R1QPA4436RBG [RENESAS]

144-Mbit DDRII SRAM 2-word Burst; 144兆位的SRAM DDRII 2字突发
R1QPA4436RBG
型号: R1QPA4436RBG
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

144-Mbit DDRII SRAM 2-word Burst
144兆位的SRAM DDRII 2字突发

静态存储器 双倍数据速率
文件: 总37页 (文件大小:503K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
R1QBA4436RBG / R1QBA4418RBG / R1QBA4409RBG  
R1QEA4436RBG / R1QEA4418RBG / R1QEA4409RBG  
R1QHA4436RBG / R1QHA4418RBG / R1QHA4409RBG  
R1QLA4436RBG / R1QLA4418RBG / R1QLA4409RBG  
R10DS0189EJ0011  
Preliminary  
Rev. 0.11b  
2012.06.05  
144-Mbit DDRII+ SRAM  
2-word Burst  
Description  
The R1Q#A4436 is a 4,194,304-word by 36-bit and the R1Q#A4418 is a 8,388,608-word by 18-bit synchronous  
double data rate static RAM fabricated with advanced CMOS technology using full CMOS six-transistor  
memory cell. It integrates unique synchronous peripheral circuitry and a burst counter. All input registers are  
controlled by an input clock pair (K and /K) and are latched on the positive edge of K and /K. These products  
are suitable for applications which require synchronous operation, high speed, low voltage, high density and  
wide bit configuration. These products are packaged in 165-pin plastic FBGA package.  
# = B: Latency =2.5, w/o ODT  
# = E: Latency =2.5, w/ ODT  
# = H: Latency =2.0, w/o ODT  
# = L: Latency =2.0, w/ ODT  
Features  
Power Supply  
• 1.8 V for core (VDD), 1.4 V to VDD for I/O (VDDQ  
Clock  
)
• Fast clock cycle time for high bandwidth  
• Two input clocks (K and /K) for precise DDR timing at clock rising edges only  
• Two output echo clocks (CQ and /CQ) simplify data capture in high-speed systems  
• Clock-stop capability with Ps restart  
I/O  
• Common data input/output bus  
• Pipelined double data rate operation  
• HSTL I/O  
• User programmable output impedance  
• DLL/PLL circuitry for wide output data valid window and future frequency scaling  
• Data valid pin (QVLD) to indicate valid data on the output  
Function  
• Two-tick burst for low DDR transaction size  
• Internally self-timed write control  
• Simple control logic for easy depth expansion  
• JTAG 1149.1 compatible test access port  
Package  
• 165 FBGA package (15 x 17 x 1.4 mm)  
Notes: 1. QDR RAMs and Quad Data Rate RAMs comprise a new family of products developed by Cypress  
Semiconductor, IDT, Samsung, and Renesas Electronics Corp. (QDR Co-Development Team)  
2. The specifications of this device are subject to change without notice. Please contact your nearest  
Renesas Electronics Sales Office regarding specifications.  
3. Refer to  
"http://www.renesas.com/products/memory/fast_sram/qdr_sram/index.jsp"  
for the latest and detailed information.  
4. Descriptions about x9 parts in this datasheet are just for reference.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
Common  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Part Number Definition  
Part Number Definition Table  
Column No.  
0 1 2 3 4 5 6 7 8 9 10 11 - 12 13 14 15 16  
R 1 Q 2 A 4 4 1 8 R B G - 4 0 R B 0  
The above part number is just example for 144M QDRII B2 x18 250MHz, 15x17mm PKG, Pb-free part.  
Example  
0Qꢀ  
%QOOGPVU  
0Qꢀ  
#
%QOOGPVU  
8FFꢄꢆꢄꢃꢀꢇꢄ8  
0Qꢀ  
%QOOGPVU  
ꢂꢁꢃ 4ꢃ 4GPGUCUꢄ/GOQT[ꢄ2TGHKZ  
3ꢊ  
ꢈꢂ  
ꢍꢂ  
ꢅꢂ  
ꢏꢈ  
ꢏꢏ  
ꢏꢂ  
(TGSWGPE[ꢄꢆꢄꢃꢈꢉ/*\  
(TGSWGPE[ꢄꢆꢄꢊꢂꢂ/*\  
(TGSWGPE[ꢄꢆꢄꢊꢍꢂ/*\  
(TGSWGPE[ꢄꢆꢄꢊꢉꢍ/*\  
(TGSWGPE[ꢄꢆꢄꢏꢂꢂ/*\  
(TGSWGPE[ꢄꢆꢄꢏꢏꢏ/*\  
3&4ꢄ++ꢄ$ꢊ=ꢋꢃ?ꢄꢄꢄꢄꢄꢄꢄꢄꢄꢌ.ꢃꢍꢎ=ꢋꢊ?  
ꢏꢈ &GPUKV[ꢄꢆꢄꢄꢏꢈ/D  
ꢉꢊ &GPUKV[ꢄꢆꢄꢄꢉꢊ/D  
ꢅꢅ &GPUKV[ꢄꢆꢄꢃꢅꢅ/D  
ꢇꢇ &GPUKV[ꢄꢆꢄꢊꢇꢇ/D  
ꢂꢐ &CVCꢄYKFVJꢄꢆꢄꢄꢐDKV  
3ꢏ 3&4ꢄ++ꢄ$ꢅꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢌ.ꢃꢍꢎ  
3ꢅ &&4ꢄ++ꢄ$ꢊꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢌ.ꢃꢍꢎ  
3ꢍ &&4ꢄ++ꢄ$ꢅꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢄꢌ.ꢃꢍꢎ  
ꢍꢁꢈ  
ꢉꢁꢇ  
&&4ꢄ++ꢄ$ꢊꢄ5+1=ꢋꢏ?ꢄꢄꢄꢄꢄꢌ.ꢃꢍꢎ  
3ꢈ  
ꢃꢊꢁꢃꢏ  
3&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢍ=ꢋꢊ?  
3#  
3$ &&4ꢄ++ꢑꢄ$ꢊꢄ.ꢊꢍ  
3% &&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢍ  
3&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢍꢄYꢒ1&6=ꢋꢅ?  
3&  
3' &&4ꢄ++ꢑꢄ$ꢊꢄ.ꢊꢍꢄYꢒ1&6  
3( &&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢍꢄYꢒ1&6  
3) 3&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢂ  
3* &&4ꢄ++ꢑꢄ$ꢊꢄ.ꢊꢂ  
3, &&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢂ  
3- 3&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢂꢄYꢒ1&6  
3. &&4ꢄ++ꢑꢄ$ꢊꢄ.ꢊꢂꢄYꢒ1&6  
3/ &&4ꢄ++ꢑꢄ$ꢅꢄ.ꢊꢂꢄYꢒ1&6  
30 3&4ꢄ++ꢑꢄ$ꢊꢄ.ꢊꢂ  
ꢃꢇ &CVCꢄYKFVJꢄꢆꢄꢃꢇDKV  
ꢏꢈ &CVCꢄYKFVJꢄꢆꢄꢏꢈDKV  
ꢊꢉ  
ꢊꢍ  
ꢊꢊ  
ꢊꢂ  
ꢃꢐ  
ꢃꢇ  
(TGSWGPE[ꢄꢆꢄꢏꢉꢍ/*\  
(TGSWGPE[ꢄꢆꢄꢅꢂꢂ/*\  
(TGSWGPE[ꢄꢆꢄꢅꢍꢂ/*\  
(TGSWGPE[ꢄꢆꢄꢍꢂꢂ/*\  
(TGSWGPE[ꢄꢆꢄꢍꢏꢏ/*\  
(TGSWGPE[ꢄꢆꢄꢍꢍꢂ/*\  
%QOOGTEKCNꢄVGORꢀ  
6CꢄTCPIGꢄꢆꢄꢂé᳸ꢉꢂé  
+PFWUVTKCNꢄVGORꢀ  
6CꢄTCPIGꢄꢆꢄꢁꢅꢂé᳸ꢇꢍé  
2DꢁHTGGꢄCPFꢄ6TC[  
2DꢁHTGGꢄCPFꢄ6TC[  
4
#
$
%
&
'
(
ꢃUVꢄ)GPGTCVKQP  
ꢊPFꢄ)GPGTCVKQP  
ꢏTFꢄ)GPGTCVKQP  
ꢅVJꢄ)GPGTCVKQP  
ꢍVJꢄ)GPGTCVKQP  
ꢈVJꢄ)GPGTCVKQP  
ꢉVJꢄ)GPGTCVKQP  
ꢊꢁꢏ  
4
+
ꢃꢅ  
ꢃꢍ  
$) 2-)ꢆꢄ$)#ꢄꢃꢍZꢃꢉꢄOO  
$#  
ꢃꢂꢁꢃꢃ  
#
$
6
5
2-)ꢆꢄ$)#ꢄꢃꢏZꢃꢍꢄOO  
$$  
2DꢁHTGGꢄCPFꢄ6CRGꢓ4GGN  
2DꢁHTGGꢄCPFꢄ6CRGꢓ4GGN  
32 3&4ꢄ++ꢑꢄ$ꢊꢄ.ꢊꢂꢄYꢒ1&6  
ꢂ`ꢐꢕ#`<  
QTꢄ0QPG  
ꢃꢈ  
4GPGUCUꢄKPVGTPCNꢄWUG  
0QVGꢃꢔ  
0QVGꢊꢔ  
=ꢋꢃ?ꢄꢄ$ꢆ$WTUVꢄNGPIVJꢄꢌ$ꢊꢔꢄ$WTUVꢄNGPIVJꢆꢊꢕꢄ$ꢅꢔꢄ$WTUVꢄNGPIVJꢆꢅꢎ  
=ꢋꢊ?ꢄꢄ.ꢆ4GCFꢄ.CVGPE[ꢄꢌ.ꢃꢍꢔꢄ4GCFꢄ.CVGPE[ꢄꢆꢄꢃꢀꢍꢄE[ENGꢕꢄ.ꢊꢂꢔꢄꢊꢀꢂꢄE[ENGꢕꢄ.ꢊꢍꢔꢄꢊꢀꢍꢄE[ENGꢎ  
=ꢋꢏ?ꢄꢄ5+1ꢆ5GRCTCVGꢄ+ꢒ1  
=ꢋꢅ?ꢄꢄ1&6ꢆ1PꢄFKGꢄVGTOKPCVKQP  
2CEMCIGꢄ/CTMKPIꢄ0COG  
2DꢁHTGGꢄRCTVUꢔꢄꢄꢄ/CTMKPIꢄ0COGꢄꢆꢄ2CTVꢄ0WODGTꢌꢂꢁꢃꢅꢎ  
2DꢁHTGGꢄRCTVUꢔꢄꢄꢄ/CTMKPIꢄ0COGꢄꢆꢄ2CTVꢄ0WODGTꢌꢂꢁꢃꢅꢎꢄꢑꢄꢖ2$ꢁ(ꢖ  
ꢄꢄꢌ'ZCORNGꢎꢄ4ꢃ3##ꢅꢅꢏꢈ4$)ꢁꢊꢂ4ꢄꢄꢄ2Dꢁ(ꢄꢄꢄꢄꢄꢁꢁꢁꢁꢁꢄ2DꢁHTGGꢄRCTVU  
ꢄꢄꢌ'ZCORNGꢎꢄ4ꢃ3##ꢅꢅꢏꢈ4$)ꢁꢊꢂ4ꢄꢄꢄ2$ꢁ(ꢄꢄꢄꢄꢄꢁꢁꢁꢁꢁꢄ2DꢁHTGGꢄRCTVU  
ꢄꢄ  
0QVGꢏꢔ  
2DꢁHTGGꢔꢄ4Q*5ꢄ%QORNKCPEGꢄ.GXGNꢄꢆꢄꢍꢒꢈ  
2DꢁHTGGꢔꢄ4Q*5ꢄ%QORNKCPEGꢄ.GXGNꢄꢆꢄꢈꢒꢈ  
0QVGꢅꢔ  
4ꢃ3ꢋ#ꢄUGTKGUꢄUWRRQTVꢄDQVJꢄꢖ%QOOGTEKCNꢖꢄCPFꢄꢖ+PFWUVTKCNꢖꢄVGORGTCVWTGUꢄ  
D[ꢄꢖ+PFWUVTKCNꢖꢄVGORGTCVWTGꢄRCTVUꢀ  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
hinS=00000.0000.0000.0000.0000---  
00000.0000.0000.0000.0000---  
11111.1111.1111.1111.1111---144M  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
144M QDR/DDR SRAM Lineup  
- Renesas plans to support the parts listed below.  
Frequency (max)  
(MHz)  
Cycle Time (min)  
(ns)  
533 500 450 400 375 333 300 250 200  
1.875 2.00 2.22 2.50 2.66 3.00 3.30 4.00 5.00  
No  
Status  
Part Number  
yy  
-19  
ă
-20  
-22  
-25  
-27  
-30  
-33  
-40  
-40  
-50  
-50  
Ą
2
3
x18 R1Q 2 A44 18 RBG-yy  
x36 R1Q 2 A44 36 RBG-yy  
x18 R1Q 3 A44 18 RBG-yy  
x36 R1Q 3 A44 36 RBG-yy  
x18 R1Q 4 A44 18 RBG-yy  
x36 R1Q 4 A44 36 RBG-yy  
x18 R1Q 5 A44 18RBG-yy  
x36 R1Q 5 A44 36RBG-yy  
x18 R1Q 6 A44 18RBG-yy  
x36 R1Q 6 A44 36RBG-yy  
x18 R1Q A A44 18RBG-yy  
x36 R1Q A A44 36RBG-yy  
x18 R1Q B A44 18RBG-yy  
x36 R1Q B A44 36RBG-yy  
x18 R1Q C A44 18RBG-yy  
x36 R1Q C A44 36RBG-yy  
x18 R1Q D A44 18RBG-yy  
x36 R1Q D A44 36RBG-yy  
x18 R1Q E A44 18RBG-yy  
x36 R1Q E A44 36RBG-yy  
x18 R1Q F A44 18RBG-yy  
x36 R1Q F A44 36RBG-yy  
x18 R1Q N A44 18RBG-yy  
x36 R1Q N A44 36RBG-yy  
x18 R1Q GA44 18RBG-yy  
x36 R1Q GA44 36RBG-yy  
x18 R1Q H A44 18RBG-yy  
x36 R1Q H A44 36RBG-yy  
x18 R1Q J A44 18RBG-yy  
x36 R1Q J A44 36RBG-yy  
x18 R1Q P A44 18RBG-yy  
x36 R1Q P A44 36RBG-yy  
x18 R1Q K A44 18RBG-yy  
x36 R1Q K A44 36RBG-yy  
x18 R1Q L A44 18RBG-yy  
x36 R1Q L A44 36RBG-yy  
x18 R1QM A44 18RBG-yy  
x36 R1QM A44 36RBG-yy  
B2  
B4  
B2  
B4  
B2  
QDRII  
DDRII  
Under  
Development  
5
-33  
-33  
-33  
-33  
-40  
-40  
-40  
-40  
6
8
9
11  
12  
-
14 DDRII  
15 SIO  
20  
QDRII+ B4  
-19  
-19  
-19  
-20  
-20  
-20  
-22  
-22  
-22  
Under  
Development  
21  
23  
24  
26  
27  
32  
33  
35  
36  
38  
39  
41  
42  
44  
45  
47  
48  
50  
51  
53  
54  
56  
57  
59  
60  
62  
63  
B2  
DDRII+  
B4  
-
QDRII+ B4  
-19  
-19  
-19  
-20  
-20  
-20  
-22  
-22  
-22  
Under  
Development  
B2  
DDRII+  
B4  
-
B2  
QDRII+  
B4  
-33  
-33  
Under  
Development  
-25  
-25  
-25  
B2  
DDRII+  
B4  
-
B2  
QDRII+  
B4  
Under  
Development  
-25  
-25  
-25  
B2  
DDRII+  
B4  
-
: No Plan  
-
Notes:  
1. "yy" represents the speed bin. "R1QAA4436RBG-20" can operate at 500 MHz(max) of frequency, for example.  
2. The part which is not listed above is not supported, as of the day when this datasheet was issued,  
in spite of the existence of the part number or datasheet.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Pin Arrangement  
R1Q4A4436 (Top) / R1QB(H)A4436 (Mid) / R1QE(L)A4436 (Bottom)  
1
/CQ  
NC  
2
SA  
3
SA  
4
5
6
/K  
K
7
8
/LD  
SA  
9
SA  
NC  
10  
SA  
NC  
11  
CQ  
DQ8  
A
B
R-/W /BW2  
SA  
/BW1  
/BW0  
DQ27 DQ18  
NC DQ28 VSS  
DQ29 DQ19 VSS  
NC DQ20 VDDQ  
/BW3  
SA0  
NC  
SA  
C
NC  
SA  
VSS  
NC  
DQ17 DQ7  
NC DQ16  
DQ15 DQ6  
NC  
NC  
NC  
D
E
F
G
H
J
K
L
M
N
NC  
NC  
NC  
NC  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
NC  
NC  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
DQ30 DQ21 VDDQ  
DQ31 DQ22 VDDQ  
DQ5  
DQ14  
ZQ  
/DOFF VREF VDDQ VDDQ  
VDDQ VDDQ VREF  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ32 VDDQ  
DQ23 VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
NC  
DQ13 DQ4  
DQ12 DQ3  
NC  
DQ11 DQ1  
NC DQ10  
DQ33 DQ24 VDDQ  
NC DQ34 VSS  
DQ35 DQ25 VSS  
DQ2  
VSS  
C
QVLD  
QVLD  
P
R
NC  
NC  
DQ26  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
NC  
SA  
DQ9 DQ0  
TMS TDI  
/C  
NC  
TDO TCK  
ODT  
(Top View)  
Top  
Mid  
ĸR1Q4A4436  
ĸR1QB(H)A4436  
Bottom ĸR1QE(L)A4436  
Notes: 1. Address expansion order for future higher density SRAMs: 10A ĺ 2A ĺ 7A ĺ 5B.  
2. NC pins can be left floating or connected to 0V VDDQ  
.
R1Q4A4418 (Top) / R1QB(H)A4418 (Mid) / R1QE(L)A4418 (Bottom)  
1
/CQ  
NC  
2
SA  
DQ9  
3
SA  
NC  
4
5
6
/K  
K
7
SA  
/BW0  
8
/LD  
SA  
9
SA  
NC  
10  
SA  
NC  
11  
CQ  
DQ8  
A
B
R-/W /BW1  
SA  
NC  
SA0  
NC  
SA  
C
NC  
NC  
NC  
VSS  
SA  
VSS  
NC  
DQ7  
NC  
NC  
D
E
F
G
H
J
K
L
M
N
NC  
NC  
NC  
NC  
NC  
NC  
DQ12  
NC  
DQ10 VSS  
DQ11 VDDQ  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ6  
DQ5  
NC  
ZQ  
NC  
DQ3  
DQ2  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
DQ13 VDDQ  
/DOFF VREF VDDQ VDDQ  
VDDQ VDDQ VREF  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ15  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
NC  
DQ4  
NC  
NC  
DQ1  
NC  
DQ14 VDDQ  
NC  
NC  
VDDQ  
VSS  
NC  
DQ16 VSS  
VSS  
NC  
C
QVLD  
QVLD  
P
R
NC  
NC  
DQ17  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
NC  
SA  
NC  
DQ0  
TDI  
/C  
NC  
TDO TCK  
TMS  
ODT  
(Top View)  
Notes: 1. Address expansion order for future higher density SRAMs: 10A ĺ 2A ĺ 7A ĺ 5B.  
2. NC pins can be left floating or connected to 0V VDDQ  
.
Rev. 0.11b : 2012.06.05  
R10DS0189EJ0011  
PAGE : ‹#›  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Pin Arrangement  
Just Reference  
R1Q4A4409 (Top) / R1QB(H)A4409 (Mid) / R1QE(L)A4409 (Bottom)  
1
2
3
4
5
6
/K  
K
7
SA  
/BW  
SA  
8
/LD  
SA  
VSS  
9
10  
11  
CQ  
DQ4  
NC  
NC  
DQ3  
NC  
NC  
ZQ  
NC  
NC  
DQ1  
NC  
NC  
A
B
C
D
E
F
G
H
J
K
L
M
N
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
NC  
DQ5 VDDQ  
NC VDDQ  
DQ6 VDDQ  
R-/W  
SA  
VSS  
VSS  
NC  
NC  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VDDQ  
VDDQ  
VDDQ  
/DOFF VREF VDDQ VDDQ  
VDDQ VDDQ VREF  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ7  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
NC  
DQ2  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
C
QVLD  
QVLD  
P
R
NC  
NC  
DQ8  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
NC  
SA  
NC  
DQ0  
TDI  
/C  
NC  
TDO TCK  
TMS  
ODT  
(Top View)  
Notes: 1. Address expansion order for future higher density SRAMs: 10A ĺ 2A ĺ 7A ĺ 5B.  
2. NC pins can be left floating or connected to 0V VDDQ  
.
3. Note that 6C is not SA0 and 7C is not SA1 in x9 product. Thus u9 product does not  
permit random start address on the two least significant address bits. SA0, SA1 = 0  
at the start of each address.  
Rev. 0.11b : 2012.06.05  
R10DS0189EJ0011  
PAGE : ‹#›  
hinS=00111.0011.0011.0011.0011  
---00111.0011.0011.0011.0011---  
00111.0011.0011.0011.0011---DDR  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Pin Descriptions  
Name I/O type  
Descriptions  
Notes  
Synchronous address inputs: These inputs are registered and must meet  
the setup and hold times around the rising edge of K. All transactions  
operate on a burst-of-four words (two clock periods of bus activity). SA0  
SAx  
Input and SA1 are used as the lowest two address bits for burst READ and  
burst WRITE operations permitting a random burst start address on u18  
and u36 of DDR II (not II+) devices. These inputs are ignored when  
device is deselected or once burst operation is in progress.  
Synchronous load: This input is brought low when a bus cycle sequence  
is to be defined. This definition includes address and READ / WRITE  
/LD  
Input  
direction. All transactions operate on a burst-of-four data (two clock  
periods of bus activity).  
Synchronous read / write Input: When /LD is low, this input designates  
the access type (READ when R-/W is high, WRITE when R-/W is low) for  
R-/W  
Input  
the loaded address. R-/W must meet the setup and hold times around  
the rising edge of K.  
Synchronous byte writes: When low, these inputs cause their respective  
byte to be registered and written during WRITE cycles. These signals  
are sampled on the same edge as the corresponding data and must meet  
/BWx  
K, /K  
Input  
setup and hold times around the rising edges of K and /K for each of the  
two rising edges comprising the WRITE cycle. See Byte Write Truth  
Table for signal to data relationship.  
Input clock: This input clock pair registers address and control inputs on  
the rising edge of K, and registers data on the rising edge of K and the  
Input rising edge of /K. /K is ideally 180 degrees out of phase with K. All  
synchronous inputs must meet setup and hold times around the clock  
rising edges. These balls cannot remain VREF level.  
Output clock: This clock pair provides a user-controlled means of tuning  
device output data. The rising edge of /C is used as the output timing  
reference for the first and third output data. The rising edge of C is used  
as the output timing reference for second and fourth output data. Ideally,  
Input /C is 180 degrees out of phase with C. C and /C may be tied high to  
force the use of K and /K as the output reference clocks instead of having  
to provide C and /C clocks. If tied high, C and /C must remain high and  
not to be toggled during device operation. These balls cannot remain  
VREF level.  
C, /C  
(II only)  
1
DLL/PLL disable: When low, this input causes the DLL/PLL to be  
bypassed for stable, low frequency operation.  
/DOFF  
Input  
TMS  
TDI  
IEEE1149.1 test inputs: 1.8 V I/O levels. These balls may be left not  
connected if the JTAG function is not used in the circuit.  
Input  
IEEE1149.1 clock input: 1.8 V I/O levels. This ball must be tied to VSS if  
the JTAG function is not used in the circuit.  
TCK  
Input  
Notes:  
1. R1Q2, R1Q3, R1Q4, R1Q5, R1Q6 series have C and /C pins. R1QA, R1QB, R1QC, R1QD,  
R1QE, R1QF, R1QG, R1QH, R1QJ, R1QK, R1QL, R1QM, R1QN, R1QP series do not have C,  
/C pins. In the series, K and /K are used as the output reference clocks instead of C and /C.  
Therefore, hereafter, C and /C represent K and /K in this document.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Name I/O type  
Descriptions  
Notes  
Output impedance matching input: This input is used to tune the device  
outputs to the system data bus impedance. DQ and CQ output  
impedance are set to 0.2 u RQ, where RQ is a resistor from this ball to  
ground. This ball can be connected directly to VDDQ, which enables the  
ZQ  
Input minimum impedance mode. This ball cannot be connected directly to  
VSS or left unconnected.  
In ODT (On Die Termination) enable devices, the ODT termination  
values tracks the value of RQ. The ODT range is selected by ODT  
control input.  
ODT control: When low;  
[Option 1] Low range mode is selected. The impedance range is  
between 52 : and 105 : (Thevenin equivalent), which follows 0.3 u RQ  
for 175 : ” RQ ” 350 :.  
ODT  
(II+ only)  
[Option 2] ODT is disabled.  
Input  
1
When high; High range mode is selected. The impedance range is  
between 105 : and 150 : (Thevenin equivalent), which follows 0.6 u RQ  
for 175 : ” RQ ” 250 :.  
When floating; [Option 1] High range mode is selected.  
[Option 2] ODT is disabled.  
Synchronous data I/Os: Input data must meet setup and hold times  
around the rising edges of K and /K. Output data is synchronized to the  
respective C and /C, or to the respective K and /K if C and /C are tied  
Input high.  
DQ0 to  
DQn  
The u9 device uses DQ0~DQ8.  
/
output  
DQ9~DQ35 should be treated as NC pin.  
The u18 device uses DQ0~DQ17.  
DQ18~DQ35 should be treated as NC pin.  
The u36 device uses DQ0~DQ35.  
Synchronous echo clock outputs: The edges of these outputs are tightly  
matched to the synchronous data outputs and can be used as a data  
valid indication. These signals run freely and do not stop when DQ tri-  
states.  
CQ, /CQ Output  
TDO  
QVLD  
(II+ only)  
Output IEEE 1149.1 test output: 1.8 V I/O level.  
Valid output indicator: The Q Valid indicates valid output data. QVLD is  
Output  
edge aligned with CQ and /CQ.  
Power supply: 1.8 V nominal. See DC Characteristics and Operating  
Conditions for range.  
VDD  
Supply  
2
Power supply: Isolated output buffer supply. Nominally 1.5 V. See DC  
VDDQ  
VSS  
Supply  
2
2
Characteristics and Operating Conditions for range.  
Supply Power supply: Ground.  
HSTL input reference voltage: Nominally VDDQ/2, but may be adjusted to  
VREF  


improve system noise margin. Provides a reference voltage for the  
HSTL input buffers.  
NC  
No connect: These pins can be left floating or connected to 0V VDDQ.  
Notes:  
1. Renesas status: Option 1 = Available, Option 2 = Possible.  
2. All power supply and ground balls must be connected for proper operation of the device.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Block Diagram (R1QxA4436 / R1QxA4418 series, x=4 )  
SA0  
SA0'  
Burst  
Logic  
Output  
Control  
Logic  
22/23  
22/23  
SA0''  
SA0'''  
SA  
Address  
Registry  
and  
ZQ  
/LD  
R-/W  
K
CQ, /CQ  
2
Logic  
/K  
72  
/36  
72  
/36  
72  
/36  
DQ  
R-/W  
/LD  
36/18  
Memory  
Array  
4/2  
Data  
Registry  
and  
/BWx  
K
/K  
Logic  
36/18  
C
C,/C  
or  
K
or  
K
K,/K  
Notes  
1. C and /C pins do not exist in II+ series parts.  
Block Diagram  
(R1QxA4436 / R1QxA4418 / R1QyA4409 series, x=B,E,H,L, y=4,B,E,H,L)  
21/22/23  
SA  
21/22/23  
Address  
Registry  
and  
ZQ  
/LD  
R-/W  
K
CQ, /CQ  
2
Logic  
/K  
72  
/36  
/18  
72  
/36  
/18  
72  
/36  
/18  
DQ  
R-/W  
/LD  
36/18/9  
Memory  
Array  
4/2/1  
Data  
Registry  
and  
/BWx  
K
/K  
Logic  
36/18/9  
C
or  
K
C,/C  
or  
K
K,/K  
Notes  
1. C and /C pins do not exist in II+ series parts.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
hinS=00000.0000.0000.0000.0000---  
00000.0000.0000.0000.0000---11111.1111.1111.1111.1111---  
144M  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
General Description  
Power-up and Initialization Sequence  
- VDD must be stable before K, /K clocks are applied.  
- Recommended voltage application sequence : VSS ĺ VDD ĺ VDDQ & VREF ĺ VIN. (0 V to VDD, VDDQ < 200 ms)  
- Apply VREF after VDDQ or at the same time as VDDQ  
.
- Then execute either one of the following three sequences.  
1. Single Clock Mode (C and /C tied high)  
- Drive /DOFF high (/DOFF can be tied high from the start).  
- Then provide stable clocks (K, /K) for at least 20 us.  
1. Single clock mode (C and /C pins fixed High)  
Power Up &  
NOP &  
Normal  
Status  
Unstable Stage  
Set-up Stage  
Operation  
VDD  
VDDQ  
VREF  
Fix High (=Vddq)  
SET-UP Cycle  
/DOFF  
K, /K  
2. Double Clock Mode (C and /C control outputs) (II series only)  
- Drive /DOFF high (/DOFF can be tied high from the start)  
- Then provide stable clocks (K, /K , C, /C) for at least 20 us.  
2. Double clock mode  
Power Up &  
NOP &  
Normal  
Status  
Unstable Stage  
Set-up Stage  
Operation  
VDD  
VDDQ  
VREF  
Fix High (=Vddq)  
SET-UP Cycle  
/DOFF  
K, /K  
C, /C  
3. DLL/PLL Off Mode (/DOFF tied low)  
- In the "NOP and setup stage", provide stable clocks (K, /K) for at least 20 us.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
Common  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
DLL/PLL Constraints  
1. DLL/PLL uses K clock as its synchronizing input. The input should have low phase jitter which is  
specified as tKC var.  
2. The lower end of the frequency at which the DLL/PLL can operate is 120 MHz.  
(Please refer to AC Characteristics table for detail.)  
3. When the operating frequency is changed or /DOFF level is changed, setup cycles are required again.  
Programmable Output Impedance  
1. Output buffer impedance can be programmed by terminating the ZQ ball to VSS through a precision resistor  
(RQ). The value of RQ is five times the output impedance desired. The allowable range of RQ to  
guarantee impedance matching with a tolerance of 15% is 250 : typical. The total external capacitance of  
ZQ ball must be less than 7.5 pF.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
IIP  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
QVLD (Valid data indicator)  
(R1QA, R1QB, R1QC, R1QD, R1QE, R1QF, R1QG, R1QH, R1QJ, R1QK, R1QL, R1QM  
R1QN, R1QP series)  
1. QVLD is provided on the QDR-II+ and DDR-II+ to simplify data capture on high speed systems. The Q  
Valid indicates valid output data. QVLD is activated half cycle before the read data for the receiver to be  
ready for capturing the data. QVLD is inactivated half cycle before the read finish for the receiver to stop  
capturing the data. QVLD is edge aligned with CQ and /CQ.  
ODT (On Die Termination)  
(R1QD, R1QE, R1QF, R1QK, R1QL, R1QM, R1QP series)  
1. To reduce reflection which produces noise and lowers signal quality, the signals should be terminated,  
especially at high frequency. Renesas offers ODT on the input signals to QDR-II+ and DDR-II+ family of  
devices. (See the ODT pin table)  
2. In ODT enable devices, the ODT termination values tracks the value of RQ. The ODT range is selected by  
ODT control input. (See the ODT range table)  
3. In DDR-II+ devices having common I/O bus, ODT is automatically enabled when the device inputs data  
and disabled when the device outputs data.  
4. There is no difference in AC timing characteristics between the SRAMs with ODT and SRAMs without  
ODT.  
5. There is no increase in the IDD of SRAMs with ODT, however, there is an increase in the IDDQ (current  
consumption from the I/O voltage supply) with ODT.  
ODT range  
Thevenin equivalent resistance (RTHEV  
)
Unit  
-
Notes  
6
1, 4  
2, 5  
3
ODT control pin  
Option 1  
0.3 u RQ  
0.6 u RQ  
0.6 u RQ  
Option 2  
(ODT disable)  
0.6 u RQ  
:
Low  
High  
Floating  
:
:
(ODT disable)  
Notes:  
1. Allowable range of RQ for Option 1 to guarantee impedance matching a tolerance of r 20 % is  
175 : ” RQ ” 350 :.  
2. Allowable range of RQ to guarantee impedance matching a tolerance of r 20 % is  
175 : ” RQ ” 250 :.  
3. Allowable range of RQ for Option 1 to guarantee impedance matching a tolerance of r 20 % is  
175 : ” RQ ” 250 :.  
4. At option 1, ODT control pin is connected to VDDQ through 3.5 k:. Therefore it is recommended  
to connect it to VSS through less than 100 : to make it low.  
5. At option 2, ODT control pin is connected to VSS through 3.5 k:. Therefore it is recommended to  
connect it to VDDQ through less than 100 : to make it high.  
6. Renesas status: Option 1 = Available, Option 2 = Possible. If you need devices with option 2,  
please contact Renesas sales office.  
Rev. 0.11b : 2012.06.05  
R10DS0189EJ0011  
PAGE : ‹#›  
IIP  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Thevenin termination  
Other LSI  
SRAM with ODT  
VDDQ  
ZQ  
2 u RTHEV  
RQ  
Input  
Buffer  
Output  
Buffer  
2 u RTHEV  
VSS  
VSS  
ODT pin (R1QD, R1QE, R1QF, R1QK, R1QL, R1QM, R1QP series)  
ODT On/Off timing  
Option 2  
Notes  
Pin name  
Option 1  
3
1
ODT pin = Low  
or Floating  
ODT pin = High  
D0 ~ Dn in separate I/O devices  
Always On  
Always Off  
Off: First Read Command  
+ Read Latency  
- 0.5 cycle  
DQ0 ~ DQn  
in common I/O devices  
On: Last Read Command  
+ Read Latency  
Always Off  
2
+ BL/2 cycle + 0.5 cycle  
(See below timing chart)  
/BWx  
K, /K  
Always On  
Always On  
Always Off  
Always Off  
Notes: 1. Separate I/O devices are R1QD, R1QK, R1QP series.  
2. Common I/O devices are R1QE, R1QF, R1QL, R1QM series.  
