R1QKA3636CB [RENESAS]

36-Mbit QDRII SRAM 4-word Burst; 36 - Mbit的QDRII SRAM 4字突发
R1QKA3636CB
型号: R1QKA3636CB
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

36-Mbit QDRII SRAM 4-word Burst
36 - Mbit的QDRII SRAM 4字突发

静态存储器
文件: 总38页 (文件大小:308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
hinT=00000.0000.0000.0000.0000---  
00000.1100.1100.0000.0000---  
00000.0000.0000.0000.0000---QDRII+_RL25  
R1QAA36**CB* / R1QDA36**CB* Series  
R1QAA3636CBG / R1QAA3618CBG / R1QAA3609CBG  
R1QDA3636CBG / R1QDA3618CBG / R1QDA3609CBG  
R1QGA3636CBG / R1QGA3618CBG / R1QGA3609CBG  
R1QKA3636CBG / R1QKA3618CBG / R1QKA3609CBG  
R10DS0158EJ0009  
36-Mbit QDR™II+ SRAM  
4-word Burst  
Rev. 0.09a  
2011.09.14  
Description  
The R1Q#A3636 is a 1,048,576-word by 36-bit and the R1Q#A3618 is a 2,097,152-word by 18-bit synchronous  
quad data rate static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory  
cell. It integrates unique synchronous peripheral circuitry and a burst counter. All input registers are controlled  
by an input clock pair (K and /K) and are latched on the positive edge of K and /K. These products are suitable  
for applications which require synchronous operation, high speed, low voltage, high density and wide bit  
configuration. These products are packaged in 165-pin plastic FBGA package.  
# = A: Read Latency =2.5, w/o ODT  
# = D: Read Latency =2.5, w/ ODT  
# = G: Read Latency =2.0, w/o ODT  
# = K: Read Latency =2.0, w/ ODT  
Features  
Power Supply  
• 1.8 V for core (VDD), 1.4 V to VDD for I/O (VDDQ  
Clock  
)
• Fast clock cycle time for high bandwidth  
• Two input clocks (K and /K) for precise DDR timing at clock rising edges only  
• Two output echo clocks (CQ and /CQ) simplify data capture in high-speed systems  
• Clock-stop capability with Ps restart  
I/O  
• Separate independent read and write data ports with concurrent transactions  
• 100% bus utilization DDR read and write operation  
• HSTL I/O  
• User programmable output impedance  
• DLL/PLL circuitry for wide output data valid window and future frequency scaling  
• Data valid pin (QVLD) to indicate valid data on the output  
Function  
• Four-tick burst for reduced address frequency  
• Internally self-timed write control  
• Simple control logic for easy depth expansion  
• JTAG 1149.1 compatible test access port  
Package  
• 165 FBGA package (15 x 17 x 1.4 mm)  
Notes: 1. QDR RAMs and Quad Data Rate RAMs comprise a new family of products developed by Cypress  
Semiconductor, IDT, Samsung, and Renesas Electronics Corp. (QDR Co-Development Team)  
2. The specifications of this device are subject to change without notice. Please contact your nearest  
Renesas Electronics Sales Office regarding specifications.  
3. Refer to  
"http://www.renesas.com/products/memory/fast_sram/qdr_sram/qdr_sram_root.jsp"  
for the latest and detailed information.  
4. Descriptions about x9 parts in this datasheet are just for reference.  
Rev. 0.09a : 2011.09.14  
PAGE : 1  
R10DS0158EJ0009  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
Part Number Definition  
Part Number Definition Table  
No.  
0 1 2 3 4 5 6 7 8 9 10 11 - 12 13 14 15 16  
R 1 Q A A 4 4 3 6 R B G - 2 0 R B 0  
Example  
0Qꢀ  
%QOOGPVU  
0Qꢀ  
#
%QOOGPVU  
8FFꢄꢆꢄꢃꢀꢇꢄ8  
0Qꢀ  
%QOOGPVU  
ꢂꢁꢃ 4ꢃ 4GPGUCUꢄ/GOQT[ꢄ2TGHKZ  
3ꢊ  
ꢈꢂ  
ꢍꢂ  
ꢅꢂ  
ꢏꢈ  
ꢏꢏ  
ꢏꢂ  
(TGSWGPE[ꢄꢆꢄꢃꢈꢉ/*\  
(TGSWGPE[ꢄꢆꢄꢊꢂꢂ/*\  
(TGSWGPE[ꢄꢆꢄꢊꢍꢂ/*\  
(TGSWGPE[ꢄꢆꢄꢊꢉꢍ/*\  
(TGSWGPE[ꢄꢆꢄꢏꢂꢂ/*\  
(TGSWGPE[ꢄꢆꢄꢏꢏꢏ/*\  
3&4ꢄ++ꢄ$ꢊ=ꢋꢃ?ꢄꢄꢄꢄꢄꢄꢄꢄꢄꢌ.ꢃꢍꢎ=ꢋꢊ?  
ꢏꢈ &GPUKV[ꢄꢆꢄꢄꢏꢈ/D  
ꢉꢊ &GPUKV[ꢄꢆꢄꢄꢉꢊ/D  
ꢅꢅ &GPUKV[ꢄꢆꢄꢃꢅꢅ/D  
ꢇꢇ &GPUKV[ꢄꢆꢄꢊꢇꢇ/D  
ꢂꢐ &CVCꢄYKFVJꢄꢆꢄꢄꢐDKV  
3ꢏ 3&4ꢄ++ꢄ$ꢅꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢌ.ꢃꢍꢎ  
3ꢅ &&4ꢄ++ꢄ$ꢊꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢌ.ꢃꢍꢎ  
3ꢍ &&4ꢄ++ꢄ$ꢅꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢌ.ꢃꢍꢎ  
ꢍꢁꢈ  
ꢉꢁꢇ  
&&4ꢄ++ꢄ$ꢊꢄ5+1=ꢋꢏ?ꢄꢄꢄꢄꢄꢌ.ꢃꢍꢎ  
3ꢈ  
ꢃꢊꢁꢃꢏ  
3&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢍ=ꢋꢊ?  
3#  
3$ &&4ꢄ++ꢑꢄ$ꢊꢄ.ꢊꢍ  
3% &&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢍ  
3&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢍꢄYꢒ1&6=ꢋꢅ?  
3&  
3' &&4ꢄ++ꢑꢄ$ꢊꢄ.ꢊꢍꢄYꢒ1&6  
3( &&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢍꢄYꢒ1&6  
3) 3&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢂ  
ꢃꢇ &CVCꢄYKFVJꢄꢆꢄꢃꢇDKV  
ꢏꢈ &CVCꢄYKFVJꢄꢆꢄꢏꢈDKV  
ꢊꢉ  
ꢊꢍ  
ꢊꢊ  
ꢊꢂ  
ꢃꢐ  
(TGSWGPE[ꢄꢆꢄꢏꢉꢍ/*\  
(TGSWGPE[ꢄꢆꢄꢅꢂꢂ/*\  
(TGSWGPE[ꢄꢆꢄꢅꢍꢂ/*\  
(TGSWGPE[ꢄꢆꢄꢍꢂꢂ/*\  
(TGSWGPE[ꢄꢆꢄꢍꢏꢏ/*\  
%QOOGTEKCNꢄVGORꢀ  
6CꢄTCPIGꢄꢆꢄꢂé᳸ꢉꢂé  
+PFWUVTKCNꢄVGORꢀ  
6CꢄTCPIGꢄꢆꢄꢁꢅꢂé᳸ꢇꢍé  
2DꢁHTGGꢄCPFꢄ6TC[  
2DꢁHTGGꢄCPFꢄ6TC[  
4
#
$
%
&
'
(
ꢃUVꢄ)GPGTCVKQP  
ꢊPFꢄ)GPGTCVKQP  
ꢏTFꢄ)GPGTCVKQP  
ꢅVJꢄ)GPGTCVKQP  
ꢍVJꢄ)GPGTCVKQP  
ꢈVJꢄ)GPGTCVKQP  
ꢉVJꢄ)GPGTCVKQP  
ꢊꢁꢏ  
4
+
ꢃꢅ  
3* &&4ꢄ++ꢑꢄ$ꢊꢄ.ꢊꢂ  
3, &&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢂ  
3- 3&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢂꢄYꢒ1&6  
3. &&4ꢄ++ꢑꢄ$ꢊꢄ.ꢊꢂꢄYꢒ1&6  
3/ &&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢂꢄYꢒ1&6  
30 3&4ꢄ++ꢑꢄ$ꢊꢄ.ꢊꢂ  
$) 2-)ꢆꢄ$)#ꢄꢃꢍZꢃꢉꢄOO  
$# 2-)ꢆꢄ$)#ꢄꢃꢏZꢃꢍꢄOO  
#
$
6
5
ꢃꢂꢁꢃꢃ  
ꢃꢍ  
ꢃꢈ  
2DꢁHTGGꢄCPFꢄ6CRGꢓ4GGN  
2DꢁHTGGꢄCPFꢄ6CRGꢓ4GGN  
32 3&4ꢄ++ꢑꢄ$ꢊꢄ.ꢊꢂꢄYꢒ1&6  
ꢂ`ꢐꢕ#`<  
QTꢄ0QPG  
4GPGUCUꢄKPVGTPCNꢄWUG  
0QVGꢃꢔ  
0QVGꢊꢔ  
=ꢋꢃ?ꢄꢄ$ꢆ$WTUVꢄNGPIVJꢄꢌ$ꢊꢔꢄ$WTUVꢄNGPIVJꢆꢊꢕꢄ$ꢅꢔꢄ$WTUVꢄNGPIVJꢆꢅꢎ  
=ꢋꢊ?ꢄꢄ.ꢆ4GCFꢄ.CVGPE[ꢄꢌ.ꢃꢍꢔꢄ4GCFꢄ.CVGPE[ꢄꢆꢄꢃꢀꢍꢄE[ENGꢕꢄ.ꢊꢂꢔꢄꢊꢀꢂꢄE[ENGꢕꢄ.ꢊꢍꢔꢄꢊꢀꢍꢄE[ENGꢎ  
=ꢋꢏ?ꢄꢄ5+1ꢆ5GRCTCVGꢄ+ꢒ1  
=ꢋꢅ?ꢄꢄ1&6ꢆ1PꢄFKGꢄVGTOKPCVKQP  
2CEMCIGꢄ/CTMKPIꢄ0COG  
2DꢁHTGGꢄRCTVUꢔꢄꢄꢄ/CTMKPIꢄ0COGꢄꢆꢄ2CTVꢄ0WODGTꢌꢂꢁꢃꢅꢎ  
2DꢁHTGGꢄRCTVUꢔꢄꢄꢄ/CTMKPIꢄ0COGꢄꢆꢄ2CTVꢄ0WODGTꢌꢂꢁꢃꢅꢎꢄꢑꢄꢖ2$ꢁ(ꢖ  
ꢄꢄꢌ'ZCORNGꢎꢄ4ꢃ3##ꢅꢅꢏꢈ4$)ꢁꢊꢂ4ꢄꢄꢄ2Dꢁ(ꢄꢄꢄꢄꢄꢁꢁꢁꢁꢁꢄ2DꢁHTGGꢄRCTVU  
ꢄꢄꢌ'ZCORNGꢎꢄ4ꢃ3##ꢅꢅꢏꢈ4$)ꢁꢊꢂ4ꢄꢄꢄ2$ꢁ(ꢄꢄꢄꢄꢄꢁꢁꢁꢁꢁꢄ2DꢁHTGGꢄRCTVU  
ꢄꢄ  
0QVGꢏꢔ  
2DꢁHTGGꢔꢄ4Q*5ꢄ%QORNKCPEGꢄ.GXGNꢄꢆꢄꢍꢒꢈ  
2DꢁHTGGꢔꢄ4Q*5ꢄ%QORNKCPEGꢄ.GXGNꢄꢆꢄꢈꢒꢈ  
Rev. 0.09a : 2011.09.14  
R10DS0158EJ0009  
PAGE : 2  
hinS=00000.0000.0000.0000.0000---  
11111.1111.1111.1111.1111---  
00000.0000.0000.0000.0000---036M  
R1QAA36**CB* / R1QDA36**CB* Series  
36M QDR II+ / DDR II+ SRAM Lineup  
- Renesas supports or plans to support the parts listed below.  
QDR II+ / DDR II+  
QDR II / DDR II  
Frequency (max)  
533 500 450 400 375 333 333 300 250 200  
(MHz)  
Cycle Time (min)  
(ns)  
No  
1.875 2.00 2.22 2.50 2.66 3.00 3.00 3.30 4.00 5.00  
Part Number  
yy  
-19  
-19  
-20  
-20  
-22  
-22  
-25  
-27  
-30  
-30  
-33  
-40  
-50  
Ą
ă
17  
18  
20  
21  
23  
24  
26  
27  
29  
30  
32  
33  
35  
36  
38  
39  
41  
42  
44  
45  
47  
48  
50  
51  
x18 R1Q A A36 18CBv- yy  
x36 R1Q A A36 36CBv- yy  
x18 R1Q B A36 18CBv- yy  
x36 R1Q B A36 36CBv- yy  
x18 R1Q C A36 18CBv- yy  
x36 R1Q C A36 36CBv- yy  
x18 R1Q D A36 18CBv- yy  
x36 R1Q D A36 36CBv- yy  
x18 R1Q E A36 18CBv- yy  
x36 R1Q E A36 36CBv- yy  
x18 R1Q F A36 18CBv- yy  
x36 R1Q F A36 36CBv- yy  
x18 R1Q GA36 18CBv- yy  
x36 R1Q GA36 36CBv- yy  
x18 R1Q H A36 18CBv- yy  
x36 R1Q H A36 36CBv- yy  
x18 R1Q J A36 18CBv- yy  
x36 R1Q J A36 36CBv- yy  
x18 R1Q K A36 18CBv- yy  
x36 R1Q K A36 36CBv- yy  
x18 R1Q L A36 18CBv- yy  
x36 R1Q L A36 36CBv- yy  
x18 R1Q M A36 18CBv- yy  
x36 R1Q M A36 36CBv- yy  
QDRII+ B4  
B2  
DDRII+  
B4  
-19  
-19  
-19  
-19  
-19  
-20  
-20  
-20  
-20  
-20  
-22  
-22  
-22  
-22  
-22  
QDRII+ B4  
B2  
DDRII+  
B4  
QDRII+ B4  
-25  
-25  
-25  
-25  
-25  
-25  
B2  
DDRII+  
B4  
QDRII+ B4  
B2  
DDRII+  
B4  
Notes:  
1. "yy" represents the speed bin. "R1QAA3636CBG-20" can operate at 500 MHz(max) of frequency, for example.  
2. "v" represents the package size. If "v" = "G" then size is 15 x 17 mm, and if "v" = "A" then 13 x 15 mm.  
3. The part which is not listed above is not supported, as of the day when this datasheet was issued,  
in spite of the existence of the part number or datasheet.  
Rev. 0.09a : 2011.09.14  
PAGE : 3  
R10DS0158EJ0009  
36---  
R1QAA36**CB* / R1QDA36**CB* Series  
Pin Arrangement  
R1Q3A3636 (Top) / R1QA(G)A3636 (Mid) / R1QD(K)A3636 (Bottom)  
1
/CQ  
Q27  
D27  
D28  
Q29  
Q30  
D30  
/DOFF  
D31  
Q32  
Q33  
D33  
D34  
2
NC  
3
NC  
4
/W  
SA  
5
6
/K  
K
7
8
/R  
SA  
9
SA  
10  
NC  
Q17  
Q7  
D15  
D6  
Q14  
D13  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
A
B
C
D
E
F
G
H
J
K
L
M
N
/BW2  
/BW3  
SA  
/BW1  
/BW0  
SA  
Q18  
Q28  
D20  
D29  
Q21  
D22  
D18  
D19  
Q19  
Q20  
D21  
Q22  
D17  
D16  
Q16  
Q15  
D14  
Q13  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VREF VDDQ VDDQ  
VDDQ VDDQ VREF  
Q31  
D32  
Q24  
Q34  
D26  
D23  
Q23  
D24  
D25  
Q25  
D12  
Q12  
D11  
D10  
Q10  
Q4  
D3  
Q11  
Q1  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VSS  
D9  
VSS  
VSS  
C
QVLD  
QVLD  
P
R
Q35  
D35  
Q26  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
Q9  
SA  
D0  
Q0  
/C  
NC  
TDO TCK  
TMS  
TDI  
ODT  
(Top View)  
Top  
Mid  
R1Q3A3636  
R1QA(G)A3636  
Bottom R1QD(K)A3636  
Notes: 1. Address expansion order for future higher density SRAMs: 10A 2A 7A 5B.  
2. NC pins can be left floating or connected to 0V VDDQ  
.
R1Q3A3618 (Top) / R1QA(G)A3618 (Mid) / R1QD(K)A3618 (Bottom)  
1
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DOFF  
NC  
2
NC  
Q9  
NC  
D11  
NC  
Q12  
D13  
3
SA  
D9  
D10  
Q10  
Q11  
D12  
Q13  
4
/W  
SA  
5
/BW1  
NC  
6
/K  
K
7
NC  
/BW0  
SA  
8
/R  
SA  
9
10  
NC  
NC  
Q7  
NC  
D6  
NC  
NC  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
A
B
C
D
E
F
G
H
J
K
L
M
N
SA  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VREF VDDQ VDDQ  
NC  
NC  
Q15  
NC  
D17  
VDDQ VDDQ VREF  
D14  
Q14  
D15  
D16  
Q16  
NC  
NC  
NC  
NC  
NC  
Q4  
D3  
NC  
Q1  
NC  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
VSS  
VSS  
C
QVLD  
QVLD  
P
R
NC  
NC  
Q17  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
NC  
SA  
D0  
Q0  
/C  
NC  
TDO TCK  
TMS  
TDI  
ODT  
(Top View)  
Notes: 1. Address expansion order for future higher density SRAMs: 10A 2A 7A 5B.  
2. NC pins can be left floating or connected to 0V VDDQ  
.
Rev. 0.09a : 2011.09.14  
R10DS0158EJ0009  
PAGE : 4  
36---  
R1QAA36**CB* / R1QDA36**CB* Series  
Pin Arrangement  
Just Reference  
R1Q3A3609 (Top) / R1QA(G)A3609 (Mid) / R1QD(K)A3609 (Bottom)  
1
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DOFF  
NC  
2
3
4
/W  
SA  
5
6
/K  
K
7
8
/R  
SA  
9
10  
11  
CQ  
Q4  
D4  
NC  
Q3  
NC  
NC  
ZQ  
D2  
NC  
Q1  
D1  
NC  
A
B
C
D
E
F
G
H
J
K
L
M
N
NC  
NC  
NC  
D5  
NC  
NC  
D6  
SA  
NC  
NC  
NC  
Q5  
NC  
Q6  
NC  
NC  
SA  
NC  
/BW  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
NC  
D3  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
NC  
NC  
VREF VDDQ VDDQ  
VDDQ VDDQ VREF  
NC  
NC  
Q7  
NC  
D8  
NC  
NC  
D7  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q2  
NC  
NC  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
VSS  
VSS  
C
QVLD  
QVLD  
P
R
NC  
NC  
Q8  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
NC  
SA  
D0  
Q0  
/C  
NC  
TDO TCK  
TMS  
TDI  
ODT  
(Top View)  
Notes: 1. Address expansion order for future higher density SRAMs: 10A 2A 7A 5B.  
2. NC pins can be left floating or connected to 0V VDDQ  
.
Rev. 0.09a : 2011.09.14  
R10DS0158EJ0009  
PAGE : 5  
hinS=11000.1100.1100.1100.1100  
---11000.1100.1100.1100.1100---  
11000.1100.1100.1100.1100---  
QDR  
R1QAA36**CB* / R1QDA36**CB* Series  
Pin Descriptions  
Name I/O type  
Descriptions  
Notes  
Synchronous address inputs: These inputs are registered and must meet  
the setup and hold times around the rising edge of K. All transactions  
operate on a burst-of-four words (two clock periods of bus activity).  
These inputs are ignored when device is deselected.  
Synchronous read: When low, this input causes the address inputs to be  
registered and a READ cycle to be initiated. This input must meet setup  
and hold times around the rising edge of K, and is ignored on the  
subsequent rising edge of K.  
Synchronous write: When low, this input causes the address inputs to be  
registered and a WRITE cycle to be initiated. This input must meet setup  
and hold times around the rising edge of K, and is ignored on the  
subsequent rising edge of K.  
SA  
Input  
Input  
Input  
/R  
/W  
Synchronous byte writes: When low, these inputs cause their respective  
byte to be registered and written during WRITE cycles. These signals  
are sampled on the same edge as the corresponding data and must meet  
setup and hold times around the rising edges of K and /K for each of the  
two rising edges comprising the WRITE cycle. See Byte Write Truth  
Table for signal to data relationship.  
Input clock: This input clock pair registers address and control inputs on  
the rising edge of K, and registers data on the rising edge of K and the  
rising edge of /K. /K is ideally 180 degrees out of phase with K. All  
synchronous inputs must meet setup and hold times around the clock  
rising edges. These balls cannot remain VREF level.  
Input  
Input  
/BWx  
K, /K  
Output clock: This clock pair provides a user-controlled means of tuning  
device output data. The rising edge of /C is used as the output timing  
reference for the first and third output data. The rising edge of C is used  
as the output timing reference for second and fourth output data. Ideally,  
/C is 180 degrees out of phase with C. C and /C may be tied high to  
force the use of K and /K as the output reference clocks instead of having  
to provide C and /C clocks. If tied high, C and /C must remain high and  
not to be toggled during device operation. These balls cannot remain  
VREF level.  
C, /C  
(II only)  
Input  
1
DLL/PLL disable: When low, this input causes the DLL/PLL to be  
bypassed for stable, low frequency operation.  
IEEE1149.1 test inputs: 1.8 V I/O levels. These balls may be left not  
connected if the JTAG function is not used in the circuit.  
IEEE1149.1 clock input: 1.8 V I/O levels. This ball must be tied to VSS if  
the JTAG function is not used in the circuit.  
/DOFF  
Input  
Input  
Input  
TMS  
TDI  
TCK  
Notes:  
1. R1Q2, R1Q3, R1Q4, R1Q5, R1Q6 series have C and /C pins. R1QA, R1QB, R1QC, R1QD,  
R1QE, R1QF, R1QG, R1QH, R1QJ, R1QK, R1QL, R1QM, R1QN, R1QP series do not have C,  
/C pins. In the series, K and /K are used as the output reference clocks instead of C and /C.  
Therefore, hereafter, C and /C represent K and /K in this document.  
Rev. 0.09a : 2011.09.14  
PAGE : 6  
R10DS0158EJ0009  
---  
R1QAA36**CB* / R1QDA36**CB* Series  
Name I/O type  
Descriptions  
Notes  
Output impedance matching input: This input is used to tune the device  
outputs to the system data bus impedance. Q and CQ output  
impedance are set to 0.2 u RQ, where RQ is a resistor from this ball to  
ground. This ball can be connected directly to VDDQ, which enables the  
minimum impedance mode. This ball cannot be connected directly to  
VSS or left unconnected.  
ZQ  
Input  
In ODT (On Die Termination) enable devices, the ODT termination  
values tracks the value of RQ. The ODT range is selected by ODT  
control input.  
ODT control: When low;  
[Option 1] Low range mode is selected. The impedance range is  
between 52 : and 105 : (Thevenin equivalent), which follows 0.3 u  
RQ for 175 : RQ 350 :.  
ODT  
(II+ only)  
[Option 2] ODT is disabled.  
Input  
Input  
1
When high; High range mode is selected. The impedance range is  
between 105 : and 150 : (Thevenin equivalent), which follows 0.6  
u RQ for 175 : RQ 250 :.  
When floating; [Option 1] High range mode is selected.  
[Option 2] ODT is disabled.  
Synchronous data inputs: Input data must meet setup and hold times  
around the rising edges of K and /K during WRITE operations. See Pin  
Arrangement figures for ball site location of individual signals.  
The u9 device uses D0~D8. D9~D35 should be treated as NC pin.  
The u18 device uses D0~D17. D18~D35 should be treated as NC pin.  
The u36 device uses D0~D35.  
D0 to Dn  
Synchronous echo clock outputs: The edges of these outputs are tightly  
matched to the synchronous data outputs and can be used as a data  
valid indication. These signals run freely and do not stop when Q tri-  
states.  
CQ, /CQ Output  
TDO  
Output IEEE 1149.1 test output: 1.8 V I/O level.  
Synchronous data outputs: Output data is synchronized to the  
respective C and /C, or to the respective K and /K if C and /C are tied  
high. This bus operates in response to /R commands. See Pin  
Output Arrangement figures for ball site location of individual signals.  
The u9 device uses Q0~Q8. Q9~Q35 should be treated as NC pin.  
The u18 device uses Q0~Q17. Q18~Q35 should be treated as NC pin.  
The u36 device uses Q0~Q35.  
Q0 to Qn  
QVLD  
(II+ only)  
Valid output indicator: The Q Valid indicates valid output data. QVLD is  
edge aligned with CQ and /CQ.  
Output  
Power supply: 1.8 V nominal. See DC Characteristics and Operating  
Conditions for range.  
Supply  
2
VDD  
Power supply: Isolated output buffer supply. Nominally 1.5 V. See DC  
Supply  
2
2
VDDQ  
VSS  
Characteristics and Operating Conditions for range.  
Supply Power supply: Ground.  
HSTL input reference voltage: Nominally VDDQ/2, but may be adjusted to  


VREF  
improve system noise margin. Provides a reference voltage for the  
HSTL input buffers.  
NC  
No connect: These pins can be left floating or connected to 0V VDDQ.  
Notes:  
1. Renesas status: Option 1 = Available, Option 2 = Possible.  
2. All power supply and ground balls must be connected for proper operation of the device.  
Rev. 0.09a : 2011.09.14  
PAGE : 7  
R10DS0158EJ0009  
3 6 - - -  
R1QAA36**CB* / R1QDA36**CB* Series  
Block Diagram (R1QxA3636 / R1QxA3618 / R1QxA3609, x=3,A,D,G,K)  
18/19/20  
Address  
Address  
/R  
/W  
K
18/19/20  
Registry  
and  
Logic  
ZQ  
/K  
72  
/36  
/18  
72  
/36  
/18  
/W  
144  
/72  
/36  
Q
(Data out)  
4/2/1  
/BWx  
36/18/9  
72  
/36  
/18  
72  
/36  
/18  
Memory  
Array  
Data  
Registry  
and  
36/18/9  
(Data in)  
D
2
Logic  
CQ  
/R  
/CQ  
K
/K  
K
C,/C  
or  
C
or  
K
K,/K  
Notes  
1. C and /C pins do not exist in II+ series parts.  
Rev. 0.09a : 2011.09.14  
PAGE : 8  
R10DS0158EJ0009  
hinS=11111.1111.1111.1111.1111---  
11111.1111.1111.1111.1111---00000.0000.0000.0000.0000---  
72M_36M  
R1QAA36**CB* / R1QDA36**CB* Series  
General Description  
Power-up and Initialization Sequence  
- VDD must be stable before K, /K clocks are applied.  
- Recommended voltage application sequence : VSS VDD VDDQ & VREF VIN. (0 V to VDD, VDDQ < 200 ms)  
- Apply VREF after VDDQ or at the same time as VDDQ  
.
- Then execute either one of the following three sequences.  
1. Single Clock Mode (C and /C tied high)  
- Drive /DOFF high (/DOFF can be tied high from the start).  
- Then provide stable clocks (K, /K) for at least 1024 cycles (II series) or 20 us (II+ series).  
These meet the QDR common specification of 20 us.  
When the operating frequency is less than 180 MHz, 2048 cycles are required (II series).  
1. Single clock mode (C and /C pins fixed High)  
Power Up &  
NOP &  
Normal  
Status  
Unstable Stage  
Set-up Stage  
Operation  
VDD  
VDDQ  
VREF  
Fix High (=Vddq)  
SET-UP Cycle  
/DOFF  
K, /K  
2. Double Clock Mode (C and /C control outputs) (II series only)  
- Drive /DOFF high (/DOFF can be tied high from the start)  
- Then provide stable clocks (K, /K , C, /C) for at least 1024 cycles (II series).  
This meets the QDR common specification of 20 us.  
When the operating frequency is less than 180 MHz, 2048 cycles are required (II series).  
2. Double clock mode  
Power Up &  
NOP &  
Normal  
Status  
Unstable Stage  
Set-up Stage  
Operation  
VDD  
VDDQ  
VREF  
Fix High (=Vddq)  
SET-UP Cycle  
/DOFF  
K, /K  
C, /C  
3. DLL/PLL Off Mode (/DOFF tied low)  
- In the "NOP and setup stage", provide stable clocks (K, /K) for at least 1024 cycles (II series) or 20 us (II+  
series). These meet the QDR common specification of 20 us.  
Rev. 0.09a : 2011.09.14  
PAGE : 9  
R10DS0158EJ0009  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
DLL/PLL Constraints  
1. DLL/PLL uses K clock as its synchronizing input. The input should have low phase jitter which is  
specified as tKC var.  
2. The lower end of the frequency at which the DLL/PLL can operate is 120 MHz.  
(Please refer to AC Characteristics table for detail.)  
3. When the operating frequency is changed or /DOFF level is changed, setup cycles are required again.  
Programmable Output Impedance  
1. Output buffer impedance can be programmed by terminating the ZQ ball to VSS through a precision resistor  
(RQ). The value of RQ is five times the output impedance desired. The allowable range of RQ to  
guarantee impedance matching with a tolerance of 15% is 250 : typical. The total external capacitance of  
ZQ ball must be less than 7.5 pF.  
Rev. 0.09a : 2011.09.14  
PAGE : 10  
R10DS0158EJ0009  
IIP  
R1QAA36**CB* / R1QDA36**CB* Series  
QVLD (Valid data indicator)  
(R1QA, R1QB, R1QC, R1QD, R1QE, R1QF, R1QG, R1QH, R1QJ, R1QK, R1QL, R1QM  
R1QN, R1QP series)  
1. QVLD is provided on the QDR-II+ and DDR-II+ to simplify data capture on high speed systems. The Q  
Valid indicates valid output data. QVLD is activated half cycle before the read data for the receiver to be  
ready for capturing the data. QVLD is inactivated half cycle before the read finish for the receiver to stop  
capturing the data. QVLD is edge aligned with CQ and /CQ.  
ODT (On Die Termination)  
(R1QD, R1QE, R1QF, R1QK, R1QL, R1QM, R1QP series)  
1. To reduce reflection which produces noise and lowers signal quality, the signals should be terminated,  
especially at high frequency. Renesas offers ODT on the input signals to QDR-II+ and DDR-II+ family of  
devices. (See the ODT pin table)  
2. In ODT enable devices, the ODT termination values tracks the value of RQ. The ODT range is selected by  
ODT control input. (See the ODT range table)  
3. In DDR-II+ devices having common I/O bus, ODT is automatically enabled when the device inputs data  
and disabled when the device outputs data.  
4. There is no difference in AC timing characteristics between the SRAMs with ODT and SRAMs without  
ODT.  
5. There is no increase in the IDD of SRAMs with ODT, however, there is an increase in the IDDQ (current  
consumption from the I/O voltage supply) with ODT.  
ODT range  
Thevenin equivalent resistance (RTHEV  
)
Unit  
-
Notes  
6
1, 4  
2, 5  
3
ODT control pin  
Option 1  
0.3 u RQ  
0.6 u RQ  
0.6 u RQ  
Option 2  
(ODT disable)  
0.6 u RQ  
:
Low  
High  
Floating  
:
:
(ODT disable)  
Notes:  
1. Allowable range of RQ for Option 1 to guarantee impedance matching a tolerance of r 20 % is  
175 : RQ 350 :.  
2. Allowable range of RQ to guarantee impedance matching a tolerance of r 20 % is  
175 : RQ 250 :.  
3. Allowable range of RQ for Option 1 to guarantee impedance matching a tolerance of r 20 % is  
175 : RQ 250 :.  
4. At option 1, ODT control pin is connected to VDDQ through 3.5 k:. Therefore it is recommended  
to connect it to VSS through less than 100 : to make it low.  
5. At option 2, ODT control pin is connected to VSS through 3.5 k:. Therefore it is recommended to  
connect it to VDDQ through less than 100 : to make it high.  
6. Renesas status: Option 1 = Available, Option 2 = Possible. If you need devices with option 2,  
please contact Renesas sales office.  
Rev. 0.09a : 2011.09.14  
PAGE : 11  
R10DS0158EJ0009  
IIP  
R1QAA36**CB* / R1QDA36**CB* Series  
Thevenin termination  
Other LSI  
SRAM with ODT  
VDDQ  
ZQ  
2 u RTHEV  
RQ  
Input  
Buffer  
Output  
Buffer  
2 u RTHEV  
VSS  
VSS  
ODT pin (R1QD, R1QE, R1QF, R1QK, R1QL, R1QM, R1QP series)  
ODT On/Off timing  
Option 2  
Notes  
Pin name  
Option 1  
3
1
ODT pin = Low  
or Floating  
ODT pin = High  
D0 ~ Dn in separate I/O devices  
Always On  
Always Off  
Off: First Read Command  
+ Read Latency  
- 0.5 cycle  
DQ0 ~ DQn  
in common I/O devices  
On: Last Read Command  
+ Read Latency  
Always Off  
2
+ BL/2 cycle + 0.5 cycle  
(See below timing chart)  
Always On  
Always On  
Always Off  
Always Off  
/BWx  
K, /K  
Notes: 1. Separate I/O devices are R1QD, R1QK, R1QP series.  
2. Common I/O devices are R1QE, R1QF, R1QL, R1QM series.  
3. Renesas status: Option 1 = Available, Option 2 = Possible. If you need devices with  
option 2, please contact Renesas sales office.  
Rev. 0.09a : 2011.09.14  
R10DS0158EJ0009  
PAGE : 12  
IIP  
R1QAA36**CB* / R1QDA36**CB* Series  
ODT on/off Timing Chart for R1QE series (DDR II+, Burst Length=2, Read Latency=2.5 cycle)  
Read Read Read Read  
(B2) (B2) (B2) (B2)  
Write Write Write Write Read Read  
(B2) (B2) (B2) (B2) (B2) (B2)  
NOP  
NOP NOP NOP  
Status  
K, /K  
Command  
DQ  
Ra  
Rb  
Rc  
Rd  
We  
Wf  
Wg  
Wh  
Ri  
Rj  
Qa Qa Qb Qb Qc Qc Qd Qd  
Disabled  
De De Df Df Dg Dg Dh Dh  
Enabled  
Qi Qi Qj  
Disabled  
Enabled  
DQ ODT  
ODT on/off Timing Chart for R1QF series (DDR II+, Burst Length=4, Read Latency=2.5 cycle)  
Read  
(B4)  
Read  
(B4)  
Write  
(B4)  
Write  
(B4)  
Read  
(B4)  
NOP  
-
-
NOP NOP NOP  
-
-
-
Status  
K, /K  
Command  
DQ  
Ra  
Rc  
We  
Wg  
Ri  
Qa Qa Qa Qa Qc Qc Qc Qc  
Disabled  
De De De De Dg Dg Dg Dg  
Enabled  
Qi Qi Qi  
Disabled  
Enabled  
DQ ODT  
ODT on/off Timing Chart for R1QL series (DDR II+, Burst Length=2, Read Latency=2.0 cycle)  
Read Read Read Read  
(B2) (B2) (B2) (B2)  
Write Write Write Write Read Read Read  
(B2) (B2) (B2) (B2) (B2) (B2) (B2)  
NOP  
NOP NOP  
Status  
K, /K  
Command  
DQ  
Ra  
Rb  
Rc  
Rd  
We  
Wf  
Wg  
Wh  
Ri  
Rj  
Rk  
Qa Qa Qb Qb Qc Qc Qd Qd  
Disabled  
De De Df Df Dg Dg Dh Dh  
Enabled  
Qi Qi Qj Qj Qk Qk  
Disabled  
Enabled  
DQ ODT  
ODT on/off Timing Chart for R1QM series (DDR II+, Burst Length=4, Read Latency=2.0 cycle)  
Read  
(B4)  
Read  
(B4)  
Write  
(B4)  
Write  
(B4)  
Read  
(B4)  
Read  
(B4)  
NOP  
-
-
NOP NOP  
-
-
-
Status  
K, /K  
Command  
DQ  
Ra  
Rc  
We  
Wg  
Ri  
Rk  
Qa Qa Qa Qa Qc Qc Qc Qc  
Disabled  
De De De De Dg Dg Dg Dg  
Enabled  
Qi Qi Qi Qi Qk Qk  
Disabled  
Enabled  
DQ ODT  
Notes  
1. ODT on/off switching timings are edge aligned with CQ or /CQ.  
Rev. 0.09a : 2011.09.14  
PAGE : 13  
R10DS0158EJ0009  
- - -  
R1QAA36**CB* / R1QDA36**CB* Series  
K Truth Table  
Operation  
K
/R /W  
D or Q  
Data in  
Write Cycle:  
Input  
data  
Input  
clock  
D(A+0) D(A+1) D(A+2) D(A+3)  
Load address, input write  
data on two consecutive  
K and /K rising edges  
H*7 L*8  
K(t+1)/K(t+1)K(t+2)/K(t+2)൹  
Data out  
Read Cycle:  
Output  
data  
Q(A+0) Q(A+1) Q(A+2) Q(A+3)  
Load address, output  
read data on two  
consecutive C and /C  
rising edges  
L*8  
u
RL*9=1.5 /C(t+1)C(t+2)/C(t+2)C(t+3)൹  
clock RL=2.0 C(t+2)/C(t+2)C(t+3)/C(t+3)൹  
Input  
for Q  
RL=2.5 /C(t+2)C(t+3)/C(t+3)C(t+4)൹  
NOP (No operation)  
Standby (Clock stopped) Stopped  
Notes:  
H
u
H D = u or Q = High-Z  
Previous state  
u
1. H: high level, L: low level, u: don’t care, : rising edge.  
2. Data inputs are registered at K and /K rising edges. Data outputs are delivered at C and /C  
rising edges, except if C and /C are high, then data outputs are delivered at K and /K rising  
edges.  
3. /R and /W must meet setup/hold times around the rising edges (low to high) of K and are  
registered at the rising edge of K.  
4. This device contains circuitry that will ensure the outputs will be in high-Z during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. When clocks are stopped, the following cases are recommended; the case of K = low, /K =  
high, C = low and /C = high, or the case of K = high, /K = low, C = high and /C = low. This  
condition is not essential, but permits most rapid restart by overcoming transmission line  
charging symmetrically.  
7. If this signal was low to initiate the previous cycle, this signal becomes a “don’t care” for this  
operation; however, it is strongly recommended that this signal be brought high, as shown in  
the truth table.  
8. This signal was high on previous K clock rising edge. Initiating consecutive READ or WRITE  
operations on consecutive K clock rising edges is not permitted. The device will ignore the  
second request.  
9. RL = Read Latency (unit = cycle).  
Rev. 0.09a : 2011.09.14  
PAGE : 14  
R10DS0158EJ0009  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
Byte Write Truth Table ( x 36 )  
Operation  
K
-
-
-
-
-
-
/K  
-
-
-
-
-
-
/BW0  
L
L
L
L
H
H
H
H
H
H
H
H
/BW1  
L
L
H
H
L
L
H
H
H
H
H
/BW2  
L
L
H
H
H
H
L
L
H
H
H
/BW3  
L
L
H
H
H
H
H
H
L
L
H
Write D0 to D35  
Write D0 to D8  
Write D9 to D17  
Write D18 to D26  
Write D27 to D35  
Write nothing  
H
H
H
Notes:  
1. H: high level, L: low level, : rising edge.  
2. Assumes a WRITE cycle was initiated. /BWx can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
Byte Write Truth Table ( x 18 )  
Operation  
K
-
-
-
-
/K  
-
-
-
-
/BW0  
/BW1  
L
L
L
L
L
H
H
L
L
H
H
Write D0 to D17  
Write D0 to D8  
Write D9 to D17  
Write nothing  
L
H
H
H
H
Notes:  
1. H: high level, L: low level, : rising edge.  
2. Assumes a WRITE cycle was initiated. /BWx can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
Byte Write Truth Table ( x 9 )  
Just Reference except R1Q2A7209 series  
Operation  
K
-
-
/K  
-
-
/BW  
L
L
H
H
Write D0 to D8  
Write nothing  
Notes:  
1. H: high level, L: low level, : rising edge.  
2. Assumes a WRITE cycle was initiated. /BWx can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
Rev. 0.09a : 2011.09.14  
PAGE : 15  
R10DS0158EJ0009  
---  
R1QAA36**CB* / R1QDA36**CB* Series  
Bus Cycle State Diagram  
/R = H & RCount = 4  
/R = H  
RCount  
= 2  
Load New  
/R = L  
Increment  
Read Address  
by Two*1  
Always  
Read Double  
RCount  
Read Port NOP  
Init = 0  
Read Address  
R
R
Count = 0  
Init = 1  
= RCount + 2  
R
RInit = 0  
/R = L  
&
Always  
R
Count = 4  
Supply voltage  
provided  
Power Up  
Supply voltage  
provided  
WCount  
= 2  
Always  
Load New  
Write Double  
WCount  
Increment  
Write Address  
by Two*1  
Write Port NOP  
Write Address  
WCount = 0  
= WCount + 2  
/W = L  
Init = 0  
/W = L  
&
Always  
R
WCount = 4  
/W = H  
/W = H & WCount = 4  
Notes:  
1. The address is concatenated with two additional internal LSBs to facilitate burst operation. The  
address order is always fixed as: xxx…xxx+0, xxx…xxx+1, xxx…xxx+2, xxx…xxx+3.  
Bus cycle is terminated at the end of this sequence (burst count = 4).  
2. Read and write state machines can be active simultaneously. Read and write cannot be  
simultaneously initiated. Read takes precedence.  
3. State machine control timing sequence is controlled by K.  
Rev. 0.09a : 2011.09.14  
PAGE : 16  
R10DS0158EJ0009  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
Unit  
Notes  
0.5 to VDD + 0.5  
Input voltage on any ball  
V
1, 4  
VIN  
(2.5 V max.)  
0.5 to VDDQ + 0.5  
Input/output voltage  
V
1, 4  
VI/O  
(2.5 V max.)  
Core supply voltage  
Output supply voltage  
Junction temperature  
Storage temperature  
Notes:  
0.5 to 2.5  
0.5 to VDD  
+125 (max)  
55 to +125  
V
V
1, 4  
1, 4  
5
VDD  
VDDQ  
Tj  
qC  
qC  
TSTG  
1. All voltage is referenced to VSS.  
2. Permanent device damage may occur if Absolute Maximum Ratings are exceeded.  
Functional operation should be restricted the Operation Conditions. Exposure to higher than  
recommended voltages for extended periods of time could affect device reliability.  
3. These CMOS memory circuits have been designed to meet the DC and AC specifications  
shown in the tables after thermal equilibrium has been established.  
4. The following supply voltage application sequence is recommended: VSS, VDD, VDDQ, VREF  
then VIN. Remember, according to the Absolute Maximum Ratings table, VDDQ is not to  
exceed 2.5 V, whatever the instantaneous value of VDDQ  
.
5. Some method of cooling or airflow should be considered in the system. (Especially for high  
frequency or ODT parts)  
Recommended DC Operating Conditions  
Parameter  
Symbol  
VDD  
VDDQ  
VREF  
VIH (DC)  
VIL (DC)  
Min  
1.7  
1.4  
Typ  
1.8  
1.5  
0.75  

Max  
1.9  
VDD  
0.95  
DDQ + 0.3  
Unit  
V
V
V
V
Notes  
1
1, 2  
Power supply voltage -- core  
Power supply voltage -- I/O  
Input reference voltage -- I/O  
Input high voltage  
0.68  
VREF + 0.1  
0.3  
3
V
V
1, 4, 5  
1, 4, 5  
Input low voltage  

REF 0.1  
V
Notes:  
1. At power-up, VDD and VDDQ are assumed to be a linear ramp from 0V to VDD(min.) or  
DDQ(min.) within 200ms. During this time VDDQ < VDD and VIH < VDDQ  
During normal operation, VDDQ must not exceed VDD.  
2. Please pay attention to Tj not to exceed the temperature shown in the absolute maximum  
ratings table due to current from VDDQ  
3. Peak to peak AC component superimposed on VREF may not exceed 5% of VREF  
V
.
.
.
4. These are DC test criteria. The AC VIH / VIL levels are defined separately to measure timing  
parameters.  
5. Overshoot: VIH (AC) d VDDQ + 0.5 V for t d tKHKH/2  
Undershoot: VIL (AC) t ꢀ0.5 V for t d tKHKH/2  
During normal operation, VIH(DC) must not exceed VDDQ and VIL(DC) must not be lower than VSS.  
Rev. 0.09a : 2011.09.14  
PAGE : 17  
R10DS0158EJ0009  
hinS=00000.0000.0000.0000.0000---  
11111.1111.1111.1111.1111---  
00000.0000.0000.0000.0000---036M  
R1QAA36**CB* / R1QDA36**CB* Series  
DC Characteristics  
(Ta = 0 ~ +70qC @ R1Q*A*****BG-**R** series, Ta = -40 ~ +85qC @ R1Q*A*****BG-**I** series)  
(VDD = 1.8V r0.1V, VDDQ = 1.5V, VREF = 0.75V)  
Operating Supply Current (Write / Read)  
Symbol = IDD. Unit = mA. See Notes 1, 2 and 3 in the page after next.  
QDR II+ / DDR II+  
QDR II / DDR II  
Frequency (max)  
(MHz)  
Cycle Time (min)  
533 500 450 400 375 333 333 300 250 200  
1.875 2.00 2.22 2.50 2.66 3.00 3.00 3.30 4.00 5.00  
No  
(ns)  
Part Number  
Ą
yy  
-19  
-20  
-22  
-25  
-27  
-30  
-30  
-33  
-40  
-50  
ă
17  
18  
20  
21  
23  
24  
26  
27  
29  
30  
32  
33  
35  
36  
38  
39  
41  
42  
44  
45  
47  
48  
50  
51  
x18 R1Q A A36 18CBv- yy  
x36 R1Q A A36 36CBv- yy  
x18 R1Q B A36 18CBv- yy  
x36 R1Q B A36 36CBv- yy  
x18 R1Q C A36 18CBv- yy  
x36 R1Q C A36 36CBv- yy  
x18 R1Q D A36 18CBv- yy  
x36 R1Q D A36 36CBv- yy  
x18 R1Q E A36 18CBv- yy  
x36 R1Q E A36 36CBv- yy  
x18 R1Q F A36 18CBv- yy  
x36 R1Q F A36 36CBv- yy  
x18 R1Q GA36 18CBv- yy  
x36 R1Q GA36 36CBv- yy  
x18 R1Q H A36 18CBv- yy  
x36 R1Q H A36 36CBv- yy  
x18 R1Q J A36 18CBv- yy  
x36 R1Q J A36 36CBv- yy  
x18 R1Q K A36 18CBv- yy  
x36 R1Q K A36 36CBv- yy  
x18 R1Q L A36 18CBv- yy  
x36 R1Q L A36 36CBv- yy  
x18 R1Q M A36 18CBv- yy  
x36 R1Q M A36 36CBv- yy  
1220 1160 1070  
1280 1220 1130  
1030 990 920  
1110 1060 990  
820 790 750  
880 850 800  
1220 1160 1070  
1280 1220 1130  
1030 990 920  
1110 1060 990  
820 790 750  
880 850 800  
QDRII+ B4  
B2  
DDRII+  
B4  
QDRII+ B4  
B2  
DDRII+  
B4  
1070 980  
1150 1060  
920 850  
990 910  
750 710  
800 760  
1070 980  
1150 1060  
920 850  
990 910  
750 710  
800 760  
QDRII+ B4  
B2  
DDRII+  
B4  
QDRII+ B4  
B2  
DDRII+  
B4  
Notes:  
1. "yy" represents the speed bin. "R1QAA3636CBG-20" can operate at 500 MHz(max) of frequency, for example.  
2. "v" represents the package size. If "v" = "G" then size is 15 x 17 mm, and if "v" = "A" then 13 x 15 mm.  
Rev. 0.09a : 2011.09.14  
PAGE : 18  
R10DS0158EJ0009  
hinS=00000.0000.0000.0000.0000---  
11111.1111.1111.1111.1111---  
00000.0000.0000.0000.0000---036M  
R1QAA36**CB* / R1QDA36**CB* Series  
Standby Supply Current (NOP)  
Symbol = ISB1. Unit = mA. See Notes 2, 4 and 5 in the next page.  
QDR II+ / DDR II+  
Frequency (max)  
QDR II / DDR II  
533 500 450 400 375 333 333 300 250 200  
1.875 2.00 2.22 2.50 2.66 3.00 3.00 3.30 4.00 5.00  
(MHz)  
Cycle Time (min)  
(ns)  
No  
Part Number  
Ą
yy  
-19  
-20  
-22  
-25  
-27  
-30  
-30  
-33  
-40  
-50  
ă
17  
18  
20  
21  
23  
24  
26  
27  
29  
30  
32  
33  
35  
36  
38  
39  
41  
42  
44  
45  
47  
48  
50  
51  
x18 R1Q A A36 18CBv- yy  
x36 R1Q A A36 36CBv- yy  
x18 R1Q B A36 18CBv- yy  
x36 R1Q B A36 36CBv- yy  
x18 R1Q C A36 18CBv- yy  
x36 R1Q C A36 36CBv- yy  
x18 R1Q D A36 18CBv- yy  
x36 R1Q D A36 36CBv- yy  
x18 R1Q E A36 18CBv- yy  
x36 R1Q E A36 36CBv- yy  
x18 R1Q F A36 18CBv- yy  
x36 R1Q F A36 36CBv- yy  
x18 R1Q GA36 18CBv- yy  
x36 R1Q GA36 36CBv- yy  
x18 R1Q H A36 18CBv- yy  
x36 R1Q H A36 36CBv- yy  
x18 R1Q J A36 18CBv- yy  
x36 R1Q J A36 36CBv- yy  
x18 R1Q K A36 18CBv- yy  
x36 R1Q K A36 36CBv- yy  
x18 R1Q L A36 18CBv- yy  
x36 R1Q L A36 36CBv- yy  
x18 R1Q M A36 18CBv- yy  
x36 R1Q M A36 36CBv- yy  
870 830 780  
910 870 810  
870 840 780  
960 920 860  
690 660 630  
730 710 670  
870 830 780  
910 870 810  
870 840 780  
960 920 860  
690 660 630  
730 710 670  
QDRII+ B4  
B2  
DDRII+  
B4  
QDRII+ B4  
B2  
DDRII+  
B4  
780 720  
830 770  
780 720  
860 790  
630 590  
670 630  
780 720  
830 770  
780 720  
860 790  
630 590  
670 630  
QDRII+ B4  
B2  
DDRII+  
B4  
QDRII+ B4  
B2  
DDRII+  
B4  
Notes:  
1. "yy" represents the speed bin. "R1QAA3636CBG-20" can operate at 500 MHz(max) of frequency, for example.  
2. "v" represents the package size. If "v" = "G" then size is 15 x 17 mm, and if "v" = "A" then 13 x 15 mm.  
Rev. 0.09a : 2011.09.14  
PAGE : 19  
R10DS0158EJ0009  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
Leakage Currents & Output Voltage  
Parameter  
Input leakage current  
Output leakage current  
Symbol  
ILI  
Min  
2  
5  
Max  
2
5
Unit  
PA  
PA  
Test condition Notes  
10  
11  
ILO  
VOH  
V
DDQ 0.2  
VDDQ  
V
V
V
V
|IOH| d 0.1 mA  
8, 9  
8, 9  
8, 9  
8, 9  
(Low)  
Output high voltage  
VDDQ/2  
0.12  
VDDQ/2  
Note 6  
VOH  
0.12  
VOL  
(Low)  
0.2  
IOL d 0.1 mA  
VSS  
Output low voltage  
Notes:  
VDDQ/2  
VDDQ/2  
0.12  
Note 7  
VOL  
0.12  
1. All inputs (except ZQ, VREF) are held at either VIH or VIL.  
2. OUT = 0 mA. VDD = VDD max, tKHKH = tKHKH min.  
I
3. Operating supply currents (IDD) are measured at 100% bus utilization. IDD of QDR family is current of  
device with 100% write and 100% read cycle. IDD of DDR family is current of device with 100% write  
cycle (if IDD(Write) > IDD(Read)) or 100% read cycle (if IDD(Write) < IDD(Read)).  
4. All address / data inputs are static at either VIN > VIH or VIN < VIL.  
5. Reference value. (Condition = NOP currents are valid when entering NOP after all pending READ and  
WRITE cycles are completed. )  
6. Outputs are impedance-controlled. |IOH| = (VDDQ/2)/(RQ/5) for values of 175 : d RQ d 350 :.  
7. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) for values of 175 : d RQ d 350 :.  
8. AC load current is higher than the shown DC values. AC I/O curves are available upon request.  
9. HSTL outputs meet JEDEC HSTL Class I and Class II standards.  
10. 0 d VIN d VDDQ for all input balls (except VREF, ZQ, TCK, TMS, TDI ball).  
If R1QD, R1QE, R1QF, R1QK, R1QL, R1QM, R1QP series, balls with ODT do not follow this spec.  
11. 0 d VOUT d VDDQ (except TDO ball), output disabled.  
Rev. 0.09a : 2011.09.14  
PAGE : 20  
R10DS0158EJ0009  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
Thermal Resistance  
Parameter  
Junction to Ambient  
Junction to Case  
Notes:  
Symbol Airflow Typ  
Unit  
Test condition  
Notes  
˥
˥
1 m/s  
-
11.0  
4.4  
JA  
qC/W  
EIA/JEDEC JESD51  
1
JC  
1. These parameters are calculated under the condition. These are reference values.  
2. Tj = Ta + ˥JA ™ Pd  
Tj = Tc + ˥JC ™ Pd  
where  
Tj : junction temperature when the device has achieved a steady-state  
after application of Pd (rC)  
Ta : ambient temperature (rC)  
Tc : temperature of external surface of the package or case (rC)  
˥JA : thermal resistance from junction-to-ambient (rC/W)  
˥JC : thermal resistance from junction-to-case (package) (rC/W)  
Pd : power dissipation that produced change in junction temperature (W) (cf.JESD51-2A)  
Capacitance  
(Ta = +25qC, Frequency = 1.0MHz, VDD = 1.8V, VDDQ = 1.5V)  
Parameter  
Input capacitance  
(SA, /R, /W, /BW, D(separate))  
Clock input capacitance (K, /K, C, /C)  
Output capacitance  
Symbol Min Typ Max Unit Test condition Notes  



4
4
5
5
5
6
pF  
pF  
pF  
VIN = 0 V  
1, 2  
1, 2  
1, 2  
CIN  
CCLK  
CI/O  
VCLK = 0 V  
VI/O = 0 V  
(Q(separate), DQ(common), CQ, /CQ)  
Notes:  
1. These parameters are sampled and not 100% tested.  
2. Except JTAG (TCK, TMS, TDI, TDO) pins.  
AC Test Conditions  
Input waveform (Rise/fall time d 0.3 ns)  
1.25V  
0.75V  
Test points  
0.75V  
0.25V  
Output waveform  
VDDQ/2  
Test points  
VDDQ/2  
Rev. 0.09a : 2011.09.14  
PAGE : 21  
R10DS0158EJ0009  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
Output load conditions Output load and voltage conditions  
V
DDQ / 2  
1.8Vr0.1V  
1.5V  
VDDQ  
= 0.75V  
VDDQ / 2  
= 0.75V  
VDD  
VREF  
50:  
Q
Z0 = 50:  
SRAM  
250:  
ZQ  
VSS  
AC Operating Conditions  
Parameter  
Input high voltage  
Input low voltage  
Symbol  
VIH (AC)  
VIL (AC)  
Min  
VREF + 0.2  
Typ  

Max  

Unit  
V
V
Notes  
1, 2, 3, 4  
1, 2, 3, 4  


V
REF – 0.2  
Notes:  
1. All voltages referenced to VSS (GND).  
During normal operation, VDDQ must not exceed VDD.  
2. These conditions are for AC functions only, not for AC parameter test.  
3. Overshoot: VIH (AC) d VDDQ + 0.5 V for t d tKHKH/2  
Undershoot: VIL (AC) t ꢀ0.5 V for t d tKHKH/2  
Control input signals may not have pulse widths less than tKHKL (min) or operate at cycle rates  
less than tKHKH (min).  
4. To maintain a valid level, the transitioning edge of the input must:  
a. Sustain a constant slew rate from the current AC level through the target AC level,  
VIL (AC) or VIH (AC).  
b. Reach at least the target AC level.  
c. After the AC target level is reached, continue to maintain at least the target DC level,  
VIL (DC) or VIH (DC).  
Rev. 0.09a : 2011.09.14  
PAGE : 22  
R10DS0158EJ0009  
hinS=00000.0111.0111.0000.0000---  
00000.0111.0111.0000.0000---  
00000.0000.0000.0000.0000---RL=2.5  
R1QAA36**CB* / R1QDA36**CB* Series  
AC Characteristics (Read Latency = 2.5 cycle)  
(Ta = 0 ~ +70qC @ R1Q*A*****BG-**R** series)  
(Ta = -40 ~ +85qC @ R1Q*A*****BG-**I** series)  
(VDD = 1.8V r0.1V, VDDQ = 1.5V, VREF = 0.75V)  
-19  
-20  
-22  
-25  
-27  
-30  
Unit Notes  
Parameter  
Symbol  
Min Max Min Max Min Max Min Max Min Max Min Max  
Clock  
Average clock  
cycle time  
(K, /K)  
tKHKH 1.875 4.00 2.00 4.00 2.22 4.00 2.50 4.00 2.66 4.00 3.00 4.00 ns  
Clock high time  
(K, /K)  
Cy-  
tKHKL  
0.40  
0.40  



0.40  
0.40  



0.40  
0.40  



0.40  
0.40  



0.40  
0.40  



0.40  
0.40  



cle  
Clock low time  
(K, /K)  
Cy-  
cle  
tKLKH  
Clock to /clock  
(K to /K)  
Cy-  
cle  
tKH/KH 0.425  
t/KHKH 0.425  
0.425  
0.425  
0.425  
0.425  
0.425  
/Clock to clock  
(/K to K)  
Cy-  
cle  


0.425  


0.425  


0.425  


0.425  


0.425  












DLL/PLL Timing  
Clock phase  
jitter  
tKC var  

0.15  

0.15  

0.15  

0.20  

0.20  

0.20 ns  
3
(K, /K)  
Lock time  
(K)  
tKC lock 20  
tKC reset 30  


20  
30  


20  
30  


20  
30  


20  
30  


20  
30  


us  
ns  
2
7
K static to  
DLL/PLL reset  
Output Times  
K, /K high to  
output valid  
tCHQV  

0.45  


0.45  

0.45  


0.45  

0.45  


0.45  

0.45  


0.45  

0.45  


0.45  

0.45 ns  
K, /K high to  
output hold  
tCHQX 0.45  

ns  
K, /K high to  
echo clock valid  
tCHCQV  

0.45  

0.45  

0.45  

0.45  

0.45  

0.45 ns  
K, /K high to  
echo clock hold  
tCHCQX 0.45  
0.45  

0.45  

0.45  

0.45  

0.45  


ns  
CQ, /CQ high to  
output valid  
tCQHQV  

0.15  

0.15  

0.15  

0.20  

0.20  

0.20 ns 4, 7  
CQ, /CQ high to  
output hold  
tCQHQX 0.15  
0.15  

0.15  

0.20  

0.20  

0.20  


ns 4, 7  
K, /K high to  
output high-Z  
tCHQZ  

0.45  

0.45  

0.45  

0.45  

0.45  

0.45 ns 5, 6  
K, /K high to  
output low-Z  
tCHQX1 0.45  
0.45  
0.45  
0.45  
0.45  
0.45  

ns  
5
7
CQ high to  
QVLD valid  
tQVLD 0.15 0.15 0.15 0.15 0.15 0.15 0.20 0.20 0.20 0.20 0.20 0.20 ns  
Rev. 0.09a : 2011.09.14  
PAGE : 23  
R10DS0158EJ0009  
hinS=00000.0111.0111.0000.0000---  
00000.0111.0111.0000.0000---  
00000.0000.0000.0000.0000---RL=2.5  
R1QAA36**CB* / R1QDA36**CB* Series  
-19  
-20  
-22  
-25  
-27  
-30  
Parameter  
Symbol  
Unit Notes  
Min Max Min Max Min Max Min Max Min Max Min Max  
Setup Times  
tAVKH  


















Address valid to  
K rising edge  
(QDRII+ B2)  
ns  
1, 8  
tAVKH  
0.30  
0.33  
0.40  
0.40  
0.40  
0.40  
(QDRII+ B4 & DDRII+)  
tIVKH  
























Control inputs  
valid to  
(QDRII+ B2)  
ns  
ns  
1, 8  
1, 9  
K rising edge  
tIVKH  
0.30  
0.20  
0.33  
0.22  
0.40  
0.25  
0.40  
0.28  
0.40  
0.28  
0.40  
0.28  
(QDRII+ B4 & DDRII+)  
Data-in valid to  
K, /K rising edge  
tDVKH  
Hold Times  
tKHAX  


















K rising edge  
to address hold  
(QDRII+ B2)  
ns  
1, 8  
tKHAX  
(QDRII+ B4 & DDRII+)  
0.30  
0.33  
0.40  
0.40  
0.40  
0.40  
tKHIX  
























K rising edge  
to control inputs  
hold  
(QDRII+ B2)  
ns  
ns  
1, 8  
1, 9  
tKHIX  
0.30  
0.20  
0.33  
0.22  
0.40  
0.25  
0.40  
0.28  
0.40  
0.28  
0.40  
0.28  
(QDRII+ B4 & DDRII+)  
K, /K rising edge  
to data-in hold  
tKHDX  
Notes:  
1. This is a synchronous device. All addresses, data and control lines must meet the specified setup and  
hold times for all latching clock edges.  
2. VDD and VDDQ slew rate must be less than 0.1 V DC per 50 ns for DLL/PLL lock retention. DLL/PLL lock  
time begins once VDD , VDDQ and input clock are stable.  
It is recommended that the device is kept inactive during these cycles.  
This specification meets the QDR common spec. of 20 us.  
3. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
4. Echo clock is very tightly controlled to data valid / data hold. By design, there is a r0.1 ns variation from  
echo clock to data. The datasheet parameters reflect tester guardbands and test setup variations.  
5. Transitions are measured r100 mV from steady-state voltage.  
6. At any given voltage and temperature tCHQZ is less than tCHQX1 and tCHQV  
.
7. These parameters are sampled.  
8. tAVKH, tIVKH, tKHAX, tKHIX spec is determined by the actual frequency regardless of Part Number (Marking  
Name). The following is the spec for the actual frequency.  
0.30 ns for 533MHz & >500MHz  
0.33 ns for 500MHz & >450MHz  
0.40 ns for 450MHz & 250MHz  
9. tDVKH, tKHDX spec is determined by the actual frequency regardless of Part Number (Marking Name). The  
following is the spec for the actual frequency.  
0.20 ns for 533MHz & >500MHz  
0.22 ns for 500MHz & >450MHz  
0.25 ns for 450MHz & >400MHz  
0.28 ns for 400MHz & 250MHz  
Remarks:  
1. Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise  
noted.  
2. Control input signals may not be operated with pulse widths less than tKHKL (min).  
3. VDDQ is +1.5 V DC. VREF is +0.75 V DC.  
4. Control signals are /R, /W (QDR series), /LD, R-/W (DDR series), /BW, /BW0, /BW1, /BW2 and /BW3.  
Setup and hold times of /BWx signals must be the same as those of Data-in signals.  
Rev. 0.09a : 2011.09.14  
PAGE : 24  
R10DS0158EJ0009  
hinS=00000.0100.0100.0000.0000---  
00000.0100.0100.0000.0000---00000.0100.0100.0000.0000---  
R1QA_RL=2.5  
R
R1QAA36**CB* / R1QDA36**CB* Series  
Timing Waveforms  
Read and Write Timing (QDRII+, B4, Read Latency = 2.5 cycle)  
1
2
3
4
5
6
7
8
9
NOP  
READ  
WRITE  
READ  
WRITE  
NOP  
NOP  
NOP  
K
/K  
tKHKL  
tKLKH  
tKH/KH  
t/KHKH  
tKHKH  
/R  
tIVKH  
tKHIX  
/W  
tIVKH  
tKHIX  
A0  
A1  
tKHAX  
A2  
A3  
Address  
Data in  
tAVKH  
D10 D11 D12 D13 D30 D31 D32 D33  
tDVKH  
tDVKH  
tKHDX  
tKHDX  
Qx1 Qx2 Qx3  
Q00 Q01 Q02 Q03 Q20 Q21 Q22 Q23  
Data out  
CQ  
tCHQZ  
-tCHQX1  
tCHQV  
tCHQV  
tCQHQV  
-tCQHQX  
-tCHQX  
-tCHQX  
tCHCQV  
-tCHCQX  
/CQ  
tCHCQV  
-tCHCQX  
QVLD  
tQVLD  
-tQVLD  
tQVLD  
-tQVLD  
Notes:  
1. Q00 refers to output from address A0+0. Q01 refers to output from the next internal burst address  
following A0, i.e., A0+1.  
2. Outputs are disabled (high-Z) N clock cycle after the last read cycle. Here, N = Read Latency + Burst  
Length u 0.5.  
3. In this example, if address A2 = A1, then data Q20 = D10, Q21 = D11. Write data is forwarded  
immediately as read results.  
4. To control read and write operations, /BW signals must operate at the same timing as Data-in signals.  
Rev. 0.09a : 2011.09.14  
PAGE : 25  
R10DS0158EJ0009  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP controller without interfering with  
normal operation of the device, TCK must be tied to VSS to preclude mid level inputs.  
TDI and TMS are internally pulled up and may be unconnected, or may be connected to VDD through a pull up  
resistor.  
TDO should be left unconnected.  
Test Access Port (TAP) Pins  
Symbol I/O Pin assignments Description  
Notes  
Test clock input. All inputs are captured on the rising edge of  
TCK and all outputs propagate from the falling edge of TCK.  
Test mode select. This is the command input for the TAP  
controller state machine.  
TCK  
TMS  
2R  
10R  
Test data input. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between  
TDI and TDO is determined by the state of the TAP controller  
state machine and the instruction that is currently loaded in  
the TAP instruction.  
Test data output. Output changes in response to the falling  
edge of TCK. This is the output side of the serial registers  
placed between TDI and TDO.  
TDI  
11R  
1R  
TDO  
Notes:  
The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while  
TMS is held high for five rising edges of TCK. The TAP controller state is also reset on SRAM  
POWER-UP.  
Rev. 0.09a : 2011.09.14  
PAGE : 26  
R10DS0158EJ0009  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
TAP DC Operating Characteristics  
(Ta = 0 ~ +70qC @ R1Q*A*****BG-**R** series)  
(Ta = -40 ~ +85qC @ R1Q*A*****BG-**I** series)  
(VDD = 1.8V r0.1V)  
Parameter  
Symbol  
VIH  
Min  
+1.3  
0.3  
5.0  
Typ  

Max  
DD + 0.3  
0.5  
Unit  
V
V
Notes  
Input high voltage  
Input low voltage  
Input leakage current  
V

VIL  
ILI  

5.0  
PA  
0 V d VIN d VDD  
0 V d VIN d VDD,  
Output leakage current  
Output low voltage  
5.0  

5.0  
PA  
ILO  
output disabled  






0.2  
0.4  

V
V
V
V
IOLC = 100 PA  
VOL1  
VOL2  
VOH1  
VOH2  
IOLT = 2 mA  
1.6  
1.4  
|IOHC| = 100 PA  
|IOHT| = 2 mA  
Output high voltage  

Notes:  
1. All voltages referenced to VSS (GND).  
2. At power-up, VDD and VDDQ are assumed to be a linear ramp from 0V to VDD(min.) or  
DDQ(min.) within 200ms. During this time VDDQ < VDD and VIH < VDDQ  
During normal operation, VDDQ must not exceed VDD.  
V
.
Rev. 0.09a : 2011.09.14  
R10DS0158EJ0009  
PAGE : 27  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
TAP AC Test Conditions  
Parameter  
Input timing measurement reference levels  
Input pulse levels  
Symbol  
VREF  
VIL, VIH  
tr, tf  
Conditions  
0.9  
0 to 1.8  
d 1.0  
0.9  
0.9  
See figures  
Unit Notes  
V
V
ns  
V
V
Input rise/fall time  
Output timing measurement reference levels  
Test load termination supply voltage (VTT)  
Output load  
Input waveform  
1.8V  
0.9V  
0V  
Test points  
0.9V  
Output waveform  
0.9V  
Test points  
0.9V  
Output load condition  
VTT = 0.9V  
DUT  
TDO  
50:  
Z0 = 50:  
20pF  
External Load at Test  
Rev. 0.09a : 2011.09.14  
PAGE : 28  
R10DS0158EJ0009  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
TAP AC Operating Characteristics  
(Ta = 0 ~ +70qC @ R1Q*A*****BG-**R** series)  
(Ta = -40 ~ +85qC @ R1Q*A*****BG-**I** series)  
(VDD = 1.8V r0.1V)  
Parameter  
Test clock (TCK) cycle time  
TCK high pulse width  
TCK low pulse width  
Test mode select (TMS) setup  
TMS hold  
Symbol  
tTHTH  
tTHTL  
tTLTH  
tMVTH  
tTHMX  
tCS  
Min  
50  
20  
20  
5
5
5
5
5
Typ  











Max  










10  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Capture setup  
Capture hold  
1
1
tCH  
TDI valid to TCK high  
TCK high to TDI invalid  
TCK low to TDO unknown  
TCK low to TDO valid  
Notes:  
tDVTH  
tTHDX  
tTLQX  
tTLQV  
5
0

1.  
tCS + tCH defines the minimum pause in RAM I/O pad transitions to assure pad data capture.  
Rev. 0.09a : 2011.09.14  
PAGE : 29  
R10DS0158EJ0009  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
TAP Controller Timing Diagram  
tTHTH  
tTHTL tTLTH  
TCK  
TMS  
TDI  
tMVTH  
tTHMX  
tDVTH  
tTHDX  
tTLQV  
TDO  
tTLQX  
tCS  
tCH  
PI  
(SRAM)  
Test Access Port Registers  
Register name  
Instruction register  
Bypass register  
Length  
3 bits  
1 bit  
Symbol  
IR [2:0]  
BP  
Notes  
ID register  
Boundary scan register  
32 bits  
109 bits  
ID [31:0]  
BS [109:1]  
Rev. 0.09a : 2011.09.14  
PAGE : 30  
R10DS0158EJ0009  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
TAP Controller Instruction Set  
IR2 IR1 IR0 Instruction  
Description  
Notes  
The EXTEST instruction allows circuitry external to the  
component package to be tested. Boundary scan register cells  
at output balls are used to apply test vectors, while those at  
input balls capture test results. Typically, the first test vector to  
be applied using the EXTEST instruction will be shifted into the  
boundary scan register using the PRELOAD instruction. Thus,  
during the Update-IR state of EXTEST, the output driver is  
turned on and the PRELOAD data is driven onto the output balls.  
0
0
0
0
0 EXTEST  
1 IDCODE  
1, 2, 3, 5  
The IDCODE instruction causes the ID ROM to be loaded into  
the ID register when the controller is in capture-DR mode and  
places the ID register between the TDI and TDO balls in shift-  
DR mode. The IDCODE instruction is the default instruction  
loaded in at power up and any time the controller is placed in  
the Test-Logic-Reset state.  
If the SAMPLE-Z instruction is loaded in the instruction register,  
all RAM outputs are forced to an inactive drive state (high-Z),  
moving the TAP controller into the capture-DR state loads the  
data in the RAMs input into the boundary scan register, and the  
boundary scan register is connected between TDI and TDO  
when the TAP controller is moved to the shift-DR state.  
0
0
1
1
0 SAMPLE-Z  
1 RESERVED  
3, 4, 5  
The RESERVED instructions are not implemented but are  
reserved for future use. Do not use these instructions.  
When the SAMPLE instruction is loaded in the instruction  
register, moving the TAP controller into the capture-DR state  
loads the data in the RAMs input and I/O buffers into the  
boundary scan register. Because the RAM clock(s) are  
independent from the TAP clock (TCK) it is possible for the TAP  
to attempt to capture the I/O ring contents while the input  
buffers are in transition (i.e., in a metastable state). Although  
allowing the TAP to SAMPLE metastable input will not harm the  
device, repeatable results cannot be expected. Moving the  
controller to shift-DR state then places the boundary scan  
register between the TDI and TDO balls.  
SAMPLE  
0
1
0
3, 5  
(/PRELOAD)  
1
1
0
1
1 RESERVED  
0 RESERVED  
-
-
The BYPASS instruction is loaded in the instruction register  
when the bypass register is placed between TDI and TDO. This  
occurs when the TAP controller is moved to the shift-DR state.  
This allows the board level scan path to be shortened to  
facilitate testing of other devices in the scan path.  
1
1
1 BYPASS  
Notes:  
1. Data in output register is not guaranteed if EXTEST instruction is loaded.  
2. After performing EXTEST, power-up conditions are required in order to return part to normal  
operation.  
3. RAM input signals must be stabilized for long enough to meet the TAPs input data capture  
setup plus hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any other  
TAP operation except capturing the I/O ring contents into the boundary scan register.  
4. Clock recovery initialization cycles are required after boundary scan.  
5. For R1QD, R1QE, R1QF, R1QK, R1QL, R1QM, R1QP series, ODT is disabled in EXTEST,  
SAMPLE-Z or SAMPLE mode.  
Rev. 0.09a : 2011.09.14  
PAGE : 31  
R10DS0158EJ0009  
36---  
R1QAA36**CB* / R1QDA36**CB* Series  
Boundary Scan Order  
Signal names  
Bit # Ball ID  
Signal names  
Bit # Ball ID  
x9  
x18  
x36  
x9  
x18  
x36  
D6  
/C or NC /C or NC /C or NC  
1
2
6R  
6P  
36  
37  
10E  
10D  
D3  
D6  
or ODT  
or ODT  
or ODT  
C
C
C
NC  
NC  
D15  
or QVLD or QVLD or QVLD  
3
4
5
6
7
8
9
6N  
7P  
7N  
7R  
8R  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
Q0  
D0  
NC  
NC  
NC  
NC  
NC  
NC  
Q1  
D1  
NC  
NC  
NC  
NC  
NC  
NC  
Q2  
D2  
ZQ  
NC  
NC  
NC  
NC  
NC  
NC  
Q3  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
Q0  
D0  
NC  
NC  
Q1  
D1  
NC  
NC  
Q2  
D2  
NC  
NC  
Q3  
D3  
NC  
NC  
Q4  
D4  
ZQ  
NC  
NC  
Q5  
D5  
NC  
NC  
Q6  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
Q0  
D0  
D9  
Q9  
Q1  
D1  
D10  
Q10  
Q2  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
9E  
10C  
11D  
9C  
9D  
11B  
11C  
9B  
10B  
11A  
10A  
9A  
NC  
NC  
NC  
NC  
NC  
Q4  
D4  
NC  
NC  
CQ  
SA  
SA  
SA  
SA  
NC  
/R  
NC  
Q7  
D7  
NC  
NC  
Q8  
D8  
NC  
NC  
CQ  
NC  
SA  
SA  
SA  
NC  
/R  
Q15  
Q7  
D7  
D16  
Q16  
Q8  
8P  
9R  
D8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
11P  
10P  
10N  
9P  
10M  
11N  
9M  
D17  
Q17  
CQ  
NC  
SA  
SA  
SA  
NC  
/R  
8B  
7C  
6C  
8A  
7A  
7B  
6B  
6A  
5B  
5A  
4A  
5C  
4B  
3A  
2A  
1A  
2B  
3B  
1C  
1B  
9N  
11L  
11M  
9L  
10L  
11K  
10K  
9J  
D2  
NC  
/BW  
K
NC  
/BW0  
K
/BW1  
/BW0  
K
D11  
Q11  
Q3  
/K  
/K  
/K  
D3  
NC  
NC  
/W  
NC  
/BW1  
/W  
SA  
SA  
SA  
NC  
/CQ  
Q9  
D9  
/BW3  
/BW2  
/W  
SA  
SA  
D12  
Q12  
Q4  
9K  
10J  
11J  
11H  
10G  
9G  
11F  
11G  
9F  
SA  
SA  
SA  
NC  
/CQ  
NC  
NC  
NC  
NC  
NC  
D4  
ZQ  
D13  
Q13  
Q5  
NC  
NC  
/CQ  
Q18  
D18  
D27  
Q27  
Q19  
D5  
D14  
Q14  
Q6  
NC  
NC  
Q10  
10F  
11E  
3D  
Rev. 0.09a : 2011.09.14  
PAGE : 32  
R10DS0158EJ0009  
---  
R1QAA36**CB* / R1QDA36**CB* Series  
Boundary Scan Order  
Signal names  
Bit # Ball ID  
Signal names  
x18  
Bit # Ball ID  
x9  
NC  
NC  
NC  
Q5  
x18  
D10  
NC  
x36  
D19  
D28  
Q28  
Q20  
D20  
D29  
Q29  
Q21  
D21  
D30  
Q30  
Q22  
D22  
/DOFF  
D31  
Q31  
Q23  
D23  
x9  
Q7  
D7  
NC  
NC  
NC  
NC  
NC  
NC  
Q8  
D8  
NC  
NC  
SA  
SA  
SA  
SA  
SA  
SA  
x36  
Q24  
D24  
D33  
Q33  
Q25  
D25  
D34  
Q34  
Q26  
D26  
D35  
Q35  
SA  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
3C  
1D  
2C  
3E  
2D  
2E  
1E  
2F  
3F  
1G  
1F  
3G  
2G  
1H  
1J  
91  
92  
2L  
3L  
Q15  
D15  
NC  
NC  
93  
94  
1M  
1L  
Q11  
D11  
NC  
NC  
D5  
95  
96  
97  
98  
3N  
3M  
1N  
2M  
3P  
2N  
2P  
1P  
3R  
4R  
4P  
5P  
5N  
5R  
Q16  
D16  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Q6  
NC  
Q12  
D12  
NC  
NC  
99  
Q17  
D17  
NC  
NC  
SA  
SA  
SA  
SA  
SA  
100  
101  
102  
103  
104  
105  
106  
107  
108  
NC  
Q13  
D13  
/DOFF  
NC  
NC  
Q14  
D14  
D6  
/DOFF  
NC  
NC  
NC  
NC  
SA  
SA  
SA  
SA  
2J  
3K  
3J  
SA  
SA  
INTER-  
NAL  
INTER-  
NAL  
INTER-  
NAL  
89  
90  
2K  
1K  
NC  
NC  
NC  
NC  
D32  
Q32  
109  






Notes:  
In boundary scan mode,  
1. Clock balls (K, /K, C, /C) are referenced to each other and must be at opposite logic levels for  
reliable operation.  
2. CQ and /CQ data are synchronized to the respective C and /C (except EXTEST, SAMPLE-Z).  
3. If C and /C tied high, CQ is generated with respect to K and /CQ is generated with respect to /K  
(except EXTEST, SAMPLE-Z).  
Rev. 0.09a : 2011.09.14  
PAGE : 33  
R10DS0158EJ0009  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
ID Register  
Revision  
Type number  
(28 : 12)  
Start bit (0) ăŇ  
-
Vendor JEDEC code  
(11 : 1)  
number  
0
(31 :29)  
#
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9  
8
0
7
0
6
1
5
0
4
0
3
0
2
1
1
1
Symbol  
R
R
R
0
C
M M M A W W  
0
1
Q
Q
Q
B
O
S
0
0
1
0
1
R
0
0
0
0
R
0
0
1
1
:
R
0
1
0
1
Q
0
1
Revison 0  
Revison 1  
Revison 2  
Revison 3  
:
II (QDR-II, DDR-II)  
II+ (QDR-II+, DDR-II+)  
Q
0
1
DDR  
QDR  
Q
C
36M&72M w/o ODT, 144M,288M  
36M&72M w/ ODT  
M M M  
Latency=1.5 (@II), Latency=2.0 (@II+)  
Latency=2.5 (@II+)  
0
1
0
1
B
0
1
Density = 36Mb  
Density = 72Mb  
Density = 144Mb  
Density = 288Mb  
Burst Length = 2 word burst  
Burst Length = 4 word burst  
O
0
0
1
1
1
1
0
1
0
1
1
0
without ODT  
with ODT  
0
1
A
0
1
144M&288M w/o ODT, 36M,72M  
144M&288M w/ ODT  
W W  
S
0
1
Common I/O  
Separate I/O  
x9  
x18  
x36  
0
1
1
0
0
1
TAP Controller State Diagram  
1
Test Logic Reset  
0
1
1
1
Run Test/Idle  
Select DR Scan  
Select IR Scan  
0
0
0
1
1
Capture DR  
Capture IR  
0
0
0
Shift IR  
1
0
Shift DR  
1
Exit1 DR  
0
1
1
Exit1 IR  
0
0
0
Pause DR  
1
Pause IR  
1
0
0
Exit2 DR  
1
Exit2 IR  
1
Update DR  
Update IR  
1
0
1
0
Notes:  
The value adjacent to each state transition in this figure represents the signal present at TMS at  
the time of a rising edge at TCK.  
No matter what the original state of the controller, it will enter Test-Logic-Reset when TMS is held  
high for at least five rising edges of TCK.  
Rev. 0.09a : 2011.09.14  
PAGE : 34  
R10DS0158EJ0009  
hinS=11111.1111.1111.1111.1111---  
11111.1111.1111.1111.1111---  
00000.0000.0000.0000.0000---72M_36M  
R1QAA36**CB* / R1QDA36**CB* Series  
Package Dimensions and Marking Information  
Both Pb parts and Pb-free parts are available.  
JEITA Package Code  
P-LBGA165-15x17-1.00  
Renesas Code  
PLBG0165FD-A  
Previous Code  
165FHE  
Mass (typ.)  
0.6 g  
D
B
A
Top View  
Index Mark  
Marking Information  
(Laser Mark)  
1st row : Vender name (RENESAS)  
2nd row: Part number  
3rd row : Y  
WW  
: Year code  
: Week code  
E
XXXX : Renesas  
internal use  
This part  
number or  
mark is just  
one example.  
4th row : Country name (JAPAN)  
+ "None" --- Pb-free parts  
+ "PB-F" --- Pb-free parts  
S
Side View  
A
A1  
- y S  
Z
D
[e]  
Bottom View  
[e]  
Dimension in mm  
Reference  
Symbol  
Min Nom Max  
14.9 15.0 15.1  
16.9 17.0 17.1  
D
E
A
-
-
1.4  
0.27 0.32 0.37  
1.0  
0.45 0.5 0.55  
A1  
[e]  
b
Z
E
-
-
1
2
3
4
5
6
7
8
9 10 11  
x
y
-
-
-
-
-
0.2  
0.15  
-
Øb  
-
Øx(M) S AB  
2.5  
Z
D
E
Index Mark  
-
1.5  
-
Z
Rev. 0.09a : 2011.09.14  
PAGE : 35  
R10DS0158EJ0009  
hinS=11111.1111.1111.1111.1111---  
11111.1111.1111.1111.1111---  
00000.0000.0000.0000.0000---72M_36M  
R1QAA36**CB* / R1QDA36**CB* Series  
Revision History (1)  
4GXꢀ  
&CVG  
%QOOGPV  
4GXꢀꢂꢀꢂꢂC ꢘꢂꢇꢀꢃꢂꢀꢂꢇ  
+PKVKCNꢄKUUWGꢀ  
4GXꢀꢂꢀꢂꢂD ꢘꢂꢇꢀꢃꢂꢀꢂꢐ  
%QTTGEVGFꢄV[RQUꢄKPꢄꢖ&%ꢄ%JCTCEVGTKUVKEUꢖꢔꢄ81*ꢒ81.ꢆꢄ8&&3ꢒꢊdꢃꢀꢃꢊꢄăꢄdꢂꢀꢃꢊꢀ  
#FFGFꢄꢖ5RGGFꢄ$KPꢄ6CDNGꢖꢀ  
#FFGFꢄꢖ1&6ꢄVKOKPIꢄEJCTVꢖꢄVQꢄ3&4++ꢑꢄCPFꢄ&&4++ꢑꢄUGTKGUꢀ  
%QTTGEVGFꢄV[RQUꢄKPꢄꢖ)GPGTCNꢄ&GUETKRVKQPꢖꢔꢄ1&6ꢄRKPꢄꢆꢄ3ꢂ᳸3Pꢄăꢄ&ꢂ᳸&Pꢀ  
7RFCVGFꢄꢖ4GEQOOGPFGFꢄ&%ꢄ1RGTCVKPIꢄ%QPFKVKQPUꢖꢔꢄ8TGHꢄꢆꢂꢀꢈꢇ᳸ꢂꢀꢐꢍ8ꢄăꢄꢂꢀꢉ᳸  
4GXꢀꢂꢀꢂꢂE ꢘꢂꢇꢀꢃꢃꢀꢃꢐ  
4GXꢀꢂꢀꢂꢂF ꢘꢂꢇꢀꢃꢃꢀꢊꢇ  
ꢂꢀꢇ8ꢄꢌ++ꢑꢄUGTKGUꢎꢀ  
#FFGFꢄEQOOGPVꢄVQꢄꢖ6JGTOCNꢄ4GUKUVCPEGꢖꢄUGEVKQPꢔꢄ6JGUGꢄCTGꢄTGHGTGPEGꢄXCNWGUꢀ  
#FFGFꢄꢖ)GPGTCVKQPꢄ0WODGTꢄ6CDNGꢖꢀ  
4GXꢀꢂꢀꢂꢂG ꢘꢂꢇꢀꢃꢊꢀꢂꢉ  
%JCPIGFꢄ/CTMKPIꢄ0COGꢄKPꢄꢖ2CTVꢄ0WODGTꢄ&GHKPKVKQPꢄ6CDNGꢖꢀ  
#FFGFꢄOCTMKPIꢄKPHQTOCVKQPꢄVQꢄꢖ2CEMCIGꢄ&KOGPUKQPꢄ+PHQTOCVKQPꢖꢄUGEVKQPꢀ  
%QTTGEVGFꢄ1&6ꢄ1Pꢒ1HHꢄVKOKPIꢄKPꢄꢖ1&6ꢄRKPꢖꢄVCDNGꢀ  
7RFCVGFꢄOKPKOWOꢄHTGSWGPE[ꢄQHꢄ3&4++ꢑꢄCPFꢄ&&4++ꢑꢄUGTKGUꢀ  
%JCPIGFꢄRKPꢄPCOGꢄKPꢄꢖ2KPꢄ#TTCPIGOGPVꢖꢄQHꢄ&&4++ꢑꢄUGTKGUꢔꢄ5#ꢂꢒ5#ꢃꢄăꢄ0%ꢀ  
#FFGFꢄVJGꢄTQYꢄVQꢄꢖ-ꢄ6TWVJꢄ6CDNGꢖꢔꢄ4.ꢆꢊꢀꢂꢄCPFꢄ4.ꢆꢊꢀꢍꢀ  
7RFCVGFꢄ5'6ꢁ72ꢄE[ENGUꢔꢄ++ꢑꢄUGTKGUꢄ&..ꢄNQEMꢄVKOGꢄꢆꢄꢊꢂWUꢄăꢄꢊꢂꢅꢇꢄE[ENGꢀ  
#FFGFꢄEQOOGPVꢄVQꢄꢖ1&6ꢄQPꢒQHHꢄ6KOKPIꢄ%JCTVꢖꢄUGEVKQPꢔꢄ1&6ꢄQPꢒQHHꢄUYKVEJKPI  
VKOKPIUꢄCTGꢄGFIGꢄCNKIPGFꢄYKVJꢄ%3ꢄQTꢄꢒ%3ꢀ  
4GXꢀꢂꢀꢂꢂ᳠  
ꢘꢂꢐꢀꢂꢊꢀꢂꢐ  
ꢁꢃ  
4GXꢀꢂꢀꢂꢂI  
ꢘꢂꢐꢀꢂꢊꢀꢊꢅ  
ꢁꢃ  
7RFCVGFꢄꢖ6JGTOCNꢄ4GUKUVCPEGꢖꢀ  
4GXꢀꢂꢀꢂꢂJ ꢘꢂꢐꢀꢂꢏꢀꢂꢅ  
4GXꢀꢂꢀꢂꢂK ꢘꢂꢐꢀꢂꢈꢀꢃꢍ  
#FFGFꢄꢖꢁꢍꢂꢖꢄURGGFꢄDKPꢄVQꢄ3&4ꢄ++ꢄ$ꢊꢄZꢃꢇꢒZꢏꢈꢄUGTKGUꢀ  
7RFCVGFꢄꢖ2CEMCIGꢄ&KOGPUKQPUꢖꢔꢄ/CUUꢆꢂꢀꢉăꢂꢀꢈIꢕꢄ#ꢌOCZꢎꢆꢃꢀꢅꢈăꢃꢀꢅOOꢀ  
7RFCVGFꢄꢖ1RGTCVKPIꢒ5VCPFD[ꢄ5WRRN[ꢄ%WTTGPVUꢖꢀ  
#FFGFꢄEQOOGPVꢄVQꢄꢖ2QYGTꢁWRꢄCPFꢄ+PKVKCNK\CVKQPꢄ5GSWGPEGꢖꢄUGEVKQPꢔꢄ#RRN[ꢄ8TGH  
CHVGTꢄ8FFSꢄQTꢄCVꢄVJGꢄUCOGꢄVKOGꢄCUꢄ8FFSꢀ  
4GXꢀꢂꢀꢂꢃC ꢘꢂꢐꢀꢃꢂꢀꢊꢍ  
7RFCVGFꢄꢖ5RGGFꢄ$KPꢄ6CDNGꢖꢀ  
#FFGFꢄꢖ4GPGUCUꢄ3&4ꢄ54#/ꢄ*QOGRCIGꢄ74.ꢖꢄVQꢄPQVGUꢄQHꢄHTQPVꢄRCIGꢀ  
7RFCVGFꢄꢖ2QYGTꢁWRꢄCPFꢄ+PKVKCNK\CVKQPꢄ5GSWGPEGꢖꢀ  
7RFCVGFꢄꢖ&..ꢄ%QPUVTCKPVUꢖꢀ  
7RFCVGFꢄꢖ1RGTCVKPIꢄ5WRRN[ꢄ%WTTGPVꢖꢄCPFꢄꢖ5VCPFD[ꢄ5WRRN[ꢄ%WTTGPVꢖ  
7RFCVGFꢄꢖ6JGTOCNꢄ4GUKUVCPEGꢖꢀ  
%JCPIGFꢄTGOCTMUꢄQHꢄꢖ#%ꢄ%JCTCEVGTKUVKEUꢖꢄQPꢄꢖ%QPVTQNꢄUKIPCNUꢖꢀ  
%JCPIGFꢄEQORCP[ꢄPCOGꢕꢄ4'0'5#5ꢄNQIQꢄCPFꢄDCUGꢄEQNQTꢄHTQOꢄVJQUGꢄQHꢄ4GPGUCU  
6GEJPQNQI[ꢄVQꢄ4GPGUCUꢄ'NGEVTQPKEUꢀ  
%JCPIGFꢄXGPFGTꢄPCOGꢄOCTMKPIꢄKPꢄꢖ2CEMCIGꢄ&KOGPUKQPUꢄCPFꢄ/CTMKPIꢄ+PHQTOCVKQPꢖ  
UGEVKQPꢀ  
4GXꢀꢂꢀꢂꢊC ꢘꢃꢂꢀꢂꢊꢀꢂꢃ  
4GXꢀꢂꢀꢂꢏC ꢘꢃꢂꢀꢂꢅꢀꢂꢃ  
#FFGFꢄꢖ#ꢖꢄIGPGTCVKQPꢄVQꢄꢉꢊ/ꢄUGTKGUꢀ  
%JCPIGFꢄVJGꢄRKPꢄFGUETKRVKQPꢄHQTꢄ0%ꢄRKPꢀ  
4GXꢀꢂꢀꢂꢅC ꢘꢃꢂꢀꢂꢈꢀꢃꢂ  
4GXꢀꢂꢀꢂꢍC ꢘꢃꢂꢀꢂꢈꢀꢊꢍ  
%JCPIGFꢄPQVGꢄꢅꢄQHꢄꢖ6#2ꢄ%QPVTQNNGTꢄ+PUVTWEVKQPꢄ5GVꢖꢔꢄꢖ%NQEMꢄTGEQXGT[  
KPKVKCNK\CVKQPꢄE[ENGUꢄCTGꢄTGSWKTGFꢄCHVGTꢄDQWPFCT[ꢄUECPꢖ  
%JCPIGFꢄ8FFSꢄTCPIGꢄQHꢄ++ꢑꢄUGTKGUꢔꢄ8FFSꢆꢃꢀꢍdꢂꢀꢃ8ꢄăꢄꢃꢀꢅ8ꢄ᳸ꢄ8FFꢀ  
#FFGFꢄ0QVGꢀꢇꢄCPFꢄ0QVGꢀꢐꢄVQꢄ#%ꢄ%JCTCEVGTKUVKEUꢄVCDNGꢄHQTꢄ++ꢑꢄUGTKGUꢀ  
7RFCVGFꢄ5RGGFꢄ$KPꢄ6CDNGꢄHQTꢄꢃꢅꢅ/ꢀ  
#FFGFꢄ0QVGꢀꢊꢄVQꢄ)GPGTCVKQPꢄ0WODGTꢄ6CDNGꢀ  
7RFCVGFꢄ5RGGFꢄ$KPꢄ6CDNGꢄHQTꢄꢏꢈ/ꢄCPFꢄꢉꢊ/ꢀ  
7RFCVGFꢄ1RGTCVKPIꢄ5WRRN[ꢄ%WTTGPVꢄCPFꢄ5VCPFD[ꢄ5WRRN[ꢄ%WTTGPVꢄ6CDNGꢄHQTꢄꢏꢈ/  
CPFꢄꢉꢊ/ꢀ  
%JCPIGFꢄ+PKVKCNK\CVKQPꢄ5GSWGPEGꢔꢄ+PKVKCNꢄE[ENGꢄQHꢄ++ꢑꢄUGTKGUꢄꢆꢄꢊꢂꢅꢇE[ENGU  
ăꢄꢊꢂWUꢀ  
#FFGFꢄ0QVGꢀꢐꢄVQꢄ#%ꢄ%JCTCEVGTKUVKEUꢄVCDNGꢄHQTꢄ++ꢄUGTKGUꢀ  
7RFCVGFꢄ#%ꢄ%JCTCEVGTKUVKEUꢄHQTꢄVJGꢄUGTKGUꢄQHꢄ4.ꢆꢊꢀꢂꢀ  
7RFCVGFꢄ5RGGFꢄ$KPꢄ6CDNGꢄHQTꢄꢉꢊ/ꢒꢏꢈ/ꢒꢃꢅꢅ/ꢀ  
#FFGFꢄ4ꢃ30#ꢕꢄ4ꢃ32#ꢄUGTKGUꢄVQꢄꢃꢅꢅ/ꢄ3&4ꢄNKPGWRꢀ  
%JCPIGFꢄ,6#)ꢒ+&ꢄ4GIKUVGTꢌ+&ꢄ%QFGꢎꢔ  
4GXꢀꢂꢀꢂꢍD ꢘꢃꢂꢀꢂꢉꢀꢂꢊ  
4GXꢀꢂꢀꢂꢍE ꢘꢃꢂꢀꢂꢉꢀꢊꢅ  
4GXꢀꢂꢀꢂꢈC ꢘꢃꢂꢀꢂꢐꢀꢊꢂ  
4GXꢀꢂꢀꢂꢉC ꢘꢃꢂꢀꢃꢂꢀꢂꢈ  
4GXꢀꢂꢀꢂꢉD ꢘꢃꢂꢀꢃꢂꢀꢏꢂ  
ꢄꢗꢊꢉꢆꢖꢂꢖꢔꢄꢏꢈ/ꢓꢉꢊ/ꢄYꢒQꢄ1&6ꢕꢄꢃꢅꢅ/ꢕꢊꢇꢇ/  
ꢄꢄꢄꢄꢄꢖꢃꢖꢔꢄꢏꢈ/ꢓꢉꢊ/ꢄYꢒꢄꢄ1&6  
ꢄꢗꢊꢏꢆꢖꢂꢖꢔꢄꢃꢅꢅ/ꢓꢊꢇꢇ/ꢄYꢒQꢄ1&6ꢕꢄꢏꢈ/ꢕꢉꢊ/  
ꢄꢄꢄꢄꢄꢖꢃꢖꢔꢄꢃꢅꢅ/ꢓꢊꢇꢇ/ꢄYꢒꢄꢄ1&6  
ꢄꢗꢌꢊꢈꢕꢊꢍꢕꢊꢅꢎꢆꢖꢃꢂꢂꢖăꢖꢃꢂꢃꢖꢌꢃꢅꢅ/ꢎꢕꢄꢖꢃꢂꢃꢖăꢖꢃꢃꢂꢖꢌꢊꢇꢇ/ꢎꢀ  
Rev. 0.09a : 2011.09.14  
PAGE : 36  
R10DS0158EJ0009  
hinS=11111.1111.1111.1111.1111---  
11111.1111.1111.1111.1111---  
00000.0000.0000.0000.0000---72M_36M  
R1QAA36**CB* / R1QDA36**CB* Series  
Revision History (2)  
4GXꢀ  
&CVG  
%QOOGPV  
#FFGFꢄ0QVGꢀꢉꢄVQꢄV38.&ꢄKPꢄ#%ꢄ%JCTCEVGTKUVKEUꢄVCDNGꢄHQTꢄ++ꢑꢄUGTKGUꢀ  
%JCPIGFꢄFGUETKRVKQPꢄQHꢄV38.&ꢄKPꢄ#%ꢄ%JCTCEVGTKUVKEUꢄVCDNGꢄHQTꢄ4.ꢆꢊꢄUGTKGUꢔ  
%3ꢄJKIJꢄVQꢄ38.&ꢄXCNKFꢄăꢄꢒ%3ꢄJKIJꢄVQꢄ38.&ꢄXCNKFꢀ  
4GXꢀꢂꢀꢂꢇC ꢘꢃꢃꢀꢂꢍꢀꢊꢏ  
7RFCVGFꢄ4GOCTMUꢄꢅꢄQHꢄ#%ꢄ%JCTCEVGTKUVKEUꢄVCDNGꢀ  
7RFCVGFꢄV-*-*ꢌOCZꢎꢄKPꢄ#%ꢄ%JCTCEVGTKUVKEUꢄVCDNGꢄHQTꢄ3&4++ꢑꢄ$ꢊꢄUGTKGUꢀ  
#FFGFꢄꢃꢏꢄZꢃꢍꢄOOꢄRCEMCIGꢄNKPGWRꢄVQꢄꢏꢈ/ꢄ++ꢑꢄꢓꢄꢉꢊ/ꢄ++ꢒ++ꢑꢄUGTKGUꢀ  
7RFCVGFꢄꢖ2CEMCIGꢄ&KOGPUKQPUꢖꢄHQTꢄꢃꢏꢄZꢃꢍꢄOOꢄRCEMCIGꢀ  
7RFCVGFꢄꢖ6JGTOCNꢄ4GUKUVCPEGꢖꢄHQTꢄꢃꢏꢄZꢃꢍꢄOOꢄRCEMCIGꢀ  
%JCPIGFꢄ6KVNGꢔꢄꢖ1TFGTKPIꢄ+PHQTOCKQPꢖꢄăꢄꢖ2CTVꢄ0WODGTꢄ&GHKPKVKQPꢖŴꢖ5RGGF  
$KPꢄ6CDNGꢖꢄăꢄꢖ4GPGUCUꢄꢋꢋ/ꢄ3&4ꢒ&&4ꢄ54#/ꢄ.KPGWRꢖ  
4GXꢀꢂꢀꢂꢇD ꢘꢃꢃꢀꢂꢉꢀꢃꢉ  
4GXꢀꢂꢀꢂꢐC ꢘꢃꢃꢀꢂꢐꢀꢃꢅ  
7RFCVGFꢄ5RGEKHKECVKQPꢄHQTꢄ1&6ꢄ1RVKQPꢄꢊꢀ  
Rev. 0.09a : 2011.09.14  
PAGE : 37  
R10DS0158EJ0009  
Common  
R1QAA36**CB* / R1QDA36**CB* Series  
Renesas Electronics Corporation Headquarters: Nippon Bldg., 2-6-2, Ote-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
NOTES:  
1.  
This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use.  
Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document  
nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this  
document.  
2.  
3.  
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this  
document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.  
You should not use the products or the technology described in this document for the purpose of military applications such as the development of  
weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should  
follow the applicable export control laws and regulations, and procedures required by such laws and regulations.  
All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current  
as of the date this document is issued. Such information, however,is subject to change without any prior notice. Before purchasing or using any  
Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and  
careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website.  
(http://www.renesas.com )  
4.  
5.  
6.  
Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any  
damages incurred as a result of errors or omissions in the information included in this document.  
When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding  
about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the  
suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information  
in this document or Renesas products.  
7.  
8.  
The products described in this document are intended for usage in general electronics applications (computer, personal equipment, office  
equipment, measuring equipment, industrial robotics, domestic appliances, etc.). The products are not designed, manufactured, tested or warranted  
for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or  
which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,  
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. Unintended usage of the products shall  
be made at the customer’s own risk. Renesas shall have no liability for damages arising out of the uses set forth above.  
Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:  
(1) artificial life support devices or systems  
(2) surgical implantations  
(3) healthcare intervention (e.g., excision, administration of medication, etc.)  
(4) any other purposes that pose a direct threat to human life  
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any  
of the foregoing applications shall indemnify and hold harmless Renesas Electronics Corp., its affiliated companies and their officers, directors, and  
employees against any and all damages arising out of such applications.  
9.  
You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating  
supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall  
have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.  
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence  
of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the  
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware  
and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any  
other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the  
final products or system manufactured by you.  
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of  
accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not  
be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.  
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.  
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor  
products, or if you have any other inquiries.  
Renesas Sales Offices  
http://www.renesas.com  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
Renesas Electronics America Inc.  
Renesas Electronics Hong Kong Limited  
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.  
Tel: +1-408-588-6000, Fax: +1-408-588-6130  
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,  
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2886-9318, Fax: +852 2886-9022/9044  
Renesas Electronics Canada Limited  
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada  
Tel: +1-905-898-5441, Fax: +1-905-898-3220  
Renesas Electronics Taiwan Co., Ltd.  
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire,  
SL8 5FH, U.K  
Renesas Electronics Singapore Pte. Ltd.  
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632  
Tel: +65-6213-0200, Fax: +65-6278-8001  
Tel: +44-1628-585-100, Fax: +44-1628-585-900  
Renesas Electronics Europe GmbH  
Renesas Electronics Malaysia Sdn.Bhd.  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-6503-0, Fax: +49-211-6503-1327  
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18,  
Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510  
Renesas Electronics (China) Co., Ltd.  
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District,  
Beijing 100083, P.R.China  
Renesas Electronics Korea Co., Ltd.  
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku,  
Seoul 135-080, Korea  
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
Tel: +82-2-558-3737, Fax: +82-2-558-5141  
Renesas Electronics (Shanghai) Co., Ltd.  
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District,  
Shanghai 200120, China  
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898  
---  
© 2011 Renesas Electronics Corporation. All rights reserved.  
Rev. 0.09a : 2011.09.14  
PAGE : 38  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY