R7FA2A1AB2CBT [RENESAS]

32-Bit MCU Renesas Advanced (RA) Family Renesas RA2 Series;
R7FA2A1AB2CBT
型号: R7FA2A1AB2CBT
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

32-Bit MCU Renesas Advanced (RA) Family Renesas RA2 Series

文件: 总100页 (文件大小:1258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Cover  
Renesas RA2A1 Group  
32  
Datasheet  
32-Bit MCU  
Renesas Advanced (RA) Family  
Renesas RA2 Series  
All information contained in these materials, including products and product specifications,  
represents information on the product at the time of publication and is subject to change by  
Renesas Electronics Corp. without notice. Please review the latest information published by  
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.  
website (http://www.renesas.com).  
www.renesas.com  
Rev.1.10 Mar 2020  
Features  
RA2A1 Group  
Datasheet  
Ultra-low power 48-MHz Arm® Cortex®-M23 core, up to 256-KB code flash memory, 32-KB SRAM, Capacitive Touch  
Sensing Unit, 16-bit A/D Converter, 24-bit sigma-delta A/D Converter, 12-bit D/A Converter, 8-bit D/A Converter,  
Operational Amplifier, security and safety features.  
Features  
Arm Cortex-M23 Core  
Armv8-M architecture  
Maximum operating frequency: 48 MHz  
Arm Memory Protection Unit (Arm MPU) with 8 regions  
Debug and Trace: DWT, FPB, and CoreSight™ MTB-M23  
CoreSight Debug Port: SW-DP  
System and Power Management  
Low power modes  
Realtime Clock (RTC)  
Event Link Controller (ELC)  
Data Transfer Controller (DTC)  
Key Interrupt Function (KINT)  
Power-on reset  
Memory  
Low Voltage Detection (LVD) with voltage settings  
Up to 256-KB code flash memory  
8-KB data flash memory (100,000 program/erase (P/E) cycles)  
Up to 32-KB SRAM  
Security and Encryption  
AES128/256  
True Random Number Generator (TRNG)  
Flash Cache (FCACHE)  
Memory Protection Unit (MPU)  
Memory Mirror Function (MMF)  
128-bit unique ID  
Human Machine Interface (HMI)  
Capacitive Touch Sensing Unit (CTSU)  
Multiple Clock Sources  
Main clock oscillator (MOSC)  
Connectivity  
USB 2.0 Full-Speed (USBFS) module  
- On-chip transceiver with voltage regulator  
- Compliant with USB Battery Charging Specification 1.2  
Serial Communications Interface (SCI) × 3  
- UART  
(1 to 20 MHz when VCC = 2.4 to 5.5 V)  
(1 to 8 MHz when VCC = 1.8 to 5.5 V)  
(1 to 4 MHz when VCC = 1.6 to 5.5 V)  
Sub-clock oscillator (SOSC) (32.768 kHz)  
High-speed on-chip oscillator (HOCO)  
(24, 32, 48, 64 MHz when VCC = 2.4 to 5.5 V)  
(24, 32, 48 MHz when VCC = 1.8 to 5.5 V)  
(24, 32 MHz when VCC = 1.6 to 5.5 V)  
Middle-speed on-chip oscillator (MOCO) (8 MHz)  
Low-speed on-chip oscillator (LOCO) (32.768 kHz)  
IWDT-dedicated on-chip oscillator (15 kHz)  
Clock trim function for HOCO/MOCO/LOCO  
Clock out support  
- Simple IIC  
- Simple SPI  
Serial Peripheral Interface (SPI) × 2  
I2C bus interface (IIC) × 2  
Controller Area Network (CAN) module  
Analog  
16-bit A/D Converter (ADC16)  
- 1.2 Msps  
- Differential input mode  
- Single-ended input mode  
24-bit Sigma-Delta A/D Converter (SDADC24)  
- 15.6 ksps  
- Differential input mode  
- Single-ended input mode  
12-bit D/A Converter (DAC12)  
8-bit D/A Converter (DAC8) × 2  
High-Speed Analog Comparator (ACMPHS)  
Low-Power Analog Comparator (ACMPLP) × 2  
Operational Amplifier (OPAMP) × 3  
Temperature Sensor (TSN)  
General Purpose I/O Ports  
Up to 49 input/output pins  
- Up to 3 CMOS input  
- Up to 46 CMOS input/output  
- Up to 9 input/output 5 V tolerant  
- Up to 3 high current (20 mA)  
Operating Voltage  
VCC: 1.6 to 5.5 V  
Operating Temperature and Packages  
Ta = -40°C to +85°C  
- 36-pin BGA (5 mm × 5 mm, 0.8 mm pitch)  
Ta = -40°C to +105°C  
Timers  
- 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)  
- 32-pin LQFP (7 mm × 7 mm, 0.8 mm pitch)  
- 48-pin QFN (7 mm × 7 mm, 0.5 mm pitch)  
- 40-pin QFN (6 mm × 6 mm, 0.5 mm pitch)  
General PWM Timer 32-bit (GPT32)  
General PWM Timer 16-bit (GPT16) × 6  
Asynchronous General-Purpose Timer (AGT) × 2  
Watchdog Timer (WDT)  
Safety  
Error Correction Code (ECC) in SRAM  
SRAM parity error check  
Flash area protection  
ADC self-diagnosis function  
Clock Frequency Accuracy Measurement Circuit (CAC)  
Cyclic Redundancy Check (CRC) calculator  
Data Operation Circuit (DOC)  
Port Output Enable for GPT (POEG)  
Independent Watchdog Timer (IWDT)  
GPIO readback level detection  
Register write protection  
Main oscillator stop detection  
Illegal memory access  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 2 of 100  
RA2A1 Datasheet  
1. Overview  
1.  
Overview  
®
The MCU integrates multiple series of software- and pin-compatible Arm -based 32-bit cores that share a common set  
of Renesas peripherals to facilitate design scalability and efficient platform-based product development.  
®
The MCU in this series incorporates an energy-efficient Arm Cortex -M23 32-bit core that is particularly well suited for  
cost-sensitive and low-power applications, with the following features:  
Up to 256-KB code flash memory  
32-KB SRAM  
16-bit A/D Converter (ADC16)  
24-bit Sigma-Delta A/D Converter (SDADC24)  
12-bit D/A Converter (DAC12)  
8-bit D/A Converter (DAC8)  
Operational Amplifier (OPAMP) with configurable switches  
Security features.  
1.1  
Function Outline  
Table 1.1  
Feature  
Arm core  
Functional description  
Arm Cortex-M23 core  
Maximum operating frequency: up to 48 MHz  
Arm Cortex-M23 core:  
- Revision: r1p0-00rel0  
- Armv8-M architecture profile  
- Single-cycle integer multiplier  
- 17-cycle integer divider.  
Arm Memory Protection Unit (Arm MPU):  
- Armv8 Protected Memory System Architecture  
- 8 protect regions.  
SysTick timer:  
- Driven by SYSTICCLK (LOCO) or ICLK.  
Table 1.2  
Memory  
Feature  
Functional description  
Code flash memory  
Data flash memory  
Memory Mirror Function (MMF)  
256 KB of code flash memory. See section 43, Flash Memory in User’s Manual.  
8 KB of data flash memory. See section 43, Flash Memory in User’s Manual.  
The Memory Mirror Function (MMF) can be configured to mirror the desired application image  
load address in code flash memory to the application image link address in the 23-bit unused  
memory space (memory mirror space addresses). Your application code is developed and  
linked to run from this MMF destination address. Your application code does not need to know  
the load location where it is stored in code flash memory. See section 5, Memory Mirror  
Function (MMF) in User’s Manual.  
Option-setting memory  
SRAM  
The option-setting memory determines the state of the MCU after a reset. See section 7,  
Option-Setting Memory in User’s Manual.  
On-chip high-speed SRAM with either parity bit or Error Correction Code (ECC). See section  
42, SRAM in User’s Manual.  
Table 1.3  
Feature  
System (1 of 2)  
Functional description  
Operating modes  
Two operating modes:  
Single-chip mode  
SCI or USB boot mode.  
See section 3, Operating Modes in User’s Manual.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 3 of 100  
RA2A1 Datasheet  
1. Overview  
Table 1.3  
System (2 of 2)  
Feature  
Functional description  
Resets  
13 resets:  
RES pin reset  
Power-on reset  
Independent watchdog timer reset  
Watchdog timer reset  
Voltage monitor 0 reset  
Voltage monitor 1 reset  
Voltage monitor 2 reset  
SRAM parity error reset  
SRAM ECC error reset  
Bus master MPU error reset  
Bus slave MPU error reset  
CPU stack pointer error reset  
Software reset.  
See section 6, Resets in User’s Manual.  
Low Voltage Detection (LVD)  
Clocks  
The Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin and  
the detection level can be selected using a software program. See section 8, Low Voltage  
Detection (LVD) in User’s Manual.  
Main clock oscillator (MOSC)  
Sub-clock oscillator (SOSC)  
High-speed on-chip oscillator (HOCO)  
Middle-speed on-chip oscillator (MOCO)  
Low-speed on-chip oscillator (LOCO)  
IWDT-dedicated on-chip oscillator  
Clock out support.  
See section 9, Clock Generation Circuit in User’s Manual.  
Clock Frequency Accuracy  
Measurement Circuit (CAC)  
The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be  
measured (measurement target clock) within the time generated by the clock to be used as a  
measurement reference (measurement reference clock), and determines the accuracy  
depending on whether the number of pulses is within the allowable range.  
When measurement is complete or the number of pulses within the time generated by the  
measurement reference clock is not within the allowable range, an interrupt request is  
generated. See section 10, Clock Frequency Accuracy Measurement Circuit (CAC) in User’s  
Manual.  
Interrupt Controller Unit (ICU)  
Key Interrupt Function (KINT)  
Low power modes  
The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC  
module. The ICU also controls NMI interrupts. See section 13, Interrupt Controller Unit (ICU) in  
User’s Manual.  
A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting  
a rising or falling edge to the key interrupt input pins. See section 19, Key Interrupt Function  
(KINT) in User’s Manual.  
Power consumption can be reduced in multiple ways, such as by setting clock dividers,  
stopping modules, selecting power control mode in normal operation, and transitioning to low  
power modes. See section 11, Low Power Modes in User’s Manual.  
Register write protection  
Memory Protection Unit (MPU)  
Watchdog Timer (WDT)  
The register write protection function protects important registers from being overwritten due to  
software errors. See section 12, Register Write Protection in User’s Manual.  
Four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided  
for memory protection. See section 15, Memory Protection Unit (MPU) in User’s Manual.  
The Watchdog Timer (WDT) is a 14-bit down-counter that can be used to reset the MCU when  
the counter underflows because the system has run out of control and is unable to refresh the  
WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow. A  
refresh-permitted period can be set to refresh the counter and used as the condition to detect  
when the system runs out of control. See section 24, Watchdog Timer (WDT) in User’s  
Manual.  
Independent Watchdog Timer (IWDT) The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be  
serviced periodically to prevent counter underflow. The IWDT provides functionality to reset  
the MCU or to generate a non-maskable interrupt/interrupt for a timer underflow. Because the  
timer operates with an independent, dedicated clock source, it is particularly useful in returning  
the MCU to a known state as a fail-safe mechanism when the system runs out of control. The  
IWDT can be triggered automatically on a reset, underflow, refresh error, or by a refresh of the  
count value in the registers. See section 25, Independent Watchdog Timer (IWDT) in User’s  
Manual.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 4 of 100  
RA2A1 Datasheet  
1. Overview  
Table 1.4  
Event Link  
Feature  
Functional description  
Event Link Controller (ELC)  
The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral  
modules as event signals to connect them to different modules, enabling direct interaction  
between the modules without CPU intervention. See section 17, Event Link Controller (ELC) in  
User’s Manual.  
Table 1.5  
Direct memory access  
Feature  
Functional description  
Data Transfer Controller (DTC)  
A Data Transfer Controller (DTC) module is provided for transferring data when activated by an  
interrupt request. See section 16, Data Transfer Controller (DTC) in User’s Manual.  
Table 1.6  
Feature  
Timers  
Functional description  
General PWM Timer (GPT)  
The General PWM Timer (GPT) is a 32-bit timer with one channel and a 16-bit timer with six  
channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or  
the up- and down-counter. In addition, PWM waveforms can be generated for controlling  
brushless DC motors. The GPT can also be used as a general-purpose timer. See section 21,  
General PWM Timer (GPT) in User’s Manual.  
Port Output Enable for GPT (POEG)  
Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT)  
output pins in the output disable state. See section 20, Port Output Enable for GPT (POEG) in  
User’s Manual.  
Asynchronous General Purpose  
Timer (AGT)  
The Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse  
output, external pulse width or period measurement, and counting external events.  
This 16-bit timer consists of a reload register and a down-counter. The reload register and the  
down-counter are allocated to the same address, and they can be accessed with the AGT  
register. See section 22, Asynchronous General Purpose Timer (AGT) in User’s Manual.  
Realtime Clock (RTC)  
The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count  
mode, that are controlled by the register settings.  
For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and  
automatically adjusts dates for leap years.  
For binary count mode, the RTC counts seconds and retains the information as a serial value.  
Binary count mode can be used for calendars other than the Gregorian (Western) calendar.  
See section 23, Realtime Clock (RTC) in User’s Manual.  
Table 1.7  
Feature  
Communication interfaces (1 of 2)  
Functional description  
Serial Communications Interface  
(SCI)  
The Serial Communication Interface (SCI) is configurable to five asynchronous and  
synchronous serial interfaces:  
Asynchronous interfaces (UART and asynchronous communications interface adapter  
(ACIA))  
8-bit clock synchronous interface  
Simple IIC (master-only)  
Simple SPI  
Smart card interface.  
The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and  
transmission protocol.  
SCI0 has FIFO buffers to enable continuous and full-duplex communication, and the data  
transfer speed can be configured independently using an on-chip baud rate generator. See  
section 27, Serial Communications Interface (SCI) in User’s Manual.  
I2C bus interface (IIC)  
The 2-channel I2C bus interface (IIC) conforms with and provides a subset of the NXP I2C  
(Inter-Integrated Circuit) bus interface functions. See section 28, I2C Bus Interface (IIC) in  
User’s Manual.  
Serial Peripheral Interface (SPI)  
Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, full-  
duplex synchronous serial communications with multiple processors and peripheral devices.  
See section 30, Serial Peripheral Interface (SPI) in User’s Manual.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 5 of 100  
RA2A1 Datasheet  
1. Overview  
Table 1.7  
Feature  
Communication interfaces (2 of 2)  
Functional description  
Controller Area Network (CAN)  
module  
The Controller Area Network (CAN) module provides functionality to receive and transmit data  
using a message-based protocol between multiple slaves and masters in electromagnetically  
noisy applications.  
The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports  
up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox  
and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are  
supported. See section 29, Controller Area Network (CAN) Module in User’s Manual.  
USB 2.0 Full-Speed (USBFS) module The USB 2.0 Full-Speed (USBFS) module can operate as a device controller. The module  
supports full-speed and low-speed transfer as defined in the Universal Serial Bus Specification  
2.0. The module has an internal USB transceiver and supports all of the transfer types defined  
in the Universal Serial Bus Specification 2.0.  
The USB has buffer memory for data transfer, providing a maximum of five pipes. Pipe 0 and  
pipe 4 to pipe 7 can be assigned any endpoint number based on the peripheral devices used  
for communication or based on your system.  
The MCU supports Battery Charging Specification revision 1.2. Because the MCU can be  
powered at 5 V, the USB LDO regulator provides the internal USB transceiver power supply  
3.3 V. See section 26, USB 2.0 Full-Speed Module (USBFS) in User’s Manual.  
Table 1.8  
Feature  
Analog (1 of 2)  
Functional description  
16-bit A/D Converter (ADC16)  
A successive approximation 16-bit A/D Converter (ADC16) is provided. Up to 17 single-ended/  
4 differential analog input channels are selectable. Reference voltage of SDADC24,  
temperature sensor output, and internal reference voltage are selectable for conversion. The  
calibration function calculates capacitor array DAC and gain/offset correction values under the  
usage conditions to enable accurate  
A/D conversion. See section 32, 16-Bit A/D Converter (ADC16) in User’s Manual.  
24-bit Sigma-Delta A/D Converter  
(SDADC24)  
A 24-bit Sigma-Delta A/D Converter (SDADC24) with a programmable gain instrumentation  
amplifier is provided. Up to 10 single-ended/5 differential analog input channels are selectable.  
The 2 single-ended/1 differential analog input channels of these analog input channels are  
inputs from internal OPAMP. Analog input multiplexer is input to the sigma-delta A/D converter  
by the programmable gain instrumentation amplifier (PGA). The A/D conversion result is  
filtered by the SINC3 digital filter, and then stored in an output register. The calibration function  
calculates gain error and offset error correction values under the usage conditions to enable  
accurate A/D conversion. See section 33, 24-Bit Sigma-Delta A/D Converter (SDADC24) in  
User’s Manual.  
12-bit D/A Converter (DAC12)  
8-bit D/A Converter (DAC8)  
Temperature Sensor (TSN)  
A 12-bit D/A Converter (DAC12) is provided. See section 34, 12-Bit D/A Converter (DAC12) in  
User’s Manual.  
An 8-bit D/A Converter (DAC8) is provided. See section 35, 8-Bit D/A Converter (DAC8) in  
User’s Manual.  
The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for  
reliable operation of the device. The sensor outputs a voltage directly proportional to the die  
temperature, and the relationship between the die temperature and the output voltage is linear.  
The output voltage is provided to the ADC16 for conversion and can be further used by the end  
application. See section 36, Temperature Sensor (TSN) in User’s Manual.  
High-Speed Analog Comparator  
(ACMPHS)  
The High-Speed Analog Comparator (ACMPHS) compares a reference voltage with an analog  
input voltage. The comparison result can be read by software and also be output externally.  
The reference voltage can be selected from either an input to the IVREFi (i = 0 to 2) pin, an  
output from internal D/A converter, or from the internal reference voltage (Vref) generated  
internally in the MCU.  
Such flexibility is useful in applications that require go/no-go comparisons to be performed  
between analog signals without necessarily requiring A/D conversion. See section 38, High-  
Speed Analog Comparator (ACMPHS) in User’s Manual.  
Low-Power Analog Comparator  
(ACMPLP)  
The Low-Power Analog Comparator (ACMPLP) compares a reference voltage with an analog  
input voltage. The comparison result can be read by software and also be output externally.  
The reference voltage can be selected from either an input to the CMPREFi (i = 0, 1) pin, an  
internal 8-bit D/A converter output, or the internal reference voltage (Vref) generated internally  
in the MCU.  
The ACMPLP response speed can be set before starting an operation. Setting high-speed  
mode decreases the response delay time, but increases current consumption. Setting low-  
speed mode increases the response delay time, but decreases current consumption. See  
section 39, Low-Power Analog Comparator (ACMPLP) in User’s Manual.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 6 of 100  
RA2A1 Datasheet  
1. Overview  
Table 1.8  
Analog (2 of 2)  
Feature  
Functional description  
Operational Amplifier (OPAMP)  
The Operational Amplifier (OPAMP) can be used to amplify small analog input voltages and  
output the amplified voltages. A total of three differential operational amplifier units with two  
input pins and one output pin are provided. All units have switches that can select input  
signals. Additionally, operational amplifier 0 has a switch that can select the output pin. See  
section 37, Operational Amplifier (OPAMP) in User’s Manual.  
Table 1.9  
Feature  
Human machine interfaces  
Functional description  
Capacitive Touch Sensing Unit  
(CTSU)  
The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the  
touch sensor. Changes in the electrostatic capacitance are determined by software, which  
enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode  
surface of the touch sensor is usually enclosed with an electrical insulator so that fingers do  
not come into direct contact with the electrodes. See section 40, Capacitive Touch Sensing  
Unit (CTSU) in User’s Manual.  
Table 1.10  
Feature  
Data processing  
Functional description  
Cyclic Redundancy Check (CRC)  
calculator  
The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the  
data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first  
communication. Additionally, various CRC-generating polynomials are available. The snoop  
function allows monitoring reads from and writes to specific addresses. This function is useful  
in applications that require CRC code to be generated automatically in certain events, such as  
monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See  
section 31, Cyclic Redundancy Check (CRC) Calculator in User’s Manual.  
Data Operation Circuit (DOC)  
The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 41,  
Data Operation Circuit (DOC) in User’s Manual.  
Table 1.11  
Security  
Feature  
Functional description  
AES  
See section 44, AES Engine in User’s Manual.  
See section 45, True Random Number Generator (TRNG) in User’s Manual.  
True Random Number Generator  
(TRNG)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 7 of 100  
RA2A1 Datasheet  
1. Overview  
1.2  
Block Diagram  
Figure 1.1 shows a block diagram of the MCU superset, some individual devices within the group have a subset of the  
features.  
Bus  
Memory  
Arm Cortex-M23  
MPU  
System  
256 KB code flash  
Clocks  
MPU  
POR/LVD  
Reset  
MOSC/SOSC  
8 KB data flash  
32 KB SRAM  
NVIC  
(H/M/L) OCO  
Mode control  
Power control  
ICU  
System timer  
Test and DBG I/F  
DMA  
DTC  
CAC  
Register write  
protection  
KINT  
Timers  
Communication interfaces  
Human machine interfaces  
CTSU  
GPT32 × 1  
GPT16 × 6  
CAN × 1  
SCI × 3  
IIC × 2  
SPI × 2  
AGT × 2  
RTC  
USBFS  
with Battery  
Charging  
revision1.2  
WDT/IWDT  
Event link  
ELC  
Data processing  
Analog  
CRC  
ADC16  
TSN  
OPAMP × 3  
SDADC24  
DAC12 × 1  
DAC8 × 2  
ACMPHS × 1  
ACMPLP × 2  
DOC  
Security  
AES + TRNG  
Figure 1.1  
Block diagram  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 8 of 100  
RA2A1 Datasheet  
1. Overview  
1.3  
Part Numbering  
Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.12 shows a  
list of products.  
# A A  
R 7 F A 2 A 1 A B 3 C F M  
0
Production identification code  
Packaging, Terminal material (Pb-free)  
#AA: Tray/Sn (Tin) only  
#AC: Tray/others  
Package type  
FM: LQFP 64 pins  
FJ: LQFP 32 pins  
BT: BGA 36 pins  
NE: QFN 48 pins  
NF: QFN 40 pins  
Quality Grade  
Operating temperature  
2: -40°C to 85°C  
3: -40°C to 105°C  
Code flash memory size  
B: 256 KB  
Feature set  
Group number  
Series name  
RA family  
Flash memory  
Renesas microcontroller  
Figure 1.2  
Part numbering scheme  
Product list  
Table 1.12  
Operating  
Product part number  
R7FA2A1AB3CFM  
R7FA2A1AB3CNE  
R7FA2A1AB3CNF  
R7FA2A1AB2CBT  
R7FA2A1AB3CFJ  
Orderable part number  
R7FA2A1AB3CFM#AA0  
R7FA2A1AB3CNE#AC0  
R7FA2A1AB3CNF#AC0  
R7FA2A1AB2CBT#AC0  
R7FA2A1AB3CFJ#AA0  
Package code  
Code flash Data flash  
256 KB 8 KB  
SRAM  
temperature  
-40 to +105°C  
-40 to +105°C  
-40 to +105°C  
-40 to +85°C  
-40 to +105°C  
PLQP0064KB-C  
PWQN0048KB-A  
PWQN0040KC-A  
PLBG0036GA-A  
PLQP0032GB-A  
32 KB  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 9 of 100  
RA2A1 Datasheet  
1. Overview  
1.4  
Function Comparison  
Table 1.13  
Function comparison  
Part numbers  
Pin count  
R7FA2A1AB3CFM  
R7FA2A1AB3CNE  
R7FA2A1AB3CNF  
40  
R7FA2A1AB2CBT  
R7FA2A1AB3CFJ  
64  
48  
36  
32  
Package  
LQFP  
QFN  
QFN  
BGA  
LQFP  
Code flash memory  
Data flash memory  
SRAM  
256 KB  
8 KB  
32 KB  
Parity  
16 KB  
ECC  
16 KB  
System  
CPU clock  
48 MHz  
Sub-clock  
oscillator  
Yes  
No  
3
ICU  
Yes  
4
KINT  
8
6
6
6
4
3
Event control  
DMA  
ELC  
Yes  
Yes  
1
DTC  
Timers  
GPT32  
GPT16  
AGT  
4
4
2
RTC  
Yes  
Yes  
3
WDT/IWDT  
SCI  
Communication  
IIC  
2
SPI  
2
1
2
CAN  
Yes  
USBFS  
ADC16  
SDADC24  
DAC12  
DAC8  
ACMPHS  
ACMPLP  
OPAMP  
TSN  
Yes  
No  
1
1
1
1
1
Analog  
17 (4* )  
12 (3* )  
8 (1* )  
5 (1* )  
5 (1* )  
1
1
1
1
1
8 (4* )  
6 (3* )  
4 (2* )  
2 (1* )  
2 (1* )  
1
2
3
2
2*  
2*  
1
2
3
2
1
1
9
1
Yes  
HMI  
CTSU  
CRC  
26  
16  
11  
Yes  
11  
Data processing  
DOC  
Yes  
Security  
AES and TRNG  
Note 1. The number of channels of the differential analog input.  
Note 2. Pin output function of DA8_1 cannot be used.  
Note 3. Pin output function of DA8_0 and DA8_1 cannot be used.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 10 of 100  
RA2A1 Datasheet  
1. Overview  
1.5  
Pin Functions  
Table 1.14  
Pin functions (1 of 4)  
Function  
Signal  
I/O  
Description  
Power supply  
VCC  
Input  
Power supply pin. Connect this pin to the system power supply. Connect it  
to VSS by a 0.1-μF capacitor. Place the capacitor close to the pin.  
VCL  
I/O  
Connect this pin to VSS through a smoothing capacitor used to stabilize  
the internal power supply. Place the capacitor close to the pin.  
VSS  
Input  
Ground pin. Connect to the system power supply (0 V).  
Clock  
XTAL  
Output  
Input  
Pins for a crystal resonator. An external clock signal can be input through  
the EXTAL pin.  
EXTAL  
XCIN  
Input  
Input/output pins for the sub-clock oscillator. Connect a crystal resonator  
between XCOUT and XCIN.  
XCOUT  
CLKOUT  
Output  
Output  
Input  
Clock output pin  
Operating mode control MD  
Pins for setting the operating mode. The signal level on this pin must not  
be changed during operation mode transition on release from the reset  
state.  
System control  
RES  
Input  
Reset signal input pin. The MCU enters the reset state when this signal  
goes low.  
CAC  
CACREF  
SWDIO  
Input  
I/O  
Measurement reference clock input pin  
Serial wire debug data input/output pin  
Serial wire clock pin  
On-chip debug  
SWCLK  
NMI  
Input  
Input  
Input  
Input  
Interrupt  
GPT  
Non-maskable interrupt request pin  
Maskable interrupt request pins  
External trigger input pin  
IRQ0 to IRQ7  
GTETRGA,  
GTETRGB  
GTIOC0A to  
GTIOC6A,  
GTIOC0B to  
GTIOC6B  
I/O  
Input capture, output compare, or PWM output pin  
GTIU  
Input  
Hall sensor input pin U  
GTIV  
Input  
Hall sensor input pin V  
GTIW  
Input  
Hall sensor input pin W  
GTOUUP  
GTOULO  
GTOVUP  
GTOVLO  
GTOWUP  
GTOWLO  
Output  
Output  
Output  
Output  
Output  
Output  
3-phase PWM output for BLDC motor control (positive U phase)  
3-phase PWM output for BLDC motor control (negative U phase)  
3-phase PWM output for BLDC motor control (positive V phase)  
3-phase PWM output for BLDC motor control (negative V phase)  
3-phase PWM output for BLDC motor control (positive W phase)  
3-phase PWM output for BLDC motor control (negative W phase)  
External event input enable  
AGT  
RTC  
AGTEE0, AGTEE1 Input  
AGTIO0, AGTIO1  
AGTO0, AGTO1  
I/O  
External event input and pulse output  
Output  
Pulse output  
AGTOA0, AGTOA1 Output  
AGTOB0, AGTOB1 Output  
Output compare match A output  
Output compare match B output  
RTCOUT  
Output  
Output pin for 1-Hz/64-Hz clock  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 11 of 100  
RA2A1 Datasheet  
1. Overview  
Table 1.14  
Pin functions (2 of 4)  
Function  
Signal  
I/O  
Description  
SCI  
SCK0, SCK1,  
SCK9  
I/O  
Input/output pins for the clock (clock synchronous mode)  
RXD0, RXD1,  
RXD9  
Input  
Input pins for received data (asynchronous mode/clock synchronous  
mode)  
TXD0, TXD1, TXD9 Output  
Output pins for transmitted data (asynchronous mode/clock synchronous  
mode)  
CTS0_RTS0,  
CTS1_RTS1,  
CTS9_RTS9  
I/O  
Input/output pins for controlling the start of transmission and reception  
(asynchronous mode/clock synchronous mode), active-low  
SCL0, SCL1, SCL9 I/O  
Input/output pins for the IIC clock (simple IIC)  
Input/output pins for the IIC data (simple IIC)  
SDA0, SDA1,  
SDA9  
I/O  
I/O  
I/O  
I/O  
SCK0, SCK1,  
SCK9  
Input/output pins for the clock (simple SPI)  
MISO0, MISO1,  
MISO9  
Input/output pins for slave transmission of data (simple SPI)  
Input/output pins for master transmission of data (simple SPI)  
MOSI0, MOSI1,  
MOSI9  
SS0, SS1, SS9  
SCL0, SCL1  
SDA0, SDA1  
Input  
I/O  
Chip-select input pins (simple SPI), active-low  
Input/output pins for clock  
IIC  
I/O  
Input/output pins for data  
SPI  
RSPCKA, RSPCKB I/O  
Clock input/output pin  
MOSIA, MOSIB  
MISOA, MISOB  
SSLA0, SSLB0  
I/O  
Inputs or outputs data output from the master  
Inputs or outputs data output from the slave  
Input or output pin for slave selection  
Output pin for slave selection  
I/O  
I/O  
SSLA1 to SSLA3,  
SSLB1 to SSLB3  
Output  
CAN  
CRX0  
Input  
Output  
Input  
Input  
I/O  
Receive data  
CTX0  
Transmit data  
USBFS  
VSS_USB  
VCC_USB_LDO  
VCC_USB  
Ground pins  
Power supply pin for USB LDO regulator  
Input: Power supply pin for USB transceiver.  
Output: USB LDO regulator output pin. This pin should be connected to an  
external capacitor.  
USB_DP  
I/O  
D+ I/O pin of the USB on-chip transceiver. This pin should be connected to  
the D+ pin of the USB bus.  
USB_DM  
USB_VBUS  
I/O  
D- I/O pin of the USB on-chip transceiver. This pin should be connected to  
the D- pin of the USB bus.  
Input  
USB cable connection monitor pin. This pin should be connected to VBUS  
of the USB bus. The VBUS pin status (connected or disconnected) can be  
detected when the USB module is operating as a device controller.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 12 of 100  
RA2A1 Datasheet  
1. Overview  
Table 1.14  
Pin functions (3 of 4)  
Function  
Signal  
I/O  
Description  
Analog power supply  
AVCC0  
Input  
Analog voltage supply pin for the ADC16, DAC12, DAC8, ACMPHS,  
ACMPLP, and OPAMP  
AVSS0  
Input  
Analog ground pin for the ADC16, DAC12, DAC8, ACMPHS, ACMPLP,  
and OPAMP  
AVCC1  
AVSS1  
VREFH0  
Input  
Input  
Input  
Analog voltage supply pin for the SDADC24  
Analog ground pin for the SDADC24  
Analog reference voltage supply pin for the ADC16. Connect this pin to  
AVCC0 when not using the ADC16.  
VREFL0  
Input  
Analog reference ground pin for the ADC16. Connect this pin to AVSS0  
when not using the ADC16.  
VREFH  
VREFL  
Input  
Input  
Input  
Analog reference voltage supply pin for the DAC12  
Analog reference ground pin for the DAC12  
ADC16  
AN000 to AN008,  
AN016 to AN023  
Input pins for the analog signals to be processed by the A/D converter  
ADTRG0  
Input  
Input  
Input  
Input pins for the external trigger signals that start the A/D conversion,  
active-low  
SDADC24  
ANSD0P to  
ANSD3P  
Input pins for the analog signals to be processed by the SDADC24  
ANSD0N to  
ANSD3N  
Input pins for the analog signals to be processed by the SDADC24  
ADREG  
SBIAS  
Output  
Output  
Input  
Regulator capacitance for the SDADC24  
Sensor power supply  
VREFI  
External reference voltage supply pin for the SDADC24  
DAC12  
DAC8  
DA12_0  
Output  
Output pin for the analog signals to be processed by the 12-bit D/A  
converter  
DA8_0, DA8_1  
VCOUT  
Output  
Output  
Output pins for the analog signals to be processed by the 8-bit D/A  
converter  
Comparator output  
ACMPHS  
Comparator output pin  
IVREF0 to IVREF2 Input  
IVCMP0 to IVCMP2 Input  
Reference voltage input pin  
Analog voltage input pin  
Reference voltage input pins  
ACMPLP  
OPAMP  
CMPREF0,  
CMPREF1  
Input  
CMPIN0, CMPIN1  
AMP0+ to AMP2+  
AMP0- to AMP2-  
Input  
Input  
Input  
Analog voltage input pins  
Analog voltage input pins  
Analog voltage input pins  
AMP0O to AMP2O Output  
Analog voltage output pins  
CTSU  
KINT  
TS00 to TS25  
TSCAP  
Input  
-
Capacitive touch detection pins (touch pins)  
Secondary power supply pin for the touch driver  
Key interrupt input pins  
KR00 to KR07  
Input  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 13 of 100  
RA2A1 Datasheet  
1. Overview  
Table 1.14  
Pin functions (4 of 4)  
Function  
Signal  
I/O  
Description  
I/O ports  
P000 to P003,  
P012 to P015  
I/O  
General-purpose input/output pins  
P100 to P112  
P200  
I/O  
General-purpose input/output pins  
General-purpose input pin  
Input  
I/O  
P201, P204 to  
General-purpose input/output pins  
P206, P212, P213  
P214, P215  
Input  
I/O  
General-purpose input pins  
P300 to P304  
General-purpose input/output pins  
General-purpose input/output pins  
P400 to P403,  
P407 to P411  
I/O  
P500 to P502  
P914, P915  
I/O  
I/O  
General-purpose input/output pins  
General-purpose input/output pins  
1.6  
Pin Assignments  
Figure 1.3 to Figure 1.7 show the pin assignments.  
49  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
P500  
P300/SWCLK  
P301  
50  
P501  
51  
P502  
P302  
52  
P015  
P303  
53  
P014/VREFL  
P304  
54  
P013/VREFH  
P200  
55  
P012  
P201/MD  
RES  
56  
AVCC0  
R7FA2A1AB3CFM  
57  
58  
59  
60  
61  
62  
63  
64  
AVSS0  
VREFL0  
VREFH0  
P003  
P204  
P205  
P206  
VCC_USB_LDO  
VCC_USB  
P914/USB_DP  
P915/USB_DM  
VSS_USB  
P002  
P001  
P000  
P109  
Figure 1.3  
Pin assignment for LQFP 64-pin  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 14 of 100  
RA2A1 Datasheet  
1. Overview  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P500  
P501  
P300/SWCLK  
P301  
P502  
P302  
P015  
P200  
P014/VREFL  
P013/VREFH  
AVCC0  
AVSS0  
P201/MD  
RES  
R7FA2A1AB3CNE  
P206  
VCC_USB_LDO  
VCC_USB  
P914/USB_DP  
P915/USB_DM  
VSS_USB  
VREFL0  
VREFH0  
P000  
P109  
Figure 1.4  
Pin assignment for QFN 48-pin  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
31  
P300/SWCLK  
P301  
P500  
P501  
32  
33  
P200  
P502  
34  
P201/MD  
P013  
AVCC0  
35  
RES  
R7FA2A1AB3CNF  
36  
37  
38  
39  
40  
VCC_USB_LDO  
VCC_USB  
P914/USB_DP  
P915/USB_DM  
VSS_USB  
AVSS0  
VREFL0  
VREFH0  
P000  
P109  
Figure 1.5  
Pin assignment for QFN 40-pin  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 15 of 100  
RA2A1 Datasheet  
1. Overview  
R7FA2A1AB2CBT  
A
B
C
D
E
F
SBIAS  
/VREFI  
P108  
/SWDIO /SWCLK  
P300  
6
5
4
3
2
1
P500  
P100  
P101  
6
5
4
3
2
1
P501  
P502  
AVCC1  
AVCC0  
AVSS0  
AVSS1  
P110  
P000  
P109  
ADREG  
P301  
P200  
VCC_USB  
P915  
/USB_DM  
P201/MD  
VCC_USB  
_LDO  
P914  
/USB_DP  
VREFL0  
VREFH0  
P400  
VSS  
P214  
/XCOUT  
VCC  
RES  
/VSS_USB  
P215  
/XCIN  
P213  
/XTAL  
P212  
/EXTAL  
VCL  
A
P408  
E
P407  
F
B
C
D
Figure 1.6  
Pin assignment for BGA 36-pin (top view, pad side down)  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
P500  
P501  
P300/SWCLK  
P301  
P200  
P502  
P201/MD  
RES  
AVCC0  
AVSS0  
VREFL0  
VREFH0  
P109  
R7FA2A1AB3CFJ  
P204  
P205  
P206  
Figure 1.7  
Pin assignment for LQFP 32-pin  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 16 of 100  
RA2A1 Datasheet  
1. Overview  
1.7  
Pin Lists  
Pin number  
Timers  
Communication Interfaces  
Analogs  
HMI  
1
1
1
D3  
1
P400  
AGTEE0 GTETR GTIOC1 RTCOUT  
CTS0_RT SDA1_A MOSIA_A  
CMPIN0  
TS00  
KR02/  
_A  
GA_A  
A_A  
_C  
S0_D/  
IRQ0_A  
SS0_D/  
RXD1_C/  
MISO1_C/  
SCL1_C  
2
3
2
-
-
-
-
-
-
-
P401  
P402  
AGTEE1 GTIU_A GTIOC4  
SCK0_D/ SDA0_C SSLB1_A  
SCK9_A  
VCOUT_  
B
TS01  
TS02  
KR03/  
IRQ5_B  
_A  
A_A  
GTIV_A GTIOC0  
A_D  
CTS9_RT  
S9_C/  
SSLB2_A  
SS9_C  
4
-
-
-
-
P403  
GTIW_A GTIOC0  
B_C  
SCK1_B  
SSLB3_A  
TS03  
5
6
7
8
9
3
4
5
6
7
2
3
4
5
6
A1  
B1  
B2  
D2  
C1  
2
-
VCL  
XCIN  
XCOUT  
VSS  
P215  
P214  
-
3
4
XTAL  
P213  
P212  
AGTEE1 GTETR GTIOC0  
_B GA_B A_B  
RXD1_D/  
MISO1_D/  
SCL1_D  
IRQ2_B  
IRQ3_B  
10  
8
7
D1  
5
EXTAL  
VCC  
AGTIO0 GTETR GTIOC0  
TXD1_D/  
MOSI1_D/  
SDA1_D  
_A  
GB_B  
B_B  
11  
12  
9
-
8
-
E2  
-
6
-
P411  
P410  
GTIOC5  
A_A  
TXD0_F/  
MOSI0_F/  
SDA0_F/  
RXD1_B/  
MISO1_B/  
SCL1_B  
SSLA3_A  
SSLA2_A  
TS04  
TS05  
13  
-
-
-
-
GTIOC5  
B_A  
CTS0_RT  
S0_A/  
SS0_A/  
TXD1_B/  
MOSI1_B/  
SDA1_B  
14 10  
15 11  
-
-
-
P409  
P408  
AGTO1_  
A
GTIOC0  
A_C  
CTX0_B SCK0_A/ SCL0_B SSLA1_A  
TSCAP_E IRQ7_A  
CTS1_RT  
S1_B/  
SS1_B  
9
E1  
7
AGTO0_ GTOUU GTIOC0  
P_A A_A  
CRX0_B RXD0_A/ SDA0_B SSLA0_A  
CMPIN1  
TS06  
IRQ1_A  
A
MISO0_A/  
SCL0_A/  
TXD1_C/  
MOSI1_C/  
SDA1_C  
16 12 10 F1  
8
CACREF P407  
_B  
AGTIO0 GTOUL GTIOC0  
_C O_A B_A  
USB_VB TXD0_A/ SCL0_A RSPCKB  
TSCAP_D IRQ1_B  
US/  
MOSI0_A/  
_B  
CTX0_D SDA0_A/  
TXD9_A/  
MOSI9_A/  
SDA9_A  
17 13 11 D2  
18 14 12 F4  
19 15 13 F3  
20 16 14 F5  
-
-
-
-
VSS_USB  
P915  
USB_DM  
USB_DP  
P914  
VCC_US  
B
21 17 15 E3  
-
VCC_US  
B_LDO  
22 18  
-
-
-
-
-
-
9
P206  
P205  
P204  
AGTIO0 GTOVU GTIOC3  
_B P_A A_A  
CTS0_RT SCL1_B SSLB0_A  
S0_C/  
SS0_C/  
TXD1_A/  
MOSI1_A/  
SDA1_A  
TS07  
TS08  
TS09  
IRQ6_A  
IRQ0_C  
23  
24  
-
-
10  
11  
GTOVL GTIOC3  
TXD0_C/ SDA1_B MISOB_B  
O_A  
B_A  
MOSI0_C/  
SDA0_C/  
CTS1_RT  
S1_A/  
SS1_A  
RXD0_C/  
MISO0_C/  
SCL0_C/  
SCK9_B  
MOSIB_B  
25 19 16 F2 12 RES  
26 20 17 E4 13 MD  
27 21 18 E5 14  
P201  
P200  
P304  
NMI  
28  
-
-
-
-
-
-
-
-
-
-
GTIOC6  
A_A  
CTX0_A SCK0_B/  
TXD9_C/  
MISOA_B  
MOSIA_B  
TS10  
TS11  
TS12  
KR07  
MOSI9_C/  
SDA9_C  
29  
-
P303  
GTIOC6  
B_A  
CRX0_A CTS0_RT  
S0_B/  
KR06  
SS0_B/  
SCK1_A  
30 22  
CACREF P302  
_A  
AGTOA1 GTOVL GTIOC3  
_A O_B B_B  
TXD0_B/  
MOSI0_B/  
SDA0_B/  
RXD1_A/  
MISO1_A/  
SCL1_A  
RSPCKB  
_A  
KR05/  
IRQ4_B  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 17 of 100  
RA2A1 Datasheet  
1. Overview  
Pin number  
Timers  
Communication Interfaces  
Analogs  
HMI  
31 23 19 D4 15  
P301  
AGTOB1 GTOWU GTIOC2 RTCOUT  
RXD0_B/ SDA0_A MOSIB_A  
TS13  
KR04/  
_A  
P_A  
A_B  
_A  
MISO0_B/  
SCL0_B/  
CTS9_RT  
S9_B/  
IRQ5_A  
SS9_B  
32 24 20 F6 16 SWCLK P300  
33 25 21 E6 17 SWDIO P108  
34 26 22 C4 18 CLKOUT_ P110  
A
AGTOB0 GTOWL GTIOC2  
CTX0_C TXD0_D/ SDA1_D RSPCKA ADTRG0_  
CMPREF  
1
TSCAP_A IRQ2_A  
_A  
O_A  
B_B  
MOSI0_D/  
SDA0_D/  
RXD9_B/  
MISO9_B/  
SCL9_B  
_A  
A
35  
36  
-
-
-
-
-
-
-
-
P111  
RTCOUT  
_B  
SCL1_C RSPCKA  
_B  
TS14  
IRQ6_B  
CLKOUT_ P112  
B
SDA1_C SSLA0_B  
TSCAP_B IRQ7_B  
37 27 23 D5 19 ADREG  
38 28 24 D6 20 SBIAS/  
VREFI  
39 29 25 B5 21 AVCC1  
40 30 26 C5 22 AVSS1  
41  
42  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P107  
P106  
P105  
P104  
P103  
AN023  
AN022  
ANSD3N  
ANSD3P  
ANSD2N  
ANSD2P  
ANSD1N  
43 31  
44 32  
MOSIB_C AN021  
MISOB_C AN020  
TS18  
TS19  
TS20  
IRQ7_C  
IRQ6_C  
45 33 27  
GTIOC6  
A_B  
RSPCKB AN019  
_C  
46 34 28  
-
-
P102  
P101  
P100  
P500  
P501  
P502  
GTIOC6  
B_B  
CTS9_RT  
S9_D/  
SS9_D  
SSLB0_C AN018  
ANSD1P  
ANSD0N  
ANSD0P  
TS21  
TS22  
TS23  
TS24  
TS25  
47 35 29 C6 23  
48 36 30 B6 24  
49 37 31 A6 25  
50 38 32 A5 26  
51 39 33 A4 27  
GTIOC5  
A_B  
RXD9_C/  
MISO9_C/  
SCL9_C  
AN017  
IVREF2  
IVCMP2  
IRQ5_C  
IRQ4_C  
IRQ3_C  
IRQ2_C  
IRQ1_C  
GTIOC5  
B_B  
TXD9_D/  
MOSI9_D/  
SDA9_D  
AN016  
GTIOC5  
A_C  
RXD0_D/  
MISO0_D/  
SCL0_D  
AN000  
DA12_0 IVCMP0 AMP0+  
GTIOC5  
B_C  
TXD0_E/  
MOSI0_E/  
SDA0_E  
AN001  
IVREF0  
AMP0-  
CTS0_RT  
S0_E/  
AN002  
AMP0O  
SS0_E  
52 40  
53 41  
-
-
-
-
-
-
P015  
P014  
AN003  
AN004  
AMP1O  
AMP1-  
VREFL  
VREFH  
GTIOC6  
A_C  
IVREF1  
54 42 34  
55  
-
-
-
-
P013  
P012  
GTIOC6  
B_C  
AN005  
AN008  
DA8_0  
IVCMP1 AMP1+  
AMP2O  
-
-
56 43 35 B4 28 AVCC0  
57 44 36 B3 29 AVSS0  
58 45 37 A3 30 VREFL0  
59 46 38 A2 31 VREFH0  
60  
61  
62  
-
-
-
-
-
-
-
-
-
-
-
-
P003  
P002  
P001  
AN006  
AN007  
AMP2-  
AMP2+  
DA8_1  
RTCOUT  
_D  
CTS9_RT  
S9_A/  
SS9_A  
RSPCKB  
_D  
TS15  
TS16  
TS17  
IRQ0_B  
63 47 39 C3  
-
P000  
P109  
AGTIO1  
_A  
GTIOC4  
B_B  
RXD9_A/ SCL0_C MISOB_A  
MISO9_A/  
SCL9_A  
KR00/  
IRQ4_A  
64 48 40 C2 32  
AGTOA0 GTETR GTIOC1  
_A GB_A B_B  
SCK0_C/ SCL1_A MISOA_A ADTRG0_  
CMPREF  
0/  
VCOUT_  
A
KR01/  
IRQ3_A  
TXD9_B/  
MOSI9_B/  
SDA9_B  
B
Note:  
Several pin names have the added suffix of _A, _B, _C, _D, _E and _F. The suffix can be ignored when assigning  
functionality.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 18 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.  
Electrical Characteristics  
Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:  
VCC*1 = AVCC0 = AVCC1 = VCC_USB*2 = VCC_USB_LDO*2 = 1.6 to 5.5 V  
VREFH = VREFH0 = 1.6 to AVCC0  
VSS = AVSS0 = AVSS1 = VREFL = VREFL0 = VSS_USB = 0 V  
Ta = T  
.
opr  
Note 1. The typical condition is set to VCC = 3.3 V.  
Note 2. When USBFS is not used.  
Figure 2.1 shows the timing conditions.  
For example, P300  
C
VOH = VCC × 0.7, VOL = VCC × 0.3  
IH = VCC × 0.7, VIL = VCC × 0.3  
V
Load capacitance C = 30 pF  
Figure 2.1  
Input or output timing measurement conditions  
The measurement conditions for the timing specifications of each peripheral are recommended for the best peripheral  
operation. However, make sure to adjust driving abilities of each pin to meet the conditions of your system.  
Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function  
pin is mixed, the A/C specification of each function is not guaranteed.  
2.1  
Absolute Maximum Ratings  
Table 2.1  
Absolute maximum ratings (1 of 2)  
Parameter  
Symbol  
VCC  
Vin  
Value  
Unit  
V
Power supply voltage  
Input voltage  
-0.5 to +6.5  
-0.3 to +6.5  
-0.3 to AVCC0 + 0.3  
5 V-tolerant ports*1  
V
P002, P003,  
P012 to P015,  
P500 to P502  
Vin  
V
P100 to P107  
Others  
Vin  
-0.3 to AVCC1 + 0.3  
-0.3 to VCC + 0.3  
-0.3 to +6.5  
V
V
V
V
V
V
Vin  
Reference power supply voltage  
VREFH0  
VREFH  
VREFI  
-0.3 to +6.5  
-0.3 to AVCC1 + 0.3  
-0.5 to +6.5  
Analog power supply voltage  
AVCC0, AVCC1*5  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 19 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.1  
Absolute maximum ratings (2 of 2)  
Parameter  
Symbol  
Value  
Unit  
USB power supply voltage  
VCC_USB  
VCC_USB_LDO  
VAN  
-0.5 to +6.5  
V
V
V
-0.5 to +6.5  
Analog input voltage  
When AN000 to AN008 are  
used  
-0.3 to AVCC0 + 0.3  
When AN016 to AN023 are  
used  
-0.3 to AVCC1 + 0.3  
-0.3 to AVCC1 + 0.3  
V
V
When ANSD0P to ANSD3P  
and ANSD0N to ANSD3N  
are used  
Operating temperature*2 *3 *4  
Storage temperature  
Topr  
Tstg  
-40 to +85  
-40 to +105  
°C  
°C  
-55 to +125  
Note 1. Ports P000, P111, P112, P205, P206, P301, P401, P407, and P409 are 5 V tolerant.  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input  
of such a signal or I/O pull-up might cause malfunction and the abnormal current that passes in the device at this time might  
cause degradation of internal elements.  
Note 2. See section 2.2.1, Tj/Ta Definition.  
Note 3. Contact Renesas Electronics sales office for information on derating operation when Ta = +85°C to +105°C. Derating is the  
systematic reduction of load for improved reliability.  
Note 4. The upper limit of the operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part  
Numbering.  
Note 5. Use AVCC0 and AVCC1 under the same conditions:  
AVCC0 = AVCC1  
Caution:  
Permanent damage to the MCU may result if absolute maximum ratings are exceeded.  
To preclude any malfunctions due to noise interference, insert capacitors with high frequency  
characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, between the  
AVCC1 and AVSS1 pins, between the VCC_USB and VSS_USB pins, between the VREFH and VREFL  
pins, and between the VREFH0 and VREFL0 pins when VREFH0 is selected as the high potential  
reference voltage for the ADC16. Place capacitors of the following value as close as possible to every  
power supply pin and use the shortest and heaviest possible traces:  
- VCC and VSS: about 0.1 μF  
- AVCC0 and AVSS0: about 0.1 μF  
- AVCC1 and AVSS1: about 0.1 μF  
- VREFH and VREFL: about 0.1 μF  
- VREFH0 and VREFL0: about 10 μF.  
Also, connect capacitors as stabilization capacitance.  
Connect the VCL pin to a VSS pin by a 4.7 μF capacitor. Connect the VREFH0 pin to a VREFL0 pin by  
1 µF (-25% to +25%) capacitor when VREFADC is selected as the high potential reference voltage of  
the ADC16. Connect the ADREG pin to a AVSS1 pin by a 0.47 µF (-50% to +20%) capacitor. Connect  
the SBIAS/VREFI pin to a AVSS1 pin by a 0.22 µF (-20% to +20%) capacitor. Every capacitor must be  
placed close to the pin.  
Table 2.2  
Recommended operating conditions (1 of 2)  
Parameter  
Symbol  
Value  
Min  
Typ  
Max  
Unit  
Power supply voltages  
VCC*1, *2  
When USBFS is not  
used  
1.6  
-
5.5  
V
When USBFS is used VCC_USB  
USB Regulator  
Disable  
-
3.6  
5.5  
-
V
V
V
When USBFS is used VCC_USB  
-
USB Regulator  
Enable  
_LDO  
VSS  
-
0
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 20 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.2  
Recommended operating conditions (2 of 2)  
Parameter  
Symbol  
Value  
Min  
Typ  
Max  
Unit  
USB power supply voltages  
VCC_USB  
When USBFS is not  
used  
-
VCC  
-
V
When USBFS is used 3.0  
USB Regulator  
Disable  
3.3  
3.6  
V
(Input)  
VCC_USB_LDO  
When USBFS is not  
used  
-
-
VCC  
VCC  
-
-
V
V
When USBFS is used  
USB Regulator  
Disable  
When USBFS is used 3.8  
USB Regulator  
Enable  
-
5.5  
V
VSS_USB  
AVCC0*1, *2  
AVSS0  
-
0
-
V
V
V
V
V
V
V
V
V
V
Analog power supply voltages  
1.6  
-
5.5  
-
-
-
0
-
AVCC1*1, *2  
AVSS1  
AVCC0  
-
0
-
-
VREFH0  
VREFL0  
VREFH  
When used as  
ADC16 Reference  
1.7  
-
AVCC0  
0
-
-
When used as  
DAC12 Reference  
1.7  
-
AVCC0  
VREFL  
0
-
-
VREFI  
When used as  
SDADC24  
Reference*3  
0.8  
2.4  
Note 1. Use AVCC0, AVCC1, and VCC under the following conditions:  
AVCC0, AVCC1, and VCC can be set individually within the operating range when VCC 2.2 V and AVCC0 = AVCC1 2.2 V.  
AVCC0 = AVCC1 = VCC when VCC < 2.2 V or AVCC0 = AVCC1 < 2.2 V.  
Note 2. When powering on the VCC and AVCC0 and AVCC1 pins, power them on at the same time or the VCC pin first and then the  
AVCC0 and AVCC1 pins.  
Note 3. The condition when using external input for the reference voltage of SDADC24.  
2.2  
DC Characteristics  
Tj/Ta Definition  
2.2.1  
Table 2.3  
DC characteristics  
Conditions: Products with operating temperature (Ta) -40 to +105°C  
Parameter  
Symbol  
Typ  
Max  
125  
Unit  
Test conditions  
Permissible junction temperature  
Tj  
-
°C  
High-speed mode  
Middle-speed mode  
Low-voltage mode  
Low-speed mode  
105*1  
SubOSC-speed mode  
Note:  
Make sure that Tj = Ta + θja × total power consumption (W), where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL  
+ ICCmax × VCC.  
Note 1. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part  
Numbering. If the part number shows the operation temperature at 85°C, then the maximum value of Tj is 105°C, otherwise it is  
125°C.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 21 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.2.2  
I/O VIH, VIL  
Table 2.4  
I/O VIH, VIL  
Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_USB_LDO = 1.6 to 5.5 V  
Test  
Parameter  
Symbol  
VIH  
Min  
Typ  
Max  
Unit  
Conditions  
Schmitt trigger  
input voltage  
IIC (except for SMBus)*1  
VCC × 0.7  
-
-
-
-
-
-
-
5.8  
V
-
VIL  
-
VCC × 0.3  
ΔVT  
VIH  
VCC × 0.05  
VCC × 0.8  
-
-
RES, NMI  
Other peripheral input pins  
excluding IIC  
-
VIL  
VCC × 0.2  
ΔVT  
VIH  
VCC × 0.1  
2.2  
-
-
Input voltage  
(except for  
IIC (SMBus)*2  
VCC = 3.6 to  
5.5 V  
Schmitt trigger  
input pin)  
VIH  
VIL  
2.0  
-
-
-
-
VCC =2.7 to  
3.6 V  
0.8  
VCC = 2.7 to  
5.5 V  
5 V-tolerant ports*3  
VIH  
VIL  
VIH  
VIL  
VCC × 0.8  
-
-
-
-
5.8  
-
-
VCC × 0.2  
P002, P003,  
P012 to P015,  
P500 to P502  
AVCC0 × 0.8  
-
-
AVCC0 × 0.2  
P100 to P107  
VIH  
VIL  
VIH  
AVCC1 × 0.8  
-
-
-
-
-
AVCC1 × 0.2  
P914, P915  
VCC_USB ×  
0.8  
VCC_USB +  
0.3  
VIL  
-
-
VCC_USB ×  
0.2  
EXTAL  
VIH  
VIL  
VCC × 0.8  
-
-
-
-
Input ports pins except for  
P002, P003, P012 to P015,  
P100 to P107, P500 to P502,  
P914, P915  
VCC × 0.2  
Note 1. SCL0_A, SCL0_B, SCL0_C, SDA0_A, SDA0_C, SCL1_B, SCL1_C, SDA1_B, SDA1_C (total 9 pins)  
Note 2. SCL0_A, SCL0_B, SCL0_C, SDA0_A, SDA0_B, SDA0_C, SCL1_A, SCL1_B, SCL1_C, SDA1_A, SDA1_B, SDA1_C, SDA1_D  
(total 13 pins)  
Note 3. P000, P111, P112, P205, P206, P301, P401, P407, P409 (total 9 pins)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 22 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.2.3  
I/O IOH, IOL  
Table 2.5  
I/O IOH, IOL  
Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_USB_LDO = 1.6 to 5.5 V  
Parameter  
Symbol  
IOH  
Min  
Typ  
Max  
-4.0  
4.0  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
Permissible output current Ports P212, P213  
(average value per pin)  
-
-
-
-
-
-
-
-
-
-
-
-
-
IOL  
Ports P407, P408, P409  
Low drive*1  
IOH  
-4.0  
4.0  
IOL  
Middle drive for IIC IOH  
-8.0  
8.0  
Fast mode and  
SPI*4  
IOL  
Middle drive*2  
VCC = 3.0 to 5.5 V  
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-20.0  
20.0  
-4.0  
4.0  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Ports P914, P915  
Other output pins*3  
Low drive*1  
Middle drive*2  
-
-4.0  
4.0  
-8.0  
8.0  
Permissible output current Ports P212, P213  
(max value per pin)  
-4.0  
4.0  
Ports P407, P408, P409  
Low drive*1  
-4.0  
4.0  
Middle drive for IIC IOH  
Fast mode and  
SPI*4  
-8.0  
8.0  
IOL  
Middle drive*2  
VCC = 3.0 to 5.5 V  
IOH  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-20.0  
20.0  
-4.0  
4.0  
-4.0  
4.0  
-8.0  
8.0  
-30  
30  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IOL  
Ports P914, P915  
Other output pins*3  
IOH  
IOL  
Low drive*1  
IOH  
IOL  
Middle drive*2  
IOH  
IOL  
Permissible output current Total of ports P002, P003, P012 to P015, P500 to  
ΣIOH (max)  
ΣIOL (max)  
ΣIOH (max)  
ΣIOL (max)  
ΣIOH  
(max value total pins)  
P502  
Total of ports P100 to P107  
-30  
30  
Total of ports P914, P915  
Total of all output pin*5  
-4.0  
4.0  
-60  
60  
ΣIOL  
ΣIOH (max)  
ΣIOL (max)  
Note 1. This is the value when low driving ability is selected with the Port Drive Capability bit in the PmnPFS register.  
Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in the PmnPFS register.  
Note 3. Except for Ports P200, P214, P215, which are input ports.  
Note 4. This is the value when middle driving ability for IIC Fast mode and SPI is selected with the Port Drive Capability bit in PmnPFS  
register.  
Note 5. For details on the permissible output current used with CTSU, see section 2.12, CTSU Characteristics.  
Caution:  
To protect the reliability of the MCU, the output current values should not exceed the values in Table  
2.5. The average output current indicates the average current value measured during 100 μs.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 23 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.2.4  
I/O VOH, VOL, and Other Characteristics  
Table 2.6  
I/O VOH, VOL (1)  
Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_USB_LDO = 4.0 to 5.5 V  
Parameter  
Symbol Min  
Typ Max Unit Test conditions  
Output voltage IIC*1  
VOL  
VOL*2,*5  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.4  
0.6  
-
V
IOL = 3.0 mA  
IOL = 6.0 mA  
IOH = -2.0 mA  
IOL = 2.0 mA  
IOH = -4.0 mA  
IOL = 4.0 mA  
IOH = -20 mA  
IOL = 20 mA  
IOH = -2.0 mA  
IOL = 2.0 mA  
IOH = -4.0 mA  
IOL = 4.0 mA  
IOH = -2.0 mA  
IOL = 2.0 mA  
IOH = -4.0 mA  
IOL = 4.0 mA  
IOH = -2.0 mA  
IOL = 2.0 mA  
IOH = -2.0 mA  
IOL = 2.0 mA  
IOH = -4.0 mA  
IOL = 4.0 mA  
-
Ports P407, P408,  
P409  
Low drive  
VCC - 0.8  
-
0.8  
-
Middle drive for IIC  
Fast mode and SPI*5  
VCC - 0.8  
-
0.8  
-
Middle drive*2,*3  
Low drive  
VCC - 1.0  
-
1.0  
-
Ports P002, P003,  
P012 to P015,  
P500 to P502  
AVCC0 - 0.8  
-
0.8  
-
Middle drive  
Low drive  
AVCC0 - 0.8  
-
0.8  
-
Ports P100 to P107  
AVCC1 - 0.8  
-
0.8  
-
Middle drive  
AVCC1 - 0.8  
-
0.8  
-
Ports P914, P915  
Other output pins*4  
VCC_USB - 0.8  
-
0.8  
-
Low drive  
VCC - 0.8  
-
0.8  
-
Middle drive*6  
VCC - 0.8  
-
0.8  
Note 1. SCL0_A, SCL0_B, SCL0_C, SDA0_A, SDA0_B, SDA0_C, SCL1_A, SCL1_B, SCL1_C, SDA1_A, SDA1_B, SDA1_C, SDA1_D  
(total 13 pins).  
Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in the PmnPFS register.  
Note 3. Based on characterization data, not tested in production.  
Note 4. Except for P200, P214, P215, which are input ports.  
Note 5. This is the value when middle driving ability for IIC and SPI is selected with the Port Drive Capability bit in PmnPFS register for  
P407, P408, and P409.  
Note 6. Except for P212, P213.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 24 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.7  
I/O VOH, VOL (2)  
Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_USB_LDO = 2.7 to 4.0 V  
Parameter  
Symbol Min  
Typ Max  
Unit Test conditions  
Output voltage IIC*1  
VOL  
-
-
-
-
-
-
-
-
0.4  
0.6  
-
V
IOL = 3.0 mA  
IOL = 6.0 mA  
IOH = -1.0 mA  
IOL = 1.0 mA  
IOH = -2.0 mA  
IOL = 2.0 mA  
VOL*2,*5  
VOH  
-
Ports P407, P408,  
P409  
Low drive  
VCC - 0.5  
VOL  
-
0.5  
-
Middle drive for IIC  
Fast mode and SPI*5  
VOH  
VCC - 0.5  
-
VOL  
0.5  
-
Middle drive*2,*3  
VOH  
VCC - 1.0  
IOH = -20 mA  
VCC = 3.3 V  
VOL  
-
-
1.0  
IOL = 20 mA  
VCC = 3.3 V  
Ports P002, P003,  
P012 to P015,  
P500 to P502  
Low drive  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
AVCC0 - 0.5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IOH = -1.0 mA  
IOL = 1.0 mA  
IOH = -2.0 mA  
IOL = 2.0 mA  
IOH = -1.0 mA  
IOL = 1.0 mA  
IOH = -2.0 mA  
IOL = 2.0 mA  
IOH = -1.0 mA  
IOL = 1.0 mA  
IOH = -1.0 mA  
IOL = 1.0 mA  
IOH = -2.0 mA  
IOL = 2.0 mA  
-
0.5  
-
Middle drive  
Low drive  
AVCC0 - 0.5  
-
0.5  
-
Ports P100 to P107  
AVCC1 - 0.5  
-
0.5  
-
Middle drive  
AVCC1 - 0.5  
-
0.5  
-
Ports P914, P915  
Other output pins*4  
VCC_USB - 0.5  
-
0.5  
-
Low drive  
VCC - 0.5  
-
0.5  
-
Middle drive*6  
VCC - 0.5  
-
0.5  
Note 1. SCL0_A, SCL0_B, SCL0_C, SDA0_A, SDA0_B, SDA0_C, SCL1_A, SCL1_B, SCL1_C, SDA1_A, SDA1_B, SDA1_C, SDA1_D  
(total 13 pins).  
Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in the PmnPFS register.  
Note 3. Based on characterization data, not tested in production.  
Note 4. Except for P200, P214, P215, which are input ports.  
Note 5. This is the value when middle driving ability for IIC and SPI is selected with the Port Drive Capability bit in PmnPFS register for  
P407, P408, and P409.  
Note 6. Except for P212, P213.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 25 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.8  
I/O VOH, VOL (3)  
Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_USB_LDO = 1.6 to 2.7 V  
Parameter  
Symbol Min  
VCC - 0.3  
Typ  
Max Unit Test conditions  
Output voltage Ports P407, P408,  
P409  
Low drive  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V
IOH = -0.5 mA  
IOL = 0.5 mA  
IOH = -1.0 mA  
IOL = 1.0 mA  
IOH = -0.5 mA  
IOL = 0.5 mA  
IOH = -1.0 mA  
IOL = 1.0 mA  
IOH = -0.5 mA  
IOL = 0.5 mA  
IOH = -1.0 mA  
IOL = 1.0 mA  
IOH = -0.5 mA  
IOL = 0.5 mA  
IOH = -0.5 mA  
IOL = 0.5 mA  
IOH = -1.0 mA  
IOL = 1.0 mA  
-
0.3  
-
Middle drive for IIC  
Fast mode and SPI*2  
VCC - 0.3  
-
0.3  
-
Ports P002, P003,  
P012 to P015,  
P500 to P502  
Low drive  
AVCC0 - 0.3  
-
0.3  
-
Middle drive  
AVCC0 - 0.3  
-
0.3  
-
Ports P100 to P107 Low drive  
AVCC0 - 0.3  
-
0.3  
-
Middle drive  
AVCC0 - 0.3  
-
0.3  
-
Ports P914, P915  
VCC_USB - 0.3  
-
0.3  
-
Other output pins*1 Low drive  
VCC - 0.3  
-
0.3  
-
Middle drive*3  
VCC - 0.3  
-
0.3  
Note 1. Except for ports P200, P214, P215, which are input ports.  
Note 2. This is the value when middle driving ability for IIC and SPI is selected with the Port Drive Capability bit in the  
PmnPFS register for P407, P408, and P409.  
Note 3. Except for P212, P213.  
Table 2.9  
I/O other characteristics  
Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = VCC_USB_LDO = 1.6 to 5.5 V  
Parameter  
Symbol  
| Iin  
Min  
Typ  
Max  
Unit  
Test conditions  
Input leakage current  
RES, ports P200, P214, P215  
5 V-tolerant ports  
|
-
-
1.0  
μA  
Vin = 0 V  
Vin = VCC  
Three-state leakage  
current (off state)  
| ITSI  
|
-
-
1.0  
1.0  
50  
μA  
Vin = 0 V  
Vin = 5.8 V  
Other ports  
-
-
Vin = 0 V  
Vin = VCC  
Input pull-up resistor  
Input capacitance  
All ports  
(except for P200, P214, P215,  
P914, P915)  
RU  
Cin  
10  
20  
kΩ  
Vin = 0 V  
P012 to P015, P200, P502,  
P914, P915  
-
-
-
-
30  
15  
pF  
Vin = 0 V  
f = 1 MHz  
Ta = 25°C  
Other input pins  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 26 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.2.5  
Output Characteristics for I/O Pins (Low Drive Capacity)  
IOH/IOL vs VOH/VOL  
60  
50  
40  
30  
20  
VCC = 5.5 V  
VCC = 3.3 V  
VCC = 2.7 V  
10  
0
VCC = 1.6 V  
VCC = 1.6 V  
-10  
-20  
-30  
-40  
VCC = 2.7 V  
VCC = 3.3 V  
-50  
-60  
VCC = 5.5 V  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.2  
VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when low drive output is selected  
(reference data, except for P914 and P915)  
IOH/IOL vs VOH/VOL  
3
Ta = -40C  
Ta = 25C  
2
Ta = 105C  
1
0
-1  
-2  
Ta = 105C  
Ta = 25C  
Ta = -40C  
-3  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
VOH/VOL [V]  
Figure 2.3  
V
OH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when low drive output is selected  
(reference data, except for P914 and P915)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 27 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
IOH/IOL vs VOH/VOL  
20  
15  
10  
5
Ta = -40C  
Ta = 25C  
Ta = 105C  
0
-5  
Ta = 105C  
-10  
-15  
Ta = 25C  
Ta = -40C  
-20  
0
0.5  
1
1.5  
2
2.5  
3
VOH/VOL [V]  
Figure 2.4  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when low drive output is selected  
(reference data, except for P914 and P915)  
IOH/IOL vs VOH/VOL  
30  
Ta = -40C  
Ta = 25C  
20  
Ta = 105C  
10  
0
-10  
Ta = 105C  
Ta = 25C  
Ta = -40C  
-20  
-30  
0
0.5  
1
1.5  
VOH/VOL [V]  
2
2.5  
3
3.5  
Figure 2.5  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when low drive output is selected  
(reference data, except for P914 and P915)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 28 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
IOH/IOL vs VOH/VOL  
60  
40  
20  
Ta = -40C  
Ta = 25C  
Ta = 105C  
0
-20  
-40  
Ta = 105C  
Ta = 25C  
Ta = -40C  
-60  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.6  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when low drive output is selected  
(reference data, except for P914 and P915)  
2.2.6  
Output Characteristics for I/O Pins (Middle Drive Capacity)  
IOH/IOL vs VOH/VOL  
140  
120  
VCC = 5.5 V  
100  
80  
60  
VCC = 3.3 V  
40  
VCC = 2.7 V  
20  
VCC = 1.6 V  
0
VCC = 1.6 V  
-20  
VCC = 2.7 V  
-40  
VCC = 3.3 V  
-60  
-80  
-100  
-120  
VCC = 5.5 V  
-140  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.7  
VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected  
(reference data, except for P914 and P915)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 29 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
IOH/IOL vs VOH/VOL  
6
4
Ta = -40C  
Ta = 25C  
Ta = 105C  
2
0
-2  
-4  
Ta = 105C  
Ta = 25C  
Ta = -40C  
-6  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
VOH/VOL [V]  
Figure 2.8  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when middle drive output is  
selected (reference data, except for P914 and P915)  
IOH/IOL vs VOH/VOL  
40  
Ta = -40C  
Ta = 25C  
30  
Ta = 105C  
20  
10  
0
-10  
-20  
Ta = 105C  
Ta = 25C  
-30  
Ta = -40C  
-40  
0
0.5  
1
1.5  
2
2.5  
3
VOH/VOL [V]  
Figure 2.9  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is  
selected (reference data, except for P914 and P915)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 30 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
IOH/IOL vs VOH/VOL  
60  
40  
20  
Ta = -40C  
Ta = 25C  
Ta = 105C  
0
-20  
-40  
Ta = 105C  
Ta = 25C  
Ta = -40C  
-60  
0
0.5  
1
1.5  
VOH/VOL [V]  
2
2.5  
3
3.5  
Figure 2.10  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is  
selected (reference data, except for P914 and P915)  
IOH/IOL vs VOH/VOL  
140  
Ta = -40C  
Ta = 25C  
120  
100  
Ta = 105C  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
Ta = 105C  
-100  
Ta = 25C  
-120  
Ta = -40C  
-140  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.11  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is  
selected (reference data, except for P914 and P915)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 31 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.2.7  
Output Characteristics for P407, P408 and P409 I/O Pins (Middle Drive  
Capacity)  
IOH/IOL vs VOH/VOL  
200  
180  
160  
140  
120  
100  
80  
VCC = 5.5 V  
VCC = 3.3 V  
VCC = 2.7 V  
60  
40  
20  
0
-20  
-40  
-60  
VCC = 2.7 V  
VCC = 3.3 V  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
VCC = 5.5 V  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.12  
VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected  
(reference data)  
IOH/IOL vs VOH/VOL  
60  
Ta = -40C  
Ta = 25C  
Ta = 105C  
40  
20  
0
-20  
-40  
Ta = 105C  
Ta = 25C  
Ta = -40C  
-60  
0
0.5  
1
1.5  
2
2.5  
3
VOH/VOL [V]  
Figure 2.13  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is  
selected (reference data)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 32 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
IOH/IOL vs VOH/VOL  
100  
80  
Ta = -40C  
Ta = 25C  
Ta = 105C  
60  
40  
20  
0
-20  
-40  
Ta = 105C  
Ta = 25C  
-60  
-80  
Ta = -40C  
-100  
0
0.5  
1
1.5  
VOH/VOL [V]  
2
2.5  
3
3.5  
Figure 2.14  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is  
selected (reference data)  
IOH/IOL vs VOH/VOL  
220  
Ta = -40C  
180  
140  
100  
Ta = 25C  
Ta = 105C  
60  
20  
-20  
-60  
-100  
-140  
-180  
-220  
Ta = 105C  
Ta = 25C  
Ta = -40C  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.15  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is  
selected (reference data)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 33 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.2.8  
Output Characteristics for IIC I/O Pins  
IOL vs VOL  
120  
110  
100  
90  
VCC = 5.5 V (Middle drive)  
80  
70  
60  
50  
40  
30  
20  
10  
VCC = 3.3 V (Middle drive)  
VCC = 5.5 V (Low drive)  
VCC = 2.7 V (Middle drive)  
VCC = 3.3 V (Low drive)  
VCC = 2.7 V (Low drive)  
0
0
1
2
3
4
5
6
VOL [V]  
Figure 2.16  
VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 34 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.2.9  
Operating and Standby Current  
Table 2.10  
Operating and standby current (1) (1 of 2)  
Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V  
Test  
10  
Parameter  
Symbol Typ*  
ICC  
Max  
Unit Conditions  
Supply  
current*1  
High-speed  
mode*2  
Normal mode  
All peripheral clocks  
disabled, while (1) code  
executing from flash*5  
ICLK = 48 MHz  
ICLK = 32 MHz  
ICLK = 16 MHz  
ICLK = 8 MHz  
ICLK = 48 MHz  
ICLK = 32 MHz  
ICLK = 16 MHz  
ICLK = 8 MHz  
ICLK = 48 MHz  
ICLK = 32 MHz  
ICLK = 16 MHz  
ICLK = 8 MHz  
ICLK = 48 MHz  
5.2  
3.8  
2.3  
1.6  
12.1  
8.3  
4.6  
2.8  
12.6  
10.9  
5.9  
3.4  
-
-
mA  
*7, *11  
-
-
-
All peripheral clocks  
disabled, CoreMark code  
executing from flash*5  
-
-
-
-
All peripheral clocks  
enabled, while (1) code  
executing from flash*5  
-
*9, *11  
*8, *11  
-
-
-
All peripheral clocks  
enabled, code executing  
from flash*5  
28.5  
*9, *11  
7
*
Sleep mode  
All peripheral clocks  
disabled*5  
ICLK = 48 MHz  
ICLK = 32 MHz  
ICLK = 16 MHz  
ICLK = 8 MHz  
ICLK = 48 MHz  
ICLK = 32 MHz  
ICLK = 16 MHz  
ICLK = 8 MHz  
2.7  
2.1  
1.5  
1.1  
9.8  
8.9  
5.0  
2.9  
2.5  
1.6  
1.3  
-
-
-
-
-
-
-
-
-
-
-
9
*
All peripheral clocks  
enabled*5  
8
*
Increase during BGO operation*6  
-
Middle-speed Normal mode  
mode*2  
All peripheral clocks  
disabled, while (1) code  
executing from flash*5  
ICLK = 12 MHz  
ICLK = 8 MHz  
ICC  
mA  
*7, *11  
All peripheral clocks  
disabled, CoreMark code  
executing from flash*5  
ICLK = 12 MHz  
ICLK = 8 MHz  
3.4  
2.6  
-
-
All peripheral clocks  
enabled, while (1) code  
executing from flash*5  
ICLK = 12 MHz  
ICLK = 8 MHz  
4.3  
3.1  
-
-
*8, *11  
All peripheral clocks  
enabled, code executing  
from flash*5  
ICLK = 12 MHz  
-
12.6  
7
*
Sleep mode  
All peripheral clocks  
disabled*5  
ICLK = 12 MHz  
ICLK = 8 MHz  
ICLK = 12 MHz  
ICLK = 8 MHz  
1.0  
0.9  
3.6  
2.7  
2.5  
-
-
-
-
-
8
*
All peripheral clocks  
enabled*5  
Increase during BGO operation*6  
-
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 35 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.10  
Operating and standby current (1) (2 of 2)  
Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V  
Test  
10  
Parameter  
Symbol Typ*  
Max  
Unit Conditions  
Supply  
current*1  
Low-speed  
mode*3  
Normal mode  
All peripheral clocks  
disabled, while (1) code  
executing from flash*5  
ICLK = 1 MHz  
ICLK = 1 MHz  
ICLK = 1 MHz  
ICLK = 1 MHz  
ICC  
ICC  
ICC  
0.3  
0.4  
0.5  
-
-
mA  
mA  
μA  
*7, *11  
All peripheral clocks  
disabled, CoreMark code  
executing from flash*5  
-
All peripheral clocks  
enabled, while (1) code  
executing from flash*5  
-
*8, *11  
All peripheral clocks  
enabled, code executing  
from flash*5  
2.5  
7
*
Sleep mode  
All peripheral clocks  
disabled*5  
ICLK = 1 MHz  
ICLK = 1 MHz  
ICLK = 4 MHz  
0.2  
0.4  
1.5  
-
-
-
8
*
All peripheral clocks  
enabled*5  
Low-voltage  
mode*3  
Normal mode  
All peripheral clocks  
disabled, while (1) code  
executing from flash*5  
*7, *11  
All peripheral clocks  
disabled, CoreMark code  
executing from flash*5  
ICLK = 4 MHz  
ICLK = 4 MHz  
ICLK = 4 MHz  
2.2  
2.5  
-
-
All peripheral clocks  
enabled, while (1) code  
executing from flash*5  
-
*8, *11  
All peripheral clocks  
enabled, code executing  
from flash*5  
7.0  
7
*
Sleep mode  
All peripheral clocks  
disabled*5  
ICLK = 4 MHz  
1.3  
2.3  
6.5  
-
-
-
8
*
All peripheral clocks  
enabled*5  
ICLK = 4 MHz  
Subosc-  
speed  
mode*4  
Normal mode  
All peripheral clocks  
disabled, while (1) code  
executing from flash*5  
ICLK = 32.768 kHz  
*8, *11  
All peripheral clocks  
enabled, while (1) code  
executing from flash*5  
ICLK = 32.768 kHz  
ICLK = 32.768 kHz  
12.1  
-
-
All peripheral clocks  
enabled, code executing  
from flash*5  
190.0  
8
*
Sleep mode  
All peripheral clocks  
disabled*5  
ICLK = 32.768 kHz  
ICLK = 32.768 kHz  
4.5  
-
-
8
*
All peripheral clocks  
enabled*5  
10.2  
Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up  
MOSs are in the off state.  
Note 2. The clock source is HOCO.  
Note 3. The clock source is MOCO.  
Note 4. The clock source is the sub-clock oscillator.  
Note 5. This does not include BGO operation.  
Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution.  
Note 7. FCLK, PCLKB, and PCLKD are set to divided by 64.  
Note 8. FCLK, PCLKB, and PCLKD are the same frequency as that of ICLK.  
Note 9. FCLK and PCLKB are set to be divided by 2 and PCLKD is the same frequency as that of ICLK.  
Note 10. VCC = 3.3 V.  
Note 11. The flash cache is operating.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 36 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
30  
25  
20  
15  
10  
5
Ta = 105Ԩ, ICLK = 48MHz*2  
Ta = 105Ԩ, ICLK = 32MHz*2  
Ta = 25Ԩ, ICLK = 48MHz*1  
Ta = 105Ԩ, ICLK = 16MHz*2  
Ta = 25Ԩ, ICLK = 32MHz*1  
Ta = 105Ԩ, ICLK = 8MHz*2  
Ta = 25Ԩ, ICLK = 16MHz*1  
㻢㻚㻜  
Ta = 105Ԩ, ICLK = 4MHz*2  
Ta = 25Ԩ, ICLK = 8MHz*1  
Ta = 25Ԩ, ICLK = 4MHz*1  
0
㻝㻚㻡  
㻞㻚㻜  
㻞㻚㻡  
㻟㻚㻜  
㻟㻚㻡  
㻠㻚㻜  
㻠㻚㻡  
㻡㻚㻜  
㻡㻚㻡  
VCC (V)  
Ta = 25Ԩ, ICLK = 48MHz *1  
Ta = 25Ԩ, ICLK = 32MHz *1  
Ta = 25Ԩ, ICLK = 16MHz *1  
Ta = 25Ԩ, ICLK = 8MHz *1  
Ta = 25
Ԩ
, ICLK = 4MHz *1  
Ta = 105Ԩ, ICLK = 48MHz *2  
Ta = 105Ԩ, ICLK = 32MHz *2  
Ta = 105Ԩ, ICLK = 16MHz *2  
Ta = 105Ԩ, ICLK = 8MHz *2  
Ta = 105
Ԩ
, ICLK = 4MHz *2  
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual  
measurements of the sample cores during product evaluation.  
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the  
actual measurements for the upper limit samples during product evaluation.  
Figure 2.17  
Voltage dependency in high-speed operating mode (reference data)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 37 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
10  
9
8
7
6
5
4
3
2
1
Ta = 105
Ԩ
, ICLK = 12MHz*2  
Ta = 105
Ԩ
, ICLK = 8MHz*2  
Ta = 25
Ԩ
, ICLK = 12MHz*1  
Ta = 105
Ԩ
, ICLK = 4MHz*2  
Ta = 25
Ԩ
, ICLK = 8MHz*1  
Ta = 25
Ԩ
, ICLK = 4MHz*1  
Ta = 105
Ԩ
, ICLK = 1MHz*2  
Ta = 25
Ԩ
, ICLK = 1MHz*1  
0
㻝㻚㻡  
㻞㻚㻜  
㻞㻚㻡  
㻟㻚㻜  
㻟㻚㻡  
㻠㻚㻜  
㻠㻚㻡  
㻡㻚㻜  
㻡㻚㻡  
㻢㻚㻜  
VCC (V)  
Ta = 25Ԩ, ICLK = 12MHz *1  
Ta = 25Ԩ, ICLK = 8MHz *1  
Ta = 25Ԩ, ICLK = 4MHz *1  
Ta = 25
Ԩ
, ICLK = 1MHz *1  
Ta = 105Ԩ, ICLK = 12MHz *2  
Ta = 105Ԩ, ICLK = 8MHz *2  
Ta = 105Ԩ, ICLK = 4MHz *2  
Ta = 105
Ԩ
, ICLK = 1MHz *2  
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual  
measurements of the sample cores during product evaluation.  
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the  
actual measurements for the upper limit samples during product evaluation.  
Figure 2.18  
Voltage dependency in middle-speed operating mode (reference data)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 38 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Ta = 105
Ԩ
, ICLK = 1MHz*2  
Ta = 25
Ԩ
, ICLK = 1MHz*1  
0.0  
㻝㻚㻡  
㻞㻚㻜  
㻞㻚㻡  
㻟㻚㻜  
㻟㻚㻡  
㻠㻚㻜  
㻠㻚㻡  
㻡㻚㻜  
㻡㻚㻡  
㻢㻚㻜  
VCC (V)  
Ta = 25
Ԩ
, ICLK = 1MHz *1  
Ta = 105
Ԩ
, ICLK = 1MHz *2  
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual  
measurements of the sample cores during product evaluation.  
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the  
actual measurements for the upper limit samples during product evaluation.  
Figure 2.19  
Voltage dependency in low-speed operating mode (reference data)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 39 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Ta = 105
Ԩ
, ICLK = 4MHz*2  
Ta = 25
Ԩ
, ICLK = 4MHz*1  
Ta = 105
Ԩ
, ICLK = 1MHz*2  
Ta = 25
Ԩ
, ICLK = 1MHz*1  
0.0  
㻝㻚㻡  
㻞㻚㻜  
㻞㻚㻡  
㻟㻚㻜  
㻟㻚㻡  
㻠㻚㻜  
㻠㻚㻡  
㻡㻚㻜  
㻡㻚㻡  
㻢㻚㻜  
VCC (V)  
Ta = 25Ԩ, ICLK = 4MHz *1  
Ta = 25
Ԩ
, ICLK = 1MHz *1  
Ta = 105Ԩ, ICLK = 4MHz *2  
Ta = 105
Ԩ
, ICLK = 1MHz *2  
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual  
measurements of the sample cores during product evaluation.  
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the  
actual measurements for the upper limit samples during product evaluation.  
Figure 2.20  
Voltage dependency in low-voltage operating mode (reference data)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 40 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
180  
160  
140  
120  
100  
80  
Ta = 105
Ԩ
, ICLK = 32kHz*2  
Ta = 25
Ԩ
, ICLK = 32kHz*1  
60  
40  
20  
Ta = 25
Ԩ
, ICLK = 32kHz*1*3  
0
㻝㻚㻡  
㻞㻚㻜  
㻞㻚㻡  
㻟㻚㻜  
㻟㻚㻡  
㻠㻚㻜  
㻠㻚㻡  
㻡㻚㻜  
㻡㻚㻡  
㻢㻚㻜  
VCC (V)  
Ta = 25Ԩ, ICLK = 32kHz *1  
Ta = 25
Ԩ
, ICLK = 32kHz *1*3  
Ta = 105Ԩ, ICLK = 32kHz *2  
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual  
measurements of the sample cores during product evaluation.  
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the  
actual measurements for the upper limit samples during product evaluation.  
Note 3. MOCO and DAC are stopped.  
Figure 2.21  
Voltage dependency in subosc-speed operating mode (reference data)  
Operating and standby current (2)  
Table 2.11  
Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V  
Parameter  
Symbol Typ*3  
Max  
2.0  
7.0  
17.0  
45.0  
-
Unit  
Test conditions  
Supply  
current*1  
Software Standby Ta = 25°C  
ICC  
0.5  
0.8  
1.8  
4.4  
0.4  
μA  
-
mode*2  
Ta = 55°C  
Ta = 85°C  
Ta = 105°C  
Increment for RTC operation with  
low-speed on-chip oscillator*4  
-
Increment for RTC operation with  
sub-clock oscillator*4  
0.5  
1.3  
-
-
SOMCR.SODRV[1:0] are 11b  
(Low power mode 3)  
SOMCR.SODRV[1:0] are 00b  
(normal mode)  
Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up  
MOS transistors are in the off state.  
Note 2. The IWDT and LVD are not operating.  
Note 3. VCC = 3.3 V.  
Note 4. Includes the low-speed on-chip oscillator or sub-oscillation circuit current.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 41 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
100  
10  
1
0.1  
㻙㻠㻜  
㻙㻞㻜  
㻞㻜  
㻠㻜  
㻢㻜  
㻤㻜  
㻝㻜㻜  
Ta (Ԩ)  
Average value of the tested middle samples during product evaluation.  
Average value of the tested upper-limit samples during product evaluation.  
Figure 2.22  
Temperature dependency in Software Standby mode (reference data)  
10  
Normal drive capacity*1  
Low drive capacity*1  
1
0
㻙㻠㻜  
㻙㻞㻜  
㻞㻜  
㻠㻜  
㻢㻜  
㻤㻜  
㻝㻜㻜  
Ta (Ԩ)  
Low drive capacity*1  
Normal drive capacity*1  
Note:  
Average value of the tested middle samples during product evaluation.  
Figure 2.23  
Temperature dependency of RTC operation (reference data)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 42 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.12  
Operating and standby current (3)  
Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V  
Test  
Parameter  
Symbol Min Typ  
Max  
1.5  
Unit  
mA  
mA  
mA  
μA  
conditions  
Analog power  
supply current  
During 16-bit A/D conversion  
IAVCC0  
-
-
-
-
-
-
-
-
-
-
-
-
During 8-bit D/A conversion (per channel) *1  
During 12-bit D/A conversion (per channel) *1  
1.6  
0.9  
Waiting for 16-bit A/D, 8-bit D/A and 12-bit D/A  
conversion (all units) *5  
2.0  
During 24-bit sigma-delta A/D conversion  
(at normal mode)  
IAVCC1  
-
-
-
-
-
-
1.29  
1.06  
0.9  
mA  
mA  
mA  
-
During 24-bit sigma-delta A/D conversion  
(at low-power conversion)  
G
G
SET1 = 8, or  
TOTAL = 24,32  
G
SET1, GTOTAL =  
the others  
Waiting for 24-bit sigma-delta A/D conversion*6  
During 16-bit A/D conversion  
-
-
-
-
-
-
-
-
-
-
-
-
1.0  
80  
μA  
μA  
nA  
μA  
nA  
μA  
-
-
-
-
-
Reference  
power supply  
current  
IREFH0  
IREFH  
IREFI  
Waiting for 16-bit A/D conversion  
During 12-bit D/A conversion  
60  
650  
100  
30  
Waiting for 12-bit D/A conversion  
During 24-bit sigma-delta A/D conversion  
External VREF  
mode  
Temperature Sensor (TSN) operating current  
ITNS  
-
-
-
-
75  
15  
10  
2
-
-
-
-
μA  
μA  
μA  
μA  
-
-
-
-
Low-power  
Analog  
Window comparator (high-speed mode)  
ICMPLP  
Comparator (high-speed mode)  
Comparator (low-speed mode)  
Comparator  
(ACMPLP)  
operating  
current  
High-speed analog comparator (ACMPHS) operating current  
ICPMHS  
IAMP  
-
-
-
-
-
-
-
-
-
-
-
-
70  
100  
16  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
μA  
mA  
AVCC0 2.7 V  
Operational  
Amplifier  
(OPAMP)  
operating  
current  
Low power mode  
Middle speed mode  
High speed mode  
1 unit operating  
2 unit operating  
3 unit operating  
1 unit operating  
2 unit operating  
3 unit operating  
1 unit operating  
2 unit operating  
3 unit operating  
10  
-
-
-
-
-
-
-
-
-
-
-
19  
30  
28  
44  
280  
530  
770  
0.74  
1.41  
2.07  
65  
360  
690  
1020  
0.91  
1.74  
2.57  
130  
-
Internal reference voltage for ADC16 operating current  
IVREFADC  
2
USBFS  
operating  
current  
During USB communication under the following  
settings and conditions:  
IUSBF  
*
3.6 (VCC)  
1.1 (VCC_USB)*4  
Function controller is in Full-Speed mode and  
- Bulk OUT transfer is (64 bytes) × 1  
- Bulk IN transfer is (64 bytes) × 1  
Host device is connected by a 1-meter USB cable  
from the USB port.  
3
During suspended state under the following setting  
and conditions:  
ISUSP  
*
-
0.35 (VCC)  
170 (VCC_USB)*4  
-
μA  
-
Function controller is in Full-Speed mode (the  
USB_DP pin is pulled up)  
Software Standby mode  
Host device is connected through a 1-meter USB  
cable from the USB port.  
Note 1. The reference power supply current is included in the power supply current value for D/A conversion.  
Note 2. Current is consumed only by the USBFS.  
Note 3. Includes the current supplied from the pull-up resistor of the USB_DP pin to the pull-down resistor of the host device, in addition  
to the current consumed by the MCU in the suspended state.  
Note 4. When VCC = VCC_USB = 3.3 V.  
Note 5. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC160 module-stop bit) is in the module-stop  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 43 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
state.  
Note 6. When the MCU is in the MSTPCRD.MSTPD17 (SDADC24 module-stop bit) is in the module-stop state.  
2.2.10  
VCC Rise and Fall Gradient and Ripple Frequency  
Table 2.13  
Rise and fall gradient characteristics  
Conditions: VCC = AVCC0 = AVCC1 = 0 to 5.5 V  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test conditions  
Power-on VCC  
rising gradient  
Voltage monitor 0 reset disabled at startup  
SrVCC 0.02  
-
2
-
ms/V  
-
Voltage monitor 0 reset enabled at startup*1,  
SCI/USB boot mode*2  
*
2
2
Note 1. When OFS1.LVDAS = 0.  
Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit.  
Table 2.14  
Rising and falling gradient and ripple frequency characteristics  
Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V  
The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (5.5 V) and lower limit  
(1.6 V).  
When the VCC change exceeds VCC ± 10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Allowable ripple frequency  
fr(VCC)  
-
-
10  
kHz  
Figure 2.24  
Vr (VCC) VCC × 0.2  
-
-
-
-
1
MHz  
MHz  
ms/V  
Figure 2.24  
V
r (VCC) VCC × 0.08  
Figure 2.24  
r (VCC) VCC × 0.06  
When VCC change exceeds VCC ± 10%  
-
10  
-
V
Allowable voltage change rising and  
falling gradient  
dt/dVCC  
1.0  
1 / fr(VCC)  
VCC  
Vr(VCC)  
Figure 2.24  
Ripple waveform  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 44 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.3  
AC Characteristics  
2.3.1  
Frequency  
Table 2.15  
Operation frequency in high-speed operating mode  
Conditions: VCC = AVCC0 = AVCC1 = 2.4 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max*7  
48  
Unit  
Operation  
frequency  
System clock (ICLK)*6  
2.7 to 5.5 V  
2.4 to 2.7 V  
2.7 to 5.5 V  
2.4 to 2.7 V  
f
0.032768  
-
-
-
-
-
-
-
-
MHz  
0.032768  
16  
FlashIF clock (FCLK)*1,*2,*6  
0.032768  
32  
0.032768  
16  
Peripheral module clock (PCLKB)*5,*6 2.7 to 5.5 V  
2.4 to 2.7 V  
-
-
-
-
32  
16  
Peripheral module clock (PCLKD)*3,*6 2.7 to 5.5 V  
2.4 to 2.7 V  
64*4  
16  
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK  
for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or  
3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
Note 2. The frequency accuracy of FCLK must be ± 3.5% during programming or erasing the flash memory. Confirm the  
frequency accuracy of the clock source.  
Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC16 is in use.  
Note 4. The upper-limit frequency of PCLKD is 32 MHz when the ADC16 is in use.  
Note 5. The lower-limit frequency of PCLKB is 1 MHz when the SDADC24 is in use.  
Note 6. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK,  
PCLKB, PCLKD, and FCLK.  
Note 7. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for  
guaranteed operation, see Table 2.20, Clock timing.  
Table 2.16  
Operation frequency in middle-speed mode  
Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max*6  
12  
12  
8
Unit  
Operation  
frequency  
System clock (ICLK)*5  
2.7 to 5.5 V  
2.4 to 2.7 V  
1.8 to 2.4 V  
2.7 to 5.5 V  
2.4 to 2.7 V  
1.8 to 2.4 V  
2.7 to 5.5 V  
2.4 to 2.7 V  
1.8 to 2.4 V  
2.7 to 5.5 V  
2.4 to 2.7 V  
1.8 to 2.4 V  
f
0.032768  
-
-
-
-
-
-
-
-
-
-
-
-
MHz  
0.032768  
0.032768  
FlashIF clock (FCLK)*1,*2,*5  
0.032768  
12  
12  
8
0.032768  
0.032768  
Peripheral module clock (PCLKB)*4,*5  
Peripheral module clock (PCLKD)*3,*5  
-
-
-
-
-
-
12  
12  
8
12  
12  
8
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK  
for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3  
MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
Note 2. The frequency accuracy of FCLK must be ± 3.5% while programming or erasing the flash memory. Confirm the  
frequency accuracy of the clock source.  
Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC16 is in use.  
Note 4. The lower-limit frequency of PCLKB is 1 MHz when the SDADC24 is in use.  
Note 5. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK,  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 45 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
PCLKB, PCLKD, and FCLK.  
Note 6. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for  
guaranteed operation, see Table 2.20, Clock timing.  
Table 2.17  
Operation frequency in low-speed mode  
Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max*6  
Unit  
Operation  
frequency  
System clock (ICLK)*5  
1.8 to 5.5 V  
1.8 to 5.5 V  
1.8 to 5.5 V  
1.8 to 5.5 V  
f
0.032768  
-
-
-
-
1
1
1
1
MHz  
FlashIF clock (FCLK) *1,*2,*5  
0.032768  
Peripheral module clock (PCLKB)*4,*5  
Peripheral module clock (PCLKD)*3,*5  
-
-
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory.  
Note 2. The frequency accuracy of FCLK must be ± 3.5% while programming or erasing the flash memory. Confirm the frequency  
accuracy of the clock source.  
Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC16 is in use.  
Note 4. The lower-limit frequency of PCLKB is 1 MHz when the SDADC24 is in use.  
Note 5. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKB, PCLKD,  
and FCLK.  
Note 6. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed  
operation, see Table 2.20, Clock timing.  
Table 2.18  
Operation frequency in low-voltage mode  
Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max*6  
Unit  
Operation  
frequency  
System clock (ICLK)*5  
1.6 to 5.5 V  
1.6 to 5.5 V  
1.6 to 5.5 V  
1.6 to 5.5 V  
f
0.032768  
-
-
-
-
4
4
4
4
MHz  
FlashIF clock (FCLK)*1,*2,*5  
0.032768  
Peripheral module clock (PCLKB)*4,*5  
Peripheral module clock (PCLKD)*3,*5  
-
-
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for  
programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer  
frequency such as 1.5 MHz cannot be set.  
Note 2. The frequency accuracy of FCLK must be ± 3.5% during programming or erasing the flash memory. Confirm the frequency  
accuracy of the clock source.  
Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC16 is in use.  
Note 4. The lower-limit frequency of PCLKB is 1 MHz when the SDADC24 is in use.  
Note 5. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKB, PCLKD,  
and FCLK.  
Note 6. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed  
operation, see Table 2.20, Clock timing.  
Table 2.19  
Operation frequency in Subosc-speed mode  
Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Operation  
frequency  
System clock (ICLK)*4  
1.8 to 5.5 V  
1.8 to 5.5 V  
1.8 to 5.5 V  
1.8 to 5.5 V  
f
27.8528 32.768  
27.8528 32.768  
37.6832  
37.6832  
37.6832  
37.6832  
kHz  
FlashIF clock (FCLK)*1,*4  
Peripheral module clock (PCLKB)*3,*4  
Peripheral module clock (PCLKD)*2,*4  
-
-
-
-
Note 1. Programming and erasing the flash memory is not possible.  
Note 2. The ADC16 cannot be used.  
Note 3. The SDADC24 cannot be used.  
Note 4. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKB, PCLKD,  
and FCLK.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 46 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.3.2  
Clock Timing  
Table 2.20  
Clock timing (1 of 2)  
Parameter  
Symbol  
tXcyc  
tXH  
Min  
Typ  
Max  
Unit  
Test conditions  
EXTAL external clock input cycle time  
EXTAL external clock input high pulse width  
EXTAL external clock input low pulse width  
EXTAL external clock rising time  
50  
-
-
ns  
Figure 2.25  
20  
-
-
ns  
tXL  
20  
-
-
ns  
tXr  
-
-
5
ns  
EXTAL external clock falling time  
tXf  
-
-
5
ns  
EXTAL external clock input wait time*1  
EXTAL external clock input frequency  
tEXWT  
fEXTAL  
0.3  
-
-
μs  
-
-
-
20  
MHz  
2.4 VCC 5.5  
-
-
8
1.8 VCC < 2.4  
-
-
1
1.6 VCC < 1.8  
Main clock oscillator oscillation frequency  
fMAIN  
1
-
20  
MHz  
2.4 VCC 5.5  
1
-
8
1.8 VCC < 2.4  
1
-
4
1.6 VCC < 1.8  
LOCO clock oscillation frequency  
fLOCO  
27.8528  
32.768  
37.6832  
100  
17.25  
9.2  
kHz  
μs  
-
LOCO clock oscillation stabilization time  
IWDT-dedicated clock oscillation frequency  
MOCO clock oscillation frequency  
tLOCO  
-
-
Figure 2.26  
fILOCO  
fMOCO  
tMOCO  
fHOCO24  
12.75  
6.8  
15  
8
kHz  
MHz  
μs  
-
-
-
MOCO clock oscillation stabilization time  
HOCO clock oscillation frequency  
-
-
1
23.64  
24  
24.36  
MHz  
Ta = -40 to -20°C  
1.8 VCC 5.5  
22.68  
23.76  
23.52  
31.52  
30.24  
31.68  
31.36  
47.28  
47.52  
47.04  
63.04  
63.36  
62.72  
-
24  
24  
24  
32  
32  
32  
32  
48  
48  
48  
64  
64  
64  
-
25.32  
24.24  
24.48  
32.48  
33.76  
32.32  
32.64  
48.72  
48.48  
48.96  
64.96  
64.64  
65.28  
37.1  
Ta = -40 to 85°C  
1.6 VCC < 1.8  
Ta = -20 to 85°C  
1.8 VCC 5.5  
Ta = 85 to 105°C  
2.4 VCC 5.5  
fHOCO32  
Ta = -40 to -20°C  
1.8 VCC 5.5  
Ta = -40 to 85°C  
1.6 VCC < 1.8  
Ta = -20 to 85°C  
1.8 VCC 5.5  
Ta = 85 to 105°C  
2.4 VCC 5.5  
3
fHOCO48  
*
Ta = -40 to -20°C  
1.8 VCC 5.5  
Ta = -20 to 85°C  
1.8 VCC 5.5  
Ta = 85 to 105°C  
2.4 VCC 5.5  
4
fHOCO64  
*
Ta = -40 to -20°C  
2.4 VCC 5.5  
Ta = -20 to 85°C  
2.4 VCC 5.5  
Ta = 85 to 105°C  
2.4 VCC 5.5  
HOCO clock oscillation  
Except low-voltage  
mode  
tHOCO24  
tHOCO32  
μs  
Figure 2.27  
6
stabilization time*5,  
*
tHOCO48  
tHOCO64  
-
-
-
-
-
-
43.3  
80.6  
100.9  
Low-voltage mode  
tHOCO24  
tHOCO32  
tHOCO48  
tHOCO64  
Sub-clock oscillator oscillation frequency  
fSUB  
-
32.768  
-
kHz  
-
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 47 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.20  
Clock timing (2 of 2)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Sub-clock oscillation stabilization time*2  
tSUBOSC  
-
0.5  
-
s
Figure 2.28  
Note 1. Time until the clock can be used after the Main Clock Oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the  
external clock is stable.  
Note 2. After changing the setting of the SOSCCR.SOSTP bit to start sub-clock oscillator operation, only start using the sub-clock  
oscillator after the sub-clock oscillation stabilization wait time elapsed. Use the oscillator wait time value recommended by the  
oscillator manufacturer.  
Note 3. The 48-MHz HOCO can be used within a VCC range of 1.8 V to 5.5 V.  
Note 4. The 64-MHz HOCO can be used within a VCC range of 2.4 V to 5.5 V.  
Note 5. This is a characteristic when the HOCOCR.HCSTP bit is cleared to 0 (oscillation) in the MOCO stop state.  
When the HOCOCR.HCSTP bit is set to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 μs.  
Note 6. Check OSCSF.HOCOSF to confirm whether stabilization time has elapsed.  
tXcyc  
tXH  
tXL  
EXTAL external clock input  
VCC × 0.5  
tXr  
tXf  
Figure 2.25  
EXTAL external clock input timing  
LOCOCR.LCSTP  
LOCO clock oscillator output  
tLOCO  
Figure 2.26  
LOCO clock oscillation start timing  
HOCOCR.HCSTP  
HOCO clock  
*1  
tHOCOx  
Note 1. x = 24, 32, 48, 64  
Figure 2.27  
HOCO clock oscillation start timing (started by setting the HOCOCR.HCSTP bit)  
SOSCCR.SOSTP  
tSUBOSC  
Sub-clock oscillator output  
Figure 2.28  
Sub-clock oscillation start timing  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 48 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.3.3  
Reset Timing  
Table 2.21  
Reset timing  
Test  
Parameter  
Symbol  
tRESWP  
tRESW  
Min  
Typ  
-
Max  
Unit  
ms  
μs  
conditions  
Figure 2.29  
Figure 2.30  
Figure 2.29  
RES pulse width  
At power-on  
3
30  
-
-
-
-
-
-
-
-
-
Not at power-on  
LVD0 enabled*1  
LVD0 disabled*2  
LVD0 enabled*1  
LVD0 disabled*2  
LVD0 enabled*1  
LVD0 disabled*2  
-
Wait time after RES cancellation  
(at power-on)  
tRESWT  
0.7  
0.3  
0.5  
0.1  
0.6  
0.15  
ms  
-
Wait time after RES cancellation  
(during powered-on state)  
tRESWT2  
-
ms  
ms  
Figure 2.30  
Figure 2.31  
-
Wait time after internal reset cancellation  
(Watchdog timer reset, SRAM parity error  
reset, SRAM ECC error reset, bus master  
MPU error reset, bus slave MPU error reset,  
stack pointer error reset, software reset)  
tRESWT3  
-
-
Note 1. When OFS1.LVDAS = 0.  
Note 2. When OFS1.LVDAS = 1.  
VCC  
RES  
tRESWP  
Internal reset  
tRESWT  
Figure 2.29  
Figure 2.30  
Figure 2.31  
Reset input timing at power-on  
tRESW  
RES  
Internal reset  
tRESWT2  
Reset input timing (1)  
tRESWIW, tRESWIR  
Independent watchdog timer reset  
Software reset  
Internal reset  
tRESWT3  
Reset input timing (2)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 49 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.3.4  
Wakeup Time  
Table 2.22  
Parameter  
Timing of recovery from low power modes (1)  
Test  
conditions  
Symbol Min Typ  
Max Unit  
2
Recovery time  
from Software  
Standby mode*1  
High-speed  
mode  
Crystal  
System clock source is tSBYMC  
main clock oscillator  
(20 MHz)*2  
-
3
ms  
Figure 2.32  
resonator  
connected to  
main clock  
oscillator  
14  
External clock  
input to main  
clock oscillator  
System clock source is tSBYEX  
main clock oscillator  
(20 MHz)*3  
-
25  
μs  
System clock source is HOCO*4  
(HOCO clock is 32 MHz)  
tSBYHO  
tSBYHO  
tSBYHO  
tSBYMO  
-
-
-
-
43  
44  
82  
16  
52  
μs  
μs  
μs  
μs  
System clock source is HOCO*4  
(HOCO clock is 48 MHz)  
52  
System clock source is HOCO*5  
(HOCO clock is 64 MHz)  
110  
25  
System clock source is MOCO  
Note 1. The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time  
is determined by the system clock source.  
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.  
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.  
Note 4. The HOCO Clock Wait Control Register (HOCOWTCR) is set to 05h.  
Note 5. The HOCO Clock Wait Control Register (HOCOWTCR) is set to 06h.  
Table 2.23  
Parameter  
Timing of recovery from low power modes (2)  
Test  
conditions  
Symbol Min Typ  
Max Unit  
Recovery time  
from Software  
Standby mode*  
Middle-speed Crystal  
mode resonator  
System clock source is  
main clock oscillator  
(12 MHz)*  
tSBYMC  
-
2
3
ms  
Figure 2.32  
1
2
connected to  
main clock  
oscillator  
External clock  
input to main  
clock oscillator  
System clock source is  
main clock oscillator  
(12 MHz)*  
tSBYEX  
-
2.9  
10  
μs  
3
System clock source is HOCO*4  
tSBYHO  
tSBYMO  
-
-
38  
50  
μs  
μs  
System clock source is MOCO (8 MHz)  
3.5  
5.5  
Note 1. The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time  
is determined by the system clock source.  
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.  
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.  
Note 4. The system clock is 12 MHz.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 50 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.24  
Parameter  
Timing of recovery from low power modes (3)  
Test  
Symbol Min Typ Max Unit conditions  
Recovery time  
from Software  
Standby mode*  
Low-speed  
mode  
Crystal  
System clock source is  
main clock oscillator  
(1 MHz)*  
tSBYMC  
-
2
3
ms  
Figure 2.32  
resonator  
connected to  
main clock  
oscillator  
1
2
External clock  
input to main  
clock oscillator  
System clock source is  
main clock oscillator  
(1 MHz)*  
tSBYEX  
-
-
28  
25  
50  
35  
μs  
μs  
3
System clock source is MOCO (1 MHz)  
tSBYMO  
Note 1. The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time  
is determined by the system clock source.  
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.  
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.  
Table 2.25  
Parameter  
Timing of recovery from low power modes (4)  
Test  
conditions  
Symbol Min Typ  
Max  
Unit  
Recovery time  
from Software  
Standby mode*  
Low-voltage  
mode  
Crystal  
System clock source is tSBYMC  
main clock oscillator  
(4 MHz)*  
-
2
3
ms  
Figure 2.32  
resonator  
connected to  
main clock  
oscillator  
1
2
External clock  
input to main  
clock oscillator  
System clock source is tSBYEX  
main clock oscillator  
(4 MHz)*  
-
-
108  
108  
130  
130  
μs  
μs  
3
System clock source is HOCO (4 MHz)  
tSBYHO  
Note 1. The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time  
is determined by the system clock source.  
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.  
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.  
Table 2.26  
Parameter  
Timing of recovery from low power modes (5)  
Test  
Symbol Min Typ Max Unit conditions  
Recovery time  
from Software  
Standby mode*1  
Subosc-speed mode  
System clock source is sub-clock tSBYSC  
oscillator (32.768 kHz)  
-
0.85  
1
ms  
Figure 2.32  
System clock source is LOCO  
(32.768 kHz)  
tSBYLO  
-
0.85 1.2  
ms  
Note 1. The sub-clock oscillator or LOCO itself continues oscillating in Software Standby mode during Subosc-speed mode.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 51 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Oscillator  
ICLK  
IRQ  
Software Standby mode  
tSBYMC, tSBYEX,  
tSBYMO, tSBYHO  
Oscillator  
ICLK  
IRQ  
Software Standby mode  
tSBYSC, tSBYLO  
Figure 2.32  
Software Standby mode cancellation timing  
Timing of recovery from low power modes (6)  
Table 2.27  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test conditions  
Recovery time from Software High-speed mode  
tSNZ  
-
36  
45  
μs  
Figure 2.33  
Standby mode to Snooze  
mode  
System clock source is HOCO  
Middle-speed mode  
System clock source is MOCO  
(8 MHz)  
tSNZ  
-
1.3  
10  
87  
3.6  
13  
μs  
μs  
μs  
Low-speed mode  
System clock source is MOCO  
(1 MHz)  
tSNZ  
-
-
Low-voltage mode  
System clock source is HOCO  
(4 MHz)  
tSNZ  
110  
Oscillator  
ICLK (except DTC, SRAM)  
ICLK (to DTC, SRAM)*1 PCLK  
IRQ  
Software Standby mode  
Snooze mode  
tSNZ  
Note 1. When SNZCR.SNZDTCEN bit is set to 1, ICLK is supplied to DTC and SRAM.  
Figure 2.33  
Recovery timing from Software Standby mode to Snooze mode  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 52 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.3.5  
NMI and IRQ Noise Filter  
Table 2.28  
NMI and IRQ noise filter  
Symbol Min  
Parameter  
Typ  
Max  
Unit  
Test conditions  
NMI pulse width  
tNMIW  
200  
Pcyc × 2*  
200  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
NMI digital filter disabled  
tPcyc × 2 200 ns  
tPcyc × 2 > 200 ns  
tNMICK × 3 200 ns  
tNMICK × 3 > 200 ns  
tPcyc × 2 200 ns  
tPcyc × 2 > 200 ns  
1
t
NMI digital filter enabled  
IRQ digital filter disabled  
IRQ digital filter enabled  
2
tNMICK × 3.5*  
200  
IRQ pulse width  
tIRQW  
ns  
1
tPcyc × 2*  
200  
t
IRQCK × 3 200 ns  
3
tIRQCK × 3.5*  
tIRQCK × 3 > 200 ns  
Note:  
Note:  
Note 1.  
200 ns minimum in Software Standby mode.  
If the clock source is switched, add 4 clock cycles of the switched source.  
Pcyc indicates the PCLKB cycle.  
t
Note 2. tNMICK indicates the cycle of the NMI digital filter sampling clock.  
Note 3. tIRQCK indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).  
NMI  
tNMIW  
Figure 2.34  
NMI interrupt input timing  
IRQ  
tIRQW  
Figure 2.35  
IRQ interrupt input timing  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 53 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.3.6  
I/O Ports, POEG, GPT, AGT, KINT, and ADC16 Trigger Timing  
Note:  
Table 2.29  
I/O Ports, POEG, GPT, AGT, KINT, and ADC16 trigger timing  
Test  
Parameter  
I/O Ports  
POEG  
Symbol Min  
Max  
Unit  
conditions  
Figure 2.36  
Figure 2.37  
Figure 2.38  
Input data pulse width  
tPRW  
1.5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
tPcyc  
tPcyc  
tPDcyc  
POEG input trigger pulse width  
Input capture pulse width  
tPOEW  
tGTICW  
3
GPT  
Single edge  
Dual edge  
1.5  
2.5  
1
AGT  
AGTIO, AGTEE input cycle  
2.7 V VCC 5.5 V tACYC  
*
250  
500  
1000  
2000  
100  
200  
400  
800  
62.5  
125  
250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.39  
2.4 V VCC < 2.7 V  
1.8 V VCC < 2.4 V  
1.6 V VCC < 1.8 V  
AGTIO, AGTEE input high-level  
width, low-level width  
2.7 V VCC 5.5 V tACKWH,  
tACKWL  
2.4 V VCC < 2.7 V  
1.8 V VCC < 2.4 V  
1.6 V VCC < 1.8 V  
2.7 V VCC 5.5 V tACYC2  
2.4 V VCC < 2.7 V  
1.8 V VCC < 2.4 V  
AGTIO, AGTO, AGTOA, AGTOB  
output cycle  
Figure 2.39  
1.6 V VCC < 1.8 V  
500  
1.5  
-
-
-
ns  
ADC16  
KINT  
16-bit A/D converter trigger input pulse width  
KRn (n = 00 to 07) pulse width  
tTRGW  
tKR  
tPcyc  
ns  
Figure 2.40  
Figure 2.41  
250  
Note:  
tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle.  
Note 1. Constraints on input cycle:  
When not switching the source clock: tPcyc × 2 < tACYC should be satisfied.  
When switching the source clock: tPcyc × 6 < tACYC should be satisfied.  
Port  
tPRW  
Figure 2.36  
I/O ports input timing  
POEG input trigger  
tPOEW  
Figure 2.37  
POEG input trigger timing  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 54 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Input capture  
tGTICW  
Figure 2.38  
GPT input capture timing  
tACYC  
tACKWL  
tACKWH  
AGTIO, AGTEE  
(input)  
tACYC2  
AGTIO, AGTO,  
AGTOA, AGTOB  
(output)  
Figure 2.39  
AGT I/O timing  
ADTRG0  
tTRGW  
Figure 2.40  
ADC16 trigger input timing  
KR00 to KR07  
tKR  
Figure 2.41  
Key interrupt input timing  
2.3.7  
CAC Timing  
Table 2.30  
CAC timing  
Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V  
Test  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
ns  
conditions  
2
CAC  
CACREF input pulse width  
tPcyc  
*
1 tcac  
*
tCACREF 4.5 × tcac + 3 × tPcyc  
5 × tcac + 6.5 × tPcyc  
-
-
-
-
-
2
t
Pcyc*1 > tcac  
*
ns  
Note 1. tPcyc: PCLKB cycle.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 55 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Note 2. tcac: CAC count clock source cycle.  
2.3.8  
SCI Timing  
Table 2.31  
SCI timing (1)  
Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V  
Parameter  
Symbol  
Min  
4
Max  
-
Unit*1  
Test conditions  
SCI  
Input clock cycle  
Asynchronous  
tScyc  
tPcyc  
Figure 2.42  
Clock synchronous  
6
-
Input clock pulse width  
Input clock rise time  
Input clock fall time  
Output clock cycle  
tSCKW  
tSCKr  
tSCKf  
tScyc  
0.4  
-
0.6  
20  
20  
-
tScyc  
ns  
-
ns  
Asynchronous  
6
tPcyc  
Clock synchronous  
4
-
Output clock pulse width  
Output clock rise time  
tSCKW  
0.4  
-
0.6  
20  
30  
20  
30  
40  
45  
55  
60  
100  
125  
-
tScyc  
ns  
1.8 V VCC 5.5 V tSCKr  
1.6 V VCC < 1.8 V  
1.8 V VCC 5.5 V tSCKf  
1.6 V VCC < 1.8 V  
1.8 V VCC 5.5 V tTXD  
1.6 V VCC < 1.8 V  
2.7 V VCC 5.5 V  
2.4 V VCC < 2.7 V  
1.8 V VCC < 2.4 V  
1.6 V VCC < 1.8 V  
2.7 V VCC 5.5 V tRXS  
2.4 V VCC < 2.7 V  
1.8 V VCC < 2.4 V  
1.6 V VCC < 1.8 V  
2.7 V VCC 5.5 V  
1.6 V VCC < 2.7 V  
-
Output clock fall time  
-
ns  
ns  
ns  
-
Transmit data delay Clock  
-
Figure 2.43  
(master)  
synchronous  
-
Transmit data delay Clock  
-
(slave)  
synchronous  
-
-
-
Receive data setup  
time (master)  
Clock  
synchronous  
45  
55  
90  
110  
40  
45  
5
ns  
ns  
-
-
-
Receive data setup  
time (slave)  
Clock  
synchronous  
-
-
Receive data hold  
time (master)  
Clock synchronous  
tRXH  
-
ns  
ns  
Receive data hold  
time (slave)  
Clock synchronous  
tRXH  
40  
-
Note 1. tPcyc: PCLKB cycle.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 56 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
tSCKW  
tSCKr  
tSCKf  
SCKn  
(n = 0, 1, 9)  
tScyc  
Figure 2.42  
SCK clock input timing  
SCKn  
tTXD  
TXDn  
tRXS tRXH  
RXDn  
n = 0, 1, 9  
Figure 2.43  
SCI input/output timing in clock synchronous mode  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 57 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.32  
SCI timing (2)  
Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 5.5 V  
Parameter  
Symbol  
Min  
4
Max  
Unit*1  
Test conditions  
Figure 2.44  
Simple SCK clock cycle output (master)  
tSPcyc  
65536  
65536  
0.6  
tPcyc  
SPI  
SCK clock cycle input (slave)  
6
SCK clock high pulse width  
tSPCKWH  
0.4  
tSPcyc  
SCK clock low pulse width  
SCK clock rise and fall time  
tSPCKWL  
tSPCKr,  
tSPCKf  
0.4  
0.6  
20  
30  
tSPcyc  
ns  
-
-
1.8 V VCC 5.5 V  
1.6 V VCC < 1.8 V  
Data input setup  
time  
Master  
2.7 V VCC 5.5 V tSU  
2.4 V VCC < 2.7 V  
1.8 V VCC < 2.4 V  
1.6 V VCC < 1.8 V  
2.7 V VCC 5.5 V  
1.6 V VCC < 2.7 V  
tH  
45  
55  
80  
110  
40  
45  
33.3  
40  
1
-
-
-
-
-
-
-
-
-
ns  
Figure 2.45 to  
Figure 2.48  
Slave  
Data input hold time Master  
Slave  
ns  
SS input setup time  
tLEAD  
tSPcyc  
tSPcyc  
ns  
SS input hold time  
tLAG  
1
-
Data output delay  
Master  
Slave  
1.8 V VCC 5.5 V tOD  
1.6 V VCC < 1.8 V  
2.4 V VCC 5.5 V  
1.8 V VCC < 2.4 V  
1.6 V VCC < 1.8 V  
2.7 V VCC 5.5 V tOH  
2.4 V VCC < 2.7 V  
1.8 V VCC < 2.4 V  
1.6 V VCC < 1.8 V  
-
40  
50  
65  
100  
125  
-
-
-
-
-
Data output hold  
time  
Master  
-10  
-20  
-30  
-40  
-10  
-
ns  
ns  
-
-
-
Slave  
-
Data rise and fall  
time  
Master  
1.8 V VCC 5.5 V tDr, tDf  
1.6 V VCC < 1.8 V  
1.8 V VCC 5.5 V  
1.6 V VCC < 1.8 V  
tSA  
20  
30  
20  
30  
6
-
Slave  
-
-
Simple Slave access time  
SPI  
-
tPcyc  
tPcyc  
Figure 2.48  
Slave output release time  
tREL  
-
6
Note 1. tPcyc: PCLKB cycle.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 58 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
tSPCKr  
tSPCKf  
tSPCKWH  
VOH  
VOH  
VOL  
VOH  
VOH  
SCKn  
master select  
output  
VOL  
tSPCKWL  
VOL  
tSPcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VIH  
VIH  
VIL  
VIH  
VIH  
SCKn  
slave select input  
VIL  
tSPCKWL  
VIL  
(n = 0, 1, 9)  
tSPcyc  
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC  
Figure 2.44  
SCI simple SPI mode clock timing  
SCKn  
CKPOL = 0  
output  
SCKn  
CKPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
(n = 0, 1, 9)  
Figure 2.45  
SCI simple SPI mode timing (master, CKPH = 1)  
SCKn  
CKPOL = 1  
output  
SCKn  
CKPOL = 0  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
(n = 0, 1, 9)  
Figure 2.46  
SCI simple SPI mode timing (master, CKPH = 0)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 59 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
tTD  
SSn  
input  
tLEAD  
tLAG  
SCKn  
CKPOL = 0  
input  
SCKn  
CKPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
MSB OUT  
DATA  
LSB OUT  
LSB IN  
MSB IN  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
(n = 0, 1, 9)  
Figure 2.47  
SCI simple SPI mode timing (slave, CKPH = 1)  
tTD  
SSn  
input  
tLEAD  
tLAG  
SCKn  
CKPOL = 1  
input  
SCKn  
CKPOL = 0  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
LSB OUT  
(Last data)  
MSB OUT  
DATA  
LSB OUT  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
LSB IN  
(n = 0, 1, 9)  
Figure 2.48  
SCI simple SPI mode timing (slave, CKPH = 0)  
SCI timing (3)  
Table 2.33  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V  
Parameter  
Symbol  
tSr  
Min  
Max  
Unit  
ns  
Test conditions  
Simple IIC  
(Standard mode)  
SDA input rise time  
-
1000  
Figure 2.49  
SDA input fall time  
tSf  
-
300  
ns  
1
SDA input spike pulse removal time  
Data input setup time  
tSP  
0
4 × tIICcyc  
*
ns  
tSDAS  
tSDAH  
Cb*2  
250  
-
ns  
Data input hold time  
0
-
-
ns  
SCL, SDA capacitive load  
400  
pF  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 60 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.33  
SCI timing (3)  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V  
Parameter  
Symbol  
tSr  
Min  
Max  
Unit  
ns  
Test conditions  
Simple IIC  
SDA input rise time  
-
300  
Figure 2.49  
(Fast mode)  
SDA input fall time  
tSf  
-
300  
ns  
1
SDA input spike pulse removal time  
Data input setup time  
tSP  
0
4 × tIICcyc  
*
ns  
tSDAS  
tSDAH  
Cb*2  
100  
-
ns  
Data input hold time  
0
-
-
ns  
SCL, SDA capacitive load  
400  
pF  
Note 1. tIICcyc: Clock cycle selected by the SMR.CKS[1:0] bits.  
Note 2. Cb indicates the total capacity of the bus line.  
VIH  
SDAn  
VIL  
tSr  
tSf  
tSP  
SCLn  
P*1  
P*1  
S*1  
Sr*1  
(n = 0, 1, 9)  
tSDAH  
tSDAS  
Test conditions:  
VIH = VCC × 0.7, VIL = VCC × 0.3  
VOL = 0.6 V, IOL = 6 mA  
Note 1. S, P, and Sr indicate the following conditions:  
S: Start condition  
P: Stop condition  
Sr: Restart condition  
Figure 2.49  
SCI simple IIC mode timing  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 61 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.3.9  
SPI Timing  
Table 2.34  
SPI timing (1 of 2)  
Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
*1  
Parameter  
Symbol Min  
Max  
4096  
4096  
-
Unit  
Test conditions  
SPI RSPCK clock cycle Master  
Slave  
tSPcyc  
2
6
tPcyc  
Figure 2.50  
C = 30 pF  
RSPCK clock high  
pulse width  
Master  
tSPCKWH (tSPcyc - tSPCKr  
- tSPCKf) / 2 - 3  
ns  
ns  
Slave  
3 × tPcyc  
-
-
RSPCK clock low  
pulse width  
Master  
tSPCKWL (tSPcyc - tSPCKr  
- tSPCKf) / 2 - 3  
Slave  
3 × tPcyc  
-
RSPCK clock rise  
and fall time  
Output 2.7 V VCC 5.5 V tSPCKr,  
-
-
-
-
-
10  
15  
20  
30  
1
ns  
tSPCKf  
2.4 V VCC < 2.7 V  
1.8 V VCC 2.4 V  
1.6 V VCC < 1.8 V  
Input  
µs  
ns  
Data input setup  
time  
Master  
Slave  
tSU  
10  
10  
15  
20  
0
-
-
-
-
-
Figure 2.51 to  
Figure 2.56  
C = 30 pF  
2.4 V VCC 5.5 V  
1.8 V VCC < 2.4 V  
1.6 V VCC < 1.8 V  
Data input hold  
time  
Master  
(RSPCK is PCLKB/2)  
tHF  
tH  
ns  
ns  
Master  
tPcyc  
20  
-
(RSPCK is not PCLKB/2)  
Slave  
tH  
-
-
SSL setup time  
Master 1.8 V VCC 5.5 V tLEAD  
1.6 V VCC < 1.8 V  
Slave  
-30 + N ×  
tSpcyc  
2
*
-50 + N ×  
tSpcyc  
-
2
*
6 × tPcyc  
-
-
ns  
ns  
SSL hold time  
Master  
tLAG  
-30 + N ×  
tSpcyc  
3
*
Slave  
6 × tPcyc  
-
ns  
ns  
Data output delay  
Master 2.7 V VCC 5.5 V tOD  
2.4 V VCC < 2.7 V  
-
14  
20  
25  
30  
50  
60  
85  
110  
-
-
1.8 V VCC < 2.4 V  
-
1.6 V VCC < 1.8 V  
-
Slave  
2.7 V VCC 5.5 V  
2.4 V VCC < 2.7 V  
1.8 V VCC < 2.4 V  
1.6 V VCC < 1.8 V  
-
-
-
-
Data output hold  
time  
Master  
Slave  
tOH  
0
0
ns  
ns  
-
Successive  
transmission delay  
Master  
tTD  
tSPcyc + 2 ×  
tPcyc  
8 × tSPcyc  
2 × tPcyc  
+
Slave  
6 × tPcyc  
-
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 62 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.34  
SPI timing (2 of 2)  
Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
*1  
Parameter  
MOSI and MISO  
Symbol Min  
Dr, tDf  
Max  
Unit  
Test conditions  
Output 2.7 V VCC 5.5 V  
2.4 V VCC < 2.7 V  
1.8 V VCC < 2.4 V  
1.6 V VCC < 1.8 V  
Input  
t
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10  
ns  
Figure 2.51 to  
Figure 2.56  
C = 30 pF  
SPI  
rise and fall time  
15  
20  
30  
1
µs  
ns  
SSL rise and fall  
time  
Output 2.7 V VCC 5.5 V tSSLr,  
10  
tSSLf  
2.4 V VCC < 2.7 V  
15  
1.8 V VCC < 2.4 V  
1.6 V VCC < 1.8 V  
Input  
20  
30  
1
µs  
ns  
Slave access time  
2.4 V VCC 5.5 V tSA  
1.8 V VCC < 2.4 V  
1.6 V VCC < 1.8 V  
2 × tPcyc + 100  
2 × tPcyc + 140  
2 × tPcyc + 180  
2 × tPcyc + 100  
2 × tPcyc + 140  
2 × tPcyc + 180  
Figure 2.55 and  
Figure 2.56  
C = 30 pF  
Slave output release time  
2.4 V VCC 5.5 V tREL  
1.8 V VCC < 2.4 V  
ns  
1.6 V VCC < 1.8 V  
Note 1. tPcyc: PCLKB cycle.  
Note 2. N is set as an integer from 1 to 8 by the SPCKD register.  
Note 3. N is set as an integer from 1 to 8 by the SSLND register.  
tSPCKr  
tSPCKf  
tSPCKWH  
VOH  
VOH  
VOL  
VOH  
VOH  
RSPCKn  
master select  
output  
VOL  
tSPCKWL  
VOL  
tSPcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VIH  
VIH  
VIL  
VIH  
VIH  
RSPCKn  
slave select input  
VIL  
tSPCKWL  
VIL  
tSPcyc  
(n = A or B)  
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC  
Figure 2.50  
SPI clock timing  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 63 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
(n = A or B)  
Figure 2.51  
SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to any value other than 1/2)  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tHF  
tHF  
MISOn  
input  
LSB IN  
MSB IN  
DATA  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
DATA  
LSB OUT  
IDLE  
MSB OUT  
(n = A or B)  
Figure 2.52  
SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to 1/2)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 64 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
(n = A or B)  
Figure 2.53  
SPI timing (master, CPHA = 1) (bit rate: PCLKB division ratio is set to any value other than 1/2)  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tHF  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
(n = A or B)  
Figure 2.54  
SPI timing (master, CPHA = 1) (bit rate: PCLKB division ratio is set to 1/2)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 65 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
tTD  
SSLn0  
input  
tLEAD  
tLAG  
RSPCKn  
CPOL = 0  
input  
RSPCKn  
CPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
MSB OUT  
DATA  
LSB OUT  
LSB IN  
MSB IN  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
(n = A or B)  
Figure 2.55  
SPI timing (slave, CPHA = 0)  
tTD  
SSLn0  
input  
tLEAD  
tLAG  
RSPCKn  
CPOL = 0  
input  
RSPCKn  
CPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
LSB OUT  
(Last data)  
MSB OUT  
DATA  
LSB OUT  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
LSB IN  
(n = A or B)  
Figure 2.56  
SPI timing (slave, CPHA = 1)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 66 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.3.10  
IIC Timing  
Table 2.35  
IIC timing  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V  
Test  
Parameter  
Symbol Min*1  
Max  
Unit conditions  
IIC  
SCL input cycle time  
tSCL  
tSCLH  
tSCLL  
tSr  
6 (12) × tIICcyc + 1300  
-
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.57  
(Standard mode,  
SMBus)  
SCL input high pulse width  
SCL input low pulse width  
SCL, SDA input rise time  
SCL, SDA input fall time  
3 (6) × tIICcyc + 300  
-
3 (6) × tIICcyc + 300  
-
-
1000  
tSf  
-
300  
SCL, SDA input spike pulse removal tSP  
time  
0
1 (4) × tIICcyc  
SDA input bus free time  
(when wakeup function is disabled)  
tBUF  
3 (6) × tIICcyc + 300  
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
SDA input bus free time  
(when wakeup function is enabled)  
tBUF  
3 (6) × tIICcyc + 4 × tPcyc  
+ 300  
START condition input hold time  
(when wakeup function is disabled)  
tSTAH  
tSTAH  
tSTAS  
tIICcyc + 300  
START condition input hold time  
(when wakeup function is enabled)  
1 (5) × tIICcyc + tPcyc  
300  
+
Repeated START condition input  
setup time  
1000  
STOP condition input setup time  
Data input setup time  
tSTOS  
tSDAS  
tSDAH  
Cb  
1000  
-
ns  
ns  
ns  
pF  
ns  
ns  
ns  
ns  
ns  
ns  
tIICcyc + 50  
-
Data input hold time  
0
-
SCL, SDA capacitive load  
SCL input cycle time  
-
400  
IIC  
tSCL  
tSCLH  
tSCLL  
tSr  
6 (12) × tIICcyc + 600  
-
Figure 2.57  
(Fast mode)  
SCL input high pulse width  
SCL input low pulse width  
SCL, SDA input rise time  
SCL, SDA input fall time  
3 (6) × tIICcyc + 300  
-
3 (6) × tIICcyc + 300  
-
-
300  
tSf  
-
300  
SCL, SDA input spike pulse removal tSP  
time  
0
1 (4) × tIICcyc  
SDA input bus free time  
(When wakeup function is disabled)  
tBUF  
3 (6) × tIICcyc + 300  
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
SDA input bus free time  
(When wakeup function is enabled)  
tBUF  
3 (6) × tIICcyc + 4 × tPcyc  
+ 300  
START condition input hold time  
(When wakeup function is disabled)  
tSTAH  
tSTAH  
tSTAS  
tIICcyc + 300  
START condition input hold time  
(When wakeup function is enabled)  
1 (5) × tIICcyc + tPcyc  
300  
+
Repeated START condition input  
setup time  
300  
STOP condition input setup time  
Data input setup time  
tSTOS  
tSDAS  
tSDAH  
Cb  
300  
-
ns  
ns  
ns  
pF  
tIICcyc + 50  
-
Data input hold time  
0
-
-
SCL, SDA capacitive load  
400  
Note:  
tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle  
Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 67 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
VIH  
VIL  
SDA0 and SDA1  
tBUF  
tSCLH  
tSTAS  
tSTOS  
tSTAH  
tSP  
SCL0 and SCL1  
P*1  
P*1  
S*1  
tSf  
Sr*1  
tSCLL  
tSr  
tSDAS  
tSCL  
tSDAH  
Note 1. S, P, and Sr indicate the following conditions:  
S: Start condition  
P: Stop condition  
Sr: Restart condition  
Figure 2.57  
I2C bus interface input/output timing  
2.3.11  
CLKOUT Timing  
Table 2.36  
CLKOUT timing  
Parameter  
Symbol Min  
Max  
Unit  
Test conditions  
CLKOUT  
CLKOUT pin output cycle*1  
2.7 V VCC 5.5 V  
1.8 V VCC < 2.7 V  
1.6 V VCC < 1.8 V  
tCcyc  
tCH  
tCL  
tCr  
62.5  
125  
250  
15  
30  
150  
15  
30  
150  
-
-
ns  
ns  
ns  
ns  
ns  
Figure 2.58  
-
-
CLKOUT pin high pulse width*2 2.7 V VCC 5.5 V  
1.8 V VCC < 2.7 V  
-
-
1.6 V VCC < 1.8 V  
-
CLKOUT pin low pulse width*2  
CLKOUT pin output rise time  
CLKOUT pin output fall time  
2.7 V VCC 5.5 V  
1.8 V VCC < 2.7 V  
1.6 V VCC < 1.8 V  
2.7 V VCC 5.5 V  
1.8 V VCC < 2.7 V  
1.6 V VCC < 1.8 V  
2.7 V VCC 5.5 V  
1.8 V VCC < 2.7 V  
1.6 V VCC < 1.8 V  
-
-
-
12  
25  
50  
12  
25  
50  
-
-
tCf  
-
-
-
Note 1. When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and  
the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, specifications in Table 2.36 should be satisfied with 45% to  
55% of input duty cycle.  
Note 2. When MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division  
ratio to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b).  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 68 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
tCcyc  
tCH  
tCf  
CLKOUT  
tCr  
tCL  
Test conditions: VOH = VCC × 0.7, VOL = VCC × 0.3, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF  
Figure 2.58  
CLKOUT output timing  
2.4  
USB Characteristics  
2.4.1  
USBFS Timing  
Table 2.37  
USB characteristics  
Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 3.0 to 3.6 V, Ta = -20 to +85°C  
Parameter  
Symbol  
VIH  
Min  
2.0  
-
Max  
-
Unit  
V
Test conditions  
Input  
characteristics  
Input high level voltage  
Input low level voltage  
-
VIL  
0.8  
-
V
-
Differential input sensitivity VDI  
0.2  
0.8  
V
| USB_DP - USB_DM |  
-
Differential common mode VCM  
range  
2.5  
V
Output  
characteristics  
Output high level voltage  
Output low level voltage  
Cross-over voltage  
VOH  
VOL  
VCRS  
tr  
2.8  
0.0  
1.3  
4
VCC_USB  
0.3  
V
IOH = -200 μA  
V
IOL = 2 mA  
2.0  
V
Figure 2.59,  
Figure 2.60,  
Figure 2.61  
Rise time  
FS  
LS  
FS  
LS  
20  
ns  
75  
4
300  
Fall time  
tf  
20  
ns  
%
Ω
75  
90  
80  
28  
300  
Rise/fall time ratio FS  
LS  
tr/tf  
111.11  
125  
Output resistance  
ZDRV  
44  
(Adjusting the resistance  
of external elements is not  
required.)  
VBUS  
VBUS input voltage  
VIH  
VCC × 0.8  
-
V
-
characteristics  
VIL  
-
VCC × 0.2  
24.80  
1.575  
3.09  
175  
V
-
Pull-up,  
pull-down  
Pull-down resistor  
Pull-up resistor  
RPD  
14.25  
0.9  
1.425  
25  
kΩ  
kΩ  
kΩ  
μA  
μA  
μA  
V
-
RPUI  
During idle state  
RPUA  
During reception  
Battery charging  
specification  
version 1.2  
D+ sink current  
IDP_SINK  
IDM_SINK  
IDP_SRC  
VDAT_REF  
VDP_SRC  
VDM_SRC  
-
D- sink current  
25  
175  
-
DCD source current  
Data detection voltage  
D+ source voltage  
D- source voltage  
7
13  
-
0.25  
0.5  
0.5  
0.4  
-
0.7  
V
Output current = 250 μA  
Output current = 250 μA  
0.7  
V
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 69 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
90%  
90%  
USB_DP,  
USB_DM  
VCRS  
10%  
10%  
tr  
tf  
Figure 2.59  
USB_DP and USB_DM output timing  
Observation  
point  
USB_DP  
50 pF  
USB_DM  
50 pF  
Figure 2.60  
Test circuit for Full-Speed (FS) connection  
Observation  
point  
USB_DP  
200 pF to  
600 pF  
3.6 V  
1.5 K  
USB_DM  
200 pF to  
600 pF  
Observation  
point  
Figure 2.61  
Test circuit for Low-Speed (LS) connection  
2.4.2  
USB External Supply  
Table 2.38  
Parameter  
USB regulator  
Min  
Typ  
Max  
50  
Unit  
Test conditions  
VCC_USB supply current  
VCC_USB supply voltage  
3.8 V VCC_USB_LDO < 4.5 V  
4.5 V VCC_USB_LDO 5.5 V  
-
-
-
-
-
mA  
mA  
V
-
-
-
100  
3.6  
3.0  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 70 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.5  
ADC16 Characteristics  
Table 2.39  
16-bit A/D conversion, power supply, and input range conditions  
Conditions: VCC = AVCC0 = AVCC1 = 1.7 to 5.5 V, VREFH0 = 1.7 to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
1.5  
-
Typ  
3.3  
Max  
Unit  
V
Test conditions  
High-potential reference voltage  
Low-potential reference voltage  
Analog input voltage range  
AVCC0  
-
-
AVSS0  
-
V
-
0
VREFH0  
V
-
Input common-mode  
range  
Acm  
0
VREFH0/2 VREFH0  
V
Differential analog input  
Analog input  
capacitance*  
Cs  
Rs  
-
-
-
-
-
-
-
-
-
-
4.3  
0.7  
1.5  
2.5  
3.8  
pF  
-
2
1
Analog input resistance*  
kΩ  
High-precision channel  
2.7 V AVCC0 5.5 V  
High-precision channel  
1.7 V AVCC0 < 2.7 V  
Normal-precision channel  
2.7 V AVCC0 5.5 V  
Normal-precision channel  
1.7 V AVCC0 < 2.7 V  
Note 1. These values are based on simulation. They are not production tested.  
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.  
Figure 2.62 shows the equivalent circuit for analog input.  
MCU  
Analog input  
Rs  
ADC16  
ANn  
Vi  
Cin  
Cs  
Figure 2.62  
Table 2.40  
Equivalent circuit for analog input  
16-bit A/D conversion, timing parameters (1 of 2)  
Conditions: VCC = AVCC0 = AVCC1 = 1.7 to 5.5 V, VREFH0 = 1.7 to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test conditions  
Frequency  
ADCLK  
1
1
1
1
1
-
-
32  
MHz  
3.0 V AVCC0 5.5 V,  
3.0 V VREFH0  
-
-
-
-
-
24  
2.7 V AVCC0 5.5 V,  
2.7 V VREFH0  
16  
2.4 AVCC0 5.5 V,  
1.5 V VREFH0  
8
1.8 V AVCC0 5.5 V,  
1.5 V VREFH0  
4
1.7 V AVCC0 5.5 V,  
1.5 V VREFH0  
Conversion rate  
Fs  
1 / (tSPL + 18 / ADCLK)  
S/s  
-
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 71 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.40  
16-bit A/D conversion, timing parameters (2 of 2)  
Conditions: VCC = AVCC0 = AVCC1 = 1.7 to 5.5 V, VREFH0 = 1.7 to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test conditions  
Sampling time*1 Permissible signal tSPL  
source impedance  
0.25  
-
-
μs  
High-precision channel  
2.7 V AVCC0 5.5 V  
Max = 0.5 kΩ  
3
-
-
-
-
-
-
High-precision channel  
1.7 V AVCC0 < 2.7 V  
3
Normal-precision channel  
2.7 V AVCC0 5.5 V  
10  
Normal-precision channel  
1.7 V AVCC0 < 2.7 V  
Settling time*1  
tSTART  
-
-
-
-
-
-
1
μs  
2.7 V AVCC0 5.5 V  
1.8 V AVCC0 < 2.7 V  
1.7 V AVCC0 < 1.8 V  
3.2  
8.9  
Note 1. These values are based on simulation. They are not production tested.  
Table 2.41  
16-bit A/D conversion, linearity parameters  
Conditions: VCC = AVCC0 = AVCC1 = 1.7 to 5.5 V, VREFH0 = 1.7 to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V  
External clock input used. Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Symbol  
Min  
Typ  
16  
Max  
-
Unit  
Bit  
Test conditions  
Resolution  
-
-
-
-
-
-
-
-
Integral non-linearity *1  
INL  
± 4  
± 8  
± 16  
-
LSB  
2.7 V AVCC0 5.5 V, 2.7 V VREFH0  
1.7 V AVCC0 < 2.7 V  
Differential non-linearity*1  
Offset error*1  
DNL  
Ofst  
Gerr  
-1 to +2  
LSB  
LSB  
%
-
± 4  
-
-
-
Gain error*1  
±0.1  
2.7 V VREFH0  
Note:  
The characteristics apply when no pin functions other than 16-bit A/D converter input are used. Offset error, full-scale error,  
DNL differential non-linearity error, and INL integral non-linearity error do not include quantization errors.  
Note 1. These values are based on simulation. They are not production tested.  
Table 2.42  
16-bit A/D conversion, dynamic parameters (1) (1 of 2)  
Conditions: VCC = AVCC0 = AVCC1 = 1.7 to 5.5 V, VREFH0 = 1.7 to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V  
External clock input used. Reference voltage range applied to VREFH0 and VREFL0.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Signal-to-noise and distortion*2  
SINAD  
67  
81  
-
dB  
Differential input, Fin = 1 kHz,  
VREFH0 = 1.7 V to 5.5 V,  
AVCC0 = 1.7 V to 5.5 V  
78  
-
81  
92  
-
-
Differential input, Fin = 1 kHz,  
VREFH0 = 3.3 V,  
AVCC0 = 3.3 V  
Differential input, Fin = 1 kHz,  
VREFH0 = 3.3 V,  
AVCC0 = 3.3 V,  
ADADC.ADC[2:0] = 101b  
61  
72  
75  
75  
-
-
Single input, Fin = 1 kHz,  
VREFH0 = 1.7 V to 5.5 V,  
AVCC0 = 1.7 V to 5.5 V  
Single input, Fin = 1 kHz,  
VREFH0 = 3.3 V,  
AVCC0 = 3.3 V  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 72 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.42  
16-bit A/D conversion, dynamic parameters (1) (2 of 2)  
Conditions: VCC = AVCC0 = AVCC1 = 1.7 to 5.5 V, VREFH0 = 1.7 to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V  
External clock input used. Reference voltage range applied to VREFH0 and VREFL0.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Effective number of bits*2  
ENOB  
11  
13.2  
-
bit  
Differential input, Fin = 1 kHz,  
VREFH0 = 1.7 V to 5.5 V,  
AVCC0 = 1.7 V to 5.5 V  
12.7  
-
13.2  
15  
-
-
Differential input, Fin = 1 kHz,  
VREFH0 = 3.3 V,  
AVCC0 = 3.3 V  
Differential input, Fin = 1 kHz,  
VREFH0 = 3.3 V,  
AVCC0 = 3.3 V,  
ADADC.ADC[2:0] = 101b  
10  
12.2  
12.2  
-
-
Single input, Fin = 1 kHz,  
VREFH0 = 1.7 V to 5.5 V,  
AVCC0 = 1.7 V to 5.5 V  
11.7  
Single input, Fin = 1 kHz,  
VREFH0 = 3.3 V,  
AVCC0 = 3.3 V  
Total harmonic distortion*1, *2  
Common mode rejection ratio*2  
THD  
-
-
-
-100  
-90  
-
-
-
dB  
dB  
Differential input, Fin = 1 kHz,  
AVCC0 = 3.3 V  
Single input, Fin = 1 kHz,  
AVCC0 = 3.3 V  
CMRR  
100  
Differential input,  
Acm = 0 to VREFH0 at 1 kHz,  
AVCC0 = 3.3 V  
Note:  
The characteristics apply when no pin functions other than 16-bit A/D converter input are used.  
Note 1. THD = HD2 + HD3 + HD4 + HD5.  
Note 2. These values are based on simulation. They are not production tested.  
Table 2.43  
16-bit A/D conversion, dynamic parameters (2)  
Conditions: VCC = AVCC0 = AVCC1 = 1.7 to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V  
External clock input used.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Signal-to-noise and distortion*1 SINAD  
-
78.6  
-
dB  
Differential input, Fin = 1 kHz,  
AVCC0 = 3.3 V,  
VREFADC output = 2.5 V  
-
-
-
-
-
76.6  
74.2  
12.8  
12.4  
12.0  
-
-
-
-
-
Differential input, Fin = 1 kHz,  
AVCC0 = 3.3 V,  
VREFADC output = 2.0 V  
Differential input, Fin = 1 kHz,  
AVCC0 = 3.3 V,  
VREFADC output = 1.5 V  
Effective number of bits*1  
ENOB  
bit  
Differential input, Fin = 1 kHz,  
AVCC0 = 3.3 V,  
VREFADC output = 2.5 V  
Differential input, Fin = 1 kHz,  
AVCC0 = 3.3 V,  
VREFADC output = 2.0 V  
Differential input, Fin = 1 kHz,  
AVCC0 = 3.3 V,  
VREFADC output = 1.5 V  
Note:  
The characteristics apply when no pin functions other than 16-bit A/D converter input are used.  
Note 1. These values are based on simulation. They are not production tested.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 73 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.44  
16-bit A/D converter channel classification  
Classification  
Channel  
Conditions  
High-precision channel  
AN000 to AN008  
AVCC0 = 1.7 to 5.5 V  
Normal-precision channel  
Internal reference voltage input channel  
Temperature sensor input channel  
AN016 to AN023  
Internal reference voltage  
Temperature sensor output  
AVCC0 = 2.0 to 5.5 V  
AVCC0 = 2.0 to 5.5 V  
Table 2.45  
Internal reference voltage for 16-bit ADC (VREFADC) characteristics  
Conditions: VCC = AVCC0 = AVCC1 = 1.7 V to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL0 = 0 V  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
Output voltage range  
1.41  
1.5  
1.59  
V
VREFAMPCNT.VREFADCG[1:0] = 00b  
AVCC0 1.7 V  
1.88  
2.35  
2
2.12  
2.65  
VREFAMPCNT.VREFADCG[1:0] = 10b  
AVCC0 2.2 V  
2.5  
VREFAMPCNT.VREFADCG[1:0] = 11b  
AVCC0 2.7 V  
BGR stabilization time*2 (after BGR is enabled)  
-
-
-
-
150  
μs  
μs  
VREFAMPCNT.BGREN = 1  
VREF AMP stabilization time*2 (after VREFAMP is  
enabled)  
1500  
VREFAMPCNT.VREFADCEN = 1  
Detect over current*2  
Load capacitance*1  
-
20  
1
40  
mA  
-
-
0.75  
1.25  
μF  
Note 1. Connect capacitors as stabilization capacitance between the VREFH0 and VREFL0 pins when VREFADC is used.  
Note 2. These values are based on simulation. They are not production tested.  
Table 2.46  
A/D internal reference voltage characteristics  
Conditions: VCC = AVCC0 = AVCC1 = VREFH0 = 2.0 to 5.5 V*1  
Parameter  
Min  
1.36  
5.0  
Typ  
1.43  
-
Max  
1.50  
-
Unit  
V
Test conditions  
Internal reference voltage input channel*2  
Sampling time*3  
-
-
μs  
Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V.  
Note 2. The 16-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 16-bit A/D  
converter.  
Note 3. This is a parameter for ADC16 when the internal reference voltage is selected for an analog input channel in ADC16.  
2.6  
SDADC24 Characteristics  
Table 2.47  
Analog inputs characteristics (1 of 2)  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test conditions  
Full-scale range  
FSR  
-
± 0.8 /  
-
V
-
GTOTAL  
Analog input in  
differential input  
mode  
Differential  
input voltage  
range  
VID  
-0.8 / GTOTAL  
-
0.8 / GTOTAL  
V
V
V
VID = ANSDnP - ANSDnN, or  
AMP0O - AMP1O  
(n = 0 to 3), dOFR = 0 mV  
Input voltage  
range  
VI  
0.2  
-
1.8  
VI = ANSDnP, ANSDnN,  
AMP0O, or AMP1O  
(n = 0 to 3)  
Common mode VCOM  
Input voltage  
range  
0.2 + (|VID|   
GSET1) / 2  
1.0  
1.8 - (|VID|   
GSET1) / 2  
dOFR = 0 mV  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 74 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.47  
Analog inputs characteristics (2 of 2)  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
Parameter  
Symbol Min  
VI 0.2  
Typ  
Max  
Unit  
Test conditions  
Analog Input in  
single-ended  
input mode  
Input voltage  
range*1  
-
1.8  
V
VI = ANSDnP, ANSDnN,  
AMP0O, or AMP1O  
(n = 0 to 3),  
VCOM = 1.0 V,  
dOFR = 0 mV,  
GSET1 = 1, GSET2 = 1,  
OSR = 256  
Note 1. The single-ended input mode supports only dOFR = 0 mV, GSET1 = 1, GSET2 = 1 and OSR = 256.  
Table 2.48  
Programmable gain instrumentation amplifier and sigma-delta A/D converter (1)  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
Parameter  
Symbol Min  
Typ  
24  
1
Max  
Unit  
bits  
Test conditions  
Resolution  
RES  
Fos  
-
-
-
-
-
-
Over sampling Normal A/D  
MHz  
frequency  
conversion  
mode  
Low-powerA/D  
conversion  
mode  
-
0.125  
-
Output data rate  
fDATA1  
fDATA2  
0.48828  
-
-
15.625  
ksps  
sps  
Normal A/D conversion  
mode  
61.03615  
1953.125  
Low-power A/D  
conversion mode  
Gain Setting range  
1st Gain Setting range  
2nd Gain Setting range  
Offset adjust bit range  
Offset adjust range  
Offset adjust step  
GTOTAL  
GSET1  
GSET2  
dOFB  
1
-
32  
-
V/V  
V/V  
V/V  
bits  
GTOTAL = GSET1 × GSET2  
-
1, 2, 3, 4, 8  
-
-
1, 2, 4, 8  
-
-
-
5
-
-
dOFR  
-164.06 / GSET1  
-
-
+164.06 / GSET1 mV  
mV  
Referred to input  
Referred to input  
dOFS  
350 / 32 / GSET1 -  
Table 2.49  
Programmable gain instrumentation amplifier and sigma-delta A/D converter (2)  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
The electrical specifications are applied at differential input mode, external clock input used, FOS = 1 MHz, dOFR = 0 mV,  
unless otherwise specified.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
SET1 = 1,  
GSET2 = 1  
SET1 = 8,  
GSET2 = 4  
SET1 = 1,  
GSET2 = 1  
SET1 = 8,  
GSET2 = 4  
SET1 = 1,  
GSET2 = 1  
Signal to Noise Ratio*1,*3 SNR  
VID = 0 V  
83  
86  
-
dB  
G
OSR = 256  
OSR = 1024  
OSR = 256  
OSR = 1024  
81  
82  
79  
74  
84  
85  
82  
80  
-
-
-
-
dB  
dB  
dB  
dB  
G
Signal to Noise and  
Distortion Ratio*1, *2,*3  
fin = 50 Hz  
SINAD  
G
G
G
OSR = 256,  
Single-ended input mode  
Note:  
The characteristics apply when no pin functions other than 24-bit sigma-delta A/D converter input are used.  
Note 1. SNR and SINAD are the ratio to Full-Scale Range (FSR) of analog inputs. These do not include the noise of analog inputs.  
Note 2. When VID is equal to ± 0.8 / GTOTAL actually, the digital output may overflow due to Gain Error (EG), Offset  
Error (EOS), and so forth. As a result, SINAD is degraded. See Table 33.7 of 24-Bit Sigma-Delta A/D Converter (SDADC24) in  
User’s Manual for the relation between analog input and digital output.  
Note 3. Not production tested but is guaranteed by the design and characterization.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 75 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
SNR vs OSR  
(Differential input mode, typical condition)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
64  
128  
256  
512  
1024  
2048  
Oversampling Ratio (OSR)  
GSET1 = 1, GSET2 = 1  
SNR vs. OSR (reference data)  
GSET1 = 8, GSET2 = 4  
Figure 2.63  
SINAD vs OSR  
(Differential input mode, typical condition)  
95  
90  
85  
80  
75  
70  
65  
60  
64  
128  
256  
Oversampling Ratio (OSR)  
GSET1 = 1, GSET2 = 1  
512  
1024  
2048  
GSET1 = 8, GSET2 = 4  
Figure 2.64  
Table 2.50  
SINAD vs. OSR (reference data)  
Programmable gain instrumentation amplifier and sigma-delta A/D converter (3) (1 of 2)  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
The electrical specifications are applied at the differential input mode, with external clock input used, Fos = 1 MHz,  
OSR = 256, and dOFR = 0 mV, unless otherwise specified.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test conditions  
Gain error*2  
(excluding SINC3 frequency  
response characteristic)  
EG  
-0.5  
-
0.5  
%
After internal calibration,  
excluding SBIAS error or VREFI  
error,  
GSET1 = 1, GSET2 = 1  
-3  
-
3
Single-ended input mode,  
excluding SBIAS error or  
VREFI error,  
GSET1 = 1, GSET2 = 1  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 76 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.50  
Programmable gain instrumentation amplifier and sigma-delta A/D converter (3) (2 of 2)  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
The electrical specifications are applied at the differential input mode, with external clock input used, Fos = 1 MHz,  
OSR = 256, and dOFR = 0 mV, unless otherwise specified.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test conditions  
Gain drift*1, *2  
dEG  
EOS  
-
6
22  
ppm/°C Excluding SBIAS error or  
VREFI error,  
GSET1 = 1, GSET2 = 1  
Offset error*2  
-1  
-50  
-
-
1
mV  
After internal calibration,  
GSET1 = 1, GSET2 = 1, referred to  
input  
50  
Single-ended input mode,  
including SBIAS error,  
GSET1 = 1, GSET2 = 1, referred to  
input  
Offset drift*1, *2  
dEOS  
-
-
2
-
6
μV/°C  
Referred to input  
120  
Single-ended input mode,  
including SBIAS error,  
GSET1 = 1, GSET2 = 1  
Integral non-linearity*2  
INL  
-
-
15  
80  
-
-
ppm  
Input = DC,  
of FSR OSR = 2048  
Common mode  
Rejection ratio*2  
CMRR  
dB  
VCOM = 1.0 ± 0.8 V,  
fin = 50 Hz,  
GSET1 = 1, GSET2 = 1  
Power supply  
Rejection ratio*2  
PSRR  
-
70  
-
dB  
AVCC1 = 5.0 V + 0.1 Vpp_ripple  
fin = 50 Hz,  
,
GSET1 = 1, GSET2 = 1, excluding  
SBIAS error or VREFI error  
Input absolute current*2  
Input offset current*2  
Input impedance*2  
IIN  
-
2
-
nA  
VI = 1 V  
IINOFR  
ZIN  
-
1
-
nA  
VID = 0 V, VCOM = 1 V  
VID = 1 V, VCOM = 1 V  
-
500  
-
-
Mohm  
%
Offset adjust gain error*2  
dOFGE  
-5  
5
Including SBIAS error,  
dOFR 0 mV  
Offset adjust  
integral non-linearity*2  
dOFINL  
-0.5  
-
0.5  
LSB  
dOFR 0 mV  
Note:  
The characteristics apply when no pin functions other than 24-bit sigma-delta A/D converter input are used.  
Note 1. Gain drift is calculated by (Max (EG (T (-40°C) to T (125°C))) - Min (EG (T (-40°C) to T (125°C)))) / (125°C - (-40°C))  
Offset drift is calculated by (Max (EOS (T (-40°C) to T (125°C))) - Min (EOS (T (-40°C) to T (125°C)))) / (125°C - (-40°C)).  
Note 2. Not production tested but is guaranteed by the design and characterization.  
Table 2.51  
2.1 V LDO linear regulator for ADC (ADREG) characteristics  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
Connect the ADREG pin to a AVSS1 pin by a 0.47 μF (-50% to +20%) capacitor.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
ADREG output voltage  
VADREG  
-
2.1  
-
V
-
Table 2.52  
ADC external reference voltage (VREFI) characteristics  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
Parameter  
Symbol  
VREFI  
VRSTEP  
VRA  
Min  
0.8  
-
Typ  
Max  
2.4  
-
Unit  
V
Test conditions  
External reference voltage range*1  
External reference voltage step  
External reference voltage accuracy  
-
SDADCSTC1.VREFSEL = 1  
SDADCSTC1.VREFSEL = 1  
SDADCSTC1.VREFSEL = 1  
0.2  
-
V
-3  
3
%
Note 1. Select the reference voltage input value with STC1.VSBIAS[3:0].  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 77 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.53  
Sensor bias (SBIAS) characteristics  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
Connect the SBIAS/VREFI pin to a AVSS1 pin by a 0.22 μF (-20% to +20%)  
Parameter  
Symbol  
SBIAS  
SVSTEP  
SVA  
Min  
Typ  
Max  
2.2  
-
Unit  
V
Test conditions  
Output voltage range*2  
Output voltage step  
Output voltage accuracy*1  
Output current*1  
0.8  
-
-
-
0.2  
-
V
-
-3  
-
3
%
SIOUT = 1 mA  
-
SIOUT  
SISHORT  
SLR  
-
10  
65  
15  
20  
-
mA  
mA  
mV  
mV  
dB  
Short current*1  
-
35  
-
SBIAS = 0 V  
Load regulation*1  
-
1 mA SIOUT 5 mA  
1 mA SIOUT 10 mA  
-
-
Power supply rejection ratio*1  
Transition time of one step*1,*3  
SPSRR  
STTS  
-
50  
AVCC1 = 5.0 V + 0.1 Vpp_ripple  
f = 100 Hz, SIOUT = 2.5 mA  
,
-
-
80  
μs  
SBIAS < SVA ± 3%  
1 mA SIOUT SIOUT_MAX  
Note 1. Not production tested but is guaranteed by the design and characterization.  
Note 2. Select the reference voltage output value for the sensor with STC1.VSBIAS[3:0].  
Note 3. The load current of more than 1 mA is required because the output stage of SBIAS is Pch open drain. When the original load  
current is small, additional external load resistance is required.  
2.7  
DAC12 Characteristics  
Table 2.54  
12-bit D/A conversion characteristics  
Conditions: VCC = AVCC0 = AVCC1 = 1.7 V to 5.5 V, VREFH = 1.7 V to 5.5 V, VSS = AVSS0 = AVSS1 = VREFL = 0 V  
Parameter  
Min Typ Max  
Unit Test conditions  
Resolution  
-
-
-
-
-
-
-
-
12  
bit  
μs  
μs  
μs  
-
-
-
Charge pump stabilization time*1  
SW stabilization time*1  
Conversion time*1  
100  
50  
DAC Ref. = AVCC or VREFH 2.7 V  
1.0  
Cload = 38 pF, @ 1 LSB step  
Cload = 8 pF, @ full range  
DAC Ref. = AVCC or VREFH < 2.7 V  
-
-
-
-
-
-
-
2
-
-
-
1.2  
1.0  
± 12  
±1.0  
±2.0  
±7.0  
-
-
-
Wake-up time*1  
-
μs  
Absolute accuracy  
-
LSB 2-MΩ resistive load  
DNL differential non-linearity  
error  
DAC Ref. = AVCC or VREFH 2.7 V  
-
LSB  
-
-
-
-
-
-
-
DAC Ref. = AVCC or VREFH < 2.7 V  
-
INL integral non-linearity error  
RO output resistance  
Load resistance  
-
LSB  
kΩ  
3.5  
2
38  
8
-
MΩ  
pF  
Load capacitance  
1 LSB step  
Full range  
-
-
Note 1. These values are based on simulation. They are not production tested.  
2.8  
DAC8 Characteristics  
Table 2.55  
8-bit D/A conversion characteristics (1 of 2)  
Conditions: VCC = AVCC0 = AVCC1 = 1.7 V to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
Parameter  
Min  
Typ  
Max  
8
Unit  
Test conditions  
Resolution  
-
-
-
-
bit  
-
-
Charge pump stabilization time*1  
100  
μs  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 78 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.55  
8-bit D/A conversion characteristics (2 of 2)  
Conditions: VCC = AVCC0 = AVCC1 = 1.7 V to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
Parameter  
Min  
Typ  
Max  
50  
Unit  
μs  
Test conditions  
Switch stabilization time*1  
Conversion time*1  
-
-
-
-
-
-
-
-
-
-
AVCC0 = 2.7 to 5.5 V  
AVCC0 = 1.7 to 2.7 V  
AVCC0 = 2.7 to 5.5 V  
AVCC0 = 1.7 to 2.7 V  
AVCC0 = 2.7 to 5.5 V  
AVCC0 = 1.7 to 2.7 V  
-
3.0  
μs  
35-pF capacitive load  
-
6.0  
μs  
Absolute accuracy  
-
± 3.0  
± 3.5  
± 2.0  
± 2.5  
-
LSB  
2-MΩ resistive load  
-
-
LSB  
4-MΩ resistive load  
-
RO output resistance  
7.4  
kΩ  
-
Note 1. These values are based on simulation. They are not production tested.  
2.9  
TSN Characteristics  
Table 2.56  
TSN characteristics  
Conditions: VCC = AVCC0 = AVCC1 = 2.0 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
± 1.5  
± 2.0  
-3.65  
1.05  
-
Max  
Unit  
°C  
Test conditions  
2.4 V or above  
Below 2.4 V  
Relative accuracy  
-
-
-
-
-
°C  
Temperature slope  
-
-
-
mV/°C  
V
-
Output voltage (at 25°C)  
Temperature sensor start time  
Sampling time  
-
-
-
VCC = 3.3 V  
-
tSTART  
-
-
5
-
μs  
5
-
μs  
2.10 OSC Stop Detect Characteristics  
Table 2.57  
Oscillation stop detection circuit characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
ms  
Test conditions  
Detection time  
tdr  
-
-
1
Figure 2.65  
Main clock  
tdr  
OSTDSR.OSTDF  
MOCO clock  
ICLK  
Figure 2.65  
Oscillation stop detection timing  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 79 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.11 POR and LVD Characteristics  
Table 2.58  
Parameter  
Power-on reset circuit and voltage detection circuit characteristics (1)  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
Voltage detection  
level*1  
Power-on reset (POR)  
VPOR  
1.27  
1.42  
1.57  
V
Figure 2.66,  
Figure 2.67  
Voltage detection circuit (LVD0)*2  
Vdet0_0  
Vdet0_1  
Vdet0_2  
Vdet0_3  
Vdet0_4  
Vdet1_0  
Vdet1_1  
Vdet1_2  
Vdet1_3  
Vdet1_4  
Vdet1_5  
Vdet1_6  
Vdet1_7  
Vdet1_8  
Vdet1_9  
Vdet1_A  
Vdet1_B  
Vdet1_C  
Vdet1_D  
Vdet1_E  
Vdet1_F  
Vdet2_0  
Vdet2_1  
Vdet2_2  
Vdet2_3  
3.68  
2.68  
2.38  
1.78  
1.60  
4.13  
3.98  
3.86  
3.68  
2.98  
2.89  
2.79  
2.68  
2.58  
2.48  
2.38  
2.10  
1.84  
1.74  
1.63  
1.60  
4.11  
3.97  
3.83  
3.64  
3.85  
2.85  
2.53  
1.90  
1.69  
4.29  
4.16  
4.03  
3.86  
3.10  
3.00  
2.90  
2.79  
2.68  
2.58  
2.48  
2.20  
1.96  
1.86  
1.75  
1.65  
4.31  
4.17  
4.03  
3.84  
4.00  
2.96  
2.64  
2.02  
1.82  
4.45  
4.30  
4.18  
4.00  
3.22  
3.11  
3.01  
2.90  
2.78  
2.68  
2.58  
2.30  
2.05  
1.95  
1.84  
1.73  
4.48  
4.34  
4.20  
4.01  
V
Figure 2.68  
At falling edge  
VCC  
Voltage detection circuit (LVD1)*3  
V
Figure 2.69  
At falling edge  
VCC  
Voltage detection circuit (LVD2)*4  
V
Figure 2.70  
At falling edge  
VCC  
Note 1. These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection  
level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage  
detection.  
Note 2. # in the symbol Vdet0_# denotes the value of the OFS1.VDSEL1[2:0] bits.  
Note 3. # in the symbol Vdet1_# denotes the value of the LVDLVLR.LVD1LVL[4:0] bits.  
Note 4. # in the symbol Vdet2_# denotes the value of the LVDLVLR.LVD2LVL[2:0] bits.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 80 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.59  
Parameter  
Power-on reset circuit and voltage detection circuit characteristics (2)  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
Wait time after power-on  
reset cancellation  
LVD0: enable  
LVD0: disable  
LVD0: enable*1  
LVD0: disable*2  
tPOR  
-
1.7  
-
ms  
-
tPOR  
-
-
-
1.3  
0.6  
0.2  
-
-
-
ms  
ms  
ms  
-
Wait time after voltage  
monitor 0,1,2 reset  
cancellation  
tLVD0,1,2  
tLVD1,2  
-
-
Response delay*3  
tdet  
-
-
-
350  
-
μs  
μs  
Figure 2.66, Figure 2.67  
Minimum VCC down time  
tVOFF  
450  
Figure 2.66,  
VCC = 1.0 V or above  
Power-on reset enable time  
tW (POR)  
Td (E-A)  
1
-
-
-
-
ms  
Figure 2.67,  
VCC = below 1.0 V  
LVD operation stabilization time (after LVD is  
enabled)  
300  
μs  
Figure 2.69,  
Figure 2.70  
Hysteresis width (POR)  
VPORH  
VLVH  
-
-
-
-
-
-
-
110  
60  
-
-
-
-
-
-
-
mV  
mV  
-
Hysteresis width (LVD0, LVD1 and LVD2)  
LVD0 selected  
100  
60  
Vdet1_0 to Vdet1_2 selected  
Vdet1_3 to Vdet1_9 selected  
50  
Vdet1_A to Vdet1_B selected  
40  
Vdet1_C to Vdet1_F selected  
LVD2 selected  
60  
Note 1. When OFS1.LVDAS = 0.  
Note 2. When OFS1.LVDAS = 1.  
Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR  
,
Vdet0, Vdet1, and Vdet2 for the POR/LVD.  
tVOFF  
VCC  
VPOR  
1.0 V  
Internal reset signal  
(active-low)  
tdet  
tdet tPOR  
Figure 2.66  
Voltage detection reset timing  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 81 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
VPOR  
VCC  
1.0 V  
tw(POR)  
*1  
Internal reset signal  
(active-low)  
tdet tPOR  
is the time required for a power-on reset to be enabled while the external power VCC is  
Note 1. t  
w(POR)  
being held below the valid voltage (1.0 V).  
When VCC turns on, maintain t  
for 1.0 ms or more.  
w(POR)  
Figure 2.67  
Power-on reset timing  
tVOFF  
VLVH  
VCC  
Vdet0  
Internal reset signal  
(active-low)  
tdet  
tdet  
tLVD0  
Figure 2.68  
Voltage detection circuit timing (Vdet0)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 82 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
tVOFF  
VLVH  
VCC  
Vdet1  
LVCMPCR.LVD1E  
Td(E-A)  
LVD1  
Comparator output  
LVD1CR0.CMPE  
LVD1SR.MON  
Internal reset signal  
(active-low)  
When LVD1CR0.RN = 0  
tdet  
tLVD1  
tdet  
When LVD1CR0.RN = 1  
tLVD1  
Figure 2.69  
Voltage detection circuit timing (Vdet1)  
tVOFF  
VLVH  
VCC  
Vdet2  
LVCMPCR.LVD2E  
Td(E-A)  
LVD2  
Comparator output  
LVD2CR0.CMPE  
LVD2SR.MON  
Internal reset signal  
(active-low)  
When LVD2CR0.RN = 0  
tdet  
tdet  
tLVD2  
When LVD2CR0.RN = 1  
tLVD2  
Figure 2.70  
Voltage detection circuit timing (Vdet2)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 83 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
2.12 CTSU Characteristics  
Table 2.60  
CTSU characteristics  
Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max  
11  
Unit  
nF  
Test conditions  
External capacitance connected to TSCAP pin Ctscap  
9
-
10  
-
-
-
TS pin capacitive load  
Cbase  
50  
pF  
Permissible output high current  
ΣIOH  
-
-
-24  
mA  
When the mutual capacitance  
method is applied and TS07 to TS14  
are not used for transmit channel  
-
-
-14  
When the mutual capacitance  
method is applied and TS07 to TS14  
are used for transmit channel  
2.13 Comparator Characteristics  
Table 2.61  
ACMPHS characteristics  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
Parameter  
Symbol  
VIOCMP  
VICPM  
Vref  
Min  
-
Typ  
± 5  
-
Max  
Unit  
Test conditions  
Input offset voltage  
Input voltage range  
Internal reference voltage input*3  
Input signal cycle  
± 40  
mV  
V
-
0
AVCC0  
-
1.36  
10  
-
1.43  
-
1.50  
V
AVCC0 2.0 V  
tPCMP  
Td  
-
μs  
ns  
ns  
-
Output delay time  
50  
-
100  
-
Input amplitude ± 100 mV  
Input amplitude ± 100 mV  
Stabilization wait time during input channel  
switching*1  
TWAIT  
300  
Operation stabilization wait time*2  
Tcmp  
1
3
-
-
-
-
μs  
μs  
3.3 V AVCC0 5.5 V  
2.7 V AVCC0 3.3 V  
Note 1. Period from when the comparator input channel is switched until the switched result reflects in its output.  
Note 2. Period from when comparator operation is enabled (CPMCTL.HCMPON = 1) until the comparator satisfies the DC/AC  
characteristics.  
Note 3. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V.  
Table 2.62  
ACMPLP characteristics  
Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
Parameter  
Symbol Min  
Typ  
Max  
Unit Test conditions  
Input voltage range  
IVREF0  
VREF  
0
-
VCC - 1.4*1  
VCC - 1.4  
VCC  
V
V
-
IVREF1 (Standard mode)  
IVREF1 (Window mode)  
IVCMP0, IVCMP1  
0
-
1.4*1  
-
V
VI  
-
0
-
VCC  
V
Internal reference voltage*2  
1.36  
-
1.43  
-
1.50  
V
VCC 2.0 V  
Output delay Comparator high-speed mode  
Td  
1.2  
μs  
VCC = 3.0 V  
(Standard mode)  
Slew rate of input  
signal > 50 mV/μs  
Comparator high-speed mode  
(Window mode)  
-
-
-
-
2.0  
5.0  
μs  
μs  
Comparator low-speed mode  
(Standard mode)  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 84 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.62  
ACMPLP characteristics  
Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
Parameter  
Symbol Min  
Typ  
Max  
Unit Test conditions  
Offset voltage  
Comparator high-speed mode  
(Standard mode)  
-
-
-
50  
mV  
mV  
mV  
μs  
-
Comparator high-speed mode  
(Window mode)  
-
-
-
-
60  
40  
-
Comparator low-speed mode  
(Standard mode)  
-
Operation stabilization wait time  
Tcmp  
100  
-
Note 1. In window mode, be sure to satisfy the following condition: VIVREF1 - VIVREF0 0.2 V.  
Note 2. The internal reference voltage cannot be selected for input channels when VCC < 2.0 V.  
2.14 OPAMP Characteristics  
Table 2.63  
OPAMP characteristics (1 of 3)  
Conditions: VCC = AVCC0 = AVCC1 = 1.7 V to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
Parameter  
Symbol  
Conditions  
Min  
1.7  
2.1  
2.4  
-
Typ  
Max  
5.5  
Unit  
V
Supply voltage range  
AVCC0  
Low power mode  
Middle-speed mode  
High-speed mode  
-
-
-
-
-
-
-
5.5  
V
5.5  
V
Charge pump stabilization time*1  
SW stabilization time*1  
Input voltage range  
-
100  
50  
μs  
μs  
V
-
-
-
Vicm1  
Vicm2  
Vicm3  
Volh1  
Low power mode  
Middle-speed mode  
High-speed mode  
AVSS0  
AVCC0  
Output voltage range  
Low power mode,  
Ilode = 100 μA  
AVSS0  
-
-
AVCC0  
V
Volh2  
Middle-speed mode,  
Iload = 100 μA  
Volh3  
High-speed mode,  
Iload = 100 μA  
Input offset trimming range*1  
Voffadj2l  
Middle-speed mode,  
Vin = 0.1 V,  
-3  
3
mV  
Tj = 25°C  
Voffadj2h  
Voffadj3l  
Voffadj3h  
Middle-speed mode,  
Vin = AVCC0 - 0.1 V,  
Tj = 25°C  
High-speed mode,  
Vin = 0.1 V,  
Tj = 25°C  
High-speed mode,  
Vin = AVCC0 - 0.1 V,  
Tj = 25°C  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 85 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.63  
OPAMP characteristics (2 of 3)  
Conditions: VCC = AVCC0 = AVCC1 = 1.7 V to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input offset*1  
Vioff1a  
Low power mode,  
-5.0  
-
5.0  
mV  
Vin < AVCC0 - 1.0 V  
Vioff1b  
Vioff2a  
Vioff2b  
Vioff3a  
Vioff3b  
Drift1a  
Drift1b  
Drift2a  
Drift2b  
Drift3a  
Drift3b  
Low power mode,  
Vin AVCC0 - 1.0 V  
-8.0  
-3.0  
-3.0  
-2.5  
-2.5  
-70  
-70  
-30  
-30  
-30  
-30  
-
-
-
-
-
-
-
-
-
-
-
8.0  
3.0  
3.0  
2.5  
2.5  
70  
Middle-speed mode,  
Vin < AVCC0 - 1.2 V  
Middle-speed mode,  
Vin AVCC0 - 1.2 V  
High-speed mode,  
Vin < AVCC0 - 1.2 V  
High-speed mode,  
Vin AVCC0 - 1.2 V  
Offset drift*1  
Low power mode,  
Vin < AVCC0 - 1.0 V  
μV/°C  
Low power mode,  
Vin AVCC0 - 1.0 V  
70  
Middle-speed mode,  
Vin < AVCC0 - 1.2 V  
30  
Middle-speed mode,  
Vin AVCC0 - 1.2 V  
30  
High-speed mode,  
Vin < AVCC0 - 1.2 V  
30  
High-speed mode,  
30  
Vin AVCC0 - 1.2 V  
Open gain*1  
Av1  
Low power mode  
Middle-speed mode  
High-speed mode  
Low power mode  
Middle-speed mode  
High-speed mode  
Low power mode  
Middle-speed mode  
High-speed mode  
Low power mode  
Middle-speed mode  
High-speed mode  
70  
70  
60  
-
130  
-
-
-
-
-
-
-
-
-
-
-
-
-
dB  
Av2  
120  
Av3  
130  
Gain bandwidth product*1  
Phase margin*1  
GBW1  
GBW2  
GBW3  
PM1  
PM2  
PM3  
GM1  
GM2  
GM3  
Vind11  
90  
kHz  
MHz  
MHz  
deg  
-
2
-
4.8  
35  
35  
35  
10  
10  
10  
-
-
-
-
Gain margin*1  
-
dB  
-
-
Input noise density*1  
Low power mode,  
f = 10 Hz  
860  
nV/Hz  
Vind12  
Vind21  
Vind22  
Vind31  
Vind32  
Low power mode,  
f = 1 kHz  
-
-
-
-
-
260  
50  
-
-
-
-
-
Middle-speed mode,  
f = 1 kHz  
Middle-speed mode,  
f = 100 kHz  
30  
High-speed mode,  
f = 1 kHz  
40  
High-speed mode,  
f = 100 kHz  
20  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 86 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.63  
OPAMP characteristics (3 of 3)  
Conditions: VCC = AVCC0 = AVCC1 = 1.7 V to 5.5 V, VSS = AVSS0 = AVSS1 = 0 V  
Parameter  
Symbol  
PSRR1  
PSRR2  
PSRR3  
CMRR1  
CMRR2  
CMRR3  
Tset1  
Conditions  
Min  
Typ  
90  
Max  
Unit  
Power supply rejection ratio*1  
Low power mode  
Middle-speed mode  
High-speed mode  
Low power mode  
Middle-speed mode  
High-speed mode  
Low power mode  
Middle-speed mode  
High-speed mode  
Low power mode  
Middle-speed mode  
High-speed mode  
-
-
dB  
-
90  
-
-
90  
-
Common mode rejection ratio*1  
Settling time*1  
-
90  
-
dB  
-
90  
-
-
90  
-
-
70  
200  
μS  
Tset2  
-
2.8  
1.2  
0.05  
1.3  
3.0  
80  
8
Tset3  
-
3.2  
Slew rate*1  
SR1  
0.02  
0.8  
1.8  
-
-
V/μS  
μS  
SR2  
-
SR3  
-
Turn on time*1  
Tturn1  
Low power mode,  
AMPENx = 0 1,  
IREFEN = 0 1  
220  
Tturn2  
Tturn3  
Vioffst2  
Middle-speed mode,  
AMPENx = 0 1,  
IREFEN = 0 1  
-
-
3
10  
4
High-speed mode,  
AMPENx = 0 1,  
IREFEN = 0 1  
1.3  
Input offset trimming step*1  
Middle-speed mode,  
Vin < AVCC0 - 1.2 V  
0.3  
0.459  
0.58  
0.56  
0.65  
0.61  
mV/code  
Middle-speed mode,  
Vin AVCC0 - 1.2 V  
0.24  
0.35  
0.28  
-
Vioffst3  
High-speed mode,  
Vin < AVCC0 - 1.2 V  
0.52  
-
High-speed mode,  
Vin AVCC0 - 1.2 V  
Wait time after trimming*1  
Tturn_tm2  
Tturn_tm3  
IIoad  
Middle-speed mode  
-
-
-
-
-
-
-
-
1.5  
1
μS  
High-speed mode  
Load current  
-
-
100  
20  
μA  
Load capacitance  
CL  
pF  
Note 1. These values are based on simulation. They are not production tested.  
2.15 Flash Memory Characteristics  
2.15.1  
Code Flash Memory Characteristics  
Table 2.64  
Code flash characteristics (1)  
Parameter  
Symbol  
NPEC  
Min  
Typ  
Max  
Unit  
Conditions  
Reprogramming/erasure cycle*1  
1000  
20*2,  
-
-
-
-
Times  
Year  
-
3
Data hold time  
After 1000 times NPEC  
tDRP  
*
Ta = +85°C  
Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 1,000),  
erasing can be performed n times for each block. For instance, when 4-byte programming is performed 256 times for different  
addresses in 1-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,  
programming the same address for several times as one erasure is not enabled (overwriting is prohibited).  
Note 2. Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics.  
Note 3. This result is obtained from reliability testing.  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 87 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.65  
Code flash characteristics (2)  
High-speed operating mode  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V  
FCLK = 1 MHz  
FCLK = 32 MHz  
Parameter  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
506  
222  
16.6  
140  
10.7  
447  
447  
447  
-
Unit  
μs  
Programming time  
Erasure time  
8-byte  
2-KB  
tP8  
-
116  
998  
287  
56.8  
1899  
22.5  
585  
585  
585  
-
-
54  
tE2K  
tBC8  
tBC2K  
tSED  
tSAS  
tAWS  
tOSIS  
-
9.03  
-
5.67  
ms  
μs  
Blank check time  
8-byte  
2-KB  
-
-
-
-
-
-
-
-
μs  
Erase suspended time  
-
-
-
-
μs  
Startup area switching setting time  
Access window time  
-
21.9  
21.9  
21.9  
-
-
12.1  
12.1  
12.1  
-
ms  
ms  
ms  
μs  
-
-
OCD/serial programmer ID setting time  
-
-
Flash memory mode transition wait time 1 tDIS  
Flash memory mode transition wait time 2 tMS  
2
5
2
5
-
-
-
-
μs  
Note:  
Note:  
Does not include the time until each operation of the flash memory is started after instructions are executed by software.  
The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below  
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of FCLK must be ± 3.5% during programming or erasing the flash memory. Confirm the frequency  
accuracy of the clock source.  
Note:  
Table 2.66  
Code flash characteristics (3)  
Middle-speed operating mode  
Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V, Ta = -40 to +85°C  
FCLK = 1 MHz  
FCLK = 8 MHz  
Parameter  
Symbol Min  
Typ  
Max  
1411  
289  
87.7  
1930  
32.7  
592  
592  
592  
-
Min  
Typ  
Max  
Unit  
μs  
Programming time  
Erasure time  
8-byte  
2-KB  
tP8  
-
157  
-
101  
966  
228  
52.5  
414  
21.6  
465  
465  
465  
-
tE2K  
tBC8  
tBC2K  
tSED  
tSAS  
tAWS  
tOSIS  
-
9.10  
-
6.10  
ms  
μs  
Blank check time  
8-byte  
2-KB  
-
-
-
-
-
-
-
-
μs  
Erase suspended time  
-
-
-
-
μs  
Startup area switching setting time  
Access window time  
-
22.8  
22.8  
22.8  
-
-
14.2  
14.2  
14.2  
-
ms  
ms  
ms  
μs  
-
-
OCD/serial programmer ID setting time  
-
-
Flash memory mode transition wait time 1 tDIS  
Flash memory mode transition wait time 2 tMS  
2
2
720  
-
-
720  
-
-
ns  
Note:  
Note:  
Does not include the time until each operation of the flash memory is started after instructions are executed by software.  
The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below  
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of FCLK must be ± 3.5% during programming or erasing the flash memory. Confirm the frequency  
accuracy of the clock source.  
Note:  
2.15.2  
Data Flash Memory Characteristics  
Table 2.67  
Parameter  
Data flash characteristics (1)  
Symbol  
NDPEC  
tDDRP  
Min  
Typ  
Max  
Unit  
Times  
Year  
Year  
Year  
Conditions  
-
Reprogramming/erasure cycle*1  
Data hold time After 10000 times of NDPEC  
100000  
1000000  
-
-
-
-
-
20*2,  
*
Ta = +85°C  
3
3
After 100000 times of NDPEC  
After 1000000 times of NDPEC  
5*2,  
-
*
-
1*2,  
*
Ta = +25°C  
3
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 88 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000),  
erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,000 times for different  
addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,  
programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.)  
Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics.  
Note 3. These results are obtained from reliability testing.  
Table 2.68  
Data flash characteristics (2)  
High-speed operating mode  
Conditions: VCC = AVCC0 = AVCC1 = 2.7 to 5.5 V  
FCLK = 4 MHz  
FCLK = 32 MHz  
Parameter  
Symbol  
tDP1  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
μs  
Programming time  
Erasure time  
1-byte  
1-KB  
-
52.4  
463  
286  
24.3  
1872  
13.0  
-
-
42.1  
387  
237  
16.6  
512  
10.7  
-
tDE1K  
-
8.98  
-
6.42  
ms  
μs  
Blank check time  
1-byte  
1-KB  
tDBC1  
-
-
-
-
-
-
-
-
-
-
tDBC1K  
tDSED  
tDSTOP  
-
-
μs  
Suspended time during erasing  
Data flash STOP recovery time  
-
-
μs  
5
5
μs  
Note:  
Note:  
Does not include the time until each operation of the flash memory is started after instructions are executed by software.  
The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below  
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of FCLK must be ± 3.5% during programming or erasing the flash memory. Confirm the frequency  
accuracy of the clock source.  
Note:  
Table 2.69  
Data flash characteristics (3)  
Middle-speed operating mode  
Conditions: VCC = AVCC0 = AVCC1 = 1.8 to 5.5 V, Ta = -40 to +85°C  
FCLK = 4 MHz  
Typ Max  
FCLK = 8 MHz  
Parameter  
Symbol  
tDP1  
Min  
Min  
Typ  
Max  
Unit  
μs  
Programming time  
Erasure time  
1-byte  
1-KB  
-
94.7  
886  
299  
56.2  
2.17  
23.0  
-
-
89.3  
849  
273  
52.5  
1.51  
21.7  
-
tDE1K  
-
9.59  
-
8.29  
ms  
μs  
Blank check time  
1-byte  
1-KB  
tDBC1  
-
-
-
-
-
-
-
-
-
-
tDBC1K  
tDSED  
tDSTOP  
-
-
ms  
μs  
Suspended time during erasing  
Data flash STOP recovery time  
-
-
720  
720  
ns  
Note:  
Note:  
Does not include the time until each operation of the flash memory is started after instructions are executed by software.  
The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below  
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of FCLK must be ± 3.5% during programming or erasing the flash memory. Confirm the frequency  
accuracy of the clock source.  
Note:  
2.15.3  
Serial Wire Debug (SWD)  
Table 2.70  
SWD characteristics (1) (1 of 2)  
Conditions: VCC = AVCC0 = AVCC1 = 2.4 to 5.5 V  
Parameter  
Symbol  
tSWCKcyc  
tSWCKH  
tSWCKL  
tSWCKr  
Min  
80  
35  
35  
-
Typ  
Max  
Unit  
ns  
Test conditions  
SWCLK clock cycle time  
SWCLK clock high pulse width  
SWCLK clock low pulse width  
SWCLK clock rise time  
SWCLK clock fall time  
-
-
-
-
-
-
Figure 2.71  
-
ns  
-
ns  
5
5
ns  
tSWCKf  
-
ns  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 89 of 100  
RA2A1 Datasheet  
2. Electrical Characteristics  
Table 2.70  
SWD characteristics (1) (2 of 2)  
Conditions: VCC = AVCC0 = AVCC1 = 2.4 to 5.5 V  
Parameter  
Symbol  
tSWDS  
tSWDH  
tSWDD  
Min  
16  
16  
2
Typ  
Max  
Unit  
ns  
Test conditions  
SWDIO setup time  
SWDIO hold time  
SWDIO data delay time  
-
-
-
-
Figure 2.72  
-
ns  
70  
ns  
Table 2.71  
SWD characteristics (2)  
Conditions: VCC = AVCC0 = AVCC1 = 1.6 to 2.4 V  
Parameter  
Symbol  
tSWCKcyc  
tSWCKH  
tSWCKL  
tSWCKr  
tSWCKf  
tSWDS  
Min  
250  
120  
120  
-
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test conditions  
SWCLK clock cycle time  
SWCLK clock high pulse width  
SWCLK clock low pulse width  
SWCLK clock rise time  
SWCLK clock fall time  
SWDIO setup time  
-
-
-
-
-
-
-
-
-
Figure 2.71  
-
-
5
-
5
50  
50  
2
-
Figure 2.72  
SWDIO hold time  
tSWDH  
-
SWDIO data delay time  
tSWDD  
150  
tSWCKcyc  
tSWCKH  
tSWCKf  
SWCLK  
tSWCKr  
tSWCKL  
Figure 2.71  
SWD SWCLK timing  
SWCLK  
tSWDS  
tSWDH  
SWDIO  
(Input)  
tSWDD  
tSWDD  
tSWDD  
SWDIO  
(Output)  
SWDIO  
(Output)  
SWDIO  
(Output)  
Figure 2.72  
SWD input/output timing  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 90 of 100  
RA2A1 Datasheet  
Appendix 1. Package Dimensions  
Appendix 1.Package Dimensions  
Information on the latest version of the package dimensions or mountings is displayed in “Packages” on the Renesas  
Electronics Corporation website.  
JEITA Package Code  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
0.3  
P-LFQFP64-10x10-0.50  
PLQP0064KB-C  
Unit: mm  
HD  
*1  
D
48  
33  
49  
32  
64  
17  
1
16  
NOTE 4  
Index area  
NOTE 3  
NOTE)  
F
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
S
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
y
S
*3  
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
b
p
e
M
D
E
A2  
HD  
HE  
A
A1  
bp  
c
9.9  
9.9  

10.0 10.1  
10.0 10.1  
1.4  

11.8  
11.8  

12.0 12.2  
12.0 12.2  


1.7  
0.15  
0.05  
0.15  
0.09  
0q  
0.20 0.27  

3.5q  
0.5  

0.20  
8q  

Lp  
L1  
T
e
x
y
Lp  
L1  

Detail F  

0.08  
0.08  
0.75  



0.45  

0.6  
1.0  
© 2015 Renesas Electronics Corporation. All rights reserved.  
Figure 1.1  
LQFP 64-pin  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 91 of 100  
RA2A1 Datasheet  
Appendix 1. Package Dimensions  
JEITA Package Code  
P-LQFP32-7x7-0.80  
RENESAS Code  
PLQP0032GB-A  
Previous Code  
32P6U-A  
MASS[Typ.]  
0.2g  
HD  
*1  
D
24  
17  
NOTE)  
1. DIMENSIONS "*1" AND "*2"  
DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION "*3" DOES NOT  
INCLUDE TRIM OFFSET.  
16  
25  
bp  
b1  
Dimension in Millimeters  
Reference  
Symbol  
Min Nom Max  
D
E
A2  
HD  
HE  
A
6.9 7.0 7.1  
6.9 7.0 7.1  
1.4  
Terminal cross section  
32  
9
8.8 9.0 9.2  
8.8 9.0 9.2  
1.7  
1
8
ZD  
Index mark  
A1  
bp  
b1  
c
0.1 0.2  
0
0.32 0.37 0.42  
0.35  
F
0.09  
0.20  
0.145  
0.125  
S
c1  
L
L1  
0°  
8°  
e
0.8  
Detail F  
y
S
x
0.20  
0.10  
*3  
bp  
x
e
y
ZD  
ZE  
L
0.7  
0.7  
0.3 0.5 0.7  
1.0  
L1  
Figure 1.2  
LQFP 32-pin  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 92 of 100  
RA2A1 Datasheet  
Appendix 1. Package Dimensions  
JEITA Package Code  
P-LFBGA36-5x5-0.80  
RENESAS Code  
PLBG0036GA-A  
Previous Code  
36FHE  
MASS[Typ.]  
0.1g  
b
S
AB  
ZD  
e
D
A
w
S A  
A1  
A
F
E
D
C
B
B
A
1
2
3
4
5
6
x4  
Dimension in Millimeters  
Reference  
Symbol  
v
Index mark  
Min Nom Max  
5.0  
5.0  
Index mark  
(Laser mark)  
S
D
E
v
0.15  
0.20  
1.4  
w
A
A1  
e
0.35  
0.8  
0.3  
0.4  
b
0.4 0.45  
0.5  
0.08  
0.10  
x
y
ZD  
ZE  
0.5  
0.5  
Figure 1.3  
BGA 36-pin  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 93 of 100  
RA2A1 Datasheet  
Appendix 1. Package Dimensions  
JEITA Package code  
RENESAS code  
Previous code  
MASS(TYP.)[g]  
48PJN-A  
P48K8-50-5B4-6  
P-HWQFN48-7x7-0.50  
PWQN0048KB-A  
0.13  
D
25  
36  
24  
37  
DETAIL OF A PART  
E
A
A1  
c2  
13  
48  
12  
1
INDEX AREA  
A
S
y
S
Dimension in Millimeters  
Referance  
Symbol  
Nom  
7.00  
7.00  
Max  
7.05  
7.05  
0.80  
Min  
6.95  
6.95  
D
E
D2  
A
EXPOSED DIE PAD  
Lp  
A
12  
1
A1  
b
0.00  
0.18  
13  
0.30  
0.25  
0.50  
0.40  
48  
e
0.30  
0.15  
0.50  
0.05  
0.05  
Lp  
x
B
E2  
y
ZD  
ZE  
c2  
0.75  
0.75  
0.20  
5.50  
5.50  
ZE  
37  
24  
0.25  
36  
25  
D2  
E2  
ZD  
e
M
b
x
S A B  
2013 Renesas Electronics Corporation. All rights reserved.  
Figure 1.4  
QFN 48-pin  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 94 of 100  
RA2A1 Datasheet  
Appendix 1. Package Dimensions  
JEITA Package code  
RENESAS code  
Previous code  
MASS(TYP.)[g]  
P-HWQFN40-6x6-0.50  
PWQN0040KC-A  
P40K8-50-4B4-5  
0.09  
D
21  
30  
20  
31  
DETAIL OF A PART  
E
A
40  
11  
A1  
c2  
10  
1
INDEX AREA  
A
S
y
S
Dimension in Millimeters  
Referance  
Symbol  
Nom  
6.00  
6.00  
Max  
6.05  
6.05  
0.80  
Min  
5.95  
5.95  
D
E
D2  
A
Lp  
EXPOSED DIE PAD  
A
1
10  
A1  
b
0.00  
0.18  
0.30  
11  
0.25  
0.50  
0.40  
40  
e
0.30  
0.15  
0.50  
0.05  
0.05  
Lp  
x
B
E2  
y
ZD  
ZE  
c2  
0.75  
0.75  
0.20  
4.50  
4.50  
ZE  
20  
31  
0.25  
30  
21  
D2  
E2  
ZD  
e
M
b
x
S
A B  
Figure 1.5  
QFN 40-pin  
R01DS0354EJ0110 Rev.1.10  
Mar 16, 2020  
Page 95 of 100  
Revision History  
RA2A1 Group Datasheet  
Rev.  
1.00  
1.10  
Date  
Summary  
Oct 8, 2019  
First release  
Mar 16, 2020 Updated for 1.10  
Proprietary Notice  
All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in  
this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and  
trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no  
part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated,  
transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior  
written consent from Renesas.  
®
®
Arm and Cortex are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited.  
®
CoreMark is a registered trademark of the Embedded Microprocessor Benchmark Consortium.  
Magic Packet™ is a trademark of Advanced Micro Devices, Inc.  
®
SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States  
and Japan.  
Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective  
holders.  
Colophon  
RA2A1 Microcontroller Group Datasheet  
Publication Date:  
Rev.1.10  
Mar 16, 2020  
Published by:  
Renesas Electronics Corporation  
Address List  
General Precautions  
1. Precaution against Electrostatic Discharge (ESD)  
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately  
degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and  
quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used.  
This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be  
stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit  
boards with mounted semiconductor devices.  
2. Processing at power-on  
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are  
indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished  
product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time  
when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset  
by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches  
the level at which resetting is specified.  
3. Input of signal during power-off state  
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results  
from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in  
the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-  
off state as described in your product documentation.  
4. Handling of unused pins  
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins  
of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state,  
extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally,  
and malfunctions occur due to the false recognition of the pin state as an input signal become possible.  
5. Clock signals  
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the  
clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated  
with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full  
stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or  
by an external oscillator while program execution is in progress, wait until the target clock signal is stable.  
6. Voltage application waveform at input pin  
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device  
stays in the area between V (Max.) and V (Min.) due to noise, for example, the device may malfunction. Take care to  
IL  
IH  
prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the  
input level passes through the area between V (Max.) and V (Min.).  
IL  
IH  
7. Prohibition of access to reserved addresses  
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of  
functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.  
8. Differences between products  
Before changing from one product to another, for example to a product with a different part number, confirm that the  
change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the  
same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and  
other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins,  
immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a  
system-evaluation test for the given product.  
Notice  
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for  
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by  
you or third parties arising from the use of these circuits, software, or information.  
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or  
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application  
examples.  
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.  
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by  
you or third parties arising from such alteration, modification, copying or reverse engineering.  
5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the  
product’s quality grade, as indicated below.  
"Standard":  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic  
equipment; industrial robots; etc.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.  
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are  
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause  
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all  
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or  
other Renesas Electronics document.  
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the  
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation  
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified  
ranges.  
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a  
certain rate and malfunctions under certain use conditions. Unless designated as  
a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas  
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury  
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to  
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult  
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.  
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and  
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics  
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable  
laws and regulations.  
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws  
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or  
transactions.  
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third  
party in advance of the contents and conditions set forth in this document.  
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
(Rev.4.0-1 November 2017)  
SALES OFFICES  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
http://www.renesas.com  
Renesas Electronics Corporation  
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan  
Renesas Electronics America Inc.  
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.  
Tel: +1-408-432-8888, Fax: +1-408-434-5351  
Renesas Electronics Canada Limited  
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3  
Tel: +1-905-237-2004  
Renesas Electronics Europe GmbH  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-6503-0, Fax: +49-211-6503-1327  
Renesas Electronics (China) Co., Ltd.  
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China  
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
Renesas Electronics (Shanghai) Co., Ltd.  
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China  
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999  
Renesas Electronics Hong Kong Limited  
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2265-6688, Fax: +852 2886-9022  
Renesas Electronics Taiwan Co., Ltd.  
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Singapore Pte. Ltd.  
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949  
Tel: +65-6213-0200, Fax: +65-6213-0300  
Renesas Electronics Malaysia Sdn.Bhd.  
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia  
Tel: +60-3-5022-1288, Fax: +60-3-5022-1290  
Renesas Electronics India Pvt. Ltd.  
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India  
Tel: +91-80-67208700  
Renesas Electronics Korea Co., Ltd.  
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea  
Tel: +82-2-558-3737, Fax: +82-2-558-5338  
© 20ꢀꢁ Renesas Electronics Corporation. All rights reserved.ꢂ  
Colophon .0  
Back cover  
Renesas RA Family  
RA2A1 Group  
R01DS0354EJ0110  

相关型号:

R7FA2A1AB3CFJ

32-Bit MCU Renesas Advanced (RA) Family Renesas RA2 Series
RENESAS

R7FA2A1AB3CFM

32-Bit MCU Renesas Advanced (RA) Family Renesas RA2 Series
RENESAS

R7FA2A1AB3CNE

32-Bit MCU Renesas Advanced (RA) Family Renesas RA2 Series
RENESAS

R7FA2A1AB3CNF

32-Bit MCU Renesas Advanced (RA) Family Renesas RA2 Series
RENESAS

R7FA2L1A92DFL

Ultra low power 48 MHz Arm® Cortex-M23 core, up to 256-KB code flash memory
RENESAS

R7FA2L1A92DFM

Ultra low power 48 MHz Arm® Cortex-M23 core, up to 256-KB code flash memory
RENESAS

R7FA2L1A92DFN

Ultra low power 48 MHz Arm® Cortex-M23 core, up to 256-KB code flash memory
RENESAS

R7FA2L1A92DFP

Ultra low power 48 MHz Arm® Cortex-M23 core, up to 256-KB code flash memory
RENESAS

R7FA2L1A92DNE

Ultra low power 48 MHz Arm® Cortex-M23 core, up to 256-KB code flash memory
RENESAS

R7FA2L1A93CFL

Ultra low power 48 MHz Arm® Cortex-M23 core, up to 256-KB code flash memory
RENESAS

R7FA2L1A93CFM

Ultra low power 48 MHz Arm® Cortex-M23 core, up to 256-KB code flash memory
RENESAS

R7FA2L1A93CFN

Ultra low power 48 MHz Arm® Cortex-M23 core, up to 256-KB code flash memory
RENESAS