3. Renesas status: Option 1 = Available, Option 2 = Possible. If you need devices with  
option 2, please contact Renesas sales office.  
Rev. 0.11b : 2012.06.05  
R10DS0189EJ0011  
PAGE : ‹#›  
IIP  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
ODT on/off Timing Chart for R1QE series (DDR II+, Burst Length=2, Read Latency=2.5 cycle)  
Read Read Read Read  
(B2) (B2) (B2) (B2)  
Write Write Write Write Read Read  
(B2) (B2) (B2) (B2) (B2) (B2)  
NOP  
NOP NOP NOP  
Status  
K, /K  
Command  
DQ  
Ra  
Rb  
Rc  
Rd  
We  
Wf  
Wg  
Wh  
Ri  
Rj  
Qa Qa Qb Qb Qc Qc Qd Qd  
Disabled  
De De Df Df Dg Dg Dh Dh  
Enabled  
Qi Qi Qj  
Disabled  
Enabled  
DQ ODT  
ODT on/off Timing Chart for R1QF series (DDR II+, Burst Length=4, Read Latency=2.5 cycle)  
Read  
(B4)  
Read  
(B4)  
Write  
(B4)  
Write  
(B4)  
Read  
(B4)  
NOP  
-
-
NOP NOP NOP  
-
-
-
Status  
K, /K  
Command  
DQ  
Ra  
Rc  
We  
Wg  
Ri  
Qa Qa Qa Qa Qc Qc Qc Qc  
Disabled  
De De De De Dg Dg Dg Dg  
Enabled  
Qi Qi Qi  
Disabled  
Enabled  
DQ ODT  
ODT on/off Timing Chart for R1QL series (DDR II+, Burst Length=2, Read Latency=2.0 cycle)  
Read Read Read Read  
(B2) (B2) (B2) (B2)  
Write Write Write Write Read Read Read  
(B2) (B2) (B2) (B2) (B2) (B2) (B2)  
NOP  
NOP NOP  
Status  
K, /K  
Command  
DQ  
Ra  
Rb  
Rc  
Rd  
We  
Wf  
Wg  
Wh  
Ri  
Rj  
Rk  
Qa Qa Qb Qb Qc Qc Qd Qd  
Disabled  
De De Df Df Dg Dg Dh Dh  
Enabled  
Qi Qi Qj Qj Qk Qk  
Disabled  
Enabled  
DQ ODT  
ODT on/off Timing Chart for R1QM series (DDR II+, Burst Length=4, Read Latency=2.0 cycle)  
Read  
(B4)  
Read  
(B4)  
Write  
(B4)  
Write  
(B4)  
Read  
(B4)  
Read  
(B4)  
NOP  
-
-
NOP NOP  
-
-
-
Status  
K, /K  
Command  
DQ  
Ra  
Rc  
We  
Wg  
Ri  
Rk  
Qa Qa Qa Qa Qc Qc Qc Qc  
Disabled  
De De De De Dg Dg Dg Dg  
Enabled  
Qi Qi Qi Qi Qk Qk  
Disabled  
Enabled  
DQ ODT  
Notes  
1. ODT on/off switching timings are edge aligned with CQ or /CQ.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
K Truth Table  
Operation  
K
/LD R-/W  
DQ  
Data in  
Write Cycle:  
Input  
data  
Input  
clock  
Load address, input write  
data on consecutive K  
and /K rising edges  
D(A1)  
D(A2)  
Ĺ
L
L
K(t+1)Ĺ  
/K(t+1)Ĺ  
Data out  
Output  
data  
Read Cycle:  
Q(A1)  
Q(A2)  
Load address, output  
read data on consecutive  
C and /C rising edges  
Ĺ
Ĺ
L
H
RL*8=1.5  
/C(t+1)Ĺ  
C(t+2)Ĺ  
/C(t+2)Ĺ  
C(t+2)Ĺ  
/C(t+2)Ĺ  
C(t+3)Ĺ  
Input  
clock RL=2.0  
for Q  
RL=2.5  
NOP (No operation)  
Standby (Clock stopped) Stopped  
Notes:  
H
u
u
u
High-Z  
Previous state  
1. H: high level, L: low level, u: don’t care, Ĺ: rising edge.  
2. Data inputs are registered at K and /K rising edges. Data outputs are delivered at C and /C  
rising edges, except if C and /C are high, then data outputs are delivered at K and /K rising  
edges.  
3. /LD and R-/W must meet setup/hold times around the rising edges (low to high) of K and are  
registered at the rising edge of K.  
4. This device contains circuitry that will ensure the outputs will be in high-Z during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. When clocks are stopped, the following cases are recommended; the case of K = low, /K =  
high, C = low and /C = high, or the case of K = high, /K = low, C = high and /C = low. This  
condition is not essential, but permits most rapid restart by overcoming transmission line  
charging symmetrically.  
7. A1 refers to the address input during a WRITE or READ cycle. A2 refers to the next internal  
burst address in accordance with the linear burst sequence.  
8. RL = Read Latency (unit = cycle).  
Burst Sequence  
Linear Burst Sequence Table (R1Q4Aww36 / R1Q4Aww18 series )  
SA0  
SA0  
Notes  
External address  
0
1
1st internal burst address  
1
0
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
Common  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Byte Write Truth Table ( x 36 )  
Operation  
K
Ĺ
-
Ĺ
-
Ĺ
-
Ĺ
-
Ĺ
-
Ĺ
-
/K  
-
Ĺ
-
Ĺ
-
Ĺ
-
Ĺ
-
Ĺ
-
/BW0  
L
L
L
L
H
H
H
H
H
H
H
H
/BW1  
L
L
H
H
L
L
H
H
H
H
H
/BW2  
L
L
H
H
H
H
L
L
H
H
H
/BW3  
L
L
H
H
H
H
H
H
L
L
H
Write D0 to D35  
Write D0 to D8  
Write D9 to D17  
Write D18 to D26  
Write D27 to D35  
Write nothing  
Ĺ
H
H
H
Notes:  
1. H: high level, L: low level, Ĺ: rising edge.  
2. Assumes a WRITE cycle was initiated. /BWx can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
Byte Write Truth Table ( x 18 )  
Operation  
K
Ĺ
-
Ĺ
-
Ĺ
-
Ĺ
-
/K  
-
Ĺ
-
Ĺ
-
Ĺ
-
/BW0  
/BW1  
L
L
L
L
L
H
H
L
L
H
H
Write D0 to D17  
Write D0 to D8  
Write D9 to D17  
Write nothing  
L
H
H
H
H
Ĺ
Notes:  
1. H: high level, L: low level, Ĺ: rising edge.  
2. Assumes a WRITE cycle was initiated. /BWx can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
Byte Write Truth Table ( x 9 )  
Just Reference except R1Q2A**09 series  
Operation  
K
Ĺ
-
Ĺ
-
/K  
-
Ĺ
-
/BW  
L
L
H
H
Write D0 to D8  
Write nothing  
Ĺ
Notes:  
1. H: high level, L: low level, Ĺ: rising edge.  
2. Assumes a WRITE cycle was initiated. /BWx can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Bus Cycle State Diagram  
/LD = H & Count = 2  
R-/W = L  
Write Double  
Count  
= Count + 2  
/LD = L  
&
/LD = H  
Count = 2  
/LD = L  
Load New  
Address  
NOP  
Count = 0  
Supply  
voltage  
R-/W = H  
Read Double  
Count  
provided  
= Count + 2  
/LD = L  
&
Power  
Up  
Count = 2  
/LD = H & Count = 2  
Notes:  
1. SA0 is internally advanced in accordance with the burst order table. Bus cycle is terminated at  
the end of this sequence (burst count = 2).  
2. State machine control timing sequence is controlled by K.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
Common  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
Unit  
Notes  
0.5 to VDD + 0.5  
Input voltage on any ball  
VIN  
V
1, 4  
(2.5 V max.)  
0.5 to VDDQ + 0.5  
Input/output voltage  
VI/O  
V
1, 4  
(2.5 V max.)  
Core supply voltage  
Output supply voltage  
Junction temperature  
Storage temperature  
Notes:  
VDD  
VDDQ  
Tj  
0.5 to 2.5  
0.5 to VDD  
+125 (max)  
55 to +125  
V
V
1, 4  
1, 4  
5
qC  
qC  
TSTG  
1. All voltage is referenced to VSS.  
2. Permanent device damage may occur if Absolute Maximum Ratings are exceeded.  
Functional operation should be restricted the Operation Conditions. Exposure to higher than  
recommended voltages for extended periods of time could affect device reliability.  
3. These CMOS memory circuits have been designed to meet the DC and AC specifications  
shown in the tables after thermal equilibrium has been established.  
4. The following supply voltage application sequence is recommended: VSS, VDD, VDDQ, VREF  
then VIN. Remember, according to the Absolute Maximum Ratings table, VDDQ is not to  
exceed 2.5 V, whatever the instantaneous value of VDDQ  
.
5. Some method of cooling or airflow should be considered in the system. (Especially for high  
frequency or ODT parts)  
Recommended DC Operating Conditions  
Parameter  
Symbol  
VDD  
VDDQ  
VREF  
VIH (DC)  
VIL (DC)  
Min  
1.7  
1.4  
Typ  
1.8  
1.5  
0.75  

Max  
1.9  
VDD  
Unit  
V
V
V
V
Notes  
1
1, 2  
Power supply voltage -- core  
Power supply voltage -- I/O  
Input reference voltage -- I/O  
Input high voltage  
0.68  
VREF + 0.1  
0.3  
0.95  
3
VDDQ + 0.3  
REF 0.1  
1, 4, 5  
1, 4, 5  
Input low voltage  

V
V
Notes:  
1. At power-up, VDD and VDDQ are assumed to be a linear ramp from 0V to VDD(min.) or  
VDDQ(min.) within 200ms. During this time VDDQ < VDD and VIH < VDDQ  
.
During normal operation, VDDQ must not exceed VDD.  
2. Please pay attention to Tj not to exceed the temperature shown in the absolute maximum  
ratings table due to current from VDDQ  
3. Peak to peak AC component superimposed on VREF may not exceed 5% of VREF  
.
.
4. These are DC test criteria. The AC VIH / VIL levels are defined separately to measure timing  
parameters.  
5. Overshoot: VIH (AC) d VDDQ + 0.5 V for t d tKHKH/2  
Undershoot: VIL (AC) t ꢀ0.5 V for t d tKHKH/2  
During normal operation, VIH(DC) must not exceed VDDQ and VIL(DC) must not be lower than VSS.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
hinS=00000.0000.0000.0000.0000---  
00000.0000.0000.0000.0000---  
11111.1111.1111.1111.1111---144M  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
DC Characteristics  
(Ta = 0 ~ +70qC @ R1Q*A*****BG-**R** series, Ta = -40 ~ +85qC @ R1Q*A*****BG-**I** series)  
(VDD = 1.8V r0.1V, VDDQ = 1.5V, VREF = 0.75V)  
Operating Supply Current (Write / Read)  
Symbol = IDD. Unit = mA. See Notes 1, 2 and 3 in the page after next.  
Frequency (max)  
533 500 450 400 375 333 300 250 200  
(MHz)  
No  
Cycle Time (min)  
1.875 2.00 2.22 2.50 2.66 3.00 3.30 4.00 5.00  
(ns)  
Part Number  
yy  
-19  
-20  
-22  
-25  
-27  
-30  
-33  
-40  
TBD TBD  
TBD TBD  
-50  
Ą
ă
2
3
x18 R1Q 2 A44 18 RBG-yy  
x36 R1Q 2 A44 36 RBG-yy  
x18 R1Q 3 A44 18 RBG-yy  
x36 R1Q 3 A44 36 RBG-yy  
x18 R1Q 4 A44 18 RBG-yy  
x36 R1Q 4 A44 36 RBG-yy  
x18 R1Q 5 A44 18RBG-yy  
x36 R1Q 5 A44 36RBG-yy  
x18 R1Q 6 A44 18RBG-yy  
x36 R1Q 6 A44 36RBG-yy  
x18 R1Q A A44 18RBG-yy  
x36 R1Q A A44 36RBG-yy  
x18 R1Q B A44 18RBG-yy  
x36 R1Q B A44 36RBG-yy  
x18 R1Q C A44 18RBG-yy  
x36 R1Q C A44 36RBG-yy  
x18 R1Q D A44 18RBG-yy  
x36 R1Q D A44 36RBG-yy  
x18 R1Q E A44 18RBG-yy  
x36 R1Q E A44 36RBG-yy  
x18 R1Q F A44 18RBG-yy  
x36 R1Q F A44 36RBG-yy  
x18 R1Q N A44 18RBG-yy  
x36 R1Q N A44 36RBG-yy  
x18 R1Q G A44 18RBG-yy  
x36 R1Q G A44 36RBG-yy  
x18 R1Q H A44 18RBG-yy  
x36 R1Q H A44 36RBG-yy  
x18 R1Q J A44 18RBG-yy  
x36 R1Q J A44 36RBG-yy  
x18 R1Q P A44 18RBG-yy  
x36 R1Q P A44 36RBG-yy  
x18 R1Q K A44 18RBG-yy  
x36 R1Q K A44 36RBG-yy  
x18 R1Q L A44 18RBG-yy  
x36 R1Q L A44 36RBG-yy  
x18 R1Q M A44 18RBG-yy  
x36 R1Q M A44 36RBG-yy  
B2  
B4  
B2  
B4  
B2  
QDRII  
DDRII  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
5
6
8
9
11  
12  
14 DDRII  
15 SIO  
20  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
QDRII+ B4  
21  
23  
24  
26  
27  
32  
33  
35  
36  
38  
39  
41  
42  
44  
45  
47  
48  
50  
51  
53  
54  
56  
57  
59  
60  
62  
63  
B2  
DDRII+  
B4  
QDRII+ B4  
B2  
DDRII+  
B4  
TBD  
TBD  
B2  
QDRII+  
B4  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
B2  
DDRII+  
B4  
TBD  
TBD  
B2  
QDRII+  
B4  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
B2  
DDRII+  
B4  
Notes:  
1. "yy" represents the speed bin. "R1QAA4436RBG-20" can operate at 500 MHz(max) of frequency, for example.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
hinS=00000.0000.0000.0000.0000---  
00000.0000.0000.0000.0000---  
11111.1111.1111.1111.1111---144M  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Standby Supply Current (NOP)  
Symbol = ISB1. Unit = mA. See Notes 2, 4 and 5 in the next page.  
Frequency (max)  
533 500 450 400 375 333 300 250 200  
1.875 2.00 2.22 2.50 2.66 3.00 3.30 4.00 5.00  
(MHz)  
Cycle Time (min)  
(ns)  
No  
Part Number  
yy  
-19  
-20  
-22  
-25  
-27  
-30  
-33  
-40  
TBD TBD  
TBD TBD  
-50  
Ą
ă
2
3
x18 R1Q 2 A44 18 RBG-yy  
x36 R1Q 2 A44 36 RBG-yy  
x18 R1Q 3 A44 18 RBG-yy  
x36 R1Q 3 A44 36 RBG-yy  
x18 R1Q 4 A44 18 RBG-yy  
x36 R1Q 4 A44 36 RBG-yy  
x18 R1Q 5 A44 18RBG-yy  
x36 R1Q 5 A44 36RBG-yy  
x18 R1Q 6 A44 18RBG-yy  
x36 R1Q 6 A44 36RBG-yy  
x18 R1Q A A44 18RBG-yy  
x36 R1Q A A44 36RBG-yy  
x18 R1Q B A44 18RBG-yy  
x36 R1Q B A44 36RBG-yy  
x18 R1Q C A44 18RBG-yy  
x36 R1Q C A44 36RBG-yy  
x18 R1Q D A44 18RBG-yy  
x36 R1Q D A44 36RBG-yy  
x18 R1Q E A44 18RBG-yy  
x36 R1Q E A44 36RBG-yy  
x18 R1Q F A44 18RBG-yy  
x36 R1Q F A44 36RBG-yy  
x18 R1Q N A44 18RBG-yy  
x36 R1Q N A44 36RBG-yy  
x18 R1Q G A44 18RBG-yy  
x36 R1Q G A44 36RBG-yy  
x18 R1Q H A44 18RBG-yy  
x36 R1Q H A44 36RBG-yy  
x18 R1Q J A44 18RBG-yy  
x36 R1Q J A44 36RBG-yy  
x18 R1Q P A44 18RBG-yy  
x36 R1Q P A44 36RBG-yy  
x18 R1Q K A44 18RBG-yy  
x36 R1Q K A44 36RBG-yy  
x18 R1Q L A44 18RBG-yy  
x36 R1Q L A44 36RBG-yy  
x18 R1Q M A44 18RBG-yy  
x36 R1Q M A44 36RBG-yy  
B2  
B4  
B2  
B4  
B2  
QDRII  
DDRII  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
5
6
8
9
11  
12  
14 DDRII  
15 SIO  
20  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
QDRII+ B4  
21  
23  
24  
26  
27  
32  
33  
35  
36  
38  
39  
41  
42  
44  
45  
47  
48  
50  
51  
53  
54  
56  
57  
59  
60  
62  
63  
B2  
DDRII+  
B4  
QDRII+ B4  
B2  
DDRII+  
B4  
TBD  
TBD  
B2  
QDRII+  
B4  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
B2  
DDRII+  
B4  
TBD  
TBD  
B2  
QDRII+  
B4  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
B2  
DDRII+  
B4  
Notes:  
1. "yy" represents the speed bin. "R1QAA4436RBG-20" can operate at 500 MHz(max) of frequency, for example.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
Common  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Leakage Currents & Output Voltage  
Parameter  
Input leakage current  
Output leakage current  
Symbol  
ILI  
Min  
2  
5  
Max  
2
5
Unit  
PA  
PA  
Test condition Notes  
10  
11  
ILO  
VOH  
V
DDQ 0.2  
VDDQ  
V
V
V
V
|IOH| d 0.1 mA  
8, 9  
8, 9  
8, 9  
8, 9  
(Low)  
Output high voltage  
VDDQ/2  
0.12  
VDDQ/2  
0.12  
VOH  
Note 6  
VOL  
(Low)  
VSS  
0.2  
IOL d 0.1 mA  
Output low voltage  
Notes:  
VDDQ/2  
0.12  
VDDQ/2  
0.12  
VOL  
Note 7  
1. All inputs (except ZQ, VREF) are held at either VIH or VIL.  
2. OUT = 0 mA. VDD = VDD max, tKHKH = tKHKH min.  
I
3. Operating supply currents (IDD) are measured at 100% bus utilization. IDD of QDR family is current of  
device with 100% write and 100% read cycle. IDD of DDR family is current of device with 100% write  
cycle (if IDD(Write) > IDD(Read)) or 100% read cycle (if IDD(Write) < IDD(Read)).  
4. All address / data inputs are static at either VIN > VIH or VIN < VIL.  
5. Reference value. (Condition = NOP currents are valid when entering NOP after all pending READ and  
WRITE cycles are completed. )  
6. Outputs are impedance-controlled. |IOH| = (VDDQ/2)/(RQ/5) for values of 175 : d RQ d 350 :.  
7. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) for values of 175 : d RQ d 350 :.  
8. AC load current is higher than the shown DC values. AC I/O curves are available upon request.  
9. HSTL outputs meet JEDEC HSTL Class I and Class II standards.  
10. 0 d VIN d VDDQ for all input balls (except VREF, ZQ, TCK, TMS, TDI ball).  
If R1QD, R1QE, R1QF, R1QK, R1QL, R1QM, R1QP series, balls with ODT do not follow this spec.  
11. 0 d VOUT d VDDQ (except TDO ball), output disabled.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
hinS=00000.0000.0000.0000.0000---00000.0000.0000.0000.0000---  
11111.1111.1111.1111.1111---144M  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Thermal Resistance  
Parameter  
Junction to Ambient  
Junction to Case  
Notes:  
Symbol Airflow  
Typ  
9.7  
4.4  
Unit  
Test condition  
Notes  
șJA  
șJC  
1 m/s  
-
qC/W  
EIA/JEDEC JESD51  
1
1. These parameters are calculated under the condition. These are reference values.  
2. Tj = Ta + șJA ™ Pd  
Tj = Tc + șJC ™ Pd  
where  
Tj : junction temperature when the device has achieved a steady-state  
after application of Pd (rC)  
Ta : ambient temperature (rC)  
Tc : temperature of external surface of the package or case (rC)  
șJA : thermal resistance from junction-to-ambient (rC/W)  
șJC : thermal resistance from junction-to-case (package) (rC/W)  
Pd : power dissipation that produced change in junction temperature (W) (cf.JESD51-2A)  
Capacitance  
(Ta = +25qC, Frequency = 1.0MHz, VDD = 1.8V, VDDQ = 1.5V)  
Parameter  
Input capacitance  
(SA, /R, /W, /BW, D(separate))  
Clock input capacitance (K, /K, C, /C)  
Output capacitance  
Symbol Min Typ Max Unit Test condition Notes  
CIN  
CCLK  
CI/O  



4
4
5
5
5
6
pF  
pF  
pF  
VIN = 0 V  
VCLK = 0 V  
VI/O = 0 V  
1, 2  
1, 2  
1, 2  
(Q(separate), DQ(common), CQ, /CQ)  
Notes:  
1. These parameters are sampled and not 100% tested.  
2. Except JTAG (TCK, TMS, TDI, TDO) pins.  
AC Test Conditions  
Input waveform (Rise/fall time d 0.3 ns)  
1.25V  
0.75V  
Test points  
0.75V  
0.25V  
Output waveform  
VDDQ/2  
Test points  
VDDQ/2  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
Common  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Output load conditions Output load and voltage conditions  
VDDQ / 2  
= 0.75V  
1.8Vr0.1V  
1.5V  
VDDQ / 2  
= 0.75V  
50:  
Z0 = 50:  
250:  
AC Operating Conditions  
Parameter  
Input high voltage  
Input low voltage  
Symbol  
VIH (AC)  
VIL (AC)  
Min  
VREF + 0.2  
Typ  

Max  

Unit  
V
V
Notes  
1, 2, 3, 4  
1, 2, 3, 4  


VREF – 0.2  
Notes:  
1. All voltages referenced to VSS (GND).  
During normal operation, VDDQ must not exceed VDD.  
2. These conditions are for AC functions only, not for AC parameter test.  
3. Overshoot: VIH (AC) d VDDQ + 0.5 V for t d tKHKH/2  
Undershoot: VIL (AC) t ꢀ0.5 V for t d tKHKH/2  
Control input signals may not have pulse widths less than tKHKL (min) or operate at cycle rates  
less than tKHKH (min).  
4. To maintain a valid level, the transitioning edge of the input must:  
a. Sustain a constant slew rate from the current AC level through the target AC level,  
VIL (AC) or VIH (AC).  
b. Reach at least the target AC level.  
c. After the AC target level is reached, continue to maintain at least the target DC level,  
VIL (DC) or VIH (DC).  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
hinS=00000.0000.0000.0000.0000---  
00000.0000.0000.0000.0000---  
00000.0111.0111.0000.0000---RL=2.5  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
AC Characteristics (Read Latency = 2.5 cycle)  
(Ta = 0 ~ +70qC @ R1Q*A*****BG-**R** series)  
(Ta = -40 ~ +85qC @ R1Q*A*****BG-**I** series)  
(VDD = 1.8V r0.1V, VDDQ = 1.5V, VREF = 0.75V)  
-19  
-20  
-22  
-25  
-27  
-30  
Unit Notes  
Parameter  
Symbol  
Min Max Min Max Min Max Min Max Min Max Min Max  
Clock  
Average clock  
cycle time  
(K, /K)  
tKHKH 1.875 4.00 2.00 4.00 2.22 4.00 2.50 4.00 2.66 4.00 3.00 4.00 ns  
Clock high time  
(K, /K)  
Cy-  
tKHKL  
0.40  
0.40  



0.40  
0.40  



0.40  
0.40  



0.40  
0.40  



0.40  
0.40  



0.40  
0.40  



cle  
Clock low time  
(K, /K)  
Cy-  
cle  
tKLKH  
Clock to /clock  
(K to /K)  
Cy-  
cle  
tKH/KH 0.425  
t/KHKH 0.425  
0.425  
0.425  
0.425  
0.425  
0.425  
/Clock to clock  
(/K to K)  
Cy-  
cle  


0.425  


0.425  


0.425  


0.425  


0.425  












DLL/PLL Timing  
Clock phase  
jitter  
tKC var  

0.15  

0.15  

0.15  

0.20  

0.20  

0.20 ns  
3
(K, /K)  
Lock time  
(K)  
t
KC lock 20  


20  
30  


20  
30  


20  
30  


20  
30  


20  
30  


us  
ns  
2
7
K static to  
DLL/PLL reset  
t
KC reset 30  
Output Times  
K, /K high to  
output valid  
tCHQV  

0.45  


0.45  

0.45  


0.45  

0.45  


0.45  

0.45  


0.45  

0.45  


0.45  

0.45 ns  
K, /K high to  
output hold  
tCHQX 0.45  

ns  
K, /K high to  
echo clock valid  
tCHCQV  

0.45  

0.45  

0.45  

0.45  

0.45  

0.45 ns  
K, /K high to  
echo clock hold  
tCHCQX 0.45  
0.45  

0.45  

0.45  

0.45  

0.45  


ns  
CQ, /CQ high to  
output valid  
tCQHQV  

0.15  

0.15  

0.15  

0.20  

0.20  

0.20 ns 4, 7  
CQ, /CQ high to  
output hold  
tCQHQX 0.15  
0.15  

0.15  

0.20  

0.20  

0.20  


ns 4, 7  
K, /K high to  
output high-Z  
tCHQZ  

0.45  

0.45  

0.45  

0.45  

0.45  

0.45 ns 5, 6  
K, /K high to  
output low-Z  
tCHQX1 0.45  
0.45  
0.45  
0.45  
0.45  
0.45  

ns  
5
7
CQ high to  
QVLD valid  
tQVLD 0.15 0.15 0.15 0.15 0.15 0.15 0.20 0.20 0.20 0.20 0.20 0.20 ns  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
hinS=00000.0000.0000.0000.0000---  
00000.0000.0000.0000.0000---  
00000.0111.0111.0000.0000---RL=2.5  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
-19  
-20  
-22  
-25  
-27  
-30  
Parameter  
Symbol  
Unit Notes  
Min Max Min Max Min Max Min Max Min Max Min Max  
Setup Times  
tAVKH  


















Address valid to  
K rising edge  
(QDRII+ B2)  
ns  
1, 8  
tAVKH  
0.30  
0.33  
0.40  
0.40  
0.40  
0.40  
(QDRII+ B4 & DDRII+)  
tIVKH  
























Control inputs  
valid to  
(QDRII+ B2)  
ns  
ns  
1, 8  
1, 9  
K rising edge  
tIVKH  
0.30  
0.20  
0.33  
0.22  
0.40  
0.25  
0.40  
0.28  
0.40  
0.28  
0.40  
0.28  
(QDRII+ B4 & DDRII+)  
Data-in valid to  
K, /K rising edge  
tDVKH  
Hold Times  
tKHAX  


















K rising edge  
to address hold  
(QDRII+ B2)  
ns  
1, 8  
tKHAX  
0.30  
0.33  
0.40  
0.40  
0.40  
0.40  
(QDRII+ B4 & DDRII+)  
tKHIX  
























K rising edge  
to control inputs  
hold  
(QDRII+ B2)  
ns  
ns  
1, 8  
1, 9  
tKHIX  
0.30  
0.20  
0.33  
0.22  
0.40  
0.25  
0.40  
0.28  
0.40  
0.28  
0.40  
0.28  
(QDRII+ B4 & DDRII+)  
K, /K rising edge  
to data-in hold  
tKHDX  
Notes:  
1. This is a synchronous device. All addresses, data and control lines must meet the specified setup and  
hold times for all latching clock edges.  
2. VDD and VDDQ slew rate must be less than 0.1 V DC per 50 ns for DLL/PLL lock retention. DLL/PLL lock  
time begins once VDD , VDDQ and input clock are stable.  
It is recommended that the device is kept inactive during these cycles.  
3. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
4. Echo clock is very tightly controlled to data valid / data hold. By design, there is a r0.1 ns variation from  
echo clock to data. The datasheet parameters reflect tester guardbands and test setup variations.  
5. Transitions are measured r100 mV from steady-state voltage.  
6. At any given voltage and temperature tCHQZ is less than tCHQX1 and tCHQV  
.
7. These parameters are sampled.  
8. tAVKH, tIVKH, tKHAX, tKHIX spec is determined by the actual frequency regardless of Part Number (Marking  
Name). The following is the spec for the actual frequency.  
0.30 ns for ”533MHz & >500MHz  
0.33 ns for ”500MHz & >450MHz  
0.40 ns for ”450MHz & •250MHz  
9. tDVKH, tKHDX spec is determined by the actual frequency regardless of Part Number (Marking Name). The  
following is the spec for the actual frequency.  
0.20 ns for ”533MHz & >500MHz  
0.22 ns for ”500MHz & >450MHz  
0.25 ns for ”450MHz & >400MHz  
0.28 ns for ”400MHz & •250MHz  
Remarks:  
1. Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise  
noted.  
2. Control input signals may not be operated with pulse widths less than tKHKL (min).  
3. VDDQ is +1.5 V DC. VREF is +0.75 V DC.  
4. Control signals are /R, /W (QDR series), /LD, R-/W (DDR series), /BW, /BW0, /BW1, /BW2 and /BW3.  
Setup and hold times of /BWx signals must be the same as those of Data-in signals.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
hinS=00000.0010.0010.0000.0000---  
00000.0010.0010.0000.0000---00000.0010.0010.0000.0000---  
R1QB_RL=2.5  
R
R1QBA44**RBG / R1QEA44**RBG Series (Pr
Timing Waveforms (DDRII+, B2, Read Latency = 2.5 cycle)  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
Common  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP controller without interfering with  
normal operation of the device, TCK must be tied to VSS to preclude mid level inputs.  
TDI and TMS are internally pulled up and may be unconnected, or may be connected to VDD through a pull up  
resistor.  
TDO should be left unconnected.  
Test Access Port (TAP) Pins  
Symbol I/O Pin assignments Description  
Notes  
Test clock input. All inputs are captured on the rising edge of  
TCK and all outputs propagate from the falling edge of TCK.  
Test mode select. This is the command input for the TAP  
controller state machine.  
TCK  
TMS  
2R  
10R  
Test data input. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between  
TDI and TDO is determined by the state of the TAP controller  
state machine and the instruction that is currently loaded in  
the TAP instruction.  
Test data output. Output changes in response to the falling  
edge of TCK. This is the output side of the serial registers  
placed between TDI and TDO.  
TDI  
11R  
1R  
TDO  
Notes:  
The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while  
TMS is held high for five rising edges of TCK. The TAP controller state is also reset on SRAM  
POWER-UP.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
Common  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
TAP DC Operating Characteristics  
(Ta = 0 ~ +70qC @ R1Q*A*****BG-**R** series)  
(Ta = -40 ~ +85qC @ R1Q*A*****BG-**I** series)  
(VDD = 1.8V r0.1V)  
Parameter  
Symbol  
VIH  
Min  
+1.3  
0.3  
5.0  
Typ  

Max  
VDD + 0.3  
0.5  
Unit  
V
V
Notes  
Input high voltage  
Input low voltage  
Input leakage current  
VIL  
ILI  


5.0  
PA  
0 V d VIN d VDD  
0 V d VIN d VDD,  
Output leakage current  
Output low voltage  
Output high voltage  
ILO  
5.0  

5.0  
PA  
output disabled  
VOL1  
VOL2  
VOH1  
VOH2  






0.2  
0.4  

V
V
V
V
IOLC = 100 PA  
IOLT = 2 mA  
|IOHC| = 100 PA  
|IOHT| = 2 mA  
1.6  
1.4  

Notes:  
1. All voltages referenced to VSS (GND).  
2. At power-up, VDD and VDDQ are assumed to be a linear ramp from 0V to VDD(min.) or  
VDDQ(min.) within 200ms. During this time VDDQ < VDD and VIH < VDDQ  
.
During normal operation, VDDQ must not exceed VDD.  
Rev. 0.11b : 2012.06.05  
R10DS0189EJ0011  
PAGE : ‹#›  
Common  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
TAPAC Test Conditions  
Parameter  
Input timing measurement reference levels  
Input pulse levels  
Symbol  
VREF  
VIL, VIH  
tr, tf  
Conditions  
0.9  
0 to 1.8  
d 1.0  
0.9  
0.9  
See figures  
Unit Notes  
V
V
ns  
V
V
Input rise/fall time  
Output timing measurement reference levels  
Test load termination supply voltage (VTT)  
Output load  
Input waveform  
1.8V  
0.9V  
0V  
Test points  
0.9V  
Output waveform  
0.9V  
Test points  
0.9V  
Output load condition  
VTT = 0.9V  
DUT  
TDO  
50:  
Z0 = 50:  
20pF  
External Load at Test  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
Common  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
TAPAC Operating Characteristics  
(Ta = 0 ~ +70qC @ R1Q*A*****BG-**R** series)  
(Ta = -40 ~ +85qC @ R1Q*A*****BG-**I** series)  
(VDD = 1.8V r0.1V)  
Parameter  
Test clock (TCK) cycle time  
TCK high pulse width  
TCK low pulse width  
Test mode select (TMS) setup  
TMS hold  
Symbol  
tTHTH  
tTHTL  
tTLTH  
tMVTH  
tTHMX  
tCS  
Min  
50  
20  
20  
5
5
5
5
5
Typ  











Max  










10  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Capture setup  
Capture hold  
1
1
tCH  
TDI valid to TCK high  
TCK high to TDI invalid  
TCK low to TDO unknown  
TCK low to TDO valid  
Notes:  
tDVTH  
tTHDX  
tTLQX  
tTLQV  
5
0

1. tCS + tCH defines the minimum pause in RAM I/O pad transitions to assure pad data capture.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
Common  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
TAP Controller Timing Diagram  
tTHTH  
tTHTL tTLTH  
TCK  
TMS  
TDI  
tMVTH  
tTHMX  
tDVTH  
tTHDX  
tTLQV  
TDO  
tTLQX  
tCS  
tCH  
PI  
(SRAM
Test Access Port Registers  
Register name  
Instruction register  
Bypass register  
Length  
3 bits  
1 bit  
Symbol  
IR [2:0]  
BP  
Notes  
ID register  
Boundary scan register  
32 bits  
109 bits  
ID [31:0]  
BS [109:1]  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
Common  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
TAP Controller Instruction Set  
IR2 IR1 IR0 Instruction  
Description  
Notes  
The EXTEST instruction allows circuitry external to the  
component package to be tested. Boundary scan register cells  
at output balls are used to apply test vectors, while those at  
input balls capture test results. Typically, the first test vector to  
be applied using the EXTEST instruction will be shifted into the  
boundary scan register using the PRELOAD instruction. Thus,  
during the Update-IR state of EXTEST, the output driver is  
turned on and the PRELOAD data is driven onto the output balls.  
0
0
0
0
0 EXTEST  
1 IDCODE  
1, 2, 3, 5  
The IDCODE instruction causes the ID ROM to be loaded into  
the ID register when the controller is in capture-DR mode and  
places the ID register between the TDI and TDO balls in shift-  
DR mode. The IDCODE instruction is the default instruction  
loaded in at power up and any time the controller is placed in  
the Test-Logic-Reset state.  
If the SAMPLE-Z instruction is loaded in the instruction register,  
all RAM outputs are forced to an inactive drive state (high-Z),  
moving the TAP controller into the capture-DR state loads the  
data in the RAMs input into the boundary scan register, and the  
boundary scan register is connected between TDI and TDO  
when the TAP controller is moved to the shift-DR state.  
0
0
1
1
0 SAMPLE-Z  
1 RESERVED  
3, 4, 5  
The RESERVED instructions are not implemented but are  
reserved for future use. Do not use these instructions.  
When the SAMPLE instruction is loaded in the instruction  
register, moving the TAP controller into the capture-DR state  
loads the data in the RAMs input and I/O buffers into the  
boundary scan register. Because the RAM clock(s) are  
independent from the TAP clock (TCK) it is possible for the TAP  
to attempt to capture the I/O ring contents while the input  
buffers are in transition (i.e., in a metastable state). Although  
allowing the TAP to SAMPLE metastable input will not harm the  
device, repeatable results cannot be expected. Moving the  
controller to shift-DR state then places the boundary scan  
register between the TDI and TDO balls.  
SAMPLE  
0
1
0
3, 5  
(/PRELOAD)  
1
1
0
1
1 RESERVED  
0 RESERVED  
-
-
The BYPASS instruction is loaded in the instruction register  
when the bypass register is placed between TDI and TDO. This  
occurs when the TAP controller is moved to the shift-DR state.  
This allows the board level scan path to be shortened to  
facilitate testing of other devices in the scan path.  
1
1
1 BYPASS  
Notes:  
1. Data in output register is not guaranteed if EXTEST instruction is loaded.  
2. After performing EXTEST, power-up conditions are required in order to return part to normal  
operation.  
3. RAM input signals must be stabilized for long enough to meet the TAPs input data capture  
setup plus hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any other  
TAP operation except capturing the I/O ring contents into the boundary scan register.  
4. Clock recovery initialization cycles are required after boundary scan.  
5. For R1QD, R1QE, R1QF, R1QK, R1QL, R1QM, R1QP series, ODT is disabled in EXTEST,  
SAMPLE-Z or SAMPLE mode.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Boundary Scan Order  
Signal names  
Signal names  
Bit # Ball ID  
Bit # Ball ID  
x9  
x18  
x36  
x9  
x18  
x36  
/C or NC /C or NC /C or NC  
1
2
6R  
6P  
36  
37  
10E  
10D  
NC  
NC  
NC  
DQ15  
or ODT  
C
or ODT  
C
or ODT  
C
NC  
NC  
or QVLD or QVLD or QVLD  
3
4
5
6
7
8
9
6N  
7P  
7N  
7R  
8R  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
DQ0  
DQ9  
NC  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
9E  
10C  
11D  
9C  
9D  
11B  
11C  
9B  
10B  
11A  
10A  
9A  
NC  
NC  
NC  
NC  
NC  
DQ4  
NC  
NC  
NC  
CQ  
SA  
SA  
SA  
SA  
SA  
/LD  
SA  
/BW  
K
NC  
DQ7  
NC  
NC  
NC  
DQ8  
NC  
NC  
NC  
CQ  
SA  
NC  
DQ17  
DQ16  
NC  
NC  
8P  
9R  
SA  
SA  
SA  
SA  
DQ8  
DQ7  
NC  
NC  
CQ  
SA  
SA  
SA  
SA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
11P  
10P  
10N  
9P  
10M  
11N  
9M  
9N  
11L  
11M  
9L  
10L  
11K  
10K  
9J  
DQ0  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ2  
NC  
ZQ  
NC  
NC  
NC  
NC  
NC  
NC  
DQ3  
DQ0  
NC  
NC  
NC  
DQ1  
NC  
NC  
NC  
DQ2  
NC  
NC  
NC  
DQ3  
NC  
NC  
NC  
DQ4  
NC  
ZQ  
NC  
DQ11  
DQ10  
NC  
SA  
SA  
SA  
8B  
7C  
6C  
8A  
7A  
7B  
6B  
6A  
5B  
5A  
4A  
5C  
4B  
3A  
2A  
1A  
2B  
3B  
1C  
1B  
NC  
SA0 or NC SA0 or NC  
DQ2  
DQ1  
NC  
/LD  
SA  
/BW0  
K
/K  
NC  
/BW1  
R-/W  
SA  
SA  
SA  
/LD  
/BW1  
/BW0  
K
NC  
DQ3  
DQ12  
NC  
/K  
/K  
NC  
NC  
R-/W  
SA  
SA  
SA  
SA  
/CQ  
NC  
NC  
NC  
NC  
NC  
/BW3  
/BW2  
R-/W  
SA  
SA  
SA  
9K  
NC  
10J  
11J  
11H  
10G  
9G  
11F  
11G  
9F  
DQ13  
DQ4  
ZQ  
NC  
NC  
DQ5  
DQ14  
NC  
NC  
DQ6  
NC  
NC  
DQ5  
NC  
NC  
NC  
DQ6  
SA  
SA  
/CQ  
DQ9  
NC  
NC  
NC  
/CQ  
DQ27  
DQ18  
NC  
NC  
DQ19  
10F  
11E  
3D  
DQ10  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Boundary Scan Order  
Signal names  
Signal names  
x18  
Bit # Ball ID  
Bit # Ball ID  
x9  
NC  
NC  
NC  
DQ5  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ6  
NC  
/DOFF  
NC  
NC  
NC  
NC  
x18  
NC  
NC  
NC  
DQ11  
NC  
NC  
NC  
DQ12  
NC  
NC  
NC  
DQ13  
NC  
/DOFF  
NC  
NC  
x36  
DQ28  
NC  
x9  
DQ7  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ8  
NC  
NC  
NC  
SA  
x36  
DQ33  
DQ24  
NC  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
3C  
1D  
2C  
3E  
2D  
2E  
1E  
2F  
3F  
1G  
1F  
3G  
2G  
1H  
1J  
91  
92  
2L  
3L  
DQ15  
NC  
NC  
NC  
DQ16  
NC  
NC  
NC  
DQ17  
NC  
NC  
NC  
SA  
SA  
SA  
SA  
SA  
SA  
NC  
93  
94  
1M  
1L  
DQ20  
DQ29  
NC  
NC  
95  
96  
97  
98  
3N  
3M  
1N  
2M  
3P  
2N  
2P  
1P  
3R  
4R  
4P  
5P  
5N  
5R  
DQ25  
DQ34  
NC  
NC  
DQ30  
DQ21  
NC  
NC  
99  
DQ26  
DQ35  
NC  
NC  
SA  
SA  
SA  
SA  
SA  
100  
101  
102  
103  
104  
105  
106  
107  
108  
NC  
DQ22  
DQ31  
/DOFF  
NC  
NC  
DQ23  
DQ32  
SA  
SA  
SA  
SA  
2J  
3K  
3J  
DQ14  
NC  
SA  
SA  
INTER-  
NAL  
INTER-  
NAL  
INTER-  
NAL  
89  
90  
2K  
1K  
NC  
NC  
NC  
NC  
NC  
NC  
109  






Notes:  
In boundary scan mode,  
1. Clock balls (K, /K, C, /C) are referenced to each other and must be at opposite logic levels for  
reliable operation.  
2. CQ and /CQ data are synchronized to the respective C and /C (except EXTEST, SAMPLE-Z).  
3. If C and /C tied high, CQ is generated with respect to K and /CQ is generated with respect to /K  
(except EXTEST, SAMPLE-Z).  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
Common  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
ID Register  
Revision  
Type number  
(28 : 12)  
Start bit (0) ăŇ  
-
Vendor JEDEC code  
(11 : 1)  
number  
0
(31 :29)  
#
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
0
8
0
7
0
6
1
5
0
4
0
3
0
2
1
1
1
Symbol  
R
R
R
0
C
M M M A W W  
0
1
Q
Q
Q
B
O
S
0
0
1
1
R
0
0
0
0
R
0
0
1
1
:
R
0
1
0
1
Q
0
1
Revison 0  
Revison 1  
Revison 2  
Revison 3  
:
II (QDR-II, DDR-II)  
II+ (QDR-II+, DDR-II+)  
Q
0
1
DDR  
QDR  
Q
C
36M&72M w/o ODT, 144M,288M  
36M&72M w/ ODT  
M M M  
Latency=1.5 (@II), Latency=2.0 (@II+)  
Latency=2.5 (@II+)  
0
1
0
1
B
0
1
Density = 36Mb  
Density = 72Mb  
Density = 144Mb  
Density = 288Mb  
Burst Length = 2 word burst  
Burst Length = 4 word burst  
O
0
0
1
1
1
1
0
1
0
1
1
0
without ODT  
with ODT  
0
1
A
0
1
144M&288M w/o ODT, 36M,72M  
144M&288M w/ ODT  
W W  
S
0
1
Common I/O  
Separate I/O  
x9  
x18  
x36  
0
1
1
0
0
1
TAP Controller State Diagram  
1
Test Logic Reset  
0
1
1
1
Run Test/Idle  
Select DR Scan  
Select IR Scan  
0
0
0
1
1
Capture DR  
Capture IR  
0
0
0
Shift IR  
1
0
Shift DR  
1
Exit1 DR  
0
1
1
Exit1 IR  
0
0
0
Pause DR  
1
Pause IR  
1
0
0
Exit2 DR  
1
Exit2 IR  
1
Update DR  
Update IR  
1
0
1
0
Notes:  
The value adjacent to each state transition in this figure represents the signal present at TMS at  
the time of a rising edge at TCK.  
No matter what the original state of the controller, it will enter Test-Logic-Reset when TMS is held  
high for at least five rising edges of TCK.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
hinS=00000.0000.0000.0000.0000---  
00000.0000.0000.0000.0000---  
11111.1111.1111.1111.1111---144M  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Package Dimensions and Marking Information  
Both Pb parts and Pb-free parts are available.  
JEITA Package Code  
P-LBGA165-15x17-1.00  
Renesas Code  
PLBG0165FD-A  
Previous Code  
165FHE  
Mass (typ.)  
0.6 g  
D
B
A
Top View  
Index Mark  
Marking Information  
(Laser Mark)  
1st row : Vender name (RENESAS)  
2nd row: Part number  
3rd row : Y  
WW  
: Year code  
: Week code  
E
XXXX : Renesas  
internal use  
This part  
number or  
mark is just  
one example.  
4th row : Country name (JAPAN)  
+ "None" --- Pb-free parts  
+ "PB-F" --- Pb-free parts  
S
Side View  
A
A1  
- y S  
Z
D
[e]  
Bottom View  
[e]  
Dimension in mm  
Reference  
Symbol  
Min Nom Max  
14.9 15.0 15.1  
16.9 17.0 17.1  
D
E
A
-
-
1.4  
0.31 0.36 0.41  
1.0  
0.45 0.5 0.6  
A1  
[e]  
b
Z
E
-
-
1
2
3
4
5
6
7
8
9
10 11  
x
y
-
-
-
-
-
0.2  
0.15  
-
Øb  
-
Øx(M) S AB  
2.5  
Z
D
E
Index Mark  
-
1.5  
-
Z
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
hinS=00000.0000.0000.0000.0000---  
00000.0000.0000.0000.0000---  
11111.1111.1111.1111.1111---144M  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Revision History (1)  
4GXꢀ  
&CVG  
%QOOGPV  
4GXꢀꢂꢀꢃꢂE ꢘꢃꢃꢀꢂꢐꢀꢃꢅ  
4GXꢀꢂꢀꢃꢃC ꢘꢃꢊꢀꢂꢅꢀꢂꢐ  
+PKVKCNꢄKUUWGꢀꢄꢄꢌ0GYꢄ8GTUKQPꢎ  
7RFCVGFꢄꢖ6JGTOCNꢄ4GUKUVCPEGꢖ  
7RFCVGFꢄ74.ꢄHQTꢄ4GPGUCUꢄ3&4ꢄ54#/ꢄ*QOGRCIGꢀ  
4GXꢀꢂꢀꢃꢃD ꢘꢃꢊꢀꢂꢈꢀꢂꢍ  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  
R10DS0189EJ0011  
Common  
R1QBA44**RBG / R1QEA44**RBG Series (Preliminary)  
Renesas Electronics Corporation Headquarters: Nippon Bldg., 2-6-2, Ote-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
NOTES:  
1.  
This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use.  
Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document  
nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this  
document.  
2.  
3.  
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this  
document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.  
You should not use the products or the technology described in this document for the purpose of military applications such as the development of  
weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should  
follow the applicable export control laws and regulations, and procedures required by such laws and regulations.  
All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current  
as of the date this document is issued. Such information, however,is subject to change without any prior notice. Before purchasing or using any  
Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and  
careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website.  
(http://www.renesas.com )  
4.  
5.  
6.  
Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any  
damages incurred as a result of errors or omissions in the information included in this document.  
When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding  
about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the  
suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information  
in this document or Renesas products.  
7. The products described in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment,  
measuring equipment, industrial robotics, domestic appliances, etc.). The products are not designed, manufactured, tested or warranted for  
applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or  
which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,  
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. Unintended usage of the products shall  
be made at the customer’s own risk. Renesas shall have no liability for damages arising out of the uses set forth above.  
8.  
Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:  
(1) artificial life support devices or systems  
(2) surgical implantations  
(3) healthcare intervention (e.g., excision, administration of medication, etc.)  
(4) any other purposes that pose a direct threat to human life  
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any  
of the foregoing applications shall indemnify and hold harmless Renesas Electronics Corp., its affiliated companies and their officers, directors, and  
employees against any and all damages arising out of such applications.  
9.  
You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating  
supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall  
have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.  
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence  
of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the  
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware  
and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any  
other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the  
final products or system manufactured by you.  
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of  
accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not  
be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.  
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.  
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor  
products, or if you have any other inquiries.  
Renesas Sales Offices  
http://www.renesas.com  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
Renesas Electronics America Inc.  
Renesas Electronics Hong Kong Limited  
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.  
Tel: +1-408-588-6000, Fax: +1-408-588-6130  
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,  
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2886-9318, Fax: +852 2886-9022/9044  
Renesas Electronics Canada Limited  
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada  
Tel: +1-905-898-5441, Fax: +1-905-898-3220  
Renesas Electronics Taiwan Co., Ltd.  
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire,  
SL8 5FH, U.K  
Renesas Electronics Singapore Pte. Ltd.  
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632  
Tel: +65-6213-0200, Fax: +65-6278-8001  
Tel: +44-1628-585-100, Fax: +44-1628-585-900  
Renesas Electronics Europe GmbH  
Renesas Electronics Malaysia Sdn.Bhd.  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-6503-0, Fax: +49-211-6503-1327  
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18,  
Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510  
Renesas Electronics (China) Co., Ltd.  
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District,  
Beijing 100083, P.R.China  
Renesas Electronics Korea Co., Ltd.  
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku,  
Seoul 135-080, Korea  
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
Tel: +82-2-558-3737, Fax: +82-2-558-5141  
Renesas Electronics (Shanghai) Co., Ltd.  
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District,  
Shanghai 200120, China  
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898  
---  
© 2012 Renesas Electronics Corporation. All rights reserved.  
Rev. 0.11b : 2012.06.05  
PAGE : ‹#›  

相关型号:

R1QPA4436RBG-30IA0

144-Mbit QDR™II SRAM 2-word Burst Architecture (2.0 Cycle Read latency) with ODT
RENESAS

R1QPA4436RBG-30IB0

144-Mbit QDR™II SRAM 2-word Burst Architecture (2.0 Cycle Read latency) with ODT
RENESAS

R1QPA4436RBG-33IA0

144-Mbit QDR™II SRAM 2-word Burst Architecture (2.0 Cycle Read latency) with ODT
RENESAS

R1QPA4436RBG-33IB0

144-Mbit QDR™II SRAM 2-word Burst Architecture (2.0 Cycle Read latency) with ODT
RENESAS

R1QPA4436RBG_15

144-Mbit QDR™II SRAM 2-word Burst Architecture (2.0 Cycle Read latency) with ODT
RENESAS

R1RP0404D

4M High Speed SRAM (1-Mword 】 4-bit)
RENESAS

R1RP0404DGE-2LR

4M High Speed SRAM (1-Mword 】 4-bit)
RENESAS

R1RP0404DGE-2PR

4M High Speed SRAM (1-Mword 】 4-bit)
RENESAS

R1RP0408D

4M High Speed SRAM (512-kword ?8-bit)
RENESAS

R1RP0408DGE-0PR

512KX8 STANDARD SRAM, 12ns, PDSO36, 0.400 INCH, PLASTIC, SOJ-36
RENESAS

R1RP0408DGE-2LR

4M High Speed SRAM (512-kword ?8-bit)
RENESAS

R1RP0408DGE-2PI

Wide Temperature Range Version 4M High Speed SRAM (512-kword × 8-bit)
RENESAS