voltage, then stores the result in the A-D  
conversion register. When an A-D conversion is complete, the  
control circuit sets the AD conversion completion bit and the AD  
interrupt request bit to “1”.  
[A-D conversion register]  
The A-D conversion register is a read-only register that stores the  
result of an A-D conversion. When reading this register during an  
A-D conversion, the previous conversion result is read.  
Note that the comparator is constructed linked to a capacitor, so  
set f(XIN) to 500 kHz or more during an A-D conversion.  
[AD/DA control register]  
The AD/DA control register controls the A-D conversion process.  
Bits 0 to 2 select a specific analog input pin. Bit 3 signals the  
completion of an A-D conversion. The value of this bit remains at  
“0” during an A-D conversion, and changes to “1” when an A-D  
conversion ends. Writing “0” to this bit starts the A-D conversion.  
Bits 6 and 7 are used to control the output of the D-A converter.  
b7  
b0  
AD/DA control register  
(ADCON : address 003416  
)
Analog input pin selection bits  
b2 b1 b0  
0 0 0: P6  
0 0 1: P6  
0 1 0: P6  
0 1 1: P6  
1 0 0: P6  
1 0 1: P6  
1 1 0: P6  
1 1 1: P6  
0
1
2
3
4
5
6
7
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
0
1
2
3
4
5
6
7
[Comparison voltage generator]  
The comparison voltage generator divides the voltage between  
AVSS and VREF into 256, and outputs the divided voltages.  
[Channel selector]  
The channel selector selects one of the ports P60/AN0 to P67/AN7,  
AD conversion completion bit  
0: Conversion in progress  
1: Conversion completed  
and inputs the voltage to the comparator.  
Not used (return "0" When read)  
DA1 output enable bit  
0: DA  
1: DA  
1
output disabled  
output enabled  
1
DA2 output enable bit  
0: DA  
1: DA  
2
output disabled  
output enabled  
2
Fig.18 Structure of AD/DA control register  
Data bus  
b7  
3
b0  
AD/DA control register  
(Address 003416)  
A-D control circuit  
A-D interrupt request  
P60/AN0  
P61/AN1  
P62/AN2  
P63/AN3  
P64/AN4  
P65/AN5  
P66/AN6  
P67/AN7  
Comparator  
A-D conversion register (Address 003516)  
8
Resistor ladder  
VREF AVSS  
Fig. 19 Block diagram of A-D converter  
25  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
D-A Converter  
The 3806 group has two internal D-A converters (DA1 and DA2)  
with 8-bit resolutions.  
The D-A converter is performed by setting the value in the D-A  
conversion register. The result of D-A converter is output from the  
DA1 or DA2 pin by setting the DA output enable bit to “1”.  
When using the D-A converter, the corresponding port direction  
register bit (DA1/P56 or DA2/P57) should be set to “0” (input sta-  
tus).  
D-A1 conversion register (8)  
DA1 output enable bit  
The output analog voltage V is determined by the value n (base  
10) in the D-A conversion register as follows:  
R-2R resistor ladder  
P56/DA1  
V = VREF n/256 (n = 0 to 255)  
Where VREF is the reference voltage.  
D-A2 conversion register (8)  
At reset, the D-A conversion registers are cleared to “0016”, the DA  
output enable bits are cleared to “0”, and the P56/DA1 and P57/  
DA2 pins are set to input (high impedance).  
DA2 output enable bit  
P57/DA2  
R-2R resistor ladder  
The D-A output is not buffered, so connect an external buffer when  
driving a low-impedance load.  
Set VCC to 4.0 V or more when using the D-A converter.  
Fig. 20 Block diagram of D-A converter  
DA  
1
output enable bit  
R
"0"  
R
R
2R  
R
R
R
R
P5 /DA1  
6
"1"  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
LSB  
MSB  
"0"  
D-A1 conversion  
register  
"1"  
AVSS  
VREF  
Fig. 21 Equivalent connection circuit of D-A converter  
26  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Reset Circuit  
______  
To reset the microcomputer, the RESET pin should be held at an  
Address  
Register contents  
0016  
______  
Llevel for 2 µs or more. Then the RESET pin is returned to an  
“H” level (Note 1), reset is released. Internal operation does not  
begin until after 8 to 13 XIN clock cycles are completed. After the  
reset is completed, the program starts from the address contained  
in address FFFD16 (high-order byte) and address FFFC16 (low-or-  
der byte).  
(000116) • • •  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
Port P0 direction register  
Port P1 direction register  
Port P2 direction register  
Port P3 direction register  
Port P4 direction register  
Port P5 direction register  
Port P6 direction register  
(000316) • • •  
(000516) • • •  
(000716) • • •  
(000916) • • •  
(000B16) • • •  
(000D16) • • •  
(000F16) • • •  
(001116) • • •  
(001916) • • •  
(001A16) • • •  
(001B16) • • •  
(001D16) • • •  
(002016) • • •  
(002116) • • •  
(002216) • • •  
(002316) • • •  
(002416) • • •  
(002516) • • •  
(002616) • • •  
(002716) • • •  
(003416) • • •  
(003616) • • •  
(003716) • • •  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
Make sure that the reset input voltage is less than 0.8 V for VCC of  
4.0 V (Note 2).  
Note 1. The power source voltage should be between the follow-  
ing voltage.  
(8) Port P7 direction register  
• Between 3.0 V and 5.5 V for standard version  
• Between 4.0 V and 5.5 V for extended operating tem-  
perature version  
(9)  
Port P8 direction register  
Serial I/O1 status register  
Serial I/O1 control register  
UART control register  
(10)  
(11)  
(12)  
(13)  
1
1
0
1
0
1
0
0
0
0
0
0
0
0
• Between 2.7 V and 5.5 V for high-speed version  
Note 2. Reset input voltage is less than the following voltage.  
• 0.6 V for VCC = 3.0 V  
0016  
0
0
Serial I/O2 control register  
• 0.8 V for VCC = 4.0 V  
0016  
FF16  
0116  
FF16  
0016  
FF16  
FF16  
FF16  
FF16  
• 0.54 V for VCC = 2.7 V  
(14) Prescaler 12  
(15)  
(16)  
(17)  
(18)  
(19)  
Timer 1  
Timer 2  
Timer XY mode register  
Prescaler X  
Timer X  
4.0V  
Power source  
0V  
voltage  
(20) Prescaler Y  
(21)  
(22)  
Timer Y  
0.8V  
Reset input  
voltage  
0V  
AD/DA control register  
0
0
0
0
0
0
0
1
0
0
0
0
0
(23) D-A1 conversion register  
0016  
0016  
0016  
(24)  
(25)  
D-A2 conversion register  
Interrupt edge selection register (003A16) • • •  
VCC  
1
5
4
(26) CPU mode register  
Interrupt request register 1  
(003B16) • • •  
(003C16) • • •  
(003D16) • • •  
(003E16) • • •  
(003F16) • • •  
(PS)  
0
0
RESET  
M51953AL  
3
(27)  
0016  
0016  
0016  
0016  
(28) Interrupt request register 2  
(29) Interrupt control register 1  
0.1 µ F  
VSS  
(30)  
Interrupt control register 2  
3806 group  
(31)  
Processor status register  
1
(32) Program counter  
(PC  
H
) Contents of address FFFD16  
) Contents of address FFFC16  
Fig. 22 Example of reset circuit  
(PC  
L
Note.  
: Undefined  
: The initial values of CM1 are determined by the level at the  
CNVSS pin.  
The contents of all other registers and RAM are undefined  
after a reset, so they must be initialized by software.  
Fig. 23 Internal status of microcomputer after reset  
27  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
X
IN  
φ
RESET  
RESETOUT  
(internal reset)  
SYNC  
Address  
?
?
ADH, ADL  
?
?
?
FFFC  
FFFD  
Reset address from the vector table  
ADH  
Data  
?
?
?
?
ADL  
?
Notes 1: f(XIN) and f(φ) are in the relationship: f(XIN)=2  
f(φ).  
X
IN: 8 to 13 clock cycles  
2: A question mark (?) indicates an undefined status that depends on the previous status.  
Fig. 24 Timing of reset  
28  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Clock Generating Circuit  
When the STP status is released, prescaler 12 and timer 1 will  
start counting and reset will not be released until timer 1  
underflows, so set the timer 1 interrupt enable bit to “0” before the  
STP instruction is executed.  
An oscillation circuit can be formed by connecting a resonator be-  
tween XIN and XOUT. To supply a clock signal externally, input it to  
the XIN pin and make the XOUT pin open.  
Oscillation control  
Stop Mode  
If the STP instruction is executed, the internal clock φ stops at an  
“H”. Timer 1 is set to “0116” and prescaler 12 is set to “FF16”.  
Oscillator restarts when an external interrupt is received, but the  
internal clock φ remains at an “H” until timer 1 underflow.  
This allows time for the clock circuit oscillation to stabilize.  
X
IN  
XOUT  
If oscillator is restarted by a reset, no wait time is generated, so  
______  
keep the RESET pin at an “L” level until oscillation has stabilized.  
Wait Mode  
If the WIT instruction is executed, the internal clock φ stops at an  
“H” level, but the oscillator itself does not stop. The internal clock  
restarts if a reset occurs or when an interrupt is received.  
Since the oscillator does not stop, normal operation can be started  
immediately after the clock is restarted.  
C
IN  
COUT  
Fig. 25 Ceramic resonator circuit  
To ensure that interrupts will be received to release the STP or  
WIT state, interrupt enable bits must be set to “1” before the STP  
or WIT instruction is executed.  
X
IN  
XOUT  
Open  
Vcc  
Vss  
External oscillation  
circuit  
Fig. 26 External clock input circuit  
Interrupt request  
Interrupt disable  
Reset  
S
R
Q
S
R
Q
Q
S
R
flag (I)  
Reset  
WIT  
instruction  
STP instruction  
STP instruction  
φ output  
Internal clock φ  
ONW pin  
Single-chip mode  
ONW  
control  
1/2  
Rd  
1/8  
Prescaler 12  
Timer 1  
FF16  
0116  
Reset or STP instruction  
Rf  
X
IN  
XOUT  
Fig. 27 Block diagram of clock generating circuit  
29  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Processor Modes  
Single-chip mode, memory expansion mode, and microprocessor  
mode can be selected by changing the contents of the processor  
mode bits CM0 and CM1 (bits 0 and 1 of address 003B16). In  
memory expansion mode and microprocessor mode, memory can  
be expanded externally through ports P0 to P3. In these modes,  
ports P0 to P3 lose their I/O port functions and become bus pins.  
000016  
000816  
000016  
000816  
SFR area  
SFR area  
004016  
004016  
Internal RAM  
reserved area  
Internal RAM  
reserved area  
044016  
044016  
Table 2. Functions of ports in memory expansion mode and  
microprocessor mode  
Port Name  
Port P0  
Function  
YYYY16  
Outputs low-order byte of address.  
Outputs high-order byte of address.  
Operates as I/O pins for data D7 to D0  
(including instruction codes).  
Internal ROM  
Port P1  
FFFF16  
FFFF16  
Memory expansion mode  
Microprocessor mode  
Port P2  
P30 and P31 function only as output pins  
The shaded areas are external memory areas.  
YYYY16 is the start address of internal ROM.  
(except that the port latch cannot be read).  
_____  
:
P32 is the ONW input pin.  
_________  
P33 is the RESETOUT output pin. (Note)  
Fig. 28 Memory maps in various processor modes  
Port P3  
P34 is the φ output pin.  
P35 is the SYNC output pin.  
___  
P36 is the WR output pin, and P37 is the  
___  
RD output pin.  
b7  
b0  
Note: If CNVSS is connected to VSS, the microcomputer goes to  
CPU mode register  
(CPUM : address 003B16  
single-chip mode after a reset, so this pin cannot be used  
as the RESETOUT output pin.  
)
_________  
Processor mode bits  
b1 b0  
Single-Chip Mode  
0 0 : Single-chip mode  
Select this mode by resetting the microcomputer with CNVSS con-  
nected to VSS.  
0 1 : Memory expansion mode  
1 0 : Microprocessor mode  
1 1 : Not available  
Memory Expansion Mode  
Stack page selection bit  
0 : 0 page  
1 : 1 page  
Select this mode by setting the processor mode bits to “01” in soft-  
ware with CNVSS connected to VSS. This mode enables external  
memory expansion while maintaining the validity of the internal  
ROM. Internal ROM will take precedence over external memory if  
addresses conflict.  
Not used (return “0” when read)  
Fig. 29 Structure of CPU mode register  
Microprocessor Mode  
Select this mode by resetting the microcomputer with CNVSS con-  
nected to VCC, or by setting the processor mode bits to “10” in  
software with CNVSS connected to VSS. In microprocessor mode,  
the internal ROM is no longer valid and external memory must be  
used.  
30  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Bus control with memory expansion  
_____  
The 3806 group has a built-in ONW function to facilitate access to  
external memory and I/O devices in memory expansion mode or  
microprocessor mode.  
_____  
If an “L” level signal is input to the ONW pin when the CPU is in a  
read or write state, the corresponding read or write cycle is ex-  
___  
tended by one cycle of φ. During this extended period, the RD or  
___  
WR signal remains at “L. This extension period is valid only for  
writing to and reading from addresses 000016 to 000716 and  
044016 to FFFF16 in microprocessor mode, 044016 to YYYY16 in  
memory expansion mode, and only read and write cycles are ex-  
tended.  
Dummy cycle  
Read cycle Dummy cycle  
Read cycle  
Write cycle  
Write cycle  
φ
AD15 to AD  
0
RD  
WR  
ONW  
:  
Period during which ONW input signal is received  
During this period, the ONW signal must be fixed at either “H” or “L”. At all other times, the input level of the ONW  
signal has no affect on operations.  
The bus cycles is not extended for an address in the area 000816 to 043F16, regardless of whether the ONW signal  
is received.  
_____  
Fig. 30 ONW function timing  
31  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
NOTES ON PROGRAMMING  
Serial I/O  
Processor Status Register  
In clock synchronous serial I/O, if the receive side is using an ex-  
_____  
The contents of the processor status register (PS) after a reset are  
undefined, except for the interrupt disable flag (I) which is “1”. Af-  
ter a reset, initialize flags which affect program execution.  
In particular, it is essential to initialize the index X mode (T) and  
the decimal mode (D) flags because of their effect on calculations.  
ternal clock and it is to output the SRDY1 signal, set the transmit  
_____  
enable bit, the receive enable bit, and the SRDY1 output enable bit  
to “1”.  
Serial I/O1 continues to output the final bit from the TXD pin after  
transmission is completed. The SOUT2 pin from serial I/O2 goes to  
high impedance after transmission is completed.  
Interrupts  
The contents of the interrupt request bits do not change immedi-  
ately after they have been written. After writing to an interrupt re-  
quest register, execute at least one instruction before executing a  
BBC or BBS instruction.  
A-D Converter  
The comparator uses internal capacitors whose charge will be lost  
if the clock frequency is too low.  
Make sure that f(XIN) is at least 500 kHz during an A-D conver-  
____  
sion. (If the ONW pin has been set to “L, the A-D conversion will  
take twice as long to match the longer bus cycle, and so f(XIN)  
must be at least 1 MHz.)  
Decimal Calculations  
To calculate in decimal notation, set the decimal mode flag (D) to  
“1”, then execute an ADC or SBC instruction. Only the ADC and  
SBC instructions yield proper decimal results. After executing an  
ADC or SBC instruction, execute at least one instruction before  
executing a SEC, CLC, or CLD instruction.  
Do not execute the STP or WIT instruction during an A-D conver-  
sion.  
D-A Converter  
The accuracy of the D-A converter becomes poor rapidly under  
In decimal mode, the values of the negative (N), overflow (V), and  
zero (Z) flags are invalid.  
the VCC = 4.0 V or less condition.  
The carry flag can be used to indicate whether a carry or borrow  
has occurred. Initialize the carry flag before each calculation.  
Clear the carry flag before an ADC and set the flag before an  
SBC.  
Instruction Execution Time  
The instruction execution time is obtained by multiplying the fre-  
quency of the internal clock φ by the number of cycles needed to  
execute an instruction.  
The number of cycles required to execute an instruction is shown  
in the list of machine instructions.  
Timers  
If a value n (between 0 and 255) is written to a timer latch, the fre-  
The frequency of the internal clock φ is half of the XIN frequency.  
_____  
quency division ratio is 1/(n + 1).  
When the ONW function is used in modes other than single-chip  
mode, the frequency of the internal clock φ may be one fourth the  
XIN frequency.  
Multiplication and Division Instructions  
The index X mode (T) and the decimal mode (D) flags do not af-  
fect the MUL and DIV instruction.  
Memory Expansion Mode and Microproces-  
sor Mode  
Execute the LDM or STA instruction for writing to port P3 (address  
000616) in memory expansion mode and microprocessor mode.  
Set areas which can be read out and write to port P3 (address  
000616) in a memory, using the read-modify-write instruction  
(SEB, CLB).  
The execution of these instructions does not change the contents  
of the processor status register.  
Ports  
The contents of the port direction registers cannot be read.  
The following cannot be used:  
• The data transfer instruction (LDA, etc.)  
• The operation instruction when the index X mode flag (T) is “1”  
• The addressing mode which uses the value of a direction regis-  
ter as an index  
• The bit-test instruction (BBC or BBS, etc.) to a direction register  
• The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a  
direction register  
Use instructions such as LDM and STA, etc., to set the port direc-  
tion registers.  
32  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
DATA REQUIRED FOR MASK ORDERS  
The following are necessary when ordering a mask ROM produc-  
tion:  
ROM PROGRAMMING METHOD  
The built-in PROM of the blank One Time PROM version and built-  
in EPROM version can be read or programmed with a general-  
purpose PROM programmer using a special programming  
adapter. Set the address of PROM programmer in the user ROM  
area.  
1. Mask ROM Order Confirmation Form  
2. Mark Specification Form  
3. Data to be written to ROM, in EPROM form (three identical  
copies)  
Package  
80P6N-A  
80P6S-A  
80D0  
Name of Programming Adapter  
PCA4738F-80A  
PCA4738G-80A  
PCA4738L-80A  
The PROM of the blank One Time PROM version is not tested or  
screened in the assembly process and following processes. To en-  
sure proper operation after programming, the procedure shown in  
Figure 40 is recommended to verify programming.  
Programming with PROM  
programmer  
Screening (Caution)  
(150°C for 40 hours)  
Verification with  
PROM programmer  
Functional check in  
target device  
The screening temperature is far higher  
than the storage temperature. Never  
expose to 150 °C exceeding 100 hours.  
Caution :  
Fig. 31 Programming and testing of One Time PROM version  
33  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Power source voltage  
Symbol  
Conditions  
Ratings  
Unit  
V
VCC  
–0.3 to 7.0  
Input voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
VI  
–0.3 to VCC +0.3  
V
P60–P67, P70–P77, P80–P87,  
VREF  
______  
All voltages are based on VSS.  
Output transistors are cut off.  
VI  
VI  
Input voltage RESET, XIN  
Input voltage CNVSS  
–0.3 to VCC +0.3  
–0.3 to 13  
V
V
Output voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
P60–P67, P70–P77, P80–P87,  
XOUT  
VO  
–0.3 to VCC +0.3  
V
Pd  
Power dissipation  
Ta = 25 °C  
500  
mW  
°C  
Topr  
Tstg  
Operating temperature  
Storage temperature  
–20 to 85  
–40 to 125  
°C  
RECOMMENDED OPERATING CONDITIONS (Vcc=3.0 to 5.5v, Ta=-20 to 85°C,unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
3.0  
Typ.  
5.0  
5.0  
0
Max.  
5.5  
Power source voltage (f(XIN) < 2 MHz) (Note 1)  
Power source voltage (f(XIN) = 8 MHz) (Note 1)  
Power source voltage  
VCC  
V
V
V
4.0  
5.5  
VSS  
Analog reference voltage (when A-D converter is used)  
Analog reference voltage (when D-A converter is used)  
Analog power source voltage  
2.0  
3.0  
VCC  
VCC  
VREF  
AVSS  
VIA  
0
V
V
Analog input voltage  
“H” input voltage  
AN0–AN7  
AVSS  
0.8 VCC  
0.8 VCC  
0
VCC  
VCC  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
VIH  
VIH  
VIL  
V
V
P50–P57, P60–P67, P70–P77, P80–P87  
______  
“H” input voltage  
“L” input voltage  
RESET, XIN, CNVSS  
VCC  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
0.2 VCC  
V
P50–P57, P60–P67, P70–P77, P80–P87  
______  
VIL  
“L” input voltage  
RESET  
XIN  
0
0
0
0.2 VCC  
0.16 VCC  
0.2 VCC  
–80  
V
VIL  
“L” input voltage  
V
VIL  
“L” input voltage  
CNVSS  
V
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
“H” total peak output current  
“H” total peak output current  
“L” total peak output current  
“L” total peak output current  
P0  
P40–P47,P50–P57, P60–P67 (Note 2)  
P0 –P0 , P1 –P1 , P2 –P2 , P3 –P3 , P8  
0
–P0  
7
, P1  
0
–P1  
7
, P2  
0
–P2  
7
, P3  
0
–P3  
7
, P8  
0
0
–P8  
–P8  
7
7
(Note 2)  
(Note 2)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
–80  
0
7
0
7
0
7
0
7
80  
P40–P47,P50–P57, P60–P67, P70–P77 (Note 2)  
80  
“H” total average output current P0  
“H” total average output current P40–P47,P50–P57, P60–P67 (Note 2)  
“L” total average output current P0 –P0 , P1 –P1 , P2 –P2 , P3 –P3 , P8  
0
–P0  
7
, P1  
0
–P1  
7
, P2  
0
–P2  
7
, P3  
0
–P3  
7
, P8  
0
0
–P8  
7
7
(Note 2)  
–40  
–40  
0
7
0
7
0
7
0
7
–P8  
(Note 2)  
40  
“L” total average output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 2)  
40  
“H” peak output current  
“L” peak output current  
“H” average output current  
“L” average output current  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67, P80–P87 (Note 3)  
IOH(peak)  
IOL(peak)  
IOH(avg)  
IOL(avg)  
–10  
10  
–5  
5
mA  
mA  
mA  
mA  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67, P70–P77, P80–P87 (Note 3)  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67, P80–P87 (Note 4)  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67, P70–P77, P80–P87 (Note 4)  
Internal clock oscillation frequency (VCC = 4.0 to 5.5 V)  
Internal clock oscillation frequency (VCC = 3.0 to 4.0 V)  
X+16  
8
f(XIN)  
MHz  
6 VCC–16  
Note 1: The minimum power source voltage is  
[V] (f(XIN) = XMHz) on the condition of 2 MHz < f(XIN) < 8 MHz.  
6
2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an aver-  
age value measured over 100 ms. The total peak current is the peak value of all the currents.  
3: The peak output current is the peak current flowing in each port.  
4: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms.  
34  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
Limits  
Symbol  
Parameter  
Test conditions  
IOH = –10 mA  
Unit  
V
Min.  
Typ.  
Max.  
“H” output voltage P0  
0–P0  
0–P3  
0–P6  
7
7
7
, P1  
, P4  
, P8  
0
0
0
–P1  
–P4  
–P8  
7
7
7
, P2  
, P5  
(Note 1)  
0
0
–P2  
–P5  
7
7
,
,
V
V
CC–2.0  
P3  
P6  
VCC = 4.0 to 5.5 V  
VOH  
IOH = –1.0 mA  
VCC = 3.0 to 5.5 V  
CC–1.0  
“L” output voltage P0  
0–P0  
0–P3  
0–P6  
7
7
7
, P1  
, P4  
, P7  
0
0
0
–P1  
–P4  
–P7  
7
7
7
, P2  
0
–P2  
–P5  
–P8  
7
,
IOL = 10 mA  
VCC = 4.0 to 5.5 V  
2.0  
1.0  
P3  
P6  
,P5  
0
7
,
VOL  
V
, P8  
0
7
IOL = 1.0 mA  
VCC = 3.0 to 5.5 V  
VT+ – VT–  
VT+ – VT–  
VT+ – VT–  
Hysteresis  
CNTR  
0
, CNTR  
1
, INT  
0
–INT  
4
0.4  
0.5  
0.5  
V
V
V
Hysteresis  
RXD, SCLK1, SIN2, SCLK2  
______  
RESET  
Hysteresis  
“H” input current  
P0  
P3  
P6  
0
0
0
–P0  
–P3  
–P6  
7
7
7
, P1  
, P4  
, P7  
0
0
0
–P1  
–P4  
–P7  
7, P2  
7, P5  
7, P8  
0
0
0
–P2  
–P5  
–P8  
7
7
7
,
,
IIH  
5.0  
5.0  
µA  
VI = VCC  
______  
IIH  
IIH  
“H” input current  
“H” input current  
“L” input current  
RESET, CNVSS  
µA  
µA  
VI = VCC  
VI = VCC  
X
IN  
4
P0  
P3  
P6  
0
0
0
–P0  
–P3  
–P6  
7
7
7
, P1  
, P4  
, P7  
0
0
0
–P1  
–P4  
–P7  
7, P2  
7, P5  
7, P8  
0
0
0
–P2  
–P5  
–P8  
7
7
7
,
,
IIL  
–5.0  
–5.0  
µA  
VI = VSS  
______  
IIL  
“L” input current  
“L” input current  
RAM hold voltage  
RESET, CNVSS  
µA  
µA  
V
VI = VSS  
IIL  
X
IN  
–4  
VI = VSS  
VRAM  
2.0  
5.5  
13  
8
When clock stopped  
f(XIN) = 8 MHz, VCC = 5 V  
f(XIN) = 5 MHz, VCC = 5 V  
6.4  
4
0.8  
2.0  
f(XIN) = 2 MHz, VCC = 3 V  
When WIT instruction is executed with  
f(Xin) = 8MHz,Vcc=5V  
When WIT instruction is executed with  
1.5  
1
mA  
ICC  
Power source current  
f(Xin) = 5MHz,Vcc=5V  
When WIT instruction is executed  
0.2  
0.1  
with f(Xin) = 2MHz,Vcc=3V  
When STP instruction  
Ta = 25 °C  
1
is executed with clock (Note 2)  
µA  
stopped, output  
transistors isolated.  
(Note 2)  
Ta = 85 °C  
10  
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through VREF pin.  
A-D CONVERTER CHARACTERISTICS  
(VCC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, T  
a
= –20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Test conditions  
Min.  
Max.  
8
Typ.  
Resolution  
Bits  
LSB  
tC(φ)  
kΩ  
Absolute accuracy (excluding quantization error)  
Conversion time  
±1  
±2.5  
50  
tCONV  
RLADDER Ladder resistor  
35  
VREF = 5.0 V  
50  
IVREF  
II(AD)  
Reference power source input current (Note)  
A-D port input current  
150  
0.5  
200  
5.0  
µA  
µA  
Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”.  
35  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
D-A CONVERTER CHARACTERISTICS  
(VCC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 3.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Bits  
%
Min.  
Typ.  
Max.  
8
Resolution  
V
CC = 4.0 to 5.5 V  
CC = 3.0 to 4.0 V  
1.0  
2.5  
3
Absolute accuracy  
V
tsu  
Setting time  
µs  
kΩ  
mA  
RO  
Output resistor  
1
2.5  
4
IVREF  
Reference power source input current (Note)  
3.2  
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding cur-  
rents flowing through the A-D resistance ladder.  
36  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
2
Max.  
_____  
tw(RESET)  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tc(XIN)  
External clock input cycle time  
External clock input “H” pulse width  
External clock input “L” pulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
INT0 to INT4 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT4 input “L” pulse width  
125  
50  
twH(XIN)  
twL(XIN)  
50  
tc(CNTR)  
twH(CNTR)  
twH(INT)  
twL(CNTR)  
twL(INT)  
200  
80  
80  
80  
80  
tc(SCLK1)  
tc(SCLK2)  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
Serial I/O1 clock input cycle time (Note)  
Serial I/O2 clock input cycle time  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O2 clock input “H” pulse width  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O2 clock input “L” pulse width  
Serial I/O1 input set up time  
800  
1000  
370  
400  
370  
400  
220  
200  
100  
200  
t
t
t
t
su(R  
su(SIN2–SCLK2  
D)  
h(SCLK2–SIN2  
X
D–SCLK1  
)
)
Serial I/O2 input set up time  
h(SCLK1–R  
X
Serial I/O1 input hold time  
)
Serial I/O2 input hold time  
Note: When bit 6 of address 001A16 is “1”. Divide this value by four when bit 6 of address 001A16 is “0”.  
TIMING REQUIREMENTS 2 (VCC = 3.0 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
Max.  
_____  
tw(RESET)  
Reset input “L” pulse width  
2
µs  
500/  
(3 VCC–8)  
tc(XIN)  
External clock input cycle time  
ns  
200/  
(3 VCC–8)  
twH(XIN)  
twL(XIN)  
External clock input “H” pulse width  
External clock input “L” pulse width  
ns  
ns  
200/  
(3 VCC–8)  
tc(CNTR)  
twH(CNTR)  
twH(INT)  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
INT0 to INT4 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT4 input “L” pulse width  
500  
230  
230  
230  
230  
2000  
2000  
950  
950  
950  
950  
400  
400  
200  
300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twL(CNTR)  
twL(INT)  
tc(SCLK1)  
Serial I/O1 clock input cycle time (Note)  
Serial I/O2 clock input cycle time  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O2 clock input “H” pulse width  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O2 clock input “L” pulse width  
Serial I/O1 input set up time  
tc(SCLK2)  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
t
t
t
t
su(R  
su(SIN2–SCLK2  
D)  
h(SCLK2–SIN2  
X
D–SCLK1  
)
)
Serial I/O2 input set up time  
h(SCLK1–R  
X
Serial I/O1 input hold time  
)
Serial I/O2 input hold time  
Note : When bit 6 of address 001A16 is “1”. Divide this value by four when bit 6 of address 001A16 is “0”.  
37  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
SWITCHING CHARACTERISTICS 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
140  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
t
t
c(SCLK1  
)
)
/2–30  
/2–30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCLK1  
t
t
d(SCLK1–T  
v(SCLK1–T  
X
D)  
Fig. 32  
X
D)  
–30  
tr(SCLK1)  
tf(SCLK1)  
30  
30  
twH(SCLK2)  
twL(SCLK2)  
t
c(SCLK2  
)
)
/2–160  
t
c(SCLK2  
/2–160  
t
t
d(SCLK2–SOUT2  
v(SCLK2–SOUT2  
)
Fig. 33  
Fig. 32  
200  
)
Serial I/O2 output valid time  
0
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
40  
30  
30  
10  
10  
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: Pins XOUT and P70–P77 are excluded.  
SWITCHING CHARACTERISTICS 2 (VCC = 3.0 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
350  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
t
t
c(SCLK1  
)
)
/2–50  
/2–50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCLK1  
t
t
d(SCLK1–T  
v(SCLK1–T  
X
D)  
Fig. 32  
X
D)  
–30  
tr(SCLK1)  
tf(SCLK1)  
50  
50  
twH(SCLK2)  
twL(SCLK2)  
t
c(SCLK2  
)
)
/2–240  
t
c(SCLK2  
/2–240  
t
t
d(SCLK2–SOUT2  
v(SCLK2–SOUT2  
)
Fig. 33  
Fig. 32  
400  
)
Serial I/O2 output valid time  
0
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
50  
50  
50  
20  
20  
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: Pins XOUT and P70–P77 are excluded.  
38  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
–20  
–20  
60  
Typ.  
Max.  
_____  
____  
tsu(ONW–φ)  
____  
th(φ–ONW)  
ns  
ns  
ns  
ns  
Before φ ONW input set up time  
_____  
After φ ONW input hold time  
Before φ data bus set up time  
tsu(DB–φ)  
th(φ–DB)  
0
After φ data bus hold time  
___ _____  
____ __  
tsu(ONW–RD)  
Before RD ONW input set up time  
___ _____  
____ ___  
tsu(ONW–WR)  
__ ____  
–20  
–20  
ns  
ns  
Before WR ONW input set up time  
___ _____  
th(RD–ONW)  
After RD ONW input hold time  
___ _____  
___ ____  
th(WR–ONW)  
__  
After WR ONW input hold time  
___  
tsu(DB–RD)  
__  
th(RD–DB)  
65  
0
ns  
ns  
Before RD data bus set up time  
___  
After RD data bus hold time  
SWITCHING CHARACTERISTICS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
tc(φ)  
φ clock cycle time  
2tc(XIN)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(φ)  
φ clock “H” pulse width  
φ clock “L” pulse width  
After φ AD15–AD8 delay time  
After φ AD15–AD8 valid time  
After φ AD7–AD0 delay time  
After φ AD7–AD0 valid time  
SYNC delay time  
tc(XIN)–10  
tc(XIN)–10  
twL(φ)  
td(φ–AH)  
tv(φ–AH)  
td(φ–AL)  
tv(φ–AL)  
td(φ–SYNC)  
20  
10  
25  
10  
20  
10  
10  
5
40  
45  
6
6
tv(φ–SYNC)  
___  
td(φ–WR)  
___  
SYNC valid time  
___  
___  
RD and WR delay time  
___ ___  
20  
10  
70  
tv(φ–WR)  
RD and WR valid time  
3
td(φ–DB)  
tv(φ–DB)  
__  
After φ data bus delay time  
After φ data bus valid time  
20  
15  
___  
___  
Fig. 32  
RD pulse width, WR pulse width  
___ ___  
tc(XIN)–10  
twL(RD)  
___  
RD pulse width, WR pulse width  
twL(WR)  
__  
td(AH–RD)  
td(AH–WR)  
__  
td(AL–RD)  
3tc(XIN)–10  
ns  
ns  
ns  
ns  
ns  
(When one-wait is valid)  
___  
After AD15–AD8 RD delay time  
___  
___  
tc(XIN)–35  
t
t
c(XIN  
c(XIN  
)
)
–15  
–20  
After AD15–AD8 WR delay time  
___  
After AD7–AD0 RD delay time  
___  
___  
tc(XIN)–40  
td(AL–WR)  
__  
After AD7–AD0 WR delay time  
___  
tv(RD–AH)  
After RD AD15–AD8 valid time  
___  
___  
0
0
5
tv(WR–AH)  
__  
After WR AD15–AD8 valid time  
___  
tv(RD–AL)  
After RD AD7–AD0 valid time  
___  
___  
5
tv(WR–AL)  
___  
After WR AD7–AD0 valid time  
___  
td(WR–DB)  
After WR data bus delay time  
___  
15  
65  
ns  
ns  
ns  
ns  
___  
tv(WR–DB)  
___ _____  
After WR data bus valid time  
_________  
10  
0
t
d
(RESET–RESETOUT  
)
RESETOUT output delay time (Note 1)  
_________  
200  
200  
_____  
tv(φ–RESET)  
RESETOUT output valid time (Note 1)  
__________  
Note 1: The RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after  
______  
the RESET input goes “H”.  
39  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(VCC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Parameter  
Unit  
Symbol  
____  
Min.  
–20  
–20  
180  
0
Typ.  
Max.  
_____  
ns  
ns  
ns  
ns  
tsu(ONW–φ)  
Before φ ONW input set up time  
_____  
____  
th(φ–ONW)  
After φ ONW input hold time  
Before φ data bus set up time  
tsu(DB–φ)  
th(φ–DB)  
After φ data bus hold time  
___ _____  
____ __  
tsu(ONW–RD)  
Before RD ONW input set up time  
___ _____  
ns  
ns  
____ ___  
tsu(ONW–WR)  
__ ____  
–20  
–20  
Before WR ONW input set up time  
___ _____  
th(RD–ONW)  
After RD ONW input hold time  
___ _____  
___ ____  
th(WR–ONW)  
__  
After WR ONW input hold time  
___  
ns  
ns  
tsu(DB–RD)  
__  
th(RD–DB)  
Before RD data bus set up time  
___  
185  
0
After RD data bus hold time  
SWITCHING CHARACTERISTICS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(VCC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Test conditions  
Unit  
Parameter  
φ clock cycle time  
Symbol  
Typ.  
Max.  
Min.  
tc(φ)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2tc(XIN)  
twH(φ)  
φ clock “H” pulse width  
φ clock “L” pulse width  
After φ AD15–AD8 delay time  
After φ AD15–AD8 valid time  
After φ AD7–AD0 delay time  
After φ AD7–AD0 valid time  
SYNC delay time  
tc(XIN)–20  
tc(XIN)–20  
twL(φ)  
td(φ–AH)  
tv(φ–AH)  
td(φ–AL)  
tv(φ–AL)  
td(φ–SYNC)  
150  
150  
10  
10  
15  
15  
40  
20  
15  
7
tv(φ–SYNC)  
___  
td(φ–WR)  
___  
SYNC valid time  
___  
___  
25  
15  
RD and WR delay time  
___ ___  
tv(φ–WR)  
3
RD and WR valid time  
td(φ–DB)  
tv(φ–DB)  
__  
200  
After φ data bus delay time  
After φ data bus valid time  
15  
___  
___  
Fig. 32  
tc(XIN)–20  
RD pulse width, WR pulse width  
___  
___  
twL(RD)  
___  
RD pulse width, WR pulse width  
twL(WR)  
__  
3tc(XIN)–20  
ns  
ns  
(when one-wait is valid)  
___  
td(AH–RD)  
After AD15–AD8 _R_D_delay time  
___  
tc(XIN)–145  
td(AH–WR)  
__  
After AD15–AD8 WR delay time  
___  
td(AL–RD)  
td(AL–WR)  
__  
After AD7–AD0 _R_D_delay time  
___  
ns  
ns  
tc(XIN)–145  
After AD7–AD0 WR delay time  
___  
tv(RD–AH)  
After RD AD15–AD8 valid time  
___  
___  
5
5
10  
10  
tv(WR–AH)  
__  
After WR AD15–AD8 valid time  
___  
tv(RD–AL)  
After RD AD7–AD0 valid time  
___  
___  
ns  
ns  
tv(WR–AL)  
___  
After WR AD7–AD0 valid time  
___  
td(WR–DB)  
195  
After WR data bus delay time  
___  
___  
tv(WR–DB)  
___ _____  
10  
0
After WR data bus valid time  
_________  
ns  
ns  
ns  
td(RESET–RESETOUT)  
RESETOUT output delay time (Note 1)  
_________  
300  
300  
_____  
tv(φ–RESET)  
RESETOUT output valid time (Note 1)  
__________  
Note1: The RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after  
______  
the RESET input goes “H”.  
40  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ABSOLUTE MAXIMUM RATINGS (Extended operating temperature version)  
Symbol  
Parameter  
Power source voltage  
Conditions  
Ratings  
Unit  
V
VCC  
–0.3 to 7.0  
Input voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
VI  
–0.3 to VCC +0.3  
V
P60–P67, P70–P77, P80–P87,  
VREF  
______  
All voltage are based on VSS.  
Output transistors are cut off.  
VI  
VI  
Input voltage RESET, XIN  
Input voltage CNVSS  
–0.3 to VCC +0.3  
–0.3 to 13  
V
V
Output voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
P60–P67, P70–P77, P80–P87,  
XOUT  
VO  
–0.3 to VCC +0.3  
V
Pd  
Power dissipation  
Ta = 25 °C  
500  
mW  
°C  
Topr  
Tstg  
Operating temperature  
Storage temperature  
–40 to 85  
–65 to 150  
°C  
RECOMMENDED OPERATING CONDITIONS (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
4.0  
Typ.  
5.0  
0
Max.  
5.5  
VCC  
Power source voltage  
Power source voltage  
V
V
VSS  
Analog reference voltage (when A-D converter is used)  
Analog reference voltage (when D-A converter is used)  
Analog power source voltage  
2.0  
4.0  
VCC  
VCC  
V
VREF  
AVSS  
VIA  
0
V
V
Analog input voltage  
“H” input voltage  
AN0–AN7  
AVSS  
0.8 VCC  
0.8 VCC  
0
VCC  
VCC  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
VIH  
VIH  
VIL  
V
V
V
P50–P57, P60–P67, P70–P77, P80–P87  
______  
“H” input voltage  
“L” input voltage  
RESET, XIN, CNVSS  
VCC  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
0.2 VCC  
P50–P57, P60–P67, P70–P77, P80–P87  
______  
VIL  
“L” input voltage  
RESET, CNVSS  
XIN  
0
0
0.2 VCC  
0.16 VCC  
–80  
V
VIL  
“L” input voltage  
V
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
“H” total peak output current  
“H” total peak output current  
“L” total peak output current  
“L” total peak output current  
P0  
P40–P47,P50–P57, P60–P67 (Note 1)  
P0 –P0 , P1 –P1 , P2 –P2 , P3 –P3 , P8  
0
–P0  
7
, P1  
0
–P1  
7
, P2  
0
–P2  
7
, P3  
0
–P3  
7
, P8  
0
0
–P8  
–P8  
7
7
(Note 1)  
(Note 1)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
–80  
0
7
0
7
0
7
0
7
80  
P40–P47,P50–P57, P60–P67, P70–P77 (Note 1)  
80  
“H” total average output current P0  
“H” total average output current P40–P47,P50–P57, P60–P67 (Note 1)  
“L” total average output current P0 –P0 , P1 –P1 , P2 –P2 , P3 –P3 , P8  
0
–P0  
7
, P1  
0
–P1  
7
, P2  
0
–P2  
7
, P3  
0
–P3  
7
, P8  
0
0
–P8  
–P8  
7
7
(Note 1)  
(Note 1)  
–40  
–40  
0
7
0
7
0
7
0
7
40  
“L” total average output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 1)  
40  
“H” peak output current  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67, P80–P87 (Note 2)  
IOH(peak)  
IOL(peak)  
IOH(avg)  
–10  
10  
mA  
mA  
mA  
“L” peak output current  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67, P70–P77, P80–P87 (Note 2)  
“H” average output current  
“L” average output current  
Internal clock oscillation frequency  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67, P80–P87 (Note 3)  
–5  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67, P70–P77, P80–P87 (Note 3)  
IOL(avg)  
f(XIN)  
5
8
mA  
MHz  
Note 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an aver-  
age value measured over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
S
p
3: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms.  
41  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V,  
VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
V
Min.  
Typ.  
Max.  
“H” output voltage P0  
0
0
0
–P0  
–P3  
–P6  
7, P1  
7, P4  
7, P8  
0
0
0
–P1  
–P4  
–P8  
7
7
7
, P2  
, P5  
0
–P2  
–P5  
7
7
,
,
VOH  
P3  
P6  
0
IOH = –10 mA  
VCC–2.0  
(Note 1)  
, P2 –P2  
–P5  
–P8  
“L” output voltage P0  
0
0
0
–P0  
–P3  
–P6  
7, P1  
7, P4  
7, P7  
0–P1  
0–P4  
0–P7  
7
7
7
0
7
,
VOL  
P3  
P6  
,P5  
0
7
,
7
IOL = 10 mA  
2.0  
V
, P8  
0
VT+ – VT–  
VT+ – VT–  
VT+ – VT–  
Hysteresis  
CNTR  
0
, CNTR  
1
, INT  
0
–INT  
4
0.4  
0.5  
0.5  
V
V
V
Hysteresis  
RXD, SCLK1, SIN2, SCLK2  
______  
RESET  
Hysteresis  
“H” input current  
P0  
P3  
P6  
0
0
0
–P0  
–P3  
–P6  
7, P1  
7, P4  
7, P7  
0–P1  
0–P4  
0–P7  
7
7
7
, P2  
, P5  
, P8  
0–P2  
0–P5  
0–P8  
7
7
7
,
,
IIH  
VI = VCC  
5.0  
5.0  
µA  
______  
IIH  
IIH  
“H” input current  
“H” input current  
“L” input current  
RESET, CNVSS  
VI = VCC  
VI = VCC  
µA  
µA  
X
IN  
4
P0  
P3  
P6  
0
0
0
–P0  
–P3  
–P6  
7, P1  
7, P4  
7, P7  
0–P1  
0–P4  
0–P7  
7
7
7
, P2  
, P5  
, P8  
0–P2  
0–P5  
0–P8  
7
7
7
,
,
IIL  
VI = VSS  
–5.0  
–5.0  
µA  
______  
IIL  
“L” input current  
“L” input current  
RAM hold voltage  
RESET, CNVSS  
VI = VSS  
µA  
µA  
V
IIL  
X
IN  
VI = VSS  
–4  
VRAM  
When clock stopped  
f(XIN) = 8 MHz  
f(XIN) = 5 MHz  
2.0  
5.5  
13  
8
6.4  
4
When WIT instruction is executed  
with f(XIN) = 8 MHz  
mA  
1.5  
1
When WIT instruction is executed  
with f(XIN) = 5 MHz  
ICC  
Power source current  
When STP instruction  
is executed with clock (Note 2)  
Ta = 25 °C  
0.1  
1
µA  
stopped, output  
transistors isolated.  
(Note 2)  
Ta = 85 °C  
10  
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through VREF pin.  
A-D CONVERTER CHARACTERISTICS(Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, T  
a
= –40 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
8
Resolution  
Bits  
LSB  
tC(φ)  
kΩ  
Absolute accuracy (excluding quantization error)  
Conversion time  
±1  
±2.5  
50  
tCONV  
RLADDER  
IVREF  
Ladder resistor  
35  
150  
0.5  
Reference power source input current (Note)  
A-D port input current  
VREF = 5.0 V  
50  
200  
5.0  
µA  
II(AD)  
µA  
Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”.  
42  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
D-A CONVERTER CHARACTERISTICS (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 3.0 V to VCC, T  
a
= –40 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter Test conditions  
Min.  
Typ.  
Max.  
8
Resolution  
Bits  
%
Absolute accuracy  
Setting time  
1.0  
3
tsu  
µs  
RO  
Output resistor  
1
2.5  
4
kΩ  
mA  
IVREF  
Reference power source input current (Note)  
3.2  
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding cur-  
rents flowing through the A-D resistance ladder.  
43  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
_____  
tw(RESET)  
Reset input “L” pulse width  
2
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tc(XIN)  
External clock input cycle time  
External clock input “H” pulse width  
External clock input “L” pulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
INT0 to INT4 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT4 input “L” pulse width  
125  
50  
twH(XIN)  
twL(XIN)  
50  
tc(CNTR)  
twH(CNTR)  
twH(INT)  
twL(CNTR)  
twL(INT)  
200  
80  
80  
80  
80  
tc(SCLK1)  
tc(SCLK2)  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
Serial I/O1 clock input cycle time (Note)  
Serial I/O2 clock input cycle time  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O2 clock input “H” pulse width  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O2 clock input “L” pulse width  
Serial I/O1 input set up time  
800  
1000  
370  
400  
370  
400  
220  
200  
100  
200  
t
t
t
t
su(R  
su(SIN2–SCLK2  
D)  
h(SCLK2–SIN2  
X
D–SCLK1  
)
)
Serial I/O2 input set up time  
h(SCLK1–R  
X
Serial I/O1 input hold time  
)
Serial I/O2 input hold time  
Note: When bit 6 of address 001A16 is “1”. Divide this value by four when bit 6 of address 001A16 is “0”.  
SWITCHING CHARACTERISTICS (Extended operating temperature version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
140  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O1 clock output rise time  
Serial I/O1 clock output fall time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
t
t
c(SCLK1  
)
)
/2–30  
/2–30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCLK1  
t
t
d(SCLK1–T  
v(SCLK1–T  
X
D)  
Fig. 32  
X
D)  
–30  
tr(SCLK1)  
tf(SCLK1)  
30  
30  
twH(SCLK2)  
twL(SCLK2)  
t
c(SCLK2  
)
)
/2–160  
t
c(SCLK2  
/2–160  
t
t
d(SCLK2–SOUT2  
v(SCLK2–SOUT2  
)
Fig. 33  
Fig. 32  
200  
)
Serial I/O2 output valid time  
0
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
Serial I/O2 clock output fall time  
CMOS output rise time (Note 2)  
CMOS output fall time (Note 2)  
40  
30  
30  
10  
10  
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: Pins XOUT pin and P70–P77 are excluded.  
44  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
–20  
–20  
60  
Typ.  
Max.  
_____  
____  
tsu(ONW–φ)  
____  
th(φ–ONW)  
Before φ ONW input set up time  
ns  
ns  
ns  
ns  
_____  
After φ ONW input hold time  
Before φ data bus set up time  
tsu(DB–φ)  
th(φ–DB)  
After φ data bus hold time  
0
___ _____  
____ __  
tsu(ONW–RD)  
Before RD ONW input set up time  
___ _____  
____ ___  
–20  
–20  
ns  
ns  
tsu(ONW–WR) Before WR ONW input set up time  
___ _____  
__ ____  
th(RD–ONW) After RD ONW input hold time  
___ _____  
___ ____  
th(WR–ONW) After WR ONW input hold time  
___  
__  
tsu(DB–RD)  
Before RD data bus set up time  
___  
65  
0
ns  
ns  
__  
th(RD–DB)  
After RD data bus hold time  
SWITCHING CHARACTERISTICS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)  
(Extended operating temperature version)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
tc(φ)  
φ clock cycle time  
2tc(XIN)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(φ)  
φ clock “H” pulse width  
φ clock “L” pulse width  
After φ AD15–AD8 delay time  
After φ AD15–AD8 valid time  
After φ AD7–AD0 delay time  
After φ AD7–AD0 valid time  
SYNC delay time  
tc(XIN)–10  
tc(XIN)–10  
twL(φ)  
td(φ–AH)  
tv(φ–AH)  
td(φ–AL)  
tv(φ–AL)  
td(φ–SYNC)  
20  
10  
25  
10  
20  
10  
10  
5
40  
45  
6
6
tv(φ–SYNC)  
___  
td(φ–WR)  
___  
SYNC valid time  
___  
___  
RD and WR delay time  
___ ___  
20  
10  
70  
tv(φ–WR)  
RD and WR valid time  
3
td(φ–DB)  
tv(φ–DB)  
__  
twL(RD)  
twL(WR)  
__  
td(AH–RD)  
td(AH–WR)  
__  
td(AL–RD)  
td(AL–WR)  
__  
After φ data bus delay time  
After φ data bus valid time  
20  
15  
___  
___  
Fig. 32  
RD pulse width, WR pulse width  
___ ___  
tc(XIN)–10  
__  
RD pulse width, WR pulse width  
3tc(XIN)–10  
ns  
ns  
ns  
ns  
ns  
(When one-wait is valid)  
___  
After AD15–AD8 RD delay time  
___  
___  
tc(XIN)–35  
t
t
c(XIN  
c(XIN  
)
)
–15  
–20  
After AD15–AD8 WR delay time  
___  
After AD7–AD0 RD delay time  
___  
___  
tc(XIN)–40  
After AD7–AD0 WR delay time  
___  
tv(RD–AH)  
After RD AD15–AD8 valid time  
___  
___  
0
0
5
tv(WR–AH)  
__  
After WR AD15–AD8 valid time  
___  
tv(RD–AL)  
After RD AD7–AD0 valid time  
___  
___  
5
tv(WR–AL)  
___  
After WR AD7–AD0 valid time  
___  
td(WR–DB)  
___  
tv(WR–DB)  
___ _____  
After WR data bus delay time  
___  
15  
65  
ns  
ns  
ns  
ns  
After WR data bus valid time  
_________  
10  
0
t
d
(RESET–RESETOUT  
)
RESETOUT output delay time (Note 1)  
_________  
200  
200  
_____  
tv(φ–RESET)  
RESETOUT output valid time (Note 1)  
_________  
Note 1: The RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after  
______  
the RESET input goes “H”.  
45  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ABSOLUTE MAXIMUM RATINGS (High-speed version)  
Symbol  
Parameter  
Conditions  
Ratings  
Unit  
V
VCC  
Power source voltage  
–0.3 to 7.0  
Input voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
VI  
–0.3 to VCC +0.3  
V
P60–P67, P70–P77, P80–P87,  
VREF, XIN  
______  
VI  
VI  
Input voltage RESET  
–0.3 to 7.0  
–0.3 to 7.0  
–0.3 to 13  
V
V
All voltages are based on VSS.  
Output transistors are cut off.  
Mask ROM version  
Input voltage CNVSS  
PROM version  
Output voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
P60–P67, P70–P77, P80–P87,  
XOUT  
VO  
–0.3 to VCC +0.3  
V
Pd  
Power dissipation  
Ta = 25 °C  
500  
mW  
°C  
Topr  
Tstg  
Operating temperature  
Storage temperature  
–20 to 85  
–40 to 125  
°C  
RECOMMENDED OPERATING CONDITIONS (High-speed version)  
(VCC = 2.7 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Power source voltage (f(XIN) < 4.15 MHz)  
Min.  
2.7  
Typ.  
5.0  
5.0  
0
Max.  
5.5  
VCC  
V
V
V
Power source voltage (f(XIN) = 10 MHz)  
Power source voltage  
4.0  
5.5  
VSS  
Analog reference voltage (when A-D converter is used)  
Analog reference voltage (when D-A converter is used)  
Analog power source voltage  
2.0  
2.7  
VCC  
VCC  
VREF  
AVSS  
VIA  
0
V
V
Analog input voltage  
“H” input voltage  
AN0–AN7  
AVSS  
VCC  
VCC  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
______  
VIH  
P50–P57, P60–P67, P70–P77, P80–P87, RESET, XIN, 0.8 VCC  
CNVSS  
V
“L” input voltage  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
______  
0
VIL  
0.2 VCC  
V
P5  
XIN  
P0  
P40–P47,P50–P57, P60–P67 (Note 1)  
P0 –P0 , P1 –P1 , P2 –P2 , P3 –P3 , P8  
0–P57, P60–P67, P70–P77, P80–P87, RESET, CNVSS  
VIL  
“L” input voltage  
0
0.16 VCC  
–80  
–80  
80  
V
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
“H” total peak output current  
“H” total peak output current  
“L” total peak output current  
“L” total peak output current  
0
–P0  
7
, P1  
0
–P1  
7
, P2  
0
–P2  
7
, P3  
0
–P3  
7
, P8  
0
0
–P8  
7
7
(Note 1)  
(Note 1)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
0
7
0
7
0
7
0
7
–P8  
P40–P47,P50–P57, P60–P67, P70–P77 (Note 1)  
80  
“H” total average output current P0  
“H” total average output current P40–P47,P50–P57, P60–P67 (Note 1)  
“L” total average output current P0 –P0 , P1 –P1 , P2 –P2 , P3 –P3 , P8  
0
–P0  
7
, P1  
0
–P1  
7
, P2  
0
–P2  
7
, P3  
0
–P3  
7
, P8  
0
0
–P8  
7
7
(Note 1)  
–40  
–40  
40  
0
7
0
7
0
7
0
7
–P8  
(Note 1)  
“L” total average output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 1)  
40  
“H” peak output current  
“L” peak output current  
“H” average output current  
“L” average output current  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67, P80–P87 (Note 2)  
IOH(peak)  
IOL(peak)  
IOH(avg)  
IOL(avg)  
–10  
10  
–5  
5
mA  
mA  
mA  
mA  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67, P70–P77, P80–P87 (Note 2)  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67, P80–P87 (Note 3)  
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,  
P50–P57, P60–P67, P70–P77, P80–P87 (Note 3)  
Internal clock oscillation frequency (4.0 V < VCC < 5.5 V)  
Internal clock oscillation frequency (2.7 V < VCC < 4.0 V)  
10  
f(XIN)  
MHz  
4.5VCC–8  
Note 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an aver-  
age value measured over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms.  
46  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (High-speed version)  
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
IOH = –10 mA  
Unit  
Min.  
Typ.  
Max.  
“H” output voltage P0  
0
0
0
–P0  
–P3  
–P6  
7
7
7
, P1  
, P4  
, P8  
0
0
0
–P1  
–P4  
–P8  
7
7
7
, P2  
, P5  
(Note 1)  
0
0
–P2  
–P5  
7
,
,
V
V
CC–2.0  
P3  
P6  
7
VCC = 4.0 to 5.5 V  
VOH  
V
IOH = –1.0 mA  
VCC = 2.7 to 5.5 V  
CC–1.0  
“L” output voltage P0  
0
0
0
–P0  
–P3  
–P6  
7
7
7
, P1  
, P4  
, P7  
0–P1  
0–P4  
0–P7  
7
7
7
, P2  
0
–P2  
–P5  
–P8  
7
,
IOL = 10 mA  
VCC = 4.0 to 5.5 V  
2.0  
1.0  
P3  
P6  
,P5  
0
7
,
VOL  
V
, P8  
0
7
IOL = 1.0 mA  
VCC = 2.7 to 5.5 V  
VT+ – VT–  
VT+ – VT–  
VT+ – VT–  
Hysteresis  
CNTR  
0
, CNTR  
1
, INT  
0
–INT  
4
0.4  
0.5  
0.5  
V
V
V
Hysteresis  
RXD, SCLK1, SIN2, SCLK2  
______  
RESET  
Hysteresis  
“H” input current  
P0  
P3  
P6  
0
0
0
–P0  
–P3  
–P6  
7
7
7
, P1  
, P4  
, P7  
0
0
0
–P1  
–P4  
–P7  
7, P2  
7, P5  
7, P8  
0
0
0
–P2  
–P5  
–P8  
7
7
7
,
,
IIH  
VI = VCC  
5.0  
5.0  
µA  
______  
IIH  
IIH  
“H” input current  
“H” input current  
“L” input current  
RESET, CNVSS  
VI = VCC  
VI = VCC  
µA  
µA  
X
IN  
4
P0  
P3  
P6  
0
0
0
–P0  
–P3  
7
7
, P1  
, P4  
0
0
0
–P1  
–P4  
–P7  
7, P2  
7, P5  
7, P8  
0
0
0
–P2  
–P5  
–P87,  
7
,
,
7
IIL  
VI = VSS  
–5.0  
µA  
–P6 , P7  
______7  
RESET, CNVSS  
IIL  
“L” input current  
X
IN  
VI = VSS  
–4  
µA  
VRAM  
RAM hold voltage  
With clock stopped  
f(XIN) = 10 MHz, VCC = 5 V  
f(XIN) = 4 MHz, VCC = 2.7 V  
2.0  
5.5  
16  
2
V
8
1.3  
When WIT instruction is executed  
with f(XIN) = 10 MHz, VCC = 5 V  
mA  
2
0.3  
0.1  
When WIT instruction is executed  
with f(XIN) = 4 MHz, VCC = 2.7 V  
ICC  
Power source current  
When STP instruction  
Ta = 25 °C  
1
is executed with clock (Note 2)  
µA  
stopped, output  
transistors isolated.  
(Note 2)  
Ta = 85 °C  
10  
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through VREF pin.  
A-D CONVERTER CHARACTERISTICS (High-speed version)  
(VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, T  
a
= –20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter Test conditions  
Min.  
Typ.  
Max.  
8
Resolution  
Bits  
LSB  
tC(φ)  
kΩ  
Absolute accuracy (excluding quantization error)  
Conversion time  
±1  
±2.5  
50  
tCONV  
RLADDER  
IVREF  
Ladder resistor  
35  
150  
0.5  
Reference power source input current (Note)  
A-D port input current  
VREF = 5.0 V  
50  
200  
5.0  
µA  
II(AD)  
µA  
Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”.  
47  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
D-A CONVERTER CHARACTERISTICS (High-speed version)  
(VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.7 V to VCC, T  
a
= –20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter Test conditions  
Min.  
Typ.  
Max.  
8
Resolution  
Bits  
%
V
V
CC = 4.0 to 5.5 V  
CC = 2.7 to 5.5 V  
1.0  
2.5  
3
Absolute accuracy  
tsu  
Setting time  
µs  
kΩ  
mA  
RO  
Output resistor  
1
2.5  
4
IVREF  
Reference power source input current (Note)  
3.2  
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding cur-  
rents flowing through the A-D resistance ladder.  
48  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS 1 (High-speed version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
_____  
tw(RESET)  
Reset input “L” pulse width  
2
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tc(XIN)  
External clock input cycle time  
External clock input “H” pulse width  
External clock input “L” pulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
INT0 to INT4 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT4 input “L” pulse width  
100  
40  
twH(XIN)  
twL(XIN)  
40  
tc(CNTR)  
twH(CNTR)  
twH(INT)  
twL(CNTR)  
twL(INT)  
200  
80  
80  
80  
80  
tc(SCLK1)  
tc(SCLK2)  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
Serial I/O1 clock input cycle time (Note)  
Serial I/O2 clock input cycle time  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O2 clock input “H” pulse width  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O2 clock input “L” pulse width  
Serial I/O1 input set up time  
800  
1000  
370  
400  
370  
400  
220  
200  
100  
200  
t
t
t
t
su(R  
su(SIN2–SCLK2  
D)  
h(SCLK2–SIN2  
X
D–SCLK1  
)
)
Serial I/O2 input set up time  
h(SCLK1–R  
X
Serial I/O1 input hold time  
)
Serial I/O2 input hold time  
Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1”. Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0”.  
TIMING REQUIREMENTS 2 (High-speed version)  
VCC = 2.7 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
_____  
tw(RESET)  
Reset input “L” pulse width  
2
µs  
1000/  
(4.5 VCC–8)  
tc(XIN)  
External clock input cycle time  
ns  
400/  
(4.5 VCC–8)  
twH(XIN)  
twL(XIN)  
External clock input “H” pulse width  
External clock input “L” pulse width  
ns  
ns  
400/  
(4.5 VCC–8)  
tc(CNTR)  
twH(CNTR)  
twH(INT)  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
INT0 to INT4 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0 to INT4 input “L” pulse width  
500  
230  
230  
230  
230  
2000  
2000  
950  
950  
950  
950  
400  
400  
200  
300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twL(CNTR)  
twL(INT)  
tc(SCLK1)  
Serial I/O1 clock input cycle time (Note)  
Serial I/O2 clock input cycle time  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O2 clock input “H” pulse width  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O2 clock input “L” pulse width  
Serial I/O1 input set up time  
tc(SCLK2)  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
t
t
t
t
su(R  
su(SIN2–SCLK2  
D)  
h(SCLK2–SIN2  
X
D–SCLK1  
)
)
Serial I/O2 input set up time  
h(SCLK1–R  
X
Serial I/O1 input hold time  
)
Serial I/O2 input hold time  
Note: When f(XIN) = 2 MHz and bit 6 of address 001A16 is “1”. Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is “0”.  
49  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
SWITCHING CHARACTERISTICS 1 (High-speed version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Test conditions  
Unit  
Parameter  
Min.  
Typ.  
Max.  
140  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
t
t
c(SCLK1  
)
)
/2–30  
/2–30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCLK1  
t
t
d(SCLK1–T  
v(SCLK1–T  
X
D)  
Fig. 32  
X
D)  
–30  
tr(SCLK1)  
tf(SCLK1)  
30  
30  
twH(SCLK2)  
twL(SCLK2)  
t
c(SCLK2  
)
)
/2–160  
t
c(SCLK2  
/2–160  
t
t
d(SCLK2–SOUT2  
v(SCLK2–SOUT2  
)
Fig. 33  
Fig. 32  
200  
)
Serial I/O2 output valid time  
0
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
30  
30  
30  
10  
10  
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: XOUT pin is excluded.  
SWITCHING CHARACTERISTICS 2 (High-speed version)  
(VCC = 2.7 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
350  
twH(SCLK1)  
twL(SCLK1)  
Serial I/O1 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O1 clock output rising time  
Serial I/O1 clock output falling time  
Serial I/O2 clock output “H” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O2 output delay time  
t
t
c(SCLK1  
)
)
/2–50  
/2–50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(SCLK1  
t
t
d(SCLK1–T  
v(SCLK1–T  
X
D)  
Fig. 32  
X
D)  
–30  
tr(SCLK1)  
tf(SCLK1)  
50  
50  
twH(SCLK2)  
twL(SCLK2)  
t
c(SCLK2  
)
)
/2–240  
t
c(SCLK2  
/2–240  
t
t
d(SCLK2–SOUT2  
v(SCLK2–SOUT2  
)
Fig. 33  
Fig. 32  
400  
)
Serial I/O2 output valid time  
0
tf(SCLK2)  
tr(CMOS)  
tf(CMOS)  
Serial I/O2 clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
50  
50  
50  
20  
20  
Note 1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: XOUT pin is excluded.  
50  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (High-speed version)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Parameter  
Symbol  
Unit  
Min.  
–20  
–20  
50  
Typ.  
25  
Max.  
_____  
____  
tsu(ONW–φ)  
____  
th(φ–ONW)  
Before φ ONW input set up time  
ns  
ns  
ns  
ns  
_____  
After φ ONW input hold time  
Before φ data bus set up time  
tsu(DB–φ)  
th(φ–DB)  
After φ data bus hold time  
0
___ _____  
____ __  
tsu(ONW–RD)  
Before RD ONW input set up time  
___ _____  
____ ___  
–20  
–20  
ns  
ns  
tsu(ONW–WR) Before WR ONW input set up time  
___ _____  
__ ____  
th(RD–ONW) After RD ONW input hold time  
___ _____  
___ ____  
th(WR–ONW) After WR ONW input hold time  
___  
__  
tsu(DB–RD)  
Before RD data bus set up time  
___  
50  
0
25  
ns  
ns  
__  
th(RD–DB)  
After RD data bus hold time  
SWITCHING CHARACTERISTICS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
(High-speed version)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
tc(φ)  
φ clock cycle time  
2tc(XIN)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(φ)  
φ clock “H” pulse width  
φ clock “L” pulse width  
After φ AD15–AD8 delay time  
After φ AD15–AD8 valid time  
After φ AD7–AD0 delay time  
After φ AD7–AD0 valid time  
SYNC delay time  
tc(XIN)–10  
tc(XIN)–10  
twL(φ)  
td(φ–AH)  
tv(φ–AH)  
td(φ–AL)  
tv(φ–AL)  
td(φ–SYNC)  
tv(φ–SYNC)  
td(φ–DB)  
tv(φ–DB)  
__  
16  
5
35  
40  
2
2
20  
5
16  
5
SYNC valid time  
After φ data bus delay time  
After φ data bus valid time  
15  
30  
10  
___  
___  
RD pulse width, WR pulse width  
___ ___  
tc(XIN)–10  
twL(RD)  
___  
Fig. 32  
RD pulse width, WR pulse width  
twL(WR)  
__  
td(AH–RD)  
td(AH–WR)  
__  
td(AL–RD)  
3tc(XIN)–10  
ns  
ns  
ns  
ns  
ns  
(when one-wait is valid)  
___  
After AD15–AD8 RD delay time  
___  
___  
tc(XIN)–35  
t
t
c(XIN  
c(XIN  
)
)
–16  
–20  
After AD15–AD8 WR delay time  
___  
After AD7–AD0 RD delay time  
___  
___  
tc(XIN)–40  
td(AL–WR)  
__  
After AD7–AD0 WR delay time  
___  
tv(RD–AH)  
After RD AD15–AD8 valid time  
___  
___  
2
2
5
tv(WR–AH)  
__  
After WR AD15–AD8 valid time  
___  
tv(RD–AL)  
After RD AD7–AD0 valid time  
___  
___  
5
tv(WR–AL)  
___  
After WR AD7–AD0 valid time  
___  
td(WR–DB)  
After WR data bus delay time  
___  
15  
30  
ns  
ns  
ns  
ns  
___  
tv(WR–DB)  
___ _____  
After WR data bus valid time  
_________  
10  
0
t
d
(RESET–RESETOUT  
)
RESETOUT output delay time (Note 1)  
_________  
200  
100  
_____  
tv(φ–RESET)  
RESETOUT output valid time (Note 1)  
_________  
Note 1: The RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after  
______  
the RESET input goes “H”.  
51  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(VCC = 2.7 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
(High-speed version)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
–20  
–20  
120  
0
Typ.  
60  
Max.  
_____  
____  
tsu(ONW–φ)  
____  
Before φ ONW input set up time  
ns  
ns  
ns  
ns  
_____  
th(φ–ONW)  
After φ ONW input hold time  
Before φ data bus set up time  
tsu(DB–φ)  
th(φ–DB)  
After φ data bus hold time  
___ _____  
____ __  
tsu(ONW–RD)  
Before RD ONW input set up time  
___ _____  
____ ___  
–20  
–20  
ns  
ns  
tsu(ONW–WR) Before WR ONW input set up time  
___ _____  
__ ____  
th(RD–ONW) After RD ONW input hold time  
___ _____  
___ ____  
th(WR–ONW) After WR ONW input hold time  
___  
__  
tsu(DB–RD)  
Before RD data bus set up time  
___  
120  
0
60  
ns  
ns  
__  
th(RD–DB)  
After RD data bus hold time  
SWITCHING CHARACTERISTICS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE  
(High-Speed Version)  
(VCC = 2.7 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
tc(φ)  
φ clock cycle time  
2tc(XIN)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
twH(φ)  
φ clock “H” pulse width  
φ clock “L” pulse width  
AD15–AD8 delay time  
AD15–AD8 valid time  
AD7–AD0 delay time  
AD7–AD0 valid time  
SYNC delay time  
tc(XIN)–20  
tc(XIN)–20  
twL(φ)  
td(φ–AH)  
tv(φ–AH)  
td(φ–AL)  
tv(φ–AL)  
td(φ–SYNC)  
tv(φ–SYNC)  
td(φ–DB)  
tv(φ–DB)  
__  
40  
10  
50  
10  
40  
10  
30  
100  
100  
5
5
SYNC valid time  
Data bus delay time  
Data bus valid time  
80  
10  
___  
___  
Fig. 32  
RD pulse width, WR pulse width  
___ ___  
tc(XIN)–20  
twL(RD)  
___  
RD pulse width, WR pulse width  
twL(WR)  
__  
td(AH–RD)  
td(AH–WR)  
__  
td(AL–RD)  
3tc(XIN)–20  
ns  
ns  
ns  
ns  
ns  
(when one-wait is valid)  
___  
After AD15–AD8 RD delay time  
___  
___  
tc(XIN)–100  
t
t
c(XIN  
c(XIN  
)
)
–40  
–50  
After AD15–AD8 WR delay time  
___  
After AD7–AD0 RD delay time  
___  
___  
tc(XIN)–100  
td(AL–WR)  
__  
After AD7–AD0 WR delay time  
___  
tv(RD–AH)  
After RD AD15–AD8 valid time  
___  
___  
5
5
10  
tv(WR–AH)  
__  
After WR AD15–AD8 valid time  
___  
tv(RD–AL)  
After RD AD7–AD0 valid time  
___  
___  
10  
30  
tv(WR–AL)  
___  
After WR AD7–AD0 valid time  
___  
td(WR–DB)  
After WR data bus delay time  
___  
80  
ns  
ns  
ns  
ns  
___  
tv(WR–DB)  
___ _____  
After WR data bus valid time  
_________  
10  
0
t
d
(RESET–RESETOUT  
)
RESETOUT output delay time (Note 1)  
_________  
300  
150  
_____  
tv(φ–RESET)  
RESETOUT output valid time (Note 1)  
_________  
Note 1: The RESETOUT output goes “H” in sync with the rise of the φ clock that is anywhere between about 8 cycle and 13 cycles after  
______  
the RESET input goes “H”.  
1kΩ  
Measurement output pin  
Measurement output pin  
100pF  
100pF  
N-channel open-drain output  
Circuit for measuring output switching  
characteristics (2)  
CMOS output  
Fig. 33  
Fig. 32  
Circuit for measuring output switching  
characteristics (1)  
52  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING DIAGLAM  
(1)Timing Diagram  
tC(CNTR)  
tWL(CNTR)  
tWH(CNTR)  
0.8 VCC  
CNTR  
0
, CNTR  
1
0.2 VCC  
t
WL(INT)  
tWH(INT)  
0.8 VCC  
INT0–INT  
RESET  
4
0.2 VCC  
tW(RESET)  
0.8 VCC  
0.2 VCC  
tC(XIN)  
tWL(XIN)  
t
WH(XIN)  
0.8 VCC  
XIN  
0.2 VCC  
tC(SCLK1),  
tC(SCLK2)  
tWL(SCLK1),  
tWL(SCLK2  
)
tWH(SCLK1), tWH(SCLK2)  
tr  
tf  
S
S
CLK1  
CLK2  
0.8 VCC  
0.2 VCC  
t
su(R  
X
D
-
S
CLK1),  
CLK2  
th(SCLK1-  
t
R
X
D),  
tsu(SIN2-  
S
)
h
(SCLK2-  
SIN2  
)
R
S
X
D
0.8 VCC  
0.2 VCC  
IN2  
t
t
v(SCLK1-T  
v(SCLK2-  
X
D),  
td(SCLK1-T  
X
D),td(SCLK2-SOUT2)  
S
OUT2  
)
TXD  
SOUT2  
53  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(2)Timing Diagram in Memory Expansion Mode and Microprocessor Mode (a)  
tC(φ)  
tWL(φ)  
tWH(φ)  
φ
0.5 VCC  
tv(φ-AH)  
td(φ-AH)  
0.5 VCC  
0.5 VCC  
AD15–AD  
8
td(φ-AL)  
tv(φ-AL)  
AD7  
–AD  
0
tv(φ-SYNC)  
td(φ-SYNC)  
0.5 VCC  
SYNC  
td(φ-WR)  
0.5 VCC  
tv(φ-WR)  
RD,WR  
th(φ-ONW)  
tSU(ONW-φ)  
0.8 VCC  
0.2 VCC  
ONW  
th(φ-DB)  
tv(φ-DB)  
tSU(DB-φ)  
0.8 VCC  
0.2 VCC  
DB  
0
–DB  
7
(At CPU reading)  
td(φ-DB)  
DB0–DB  
7
0.5 VCC  
(At CPU writing)  
(3)Timing Diagram in Microprocessor Mode  
0.8 VCC  
RESET  
0.2 VCC  
φ
0.5 VCC  
td(RESET- RESETOUT)  
tv(φ- RESETOUT)  
0.5 VCC  
RESETOUT  
54  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(4) Timing Diagram in Memory Expansion Mode and Microprocessor Mode (b)  
t
WL(RD)  
tWL(WR)  
RD,WR  
0.5 VCC  
t
d(AH-RD)  
d(AH-WR)  
t
t
v(RD-AH)  
v(WR-AH)  
t
0.5 VCC  
AD15–AD  
8
t
d(AL-RD)  
d(AL-WR)  
t
t
v(RD-AL)  
v(WR-AL)  
t
0.5 VCC  
AD7  
–AD  
0
t
t
h(RD-ONW)  
h(WR-ONW)  
t
t
su(ONW-RD)  
su(ONW-WR)  
0.8 VCC  
0.2 VCC  
ONW  
(At CPU reading)  
RD  
tWL(RD)  
0.5 VCC  
tSU(DB-RD)  
th(RD-DB)  
0.8 VCC  
0.2 VCC  
DB0–DB7  
(At CPU writing)  
WR  
tWL(WR)  
0.5 VCC  
tv(WR-DB)  
td(WR-DB)  
0.5 VCC  
DB0–DB7  
55  
MITSUBISHI MICROCOMPUTERS  
3806 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of  
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any  
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi  
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor  
product distributor for the latest product information before purchasing a product listed herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact  
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for  
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the  
approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 1996 MITSUBISHI ELECTRIC CORP.  
H-DF047-C KI-9609  
New publication, effective Sep. 1996.  
Specifications subject to change without notice.  
REVISION DESCRIPTION LIST  
3806GROUP DATA SHEET  
Rev.  
Rev.  
date  
Revision Description  
No.  
1.0 First Edition  
971128  
(1/1)  

相关型号:

M38063ED-XXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063ED-XXXFS

SINGLE-CHIP 8-BIT MICROCOMPUTER
RENESAS

M38063EDA-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EDDFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EDXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EE-FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EE-XXXFP

SINGLE-CHIP 8-BIT MICROCOMPUTER
RENESAS

M38063EE-XXXFS

SINGLE-CHIP 8-BIT MICROCOMPUTER
RENESAS

M38063EEA-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EEDFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EEXXXFP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38063EF-FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS