R7FA2L1AB2DFP [RENESAS]

Ultra low power 48 MHz Arm® Cortex-M23 core, up to 256-KB code flash memory;
R7FA2L1AB2DFP
型号: R7FA2L1AB2DFP
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Ultra low power 48 MHz Arm® Cortex-M23 core, up to 256-KB code flash memory

文件: 总110页 (文件大小:1417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
R01DS0385EJ0100  
Rev.1.00  
RA2L1 Group  
Renesas Microcontrollers  
Aug 06, 2020  
Ultra low power 48 MHz Arm® Cortex®-M23 core, up to 256-KB code flash memory, 32 KB SRAM, Capacitive Sensing Unit 2  
(CTSU), 12-bit A/D Converter, 12-bit D/A Converter, Security and Safety features.  
Features  
Middle-speed on-chip oscillator (MOCO) (8 MHz)  
Low-speed on-chip oscillator (LOCO) (32.768 kHz)  
Clock trim function for HOCO/MOCO/LOCO  
IWDT-dedicated on-chip oscillator (15 kHz)  
Clock out support  
■ Arm Cortex-M23 Core  
Armv8-M architecture  
Maximum operating frequency: 48 MHz  
Arm Memory Protection Unit (Arm MPU) with 8 regions  
Debug and Trace: DWT, FPB, CoreSight MTB-M23  
CoreSight Debug Port: SW-DP  
■ Up to 85 pins for general I/O ports  
5-V tolerance, open drain, input pull-up  
■ Memory  
Up to 256-KB code flash memory  
8-KB data flash memory (100,000 program/erase (P/E) cycles)  
32 KB SRAM  
■ Operating Voltage  
VCC: 1.6 to 5.5 V  
Memory protection units  
■ Operating Temperature and Packages  
Ta = -40℃ to +85℃  
128-bit unique ID  
100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)  
80-pin LQFP (12 mm × 12 mm, 0.5 mm pitch)  
64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)  
48-pin LFQFP (7 mm × 7 mm, 0.50 mm pitch)  
48-pin HWQFN (7 mm × 7 mm, 0.50 mm pitch)  
Ta = -40℃ to +105℃  
100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)  
80-pin LQFP (12 mm × 12 mm, 0.5 mm pitch)  
64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)  
48-pin LFQFP (7 mm × 7 mm, 0.50 mm pitch)  
48-pin HWQFN (7 mm × 7 mm, 0.50 mm pitch)  
■ Connectivity  
Serial Communications Interface (SCI) × 5  
Asynchronous interfaces  
8-bit clock synchronous interface  
Simple IIC  
Simple SPI  
Smart card interface  
Serial Peripheral Interface (SPI) × 2  
2
I C bus interface (IIC) × 2  
CAN module (CAN)  
■ Analog  
12-bit A/D Converter (ADC12)  
12-bit D/A Converter (DAC12)  
Low-Power Analog Comparator (ACMPLP) × 2  
Temperature Sensor (TSN)  
■ Timers  
General PWM Timer 32-bit (GPT32) × 4  
General PWM Timer 16-bit (GPT16) × 6  
Low Power Asynchronous General Purpose Timer (AGT) × 2  
Watchdog Timer (WDT)  
■ Safety  
ECC in SRAM  
SRAM parity error check  
Flash area protection  
ADC self-diagnosis function  
Clock Frequency Accuracy Measurement Circuit (CAC)  
Cyclic Redundancy Check (CRC) calculator  
Data Operation Circuit (DOC)  
Port Output Enable for GPT (POEG)  
Independent Watchdog Timer (IWDT)  
GPIO readback level detection  
Register write protection  
Main oscillator stop detection  
Illegal memory access  
■ Security and Encryption  
AES128/256  
True Random Number Generator (TRNG)  
■ System and Power Management  
Low power modes  
Switching regulator  
Realtime Clock (RTC)  
Event Link Controller (ELC)  
Data Transfer Controller (DTC)  
Key Interrupt Function (KINT)  
Power-on reset  
Low Voltage Detection (LVD) with voltage settings  
■ Human Machine Interface (HMI)  
Capacitive Sensing Unit 2 (CTSU)  
■ Multiple Clock Sources  
Main clock oscillator (MOSC) 1 to 20 MHz)  
Sub-clock oscillator (SOSC) (32.768 kHz)  
High-speed on-chip oscillator (HOCO) (24/32/48/64 MHz)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 1 of 110  
RA2L1 Datasheet  
1. Overview  
1.  
Overview  
®
The MCU integrates multiple series of software- and pin-compatible Arm -based 32-bit cores that share a common set of  
Renesas peripherals to facilitate design scalability.  
®
The MCU in this series incorporates an energy-efficient Arm Cortex -M23 32-bit core, that is particularly well suited for  
cost-sensitive and low-power applications, with the following features:  
Up to 256-KB code flash memory  
32-KB SRAM  
12-bit A/D Converter (ADC12)  
12-bit D/A Converter (DAC12)  
Security features  
1.1  
Function Outline  
Table 1.1  
Feature  
Arm core  
Functional description  
Arm Cortex-M23 core  
Maximum operating frequency: up to 48 MHz  
Arm Cortex-M23 core:  
Revision: r1p0-00rel0  
Armv8-M architecture profile  
Single-cycle integer multiplier  
19-cycle integer divider  
Arm Memory Protection Unit (Arm MPU):  
Armv8 Protected Memory System Architecture  
8 protect regions  
SysTick timer:  
Driven by SYSTICCLK (LOCO) or ICLK  
Table 1.2  
Memory  
Feature  
Functional description  
Code flash memory  
Data flash memory  
Option-setting memory  
SRAM  
Maximum 256 KB of code flash memory.  
8 KB of data flash memory.  
The option-setting memory determines the state of the MCU after a reset.  
On-chip high-speed SRAM with either parity bit or Error Correction Code (ECC).  
Table 1.3  
System (1 of 2)  
Feature  
Functional description  
Operating modes  
Two operating modes:  
Single-chip mode  
SCI boot mode  
Resets  
The MCU provides 13 resets. lists the reset names and sources.  
Low Voltage Detection (LVD)  
The Low Voltage Detection (LVD) module monitors the voltage level input to the VCC pin. The  
detection level can be selected by register settings. The LVD module consists of three separate  
voltage level detectors (LVD0, LVD1, LVD2). LVD0, LVD1, and LVD2 measure the voltage level  
input to the VCC pin. LVD registers allow your application to configure detection of VCC changes  
at various voltage thresholds.  
See section x, Low Voltage Detection (LVD).  
Clocks  
Main clock oscillator (MOSC)  
Sub-clock oscillator (SOSC)  
High-speed on-chip oscillator (HOCO)  
Middle-speed on-chip oscillator (MOCO)  
Low-speed on-chip oscillator (LOCO)  
IWDT-dedicated on-chip oscillator (IWDTLOCO)  
Clock out support  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 2 of 110  
RA2L1 Datasheet  
1. Overview  
Table 1.3  
Feature  
System (2 of 2)  
Functional description  
Clock Frequency Accuracy  
Measurement Circuit (CAC)  
The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be  
measured (measurement target clock) within the time generated by the clock selected as the  
measurement reference (measurement reference clock), and determines the accuracy  
depending on whether the number of pulses is within the allowable range.When measurement is  
complete or the number of pulses within the time generated by the measurement reference clock  
is not within the allowable range, an interrupt request is generated.  
Interrupt Controller Unit (ICU)  
The Interrupt Controller Unit (ICU) controls which event signals are linked to the Nested Vector  
Interrupt Controller (NVIC), and the Data Transfer Controller (DTC) modules. The ICU also  
controls non-maskable interrupts.  
Key Interrupt Function (KINT)  
Low power modes  
The key interrupt function (KINT) is generated a key interrupt by detecting a valid edge on the  
key interrupt input pin.  
Power consumption can be reduced in multiple ways, including setting clock dividers, stopping  
modules, selecting power control mode in normal operation, and transitioning to low power  
modes.  
Register write protection  
Memory Protection Unit (MPU)  
Watchdog Timer (WDT)  
The register write protection function protects important registers from being overwritten due to  
software errors. The registers to be protected are set with the Protect Register (PRCR).  
The MCU has four Memory Protection Units (MPUs) and a CPU stack pointer monitor function  
are provided.  
The Watchdog Timer (WDT) is a 14-bit down counter that can be used to reset the MCU when  
the counter underflows because the system has run out of control and is unable to refresh the  
WDT. In addition, the WDT can be used to generate a non-maskable interrupt or an underflow  
interrupt or watchdog timer reset.  
Independent Watchdog Timer (IWDT)  
The Independent Watchdog Timer (IWDT) consists of a 14-bit down counter that must be  
serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the  
MCU or to generate a non-maskable interrupt or an underflow interrupt. Because the timer  
operates with an independent, dedicated clock source, it is particularly useful in returning the  
MCU to a known state as a fail-safe mechanism when the system runs out of control. The IWDT  
can be triggered automatically by a reset, underflow, refresh error, or a refresh of the count value  
in the registers.  
Table 1.4  
Feature  
Event link  
Functional description  
Event Link Controller (ELC)  
The Event Link Controller (ELC) uses the event requests generated by various peripheral  
modules as source signals to connect them to different modules, allowing direct link between the  
modules without CPU intervention.  
Table 1.5  
Direct memory access  
Feature  
Functional description  
Data Transfer Controller (DTC)  
A Data Transfer Controller (DTC) module is provided for transferring data when activated by an  
interrupt request.  
Table 1.6  
Feature  
Timers (1 of 2)  
Functional description  
General PWM Timer (GPT)  
The General PWM Timer (GPT) is a 32-bit timer with GPT32 × 4 channels and a 16-bit timer with  
GPT16 × 6 channels. PWM waveforms can be generated by controlling the up-counter, down-  
counter, or the up- and down-counter. In addition, PWM waveforms can be generated for  
controlling brushless DC motors. The GPT can also be used as a general-purpose timer.  
Port Output Enable for GPT (POEG)  
The Port Output Enable (POEG) function can place the General PWM Timer (GPT) output pins  
in the output disable state  
Low power Asynchronous General  
Purpose Timer (AGT)  
The low power Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used  
for pulse output, external pulse width or period measurement, and counting external events. This  
timer consists of a reload register and a down counter. The reload register and the down counter  
are allocated to the same address, and can be accessed with the AGT register.  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 3 of 110  
RA2L1 Datasheet  
1. Overview  
Table 1.6  
Timers (2 of 2)  
Feature  
Functional description  
Realtime Clock (RTC)  
The RTC has two operation modes, normal operation mode and low-consumption clock mode. In  
each of the operation mode, the RTC has two counting modes, calendar count mode and binary  
count mode, that are used by switching register settings. For calendar count mode, the RTC has  
a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For  
binary count mode, the RTC counts seconds and retains the information as a serial value. Binary  
count mode can be used for calendars other than the Gregorian (Western) calendar.  
Table 1.7  
Communication interfaces  
Feature  
Functional description  
Serial Communications Interface (SCI)  
The Serial Communications Interface (SCI) × 5 channels have asynchronous and synchronous  
serial interfaces:  
Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter  
(ACIA))  
8-bit clock synchronous interface  
Simple IIC (master-only)  
Simple SPI  
Smart card interface  
The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and  
transmission protocol. SCIn (n = 0) has FIFO buffers to enable continuous and full-duplex  
communication, and the data transfer speed can be configured independently using an on-chip  
baud rate generator.  
2
2
I C bus interface (IIC)  
The I C bus interface (IIC) has 2 channels. The IIC module conforms with and provides a subset  
2
of the NXP I C (Inter-Integrated Circuit) bus interface functions.  
Serial Peripheral Interface (SPI)  
Control Area Network (CAN)  
The Serial Peripheral Interface (SPI) provides high-speed full-duplex synchronous serial  
communications with multiple processors and peripheral devices.  
The Controller Area Network (CAN) module uses a message-based protocol to receive and  
transmit data between multiple slaves and masters in electromagnetically noisy applications. The  
module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32  
mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO  
modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. The CAN  
module requires an additional external CAN transceiver.  
Table 1.8  
Feature  
Analog  
Functional description  
12-bit A/D Converter (ADC12)  
A 12-bit successive approximation A/D converter is provided. Up to 19 analog input channels are  
selectable. Temperature sensor output and internal reference voltage are selectable for  
conversion.  
12-bit D/A Converter (DAC12)  
Temperature Sensor (TSN)  
A 12-bit D/A converter (DAC12) is provided.  
The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for reliable  
operation of the device. The sensor outputs a voltage directly proportional to the die  
temperature, and the relationship between the die temperature and the output voltage is fairly  
linear. The output voltage is provided to the ADC12 for conversion and can be further used by  
the end application.  
Low-Power Analog Comparator  
(ACMPLP)  
The Low-Power Analog Comparator (ACMPLP) compares a reference input voltage with an  
analog input voltage. Comparator channels ACMPLP0 and ACMPLP1 are independent of each  
other.  
The comparison result of the reference input voltage and analog input voltage can be read by  
software. The comparison result can also be output externally. The reference input voltage can  
be selected from either an input to the CMPREFi (i = 0, 1) pin or from the internal reference  
voltage (Vref) generated internally in the MCU.  
The ACMPLP response speed can be set before starting an operation. Setting high-speed mode  
decreases the response delay time, but increases current consumption. Setting low-speed mode  
increases the response delay time, but decreases current consumption.  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 4 of 110  
RA2L1 Datasheet  
1. Overview  
Table 1.9  
Human machine interfaces  
Feature  
Functional description  
Capacitive Sensing Unit 2 (CTSU)  
The Capacitive Sensing Unit 2 (CTSU) measures the electrostatic capacitance of the sensor.  
Changes in the electrostatic capacitance are determined by software that enables the CTSU to  
detect whether a finger is in contact with the sensor. The electrode surface of the sensor is  
usually enclosed with a dielectric film so that a finger does not come into direct contact with the  
electrode.  
Table 1.10  
Feature  
Data processing  
Functional description  
Cyclic Redundancy Check (CRC)  
calculator  
The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the  
data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first  
communication. Additionally, various CRC-generation polynomials are available. The snoop  
function allows monitoring of reads from and writes to specific addresses. This function is useful  
in applications that require CRC code to be generated automatically in certain events, such as  
monitoring writes to the serial transmit buffer and reads from the serial receive buffer.  
Data Operation Circuit (DOC)  
The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. When a selected  
condition applies, 16-bit data is compared and an interrupt can be generated.  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 5 of 110  
RA2L1 Datasheet  
1. Overview  
1.2  
Block Diagram  
Figure 1.1 shows a block diagram of the MCU superset. Some individual devices within the group have a subset of the  
features.  
Bus  
Memory  
Arm Cortex-M23  
MPU  
System  
256-KB code flash  
Clocks  
MPU  
POR/LVD  
Reset  
MOSC/SOSC  
8-KB data flash  
32-KB SRAM  
NVIC  
(H/M/L) OCO  
Mode control  
Power control  
ICU  
System timer  
DMA  
DTC  
Test and DBG Interface  
CAC  
Register write  
protection  
KINT  
Timers  
Communication interfaces  
Human machine interfaces  
CTSU  
GPT32 × 4  
GPT16 × 6  
SCI × 5  
IIC × 2  
SPI × 2  
CAN × 1  
AGT × 2  
RTC  
WDT/IWDT  
Event link  
ELC  
Data processing  
Analogs  
TSN  
CRC  
ADC12  
DOC  
Security  
DAC12 × 1  
ACMPLP × 2  
AES + TRNG  
Figure 1.1  
Block diagram  
1.3  
Part Numbering  
Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.11 shows a  
list of products.  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 6 of 110  
RA2L1 Datasheet  
1. Overview  
Package type  
R 7 F A2 L 1 AB 3 C F P  
FP: LQFP 100 pins 0.5 mm pitch  
FN: LQFP 80 pins 0.5 mm pitch  
FM: LQFP 64 pins 0.5 mm pitch  
FL: LFQFP 48 pins 0.5 mm pitch  
NE: HWQFN 48 pins 0.5 mm pitch  
Quality ID  
C: Industrial applications  
D: Consumer applications  
Operating temperature  
2: -40°C to +85°C  
3: -40°C to +105°C  
Code flash memory size  
B: 256 KB  
9: 128 KB  
Feature set  
A: Standard and security  
Group name  
L1: Low Power group  
Core  
2: Arm Cortex-M23  
RA Family (Renesas Advanced)  
Flash memory  
Renesas microcontroller unit  
Renesas  
Figure 1.2  
Table 1.11  
Part numbering scheme  
Product list (1 of 2)  
Data  
Operating  
Product part number  
Package code  
PLQP0100KB-B  
PLQP0080KB-B  
PLQP0064KB-C  
PLQP0048KB-B  
TBD  
Code flash  
flash  
SRAM  
temperature  
R7FA2L1AB3CFP  
R7FA2L1AB3CFN  
R7FA2L1AB3CFM  
R7FA2L1AB3CFL  
R7FA2L1AB3CNE  
R7FA2L1AB2DFP  
R7FA2L1AB2DFN  
R7FA2L1AB2DFM  
R7FA2L1AB2DFL  
R7FA2L1AB2DNE  
256 KB  
8 KB  
32 KB  
-40 to +105°C  
PLQP0100KB-B  
PLQP0080KB-B  
PLQP0064KB-C  
PLQP0048KB-B  
TBD  
-40 to +85°C  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 7 of 110  
RA2L1 Datasheet  
1. Overview  
Table 1.11  
Product list (2 of 2)  
Data  
flash  
Operating  
temperature  
Product part number  
Package code  
PLQP0100KB-B  
PLQP0080KB-B  
PLQP0064KB-C  
PLQP0048KB-B  
TBD  
Code flash  
SRAM  
R7FA2L1A93CFP  
R7FA2L1A93CFN  
R7FA2L1A93CFM  
R7FA2L1A93CFL  
R7FA2L1A93CNE  
R7FA2L1A92DFP  
R7FA2L1A92DFN  
R7FA2L1A92DFM  
R7FA2L1A92DFL  
R7FA2L1A92DNE  
128 KB  
8 KB  
32 KB  
-40 to +105°C  
PLQP0100KB-B  
PLQP0080KB-B  
PLQP0064KB-C  
PLQP0048KB-B  
TBD  
-40 to +85°C  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 8 of 110  
RA2L1 Datasheet  
1. Overview  
1.4  
Function Comparison  
Table 1.12  
Function Comparison  
R7FA2L1A R7FA2L1A  
B3CFL  
93CFL  
R7FA2L1A R7FA2L1A R7FA2L1A R7FA2L1A R7FA2L1A R7FA2L1A R7FA2L1A R7FA2L1A  
Parts number  
Pin count  
B3CFP  
93CFP  
100  
B3CFN  
93CFN  
B3CFM  
93CFM  
64  
B3CNE  
93CNE  
48  
LQFP/QFN LQFP/QFN  
256 KB 128 KB  
80  
Package  
LQFP  
256 KB  
LQFP  
128 KB  
LQFP  
LQFP  
128 KB  
LQFP  
LQFP  
128 KB  
Code flash memory  
Data flash memory  
SRAM  
256 KB  
256 KB  
8 KB  
32 KB  
16 KB  
16 KB  
Parity  
ECC  
System  
CPU clock  
48 MHz  
Yes  
Sub-clock  
oscillator  
ICU  
Yes  
KINT  
8
6
5
3
Event control ELC  
Yes  
Yes  
4
DMA  
DTC  
Timers  
GPT32  
GPT16  
AGT  
2
Yes  
Yes  
5
RTC  
WDT/IWDT  
Communicatio SCI  
n
IIC  
2
SPI  
2
CAN  
Yes  
Analog  
ADC12  
19  
17  
13  
DAC12  
ACMPLP  
TSN  
1
2
Yes  
HMI  
CTSU  
CRC  
32  
30  
20  
Data  
processing  
Yes  
Yes  
DOC  
Security  
AES and TRNG  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 9 of 110  
RA2L1 Datasheet  
1. Overview  
1.5  
Pin Functions  
Table 1.13  
Function  
Pin functions (1 of 3)  
Signal  
I/O  
Description  
Power supply  
VCC  
Input  
Power supply pin. Connect it to the system power supply. Connect  
this pin to VSS by a 0.1-µF capacitor. Place the capacitor close to  
the pin.  
VCL  
I/O  
Connect this pin to the VSS pin by the smoothing capacitor used to  
stabilize the internal power supply. Place the capacitor close to the  
pin.  
VSS  
Input  
Input  
I/O  
Ground pin. Connect it to the system power supply (0 V).  
Switching regulator power supply pin  
Switching regulator pin  
VCC_DCDC  
VLO  
VSS_DCDC  
Input  
Switching regulator ground pin. Connect it to the system power  
supply (0 V).  
Clock  
XTAL  
Output  
Input  
Pins for a crystal resonator. An external clock signal can be input  
through the EXTAL pin.  
EXTAL  
XCIN  
Input  
Input/output pins for the sub-clock oscillator. Connect a crystal  
resonator between XCOUT and XCIN.  
XCOUT  
CLKOUT  
Output  
Output  
Input  
Clock output pin  
Operating mode control  
System control  
MD  
Pin for setting the operating mode. The signal level on this pin must  
not be changed during operation mode transition on release from  
the reset state.  
RES  
Input  
Reset signal input pin. The MCU enters the reset state when this  
signal goes low.  
CAC  
CACREF  
Input  
I/O  
Measurement reference clock input pin  
Serial wire debug data input/output pin  
Serial wire clock pin  
On-chip debug  
SWDIO  
SWCLK  
Input  
Input  
Input  
Input  
I/O  
Interrupt  
GPT  
NMI  
Non-maskable interrupt request pin  
Maskable interrupt request pins  
External trigger input pins  
IRQ0 to IRQ7  
GTETRGA, GTETRGB  
GTIOCnA (n = 0 to 9),  
GTIOCnB (n = 0 to 9)  
Input capture, output compare, or PWM output pins  
GTIU  
Input  
Hall sensor input pin U  
GTIV  
Input  
Hall sensor input pin V  
GTIW  
Input  
Hall sensor input pin W  
GTOUUP  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
3-phase PWM output for BLDC motor control (positive U phase)  
3-phase PWM output for BLDC motor control (negative U phase)  
3-phase PWM output for BLDC motor control (positive V phase)  
3-phase PWM output for BLDC motor control (negative V phase)  
3-phase PWM output for BLDC motor control (positive W phase)  
3-phase PWM output for BLDC motor control (negative W phase)  
External event input enable signals  
GTOULO  
GTOVUP  
GTOVLO  
GTOWUP  
GTOWLO  
AGT  
AGTEE0, AGTEE1  
AGTIO0, AGTIO1  
AGTO0, AGTO1  
AGTOA0, AGTOA1  
AGTOB0, AGTOB1  
I/O  
External event input and pulse output pins  
Pulse output pins  
Output  
Output  
Output  
Output compare match A output pins  
Output compare match B output pins  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 10 of 110  
RA2L1 Datasheet  
1. Overview  
Table 1.13  
Function  
RTC  
Pin functions (2 of 3)  
Signal  
I/O  
Description  
RTCOUT  
Output  
I/O  
Output pin for 1-Hz or 64-Hz clock  
SCI  
SCKn (n = 0 to 3, 9)  
RXDn (n = 0 to 3, 9)  
Input/output pins for the clock (clock synchronous mode)  
Input  
Input pins for received data (asynchronous mode/clock synchronous  
mode)  
TXDn (n = 0 to 3, 9)  
Output  
I/O  
Output pins for transmitted data (asynchronous mode/clock  
synchronous mode)  
CTSn_RTSn (n = 0 to 3,  
9)  
Input/output pins for controlling the start of transmission and  
reception (asynchronous mode/clock synchronous mode), active-  
low.  
SCLn (n = 0 to 3, 9)  
SDAn (n = 0 to 3, 9)  
SCKn (n = 0 to 3, 9)  
MISOn (n = 0 to 3, 9)  
MOSIn (n = 0 to 3, 9)  
SSn (n = 0 to 3, 9)  
SCLn (n = 0, 1)  
I/O  
I/O  
I/O  
I/O  
I/O  
Input  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Input/output pins for the IIC clock (simple IIC mode)  
Input/output pins for the IIC data (simple IIC mode)  
Input/output pins for the clock (simple SPI mode)  
Input/output pins for slave transmission of data (simple SPI mode)  
Input/output pins for master transmission of data (simple SPI mode)  
Chip-select input pins (simple SPI mode), active-low  
Input/output pins for the clock  
IIC  
SDAn (n = 0, 1)  
Input/output pins for data  
SPI  
RSPCKA, RSPCKB  
MOSIA, MOSIB  
Clock input/output pin  
Input or output pins for data output from the master  
Input or output pins for data output from the slave  
Input or output pin for slave selection  
MISOA, MISOB  
SSLA0, SSLB0  
SSLA1 to SSLA3, SSLB1 Output  
to SSLB3  
Output pins for slave selection  
CAN  
CRX0  
Input  
Output  
Input  
Input  
Input  
Receive data  
CTX0  
Transmit data  
Analog power supply  
AVCC0  
AVSS0  
VREFH0  
Analog voltage supply pin for the ADC12, DAC12  
Analog ground pin for the ADC12, DAC12  
Analog reference voltage supply pin for the ADC12. Connect this pin  
to AVCC0 when not using the ADC12.  
VREFL0  
Input  
Analog reference ground pin for the ADC12. Connect this pin to  
AVSS0 when not using the ADC12.  
ADC12  
AN000 to AN014, AN017 Input  
to AN020  
Input pins for the analog signals to be processed by the A/D  
converter.  
ADTRG0  
Input  
Input pin for the external trigger signals that start the A/D  
conversion, active-low.  
DAC12  
DA0  
Output  
Output  
Input  
Output pin for the analog signals processed by the D/A converter.  
Comparator output pin  
ACMPLP  
VCOUT  
CMPREF0, CMPREF1  
CMPIN0, CMPIN1  
Reference voltage input pins  
Input  
Analog voltage input pins  
CTSU  
KINT  
TS00, TS02-CFC, TS04  
to TS07, TS08-CFC to  
TS16-CFC, TS17, TS18,  
TS21 to TS25, TS26-CFC  
to TS35-CFC  
Input  
Capacitive touch detection pins (touch pins)  
TSCAP  
Secondary power supply pin for the touch driver  
Key interrupt input pins  
KR00 to KR07  
Input  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 11 of 110  
RA2L1 Datasheet  
1. Overview  
Table 1.13  
Function  
I/O ports  
Pin functions (3 of 3)  
Signal  
I/O  
Description  
P000 to P008, P010 to  
P015  
I/O  
General-purpose input/output pins  
P100 to P115  
P200  
I/O  
General-purpose input/output pins  
General-purpose input pin  
Input  
I/O  
P201 to P208, P212,  
P213  
General-purpose input/output pins  
P214, P215  
Input  
I/O  
General-purpose input pins  
P300 to P307  
P400 to P415  
P500 to P505  
General-purpose input/output pins  
General-purpose input/output pins  
General-purpose input/output pins  
General-purpose input/output pins  
I/O  
I/O  
P600 to P603, P608 to  
P610  
I/O  
P708, P714  
P808, P809  
I/O  
I/O  
General-purpose input/output pins  
General-purpose input/output pins  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 12 of 110  
RA2L1 Datasheet  
1. Overview  
1.6  
Pin Assignments  
Figure 1.3 and Figure 1.4 show the pin assignments from the top view.  
76  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
P500  
P300/SWCLK  
P301  
77  
P501  
78  
P502  
P302  
79  
P503  
P303  
80  
P504  
P809  
81  
P505  
P808  
82  
VCC  
P304  
83  
VSS  
P305  
84  
P015  
P306  
85  
P014  
P307  
86  
P013  
P200  
87  
P012  
P201/MD  
RES  
88  
AVCC0  
R7FA2L1AB3CFP  
89  
AVSS0  
VCC  
90  
P011/VREFL0  
VSS  
91  
P010/VREFH0  
P202  
92  
P008  
P203  
93  
P007  
P204  
94  
P006  
P205  
95  
P005  
P206  
96  
P004  
P207  
97  
P003  
P208  
98  
P002  
VCC_DCDC  
VLO  
99  
P001  
100  
P000  
VSS_DCDC  
Figure 1.3  
Pin assignment for LQFP 100-pin (top view)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 13 of 110  
RA2L1 Datasheet  
1. Overview  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
P500  
P501  
P300/SWCLK  
P301  
P502  
P302  
P503  
P303  
P504  
P809  
P015  
P808  
P014  
P304  
P013  
P305  
P012  
P306  
AVCC0  
AVSS0  
P011/VREFL0  
P010/VREFH0  
P006  
P200  
R7FA2L1AB3CFN  
P201/MD  
RES  
P204  
P205  
P005  
P206  
P004  
P207  
P003  
P208  
P002  
VCC_DCDC  
VLO  
P001  
P000  
VSS_DCDC  
Figure 1.4  
Pin assignment for LQFP 80-pin (top view)  
49  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
P500  
P300/SWCLK  
P301  
50  
P501  
51  
P502  
P302  
52  
P015  
P303  
53  
P014  
P304  
54  
P013  
P200  
55  
P012  
P201/MD  
RES  
56  
AVCC0  
R7FA2L1AB3CFM  
57  
58  
59  
60  
61  
62  
63  
64  
AVSS0  
P011/VREFL0  
P010/VREFH0  
P004  
P204  
P205  
P206  
P207  
P003  
P208  
P002  
VCC_DCDC  
VLO  
P001  
P000  
VSS_DCDC  
Figure 1.5  
Pin assignment for LQFP 64-pin (top view)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 14 of 110  
RA2L1 Datasheet  
1. Overview  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P300/SWCLK  
P301  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
P500  
P015  
P302  
P014  
P200  
P013  
P201/MD  
RES  
P012  
AVCC0  
AVSS0  
R7FA2L1AB3CFL  
P206  
P207  
P011/VREFL0  
P010/VREFH0  
P002  
P208  
VCC_DCDC  
VLO  
P001  
VSS_DCDC  
P000  
Figure 1.6  
Pin assignment for LQFP 48-pin (top view)  
37  
24  
P500  
P300/SWCLK  
P301  
38  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P015  
39  
P014  
P302  
40  
P013  
P200  
41  
P012  
P201/MD  
RES  
42  
43  
44  
45  
46  
AVCC0  
AVSS0  
R7FA2L1AB3CNE  
P206  
P011/VREFL0  
P010/VREFH0  
P002  
P207  
P208  
VCC_DCDC  
VLO  
P001 47  
P000 48  
VSS_DCDC  
Figure 1.7  
Pin assignment for QFN 48-pin (top view)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 15 of 110  
RA2L1 Datasheet  
1. Overview  
1.7  
Pin Lists  
Table 1.14  
Pin list (1 of 4)  
Num.  
Timers  
Communication interfaces  
Analogs  
HMI  
1
2
1
2
1
2
1
2
CACREF  
_C  
P400  
P401  
AGTIO1_  
C
GTIOC6A  
_A  
SCK0_B/  
SCK1_B  
SCL0_A  
IRQ0_A  
IRQ5  
GTETRG  
A_B  
GTIOC6B  
_A  
CTX0_B  
CTS0_RT SDA0_A  
S0_B/  
SS0_B/  
TXD1_B/  
MOSI1_B/  
SDA1_B  
3
4
3
4
3
4
P402  
P403  
AGTIO0_  
E/  
AGTIO1_  
D
CRX0_B  
RXD1_B/  
MISO1_B/  
SCL1_B  
TS18  
TS17  
IRQ4  
AGTIO0_  
F/  
GTIOC3A  
_B  
CTS1_RT  
S1_B/  
AGTIO1_  
E
SS1_B  
5
6
7
5
P404  
P405  
P406  
GTIOC3B  
_B  
GTIOC1A  
_B  
GTIOC1B  
_B  
8
6
5
3
P714  
9
7
VCL  
10  
11  
12  
13  
8
6
4
XCIN  
XCOUT  
VSS  
P215  
P214  
9
7
5
10  
11  
8
6
9
7
XTAL  
P213  
GTETRG  
A_D  
GTIOC0A  
_D  
TXD1_A/  
MOSI1_A/  
SDA1_A  
IRQ2_B  
14  
12  
10  
8
EXTAL  
P212  
AGTEE1  
GTETRG  
B_D  
GTIOC0B  
_D  
RXD1_A/  
MISO1_A/  
SCL1_A  
IRQ3_B  
15  
16  
13  
14  
11  
9
VCC  
P708  
RXD1_D/  
MISO1_D  
/SCL1_D  
SSLA3_B  
17  
18  
19  
15  
P415  
P414  
P413  
GTIOC0A  
_C  
SSLA2_B  
SSLA1_B  
SSLA0_B  
GTIOC0B  
_C  
GTOUUP  
_B  
CTS0_RT  
S0_E/  
SS0_E  
20  
21  
P412  
P411  
GTOULO  
_B  
SCK0_E  
RSPCKA  
_B  
16  
12  
AGTOA1  
GTOVUP  
_B  
GTIOC9A  
_A  
TXD0_B/  
MOSI0_B/  
SDA0_B/  
CTS3_RT  
S3_A/  
MOSIA_B  
TS07  
IRQ4_B  
SS3_A  
22  
17  
13  
P410  
AGTOB1  
GTOVLO  
_B  
GTIOC9B  
_A  
RXD0_B/  
MISO0_B/  
SCL0_B/  
SCK3_A  
MISOA_B  
TS06  
IRQ5_B  
23  
24  
18  
19  
14  
15  
10  
11  
P409  
P408  
GTOWUP GTIOC5A  
_B _B  
TXD3_A/  
MOSI3_A/  
SDA3_A  
TS05  
TS04  
IRQ6_B  
IRQ7_B  
GTOWLO GTIOC5B  
_B  
CTS1_RT SCL0_C  
S1_D/  
_B  
SS1_D/  
RXD3_A/  
MISO3_A/  
SCL3_A  
25  
20  
16  
12  
P407  
AGTIO0_  
C
RTCOUT  
CTS0_RT SDA0_B  
S0_D/  
SSLB3_A  
ADTRG0_  
B
SS0_D  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 16 of 110  
RA2L1 Datasheet  
1. Overview  
Table 1.14  
Pin list (2 of 4)  
Num.  
Timers  
Communication interfaces  
Analogs  
HMI  
26  
21  
17  
13  
VSS_DC  
DC  
27  
28  
22  
23  
18  
19  
14  
15  
VLO  
VCC_DC  
DC  
29  
24  
20  
16  
P208  
AGTOB0_  
A
30  
31  
25  
26  
21  
22  
17  
18  
P207  
P206  
GTIU_A  
RXD0_D/  
MISO0_D  
/SCL0_D  
SDA1_A  
SSLB1_A  
IRQ0  
32  
27  
23  
CLKOUT_ P205  
A
AGTO1  
GTIV_A  
GTIOC4A  
_B  
TXD0_D/  
MOSI0_D  
/SDA0_D/  
CTS9_RT  
S9_A/  
SCL1_A  
SSLB0_A  
IRQ1  
SS9_A  
33  
34  
28  
24  
CACREF  
_A  
P204  
P203  
AGTIO1_  
A
GTIW_A  
GTIOC4B  
_B  
SCK0_D/  
SCK9_A  
SCL0_B  
RSPCKB  
_A  
TS00  
CTS2_RT  
S2_A/  
MOSIB_A  
SS2_A/  
TXD9_A/  
MOSI9_A/  
SDA9_A  
35  
P202  
SCK2_A/  
RXD9_A/  
MISO0_A/  
SCL9_A  
MISOB_A  
36  
37  
38  
39  
40  
41  
42  
43  
44  
29  
30  
31  
32  
33  
34  
25  
26  
27  
28  
19  
20  
21  
VSS  
VCC  
RES  
MD  
NMI  
P201  
P200  
P307  
P306  
P305  
P304  
GTIOC7A  
_A  
45  
46  
47  
35  
36  
37  
29  
P808  
P809  
P303  
GTIOC7B  
_A  
TS02-  
CFC  
48  
49  
38  
39  
30  
31  
22  
23  
P302  
P301  
GTOUUP  
_A  
GTIOC4A  
_A  
TXD2_A/  
MOSI2_A/  
SDA2_A  
SSLB3_B  
SSLB2_B  
TS08-  
CFC  
IRQ5_A  
IRQ6_A  
AGTIO0_  
D
GTOULO  
_A  
GTIOC4B  
_A  
RXD2_A/  
MISO2_A/  
SCL2_A/  
CTS9_RT  
S9_D/  
TS09-  
CFC  
SS9_D  
50  
51  
40  
41  
32  
33  
24  
25  
SWCLK  
SWDIO  
P300  
P108  
GTOUUP  
_C  
GTIOC0A  
_A  
SSLB1_B  
SSLB0_B  
GTOULO  
_C  
GTIOC0B  
_A  
CTS9_RT  
S9_B/  
SS9_B  
52  
53  
42  
43  
34  
35  
26  
27  
CLKOUT_ P109  
B
GTOVUP  
_A  
GTIOC1A  
_A  
CTX0_A  
CRX0_A  
SCK1_E/  
TXD9_B/  
MOSI9_B/  
SDA9_B  
MOSIB_B  
MISOB_B  
TS10-  
CFC  
P110  
P111  
GTOVLO  
_A  
GTIOC1B  
_A  
CTS2_RT  
S2_B/  
SS2_B/  
RXD9_B/  
MISO9_B/  
SCL9_B  
VCOUT  
TS11-  
CFC  
IRQ3_A  
54  
44  
36  
28  
AGTOA0  
GTIOC3A  
_A  
SCK2_B/  
SCK9_B  
RSPCKB  
_B  
TS12-  
CFC  
IRQ4_A  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 17 of 110  
RA2L1 Datasheet  
1. Overview  
Table 1.14  
Pin list (3 of 4)  
Num.  
Timers  
Communication interfaces  
Analogs  
HMI  
55  
45  
37  
29  
P112  
AGTOB0  
GTIOC3B  
_A  
SCK1_D/  
TXD2_B/  
MOSI2_B/  
SDA2_B  
SSLB0_C  
TSCAP-C  
56  
57  
58  
59  
60  
61  
46  
47  
48  
38  
P113  
P114  
P115  
P608  
P609  
P610  
GTIOC2A  
_C  
TS27-  
CFC  
GTIOC2B  
_C  
TS29-  
CFC  
GTIOC4A  
_C  
TS35-  
CFC  
GTIOC4B  
_C  
GTIOC5A  
_C  
GTIOC5B  
_C  
62  
63  
64  
49  
50  
39  
40  
30  
31  
VCC  
VSS  
P603  
GTIOC7A  
_B  
CTS9_RT  
S9_C/  
SS9_C  
65  
66  
P602  
P601  
GTIOC7B  
_B  
TXD9_C/  
MOSI9_C  
/SDA9_C  
51  
GTIOC6A  
_C  
RXD9_C/  
MISO9_C  
/SCL9_C  
67  
68  
69  
70  
71  
52  
53  
54  
55  
56  
41  
42  
43  
44  
32  
P600  
P107  
P106  
P105  
P104  
GTIOC6B  
_C  
SCK9_C  
GTIOC8A  
_A  
KR07  
KR06  
GTIOC8B  
_A  
SSLA3_A  
SSLA2_A  
SSLA1_A  
GTETRG  
A_C  
GTIOC1A  
_C  
TS34-  
CFC  
KR05/  
IRQ0_B  
GTETRG  
B_B  
GTIOC1B  
_C  
RXD0_C/  
MISO0_C  
/SCL0_C  
TS13-  
CFC  
KR04/  
IRQ1_B  
72  
73  
57  
58  
45  
46  
33  
34  
P103  
P102  
GTOWUP GTIOC2A  
_A _A  
CTX0_C  
CRX0_C  
CTS0_RT  
S0_A/  
SS0_A  
SSLA0_A  
CMPREF  
1
TS14-  
CFC  
KR03  
KR02  
AGTO0  
GTOWLO GTIOC2B  
SCK0_A/  
TXD2_D/  
MOSI2_D  
/SDA2_D  
RSPCKA  
_A  
ADTRG0_  
A
CMPIN1  
TS15-  
CFC  
_A  
_A  
74  
75  
59  
60  
47  
48  
35  
36  
P101  
P100  
AGTEE0  
GTETRG  
B_A  
GTIOC5A  
_A  
TXD0_A/  
MOSI0_A/  
SDA0_A/  
CTS1_RT  
S1_A/  
SDA1_B  
SCL1_B  
MOSIA_A  
MISOA_A  
CMPREF  
0
TS16-  
CFC  
KR01/  
IRQ1_A  
SS1_A  
AGTIO0_  
A
GTETRG  
A_A  
GTIOC5B  
_A  
RXD0_A/  
MISO0_A/  
SCL0_A/  
SCK1_A  
CMPIN0  
TS26-  
CFC  
KR00/  
IRQ2_A  
76  
77  
61  
62  
49  
50  
37  
P500  
P501  
GTIU_B  
GTIV_B  
GTIOC2A  
_B  
GTIOC2B  
_B  
TXD1_C/  
MOSI1_C  
/SDA1_C  
AN017  
78  
63  
51  
P502  
GTIW_B  
GTIOC3B  
_C  
RXD1_C/  
MISO1_C  
/SCL1_C  
AN018  
79  
80  
64  
65  
P503  
P504  
GTETRG  
A_E  
SCK1_C  
AN019  
AN020  
GTETRG  
B_E  
CTS1_RT  
S1_C/  
SS1_C  
81  
82  
P505  
VCC  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 18 of 110  
RA2L1 Datasheet  
1. Overview  
Table 1.14  
Pin list (4 of 4)  
Num.  
Timers  
Communication interfaces  
Analogs  
HMI  
83  
84  
VSS  
66  
52  
38  
P015  
AN010  
TS28-  
CFC  
IRQ7_A  
85  
86  
67  
68  
53  
54  
39  
40  
P014  
P013  
AN009  
AN008  
DA0  
TS33-  
CFC  
87  
69  
55  
41  
P012  
AN007  
TS32-  
CFC  
88  
89  
90  
70  
71  
72  
56  
57  
58  
42  
43  
44  
AVCC0  
AVSS0  
VREFL0  
P011  
AN006  
TS31-  
CFC  
91  
73  
59  
45  
VREFH0  
P010  
AN005  
TS30-  
CFC  
92  
93  
94  
95  
96  
97  
98  
99  
100  
74  
75  
76  
77  
78  
79  
80  
60  
61  
62  
63  
64  
46  
47  
48  
P008  
P007  
P006  
P005  
P004  
P003  
P002  
P001  
P000  
AN014  
AN013  
AN012  
AN011  
AN004  
AN003  
AN002  
AN001  
AN000  
TS25  
TS24  
TS23  
TS22  
TS21  
IRQ3  
IRQ2  
IRQ7  
IRQ6  
Note:  
Several pin names have the added suffix of _A, _B, _C, _D, _E and _F. The suffix can be ignored when assigning functionality.  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 19 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
2.  
Electrical Characteristics  
Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:  
*1  
*2  
VCC = AVCC0 = VCC_DCDC = 1.6 to 5.5 V, VREFH0 = 1.6 to AVCC0,  
VSS = AVSS0 = VREFL0 = 0 V, Ta = T  
opr  
Note 1. The typical condition is set to VCC = 3.3 V.  
Note 2. When VCC_DCDC is used. VCC = AVCC0 = VCC_DCDC = 2.4 to 5.5 V.  
Figure 2.1 shows the timing conditions.  
For example, P300  
C
VOH = VCC × 0.7, VOL = VCC × 0.3  
VIH = VCC × 0.7, VIL = VCC × 0.3  
Load capacitance C = 30 pF  
Figure 2.1  
Input or output timing measurement conditions  
The measurement conditions of the timing specifications for each peripheral are recommended for the best peripheral  
operation. However, make sure to adjust driving abilities for each pin to meet the conditions of your system.  
Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function pin  
is mixed, the AC characteristics of each function are not guaranteed.  
2.1  
Absolute Maximum Ratings  
Table 2.1  
Parameter  
Absolute maximum ratings (1 of 2)  
Symbol  
Value  
Unit  
V
Power supply voltage  
Input voltage  
VCC  
-0.5 to +6.5  
-0.3 to +6.5  
*1  
V
V
5V-tolerant ports  
in  
P000 to P008, P010 to P015  
Others  
V
V
-0.3 to AVCC0 + 0.3  
-0.3 to VCC + 0.3  
-0.3 to +6.5  
V
V
V
V
V
V
in  
in  
Reference power supply voltage  
Analog power supply voltage  
VREFH0  
AVCC0  
-0.5 to +6.5  
Switching regulator power supply voltage  
VCC_DCDC  
-0.5 to +6.5  
Analog input voltage When AN000 to AN014 are  
V
AN  
-0.3 to AVCC0 + 0.3  
used  
When AN017 to AN020 are  
used  
-0.3 to VCC + 0.3  
V
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 20 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.1  
Absolute maximum ratings (2 of 2)  
Parameter  
Symbol  
Value  
Unit  
*2 *3 *4  
T
-40 to +85  
-40 to +105  
°C  
Operating temperature  
opr  
Storage temperature  
T
-55 to +125  
°C  
stg  
Note 1. Ports P205, P206, P400, P401, and P407 are 5V-tolerant.  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of  
such a signal or I/O pull-up might cause malfunction and the abnormal current that passes in the device at this time might cause  
degradation of internal elements.  
Note 2. See section 2.2.1. Tj/Ta Definition.  
Note 3. Contact Renesas Electronics sales office for information on derating operation under Ta = +85°C to +105°C.  
Derating is the systematic reduction of load for improved reliability.  
Note 4. The upper limit of the operating temperature is 85°C or 105°C, depending on the product. For details, see section x.x. Part  
Numbering.  
Caution: Permanent damage to the MCU may result if absolute maximum ratings are exceeded.  
To preclude any malfunctions due to noise interference, insert capacitors with high frequency  
characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, and between the  
VREFH0 and VREFL0 pins when VREFH0 is selected as the high potential reference voltage for the  
ADC12. Place capacitors of the following value as close as possible to every power supply pin and use  
the shortest and heaviest possible traces:  
● VCC and VSS: about 0.1 µF  
● AVCC0 and AVSS0: about 0.1 µF  
● VREFH0 and VREFL0: about 0.1 µF  
Also, connect capacitors as stabilization capacitance.  
Connect the VCL pin to a VSS pin by a 4.7 µF capacitor. Connect the VCC_DCDC pin to a VSS_DCDC pin  
by a 1.0 µF capacitor. Each capacitor must be placed close to the pin.  
Table 2.2  
Parameter  
Recommended operating conditions  
Symbol  
Value  
Min  
Typ  
Max  
Unit  
*1 *2  
Power supply voltages  
1.6  
5.5  
V
VCC  
VSS  
0
V
V
V
Switching regulator power supply voltage  
Analog power supply voltages  
VCC_DCDC  
VCC_DCDC = VCC  
2.4  
1.6  
5.5  
5.5  
*1 *2  
AVCC0  
AVSS0  
0
V
V
V
VREFH0  
VREFL0  
When used as ADC12  
Reference  
1.6  
0
AVCC0  
Note 1. Use AVCC0 and VCC under the following conditions:  
AVCC0 = VCC  
Note 2. When powering on the VCC and AVCC0 pins, power them on at the same time or the VCC pin first and then the AVCC0 pins.  
When powering off the VCC and AVCC0 pins, power them off at the same time or the AVCC0 pin first and then the VCC pins.  
2.2  
DC Characteristics  
2.2.1  
Tj/Ta Definition  
Table 2.3  
DC characteristics  
Conditions: Products with operating temperature (Ta) -40 to +105°C  
Parameter  
Symbol  
Typ  
Max  
Unit  
Test conditions  
Permissible junction temperature  
Tj  
125  
°C  
High-speed mode  
Middle-speed mode  
Low-speed mode  
Subosc-speed mode  
*1  
105  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 21 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Note:  
Make sure that Tj = T + θja × total power consumption (W), where total power consumption = (VCC - V ) × ΣI + V × ΣI  
+
OL  
a
OH  
OH  
OL  
I
max × VCC.  
CC  
Note 1. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section x.x. Part Numbering.  
If the part number shows the operation temperature at 85°C, then the maximum value of Tj is 105°C, otherwise it is 125°C.  
2.2.2  
I/O V , V  
IH  
IL  
Table 2.4  
I/O VIH, VIL  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Test  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit Conditions  
*1  
Schmitt trigger  
input voltage  
V
VCC × 0.7  
5.8  
V
IIC (except for SMBus)  
IH  
V
IL  
V
IH  
V
IL  
VCC × 0.3  
RES, NMI  
VCC × 0.8  
Other peripheral input pins  
excluding IIC  
VCC × 0.2  
*2  
Input voltage  
(except for  
Schmitt trigger  
input pin)  
V
IH  
V
IH  
V
IL  
V
IL  
2.2  
2.0  
VCC = 3.6 to  
5.5 V  
IIC (SMBus)  
VCC = 2.7 to  
3.6 V  
0.8  
0.5  
VCC = 3.6 to  
5.5 V  
VCC = 2.7 to  
3.6 V  
*3  
V
IH  
V
IL  
V
IH  
V
IL  
V
IH  
V
IL  
VCC × 0.8  
5.8  
5V-tolerant ports  
VCC × 0.2  
P000 to P008, P010 to  
P015  
AVCC0 × 0.8  
AVCC0 × 0.2  
EXTAL  
VCC × 0.8  
Input ports pins except for  
P000 to P008, P010 to  
P015  
VCC × 0.2  
Note 1. SCL0_A, SDA0_A, SDA0_B, SCL1_A, SDA1_A (total 5 pins)  
Note 2. SCL0_A, SCL0_B, SCL0_C, SDA0_A, SDA0_B, SCL1_A, SCL1_B, SDA1_A, SDA1_B (total 9 pins)  
Note 3. P205, P206, P400, P401, P407 (total 5 pins)  
2.2.3  
I/O I , I  
OH OL  
Table 2.5  
I/O IOH, IOL (1 of 6)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Test  
Parameter  
Symbol  
Min  
Typ  
Max  
-4.0  
8.0  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
conditions  
Permissible output  
current (average  
value per pin)  
Ports P000 to P008, P010 to P015, P205,  
P206, P212, P213, P400, P401, P407  
I
I
I
I
I
I
I
I
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
*1  
-4.0  
20.0  
-4.0  
8.0  
Other output pins  
Permissible output  
current (max value  
per pin)  
Ports P000 to P008, P010 to P015, P205,  
P206, P212, P213, P400, P401, P407  
*1  
-4.0  
20.0  
Other output pins  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 22 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.5  
I/O IOH, IOL (2 of 6)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Test  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
conditions  
Permissible output  
current (max value  
total pins)  
Total of ports P000 to P008, P010 to  
P015  
ΣI  
ΣI  
ΣI  
ΣI  
-30  
mA  
AVCC0 = 2.7  
to 5.5 V  
OH (max)  
OL (max)  
OH  
*2  
-8  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
AVCC0 = 1.8  
to 2.7 V  
-4  
AVCC0 = 1.6  
to 1.8 V  
50  
4
AVCC0 = 2.7  
to 5.5 V  
AVCC0 = 1.8  
to 2.7 V  
2
AVCC0 = 1.6  
to 1.8 V  
Total of ports P212, P213  
-8.0  
-2  
VCC = 2.7 to  
5.5 V  
VCC = 1.8 to  
2.7 V  
-1  
VCC = 1.6 to  
1.8 V  
16.0  
1.2  
0.6  
-30  
-8  
VCC = 2.7 to  
5.5 V  
OL  
VCC = 1.8 to  
2.7 V  
VCC = 1.6 to  
1.8 V  
Total of ports P400 to 100 pin products ΣI  
P415, P708, P714  
VCC = 2.7 to  
5.5 V  
OH (max)  
VCC = 1.8 to  
2.7 V  
-4  
VCC = 1.6 to  
1.8 V  
ΣI  
50  
4
VCC = 2.7 to  
5.5 V  
OL (max)  
VCC = 1.8 to  
2.7 V  
2
VCC = 1.6 to  
1.8 V  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 23 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.5  
I/O IOH, IOL (3 of 6)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Test  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
conditions  
Permissible output  
current (max value  
total pins)  
Total of ports P201 to 100 pin products ΣI  
P208, P303 to P307,  
P808, P809  
-30  
mA  
VCC = 2.7 to  
5.5 V  
OH (max)  
*2  
-8  
-4  
50  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VCC = 1.8 to  
2.7 V  
VCC = 1.6 to  
1.8 V  
ΣI  
VCC = 2.7 to  
5.5 V  
OL (max)  
OH (max)  
OL (max)  
OH (max)  
OL (max)  
VCC = 1.8 to  
2.7 V  
2
VCC = 1.6 to  
1.8 V  
Total of ports P108 to 100 pin products ΣI  
P115, P300 to P302,  
P600 to P603, P608  
-30  
-8  
-4  
50  
4
VCC = 2.7 to  
5.5 V  
VCC = 1.8 to  
2.7 V  
to P610  
VCC = 1.6 to  
1.8 V  
ΣI  
VCC = 2.7 to  
5.5 V  
VCC = 1.8 to  
2.7 V  
2
VCC = 1.6 to  
1.8 V  
Total of ports P100 to 100 pin products ΣI  
P107, P500 to P505  
-30  
-8  
-4  
50  
4
VCC = 2.7 to  
5.5 V  
VCC = 1.8 to  
2.7 V  
VCC = 1.6 to  
1.8 V  
ΣI  
VCC = 2.7 to  
5.5 V  
VCC = 1.8 to  
2.7 V  
2
VCC = 1.6 to  
1.8 V  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 24 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.5  
I/O IOH, IOL (4 of 6)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Test  
Parameter  
Symbol  
Min  
Typ  
Max  
-100  
100  
-30  
Unit  
mA  
mA  
mA  
conditions  
Permissible output  
current (max value  
Total of all output pin 100 pin products ΣI  
OH (max)  
ΣI  
*2  
OL (max)  
total pins)  
Total of ports P204 to 80 pin products  
P208, P400 to P403,  
P406 to P411, P415,  
ΣI  
OH (max)  
ΣI  
OL (max)  
ΣI  
OH (max)  
ΣI  
OL (max)  
VCC = 2.7 to  
5.5 V  
-8  
-4  
50  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VCC = 1.8 to  
2.7 V  
P708, P714  
VCC = 1.6 to  
1.8 V  
VCC = 2.7 to  
5.5 V  
VCC = 1.8 to  
2.7 V  
2
VCC = 1.6 to  
1.8 V  
Total of ports P100 to 80 pin products  
P115, P201, P300 to  
P306, P500 to P504,  
P600, P601, P808,  
-30  
-8  
-4  
50  
4
VCC = 2.7 to  
5.5 V  
VCC = 1.8 to  
2.7 V  
P809  
VCC = 1.6 to  
1.8 V  
VCC = 2.7 to  
5.5 V  
VCC = 1.8 to  
2.7 V  
2
VCC = 1.6 to  
1.8 V  
Total of all output pin 80 pin products  
ΣI  
ΣI  
-60  
mA  
mA  
OH (max)  
100  
OL (max)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 25 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.5  
I/O IOH, IOL (5 of 6)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Test  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
conditions  
Permissible output  
current (max value  
total pins)  
Total of ports P204 to 64 pin products  
P208, P400 to P403,  
P407 to P411  
ΣI  
OH (max)  
ΣI  
OL (max)  
ΣI  
OH (max)  
ΣI  
OL (max)  
-30  
mA  
VCC = 2.7 to  
5.5 V  
*2  
-8  
-4  
50  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VCC = 1.8 to  
2.7 V  
VCC = 1.6 to  
1.8 V  
VCC = 2.7 to  
5.5 V  
VCC = 1.8 to  
2.7 V  
2
VCC = 1.6 to  
1.8 V  
Total of ports P100 to 64 pin products  
P113, P201, P300 to  
P304, P500 to P502  
-30  
-8  
-4  
50  
4
VCC = 2.7 to  
5.5 V  
VCC = 1.8 to  
2.7 V  
VCC = 1.6 to  
1.8 V  
VCC = 2.7 to  
5.5 V  
VCC = 1.8 to  
2.7 V  
2
VCC = 1.6 to  
1.8 V  
Total of all output pin 64 pin products  
ΣI  
ΣI  
-60  
mA  
mA  
OH (max)  
100  
OL (max)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 26 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.5  
I/O IOH, IOL (6 of 6)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Test  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
conditions  
Permissible output  
current (max value  
total pins)  
Total of ports P206 to 48 pin products  
P208, P400, P401,  
P407 to P409  
ΣI  
OH (max)  
ΣI  
OL (max)  
ΣI  
OH (max)  
ΣI  
OL (max)  
-30  
mA  
VCC = 2.7 to  
5.5 V  
*2  
-8  
-4  
50  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VCC = 1.8 to  
2.7 V  
VCC = 1.6 to  
1.8 V  
VCC = 2.7 to  
5.5 V  
VCC = 1.8 to  
2.7 V  
2
VCC = 1.6 to  
1.8 V  
Total of ports P100 to 48 pin products  
P104, P108 to  
P112,P201, P300 to  
P302, P500  
-30  
-8  
-4  
50  
4
VCC = 2.7 to  
5.5 V  
VCC = 1.8 to  
2.7 V  
VCC = 1.6 to  
1.8 V  
VCC = 2.7 to  
5.5 V  
VCC = 1.8 to  
2.7 V  
2
VCC = 1.6 to  
1.8 V  
Total of all output pin 48 pin products  
ΣI  
ΣI  
-60  
mA  
mA  
OH (max)  
100  
OL (max)  
Note 1. Except for Ports P200, P214, and P215, which are input ports.  
Note 2. Specification under conditions where the duty factor ≤ 70%.  
The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression  
(when changing the duty factor from 70% to n%).  
Total output current of pins = (I × 0.7)/(n × 0.01)  
OH  
<Example> Where n = 80% and I = −30.0 mA  
OH  
Total output current of pins = (−30.0 × 0.7)/(80 × 0.01) −26.2 mA  
However, the current that is allowed to flow into one pin does not vary depending on the duty factor.  
Caution: To protect the reliability of the MCU, the output current values should not exceed the values in Table 2.5.  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 27 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
2.2.4  
I/O V , V , and Other Characteristics  
OL  
OH  
Table 2.6  
I/O VOH, VOL (1)  
Conditions: VCC = AVCC0 = 4.0 to 5.5 V  
Parameter  
Symbol  
Min  
Typ Max  
Unit Test conditions  
Output  
voltage  
Ports P000 to P008, P010 to P015  
V
V
AVCC0 - 0.8  
VCC - 0.8  
V
I
I
= -4.0 mA  
= -4.0 mA  
OH  
OH  
OH  
OH  
Output pins except for P000 to P008 and  
*1  
P010 to P015  
Ports P000 to P008, P010 to P015  
V
V
0.8  
0.8  
I
I
= 8.0 mA  
= 8.0 mA  
OL  
OL  
Ports P205, P206, P212, P213, P400,  
P401, P407  
OL  
OL  
Output pins except for P000 to P008, P010  
to P015, P205, P206, P212, P213, P400,  
P401, and P407  
V
1.2  
I
= 20.0 mA  
OL  
OL  
*1  
Note 1. Except for Ports P200, P214, and P215, which are input ports.  
Table 2.7  
I/O VOH, VOL (2)  
Conditions: VCC = AVCC0 = 2.7 to 4.0 V  
Parameter  
Symbol  
Min  
Typ Max  
Unit Test conditions  
Output  
voltage  
Ports P000 to P008, P010 to P015  
V
V
AVCC0 - 0.8  
VCC - 0.8  
V
I
I
= -4.0 mA  
= -4.0 mA  
OH  
OH  
OH  
OH  
Output pins except for P000 to P008 and  
*1  
P010 to P015  
Ports P000 to P008, P010 to P015  
V
V
0.8  
0.8  
I
I
= 8.0 mA  
= 8.0 mA  
OL  
OL  
Output pins except for P000 to P008 and  
OL  
OL  
*1  
P010 to P015  
Note 1. Except for Ports P200, P214, and P215, which are input ports.  
Table 2.8  
I/O VOH, VOL (3)  
Conditions: VCC = AVCC0 = 1.6 to 2.7 V  
Parameter  
Symbol  
Min  
Typ Max  
Unit Test conditions  
= -1.0 mA  
Output  
voltage  
Ports P000 to P008, P010 to P015  
V
OH  
V
OH  
V
OL  
V
OL  
AVCC0 - 0.5  
V
I
OH  
AVCC0 = 1.8 to 2.7 V  
I = -0.5 mA  
OH  
AVCC0 = 1.6 to 1.8 V  
I = -1.0 mA  
OH  
VCC = 1.8 to 2.7 V  
I = -0.5 mA  
OH  
AVCC0 - 0.5  
Output pins except for P000 to P008  
VCC - 0.5  
*1  
and P010 to P015  
VCC - 0.5  
VCC = 1.6 to 1.8 V  
Ports P000 to P008, P010 to P015  
0.4  
0.4  
0.4  
0.4  
I
OL  
= 0.6 mA  
AVCC0 = 1.8 to 2.7 V  
I
OL  
= 0.3 mA  
AVCC0 = 1.6 to 1.8 V  
Output pins except for P000 to P008  
I
= 0.6 mA  
OL  
*1  
and P010 to P015  
VCC = 1.8 to 2.7 V  
I
= 0.3 mA  
OL  
VCC = 1.6 to 1.8 V  
Note 1. Except for Ports P200, P214, and P215, which are input ports.  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 28 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.9  
I/O other characteristics  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Input leakage current RES, ports P200, P214, P215  
| I  
in  
|
1.0  
µA  
V
V
= 0 V  
= VCC  
in  
in  
*1  
Three-state leakage  
current (off state)  
| I  
TSI  
|
1.0  
1.0  
µA  
V
V
= 0 V  
= 5.8 V  
5V-tolerant ports  
in  
in  
Other ports  
V
V
= 0 V  
= VCC  
in  
(except for P200, P214, P215, and  
5V-tolerant ports)  
in  
Input pull-up resistor  
Input capacitance  
All ports  
(except for P200, P214, P215)  
R
C
10  
20  
100  
kΩ  
pF  
V
= 0 V  
U
in  
P200  
30  
15  
V
= 0 V  
in  
in  
f = 1 MHz  
T = 25°C  
a
Other input pins  
Note 1. P205, P206, P400, P401, and P407 (total 5 pins)  
2.2.5  
Operating and Standby Current  
Table 2.10  
Operating and standby current (1) (1 of 2)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
DCDC  
*12  
LDO mode  
mode  
Test  
Conditions  
*10  
*10  
Parameter  
Symbol  
Typ  
Max  
Typ  
Max  
Unit  
*7 *11  
*7  
Supply  
current  
High-  
speed  
mode  
Normal All peripheral  
ICLK = 48 MHz  
I
5.50  
3.05  
mA  
CC  
*1  
mode  
clocks disabled,  
CoreMark code  
executing from  
ICLK = 32 MHz  
ICLK = 16 MHz  
ICLK = 8 MHz  
ICLK = 48 MHz  
3.65  
2.20  
1.45  
2.20  
1.35  
0.90  
*2  
*5  
flash  
*9 *11  
All peripheral  
14.5  
12.5  
clocks enabled,  
code executing  
*5  
from flash  
*7  
*7  
Sleep  
mode  
All peripheral  
clocks disabled  
ICLK = 48 MHz  
1.05  
0.65  
*5  
ICLK = 32 MHz  
ICLK = 16 MHz  
ICLK = 8 MHz  
ICLK = 48 MHz  
0.85  
0.70  
0.60  
4.85  
0.55  
0.45  
0.35  
2.95  
*9  
*8  
All peripheral  
clocks enabled  
*5  
ICLK = 32 MHz  
ICLK = 16 MHz  
4.68  
2.55  
1.50  
2.1  
2.85  
1.55  
0.95  
1.95  
ICLK = 8 MHz  
*6  
Increase during BGO operation  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 29 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.10  
Operating and standby current (1) (2 of 2)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
DCDC  
*12  
LDO mode  
mode  
Test  
Conditions  
*10  
*10  
Parameter  
Symbol  
Typ  
2.80  
0.90  
Max  
Typ  
Max  
Unit  
*7  
Supply  
current  
Middle- Normal All peripheral  
ICLK = 24 MHz  
ICLK = 4 MHz  
I
1.65  
0.55  
mA  
CC  
*1  
speed  
mode  
mode  
clocks disabled,  
CoreMark code  
executing from  
*2  
*5  
flash  
*8  
All peripheral  
ICLK = 24 MHz  
10.0  
8.8  
clocks enabled,  
code executing  
*5  
from flash  
*7  
*8  
Sleep  
mode  
All peripheral  
clocks disabled  
ICLK = 24 MHz  
ICLK = 4 MHz  
ICLK = 24 MHz  
0.70  
0.55  
3.50  
0.95  
2.00  
0.45  
0.35  
2.10  
0.60  
1.65  
*5  
All peripheral  
clocks enabled  
*5  
ICLK = 4 MHz  
*6  
Increase during BGO operation  
Normal All peripheral  
*7  
Supply  
current  
Low-  
speed  
mode  
ICLK = 2 MHz  
ICLK = 2 MHz  
I
0.33  
mA  
CC  
*1  
mode  
clocks disabled,  
CoreMark code  
executing from  
*3  
*5  
flash  
*8  
All peripheral  
3.1  
clocks enabled,  
code executing  
*5  
from flash  
*7  
*8  
*8  
Sleep  
mode  
All peripheral  
clocks disabled  
ICLK = 2 MHz  
ICLK = 2 MHz  
0.13  
0.35  
*5  
All peripheral  
*5  
clocks enabled  
Subosc- Normal All peripheral  
ICLK = 32.768  
kHz  
I
540  
µA  
CC  
speed  
mode  
mode  
clocks enabled,  
code executing  
*4  
*5  
from flash  
*8  
*8  
Sleep  
mode  
All peripheral  
clocks disabled  
ICLK = 32.768  
kHz  
2.00  
5.85  
*5  
All peripheral  
clocks enabled  
ICLK = 32.768  
kHz  
*5  
Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs  
are in the off state.  
In LDO mode, the supply current is total current flowing into VCC.  
In DCDC mode, the supply current is total current flowing into VCC and VCC_DCDC.  
Note 2. The clock source is HOCO.  
Note 3. The clock source is MOCO.  
Note 4. The clock source is the sub-clock oscillator.  
Note 5. This does not include BGO and A/D operation.  
Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution.  
Note 7. PCLKB and PCLKD are set to divided by 64.  
Note 8. PCLKB and PCLKD are the same frequency as that of ICLK.  
Note 9. PCLKB are set to be divided by 2 and PCLKD is the same frequency as that of ICLK.  
Note 10. VCC = 3.3 V.  
Note 11. The prefetch is operating.  
Note 12. VCC = AVCC0 = VCC_DCDC = 2.4 to 5.5 V  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 30 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.11  
Operating and standby current (2)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
*3  
Parameter  
Symbol Typ  
Max  
2.2  
5.3  
20  
Unit  
Test conditions  
Supply  
current  
Software  
Standby  
All  
T = 25°C  
I
0.30  
µA  
a
CC  
*1  
SRAMs(0x2000_00  
00 to  
0x2000_7FFF) are  
on  
T = 55°C  
a
0.65  
2.0  
*2  
mode  
T = 85°C  
a
T = 105°C  
a
4.0  
70  
Only 8KB SRAM  
(0x2000_4000 to  
0x2000_5FFF) is on  
T = 25°C  
0.25  
0.6  
2.2  
5.3  
20  
a
T = 55°C  
a
T = 85°C  
a
1.8  
T = 105°C  
3.65  
0.30  
70  
a
Increment for RTC operation with low-speed on-  
*4  
chip oscillator  
Increment for RTC operation in normal operation  
mode with sub-clock oscillator  
0.20  
0.95  
0.11  
0.90  
SOMCR.SODRV[1:0] are 11b  
(Low power mode 3)  
RCR4.ROPSEL is 0 (RTC  
operation in normal operation  
mode)  
*4  
SOMCR.SODRV[1:0] are 00b  
(normal mode)  
RCR4.ROPSEL is 0 (RTC  
operation in normal operation  
mode)  
Increment for RTC operation in low-consumption  
SOMCR.SODRV[1:0] are 11b  
(Low power mode 3)  
RCR4.ROPSEL is 1 (RTC  
operation in low-consumption  
clock mode)  
*4  
clock mode with sub-clock oscillator  
SOMCR.SODRV[1:0] are 00b  
(normal mode)  
RCR4.ROPSEL is 1 (RTC  
operation in low-consumption  
clock mode)  
Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOS  
transistors are in the off state. The supply current is total current flowing into VCC.  
Note 2. The IWDT and LVD are not operating.  
Note 3. VCC = 3.3 V.  
Note 4. Includes the low-speed on-chip oscillator or sub-oscillation circuit current.  
Table 2.12  
Operating and standby current (3) (1 of 2)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Analog power  
supply current  
During 12-bit A/D conversion (at high-speed  
conversion)  
I
1.44  
mA  
AVCC0  
During 12-bit A/D conversion (at low-power  
conversion)  
0.78  
mA  
*1  
0.8  
1.0  
mA  
µA  
During 12-bit D/A conversion  
Waiting for 12-bit A/D and 12-bit D/A  
*2  
conversion (all units)  
Reference  
power supply  
current  
During 12-bit A/D conversion  
I
I
120  
60  
µA  
nA  
REFH0  
Waiting for 12-bit A/D conversion  
Temperature Sensor (TSN) operating current  
95  
µA  
TNS  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 31 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.12  
Operating and standby current (3) (2 of 2)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
12  
Max  
Unit  
µA  
Test conditions  
Low-power  
Analog  
Window comparator (high-speed mode)  
I
CMPLP  
Comparator (high-speed mode)  
Comparator (low-speed mode)  
6.4  
1.8  
µA  
Comparator  
(ACMPLP)  
operating  
current  
µA  
Note 1. The reference power supply current is included in the power supply current value for D/A conversion.  
Note 2. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC120 module-stop bit) is in the module-stop state.  
2.2.6  
VCC Rise and Fall Gradient and Ripple Frequency  
Table 2.13  
Rise and fall gradient characteristics  
Conditions: VCC = AVCC0 = 0 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max  
2
Unit  
Test conditions  
Power-on VCC  
rising gradient  
Voltage monitor 0 reset disabled at startup  
SrVCC  
0.02  
ms/V  
*1 *2  
Voltage monitor 0 reset enabled at startup  
*2  
2
SCI boot mode  
Note 1. When OFS1.LVDAS = 0.  
Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit.  
Table 2.14  
Rising and falling gradient and ripple frequency characteristics  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
The ripple voltage must meet the allowable ripple frequency f  
within the range between the VCC upper limit (5.5 V) and lower limit (1.6  
r(VCC)  
V).  
When the VCC change exceeds VCC ± 10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Allowable ripple frequency  
f
10  
kHz  
Figure 2.2  
r(VCC)  
V
≤ VCC × 0.2  
r (VCC)  
1
MHz  
MHz  
ms/V  
Figure 2.2  
≤ VCC × 0.08  
V
r (VCC)  
10  
Figure 2.2  
≤ VCC × 0.06  
V
r (VCC)  
Allowable voltage change rising and  
falling gradient  
dt/dVCC  
1.0  
When VCC change exceeds VCC ± 10%  
1 / fr(VCC)  
VCC  
Vr(VCC)  
Figure 2.2  
Ripple waveform  
2.3  
AC Characteristics  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 32 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
2.3.1  
Frequency  
Table 2.15  
Operation frequency in high-speed operating mode  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
*5  
Parameter  
Symbol Min  
0.032768  
Typ  
Max  
48  
Unit  
*1*2*4  
Operation  
frequency  
1.8 to 5.5 V  
1.8 to 5.5 V  
1.8 to 5.5 V  
f
MHz  
System clock (ICLK)  
*4  
32  
Peripheral module clock (PCLKB)  
Peripheral module clock (PCLKD)  
*3 *4  
64  
Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or  
erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as  
1.5 MHz cannot be set.  
Note 2. The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy  
of the clock source.  
Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC12 is in use.  
Note 4. See section x, Clock Generation Circuit for the relationship of frequencies between ICLK, PCLKB, and PCLKD.  
Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed  
operation, see Table 2.19.  
Table 2.16  
Operation frequency in middle-speed mode  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
*5  
Parameter  
Symbol Min  
0.032768  
Typ  
Max  
24  
4
Unit  
*1*2*4  
Operation  
frequency  
1.8 to 5.5 V  
1.6 to 1.8 V  
1.8 to 5.5 V  
1.6 to 1.8 V  
1.8 to 5.5 V  
1.6 to 1.8 V  
f
MHz  
System clock (ICLK)  
0.032768  
*4  
24  
4
Peripheral module clock (PCLKB)  
Peripheral module clock (PCLKD)  
*3 *4  
24  
4
Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or  
erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as  
1.5 MHz cannot be set.  
Note 2. The frequency accuracy of ICLK must be ± 1.0% while programming or erasing the flash memory. Confirm the frequency accuracy  
of the clock source.  
Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC12 is in use.  
Note 4. See section x, Clock Generation Circuit for the relationship of frequencies between ICLK, PCLKB, and PCLKD.  
Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed  
operation, see Table 2.19.  
Table 2.17  
Operation frequency in low-speed mode  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
*5  
Parameter  
Symbol Min  
0.032768  
Typ  
Max  
Unit  
*1*2*4  
Operation  
frequency  
1.6 to 5.5 V  
1.6 to 5.5 V  
1.6 to 5.5 V  
f
2
2
2
MHz  
System clock (ICLK)  
*4  
Peripheral module clock (PCLKB)  
Peripheral module clock (PCLKD)  
*3 *4  
Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory.  
Note 2. The frequency accuracy of ICLK must be ± 1.0% while programming or erasing the flash memory. Confirm the frequency accuracy  
of the clock source.  
Note 3. The lower-limit frequency of PCLKD is 1 MHz when the ADC12 is in use.  
Note 4. See section x, Clock Generation Circuit for the relationship of frequencies between ICLK, PCLKB, and PCLKD.  
Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range for guaranteed  
operation, see Table 2.19.  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 33 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.18  
Operation frequency in Subosc-speed mode  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
*1*3  
Operation  
frequency  
1.6 to 5.5 V  
1.6 to 5.5 V  
1.6 to 5.5 V  
f
27.8528 32.768  
37.6832  
37.6832  
37.6832  
kHz  
System clock (ICLK)  
*3  
Peripheral module clock (PCLKB)  
Peripheral module clock (PCLKD)  
*2 *3  
Note 1. Programming and erasing the flash memory is not possible.  
Note 2. The ADC12 cannot be used.  
Note 3. See section x, Clock Generation Circuit for the relationship of frequencies between ICLK, PCLKB, and PCLKD.  
2.3.2  
Clock Timing  
Table 2.19  
Parameter  
Clock timing  
Symbol  
Min  
50  
20  
20  
Typ  
Max  
5
Unit  
ns  
Test conditions  
Figure 2.3  
EXTAL external clock input cycle time  
EXTAL external clock input high pulse width  
EXTAL external clock input low pulse width  
EXTAL external clock rising time  
t
t
t
t
t
t
f
Xcyc  
ns  
XH  
ns  
XL  
ns  
Xr  
EXTAL external clock falling time  
5
ns  
Xf  
*1  
0.3  
µs  
EXTAL external clock input wait time  
EXWT  
EXTAL  
EXTAL external clock input frequency  
20  
MHz  
1.8 ≤ VCC ≤ 5.5  
4
1.6 ≤ VCC < 1.8  
Main clock oscillator oscillation frequency  
f
1
20  
MHz  
1.8 ≤ VCC ≤ 5.5  
MAIN  
1
4
1.6 ≤ VCC < 1.8  
LOCO clock oscillation frequency  
f
t
f
f
t
f
27.8528  
32.768  
37.6832  
100  
17.25  
9.2  
kHz  
µs  
LOCO  
LOCO clock oscillation stabilization time  
IWDT-dedicated clock oscillation frequency  
MOCO clock oscillation frequency  
Figure 2.4  
LOCO  
12.75  
6.8  
15  
8
kHz  
MHz  
µs  
ILOCO  
MOCO  
MOCO  
HOCO24  
MOCO clock oscillation stabilization time  
HOCO clock oscillation frequency  
1
23.76  
24  
24.24  
MHz  
Ta = -40 to 105°C  
1.6 ≤ VCC ≤ 5.5  
f
f
f
31.68  
47.52  
63.36  
32  
48  
64  
1.9  
32.32  
48.48  
64.64  
Ta = -40 to 105°C  
1.6 ≤ VCC ≤ 5.5  
HOCO32  
HOCO48  
HOCO64  
Ta = -40 to 105°C  
1.6 ≤ VCC ≤ 5.5  
Ta = -40 to 105°C  
1.6 ≤ VCC ≤ 5.5  
*3 *4  
t
t
t
t
µs  
Figure 2.5  
HOCO clock oscillation stabilization time  
HOCO24  
HOCO32  
HOCO48  
HOCO64  
Sub-clock oscillator oscillation frequency  
f
t
32.768  
0.5  
kHz  
s
SUB  
*2  
Figure 2.6  
Sub-clock oscillation stabilization time  
SUBOSC  
Note 1. Time until the clock can be used after the Main Clock Oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the  
external clock is stable.  
Note 2. After changing the setting of the SOSCCR.SOSTP bit to start sub-clock oscillator operation, only start using the sub-clock oscillator  
after the sub-clock oscillation stabilization wait time elapsed. Use the oscillator wait time value recommended by the oscillator  
manufacturer.  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 34 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Note 3. This is a characteristic when the HOCOCR.HCSTP bit is set to 0 (oscillation) in the MOCO stop state. When the HOCOCR.HCSTP  
bit is set to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 µs.  
Note 4. Check OSCSF.HOCOSF to confirm whether stabilization time has elapsed.  
tXcyc  
tXH  
tXL  
EXTAL external clock input  
VCC × 0.5  
tXr  
tXf  
Figure 2.3  
EXTAL external clock input timing  
LOCOCR.LCSTP  
tLOCO  
LOCO clock oscillator output  
Figure 2.4  
LOCO clock oscillation start timing  
HOCOCR.HCSTP  
HOCO clock  
*1  
tHOCOx  
Note:  
x = 24, 32, 48, 64  
Figure 2.5  
HOCO clock oscillation start timing (started by setting the HOCOCR.HCSTP bit)  
SOSCCR.SOSTP  
tSUBOSC  
Sub-clock oscillator output  
Figure 2.6  
Sub-clock oscillation start timing  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 35 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
2.3.3  
Reset Timing  
Table 2.20  
Reset timing  
Test  
Parameter  
Symbol  
Min  
10  
30  
Typ  
Max  
Unit  
ms  
µs  
conditions  
Figure 2.7  
Figure 2.8  
Figure 2.7  
RES pulse width  
At power-on  
t
t
t
RESWP  
RESW  
Not at power-on  
*1  
Wait time after RES cancellation (at  
power-on)  
0.9  
0.2  
0.9  
0.2  
0.9  
0.15  
ms  
LVD0 enabled  
RESWT  
*2  
LVD0 disabled  
*1  
Wait time after RES cancellation (during  
powered-on state)  
t
ms  
ms  
Figure 2.8  
Figure 2.9  
LVD0 enabled  
RESWT2  
RESWT3  
*2  
LVD0 disabled  
*1  
Wait time after internal reset  
t
LVD0 enabled  
cancellation (Watchdog timer reset,  
SRAM parity error reset, SRAM ECC  
error reset, bus master MPU error  
reset, bus slave MPU error reset, stack  
pointer error reset, software reset)  
*2  
LVD0 disabled  
Note 1. When OFS1.LVDAS = 0.  
Note 2. When OFS1.LVDAS = 1.  
VCC  
RES  
tRESWP  
Internal reset  
tRESWT  
Figure 2.7  
Reset input timing at power-on  
tRESW  
RES  
Internal reset  
tRESWT2  
Figure 2.8  
Reset input timing (1)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 36 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
tRESWIW, tRESWIR  
Independent watchdog timer reset  
Software reset  
Internal reset  
tRESWT3  
Figure 2.9  
Reset input timing (2)  
2.3.4  
Wakeup Time  
Table 2.21  
Parameter  
Timing of recovery from low power modes (1)  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Recovery  
time from  
Software  
Standby  
High-  
speed  
mode  
Crystal  
resonator  
connected to clock oscillator (20  
main clock  
oscillator  
System clock  
source is main  
t
2
3
ms  
Figure 2.10  
SBYMC  
*2  
MHz)  
*1  
mode  
External clock System clock  
input to main source is main  
t
2.4  
3.1  
µs  
SBYEX  
clock  
oscillator  
clock oscillator (20  
MHz)  
*3  
System clock source is HOCO  
(HOCO clock is 32 MHz)  
t
t
t
t
4.9  
4.8  
4.9  
4
6.2  
6
µs  
µs  
µs  
µs  
SBYHO  
SBYHO  
SBYHO  
SBYMO  
System clock source is HOCO  
(HOCO clock is 48 MHz)  
System clock source is HOCO  
(HOCO clock is 64 MHz)  
6.2  
5
System clock source is MOCO (8  
MHz)  
Note 1. The division ratio of ICLK and PCLKx is the minimum division ratio within the allowable frequency range. The recovery time is  
determined by the system clock source.  
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05.  
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00.  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 37 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.22  
Parameter  
Timing of recovery from low power modes (2)  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Recovery  
time from  
Software  
Standby  
Middle-  
speed  
mode  
Crystal  
resonator  
connected to clock oscillator (20  
main clock  
oscillator  
System clock  
source is main  
t
2
3
ms  
Figure 2.10  
SBYMC  
*2  
MHz)  
*1  
mode  
External clock System clock  
input to main source is main  
t
2.4  
3.1  
13  
µs  
SBYEX  
clock  
oscillator  
clock oscillator (20  
MHz)  
*3  
VCC = 1.8 V to 5.5  
V
System clock  
11.7  
source is main  
clock oscillator (20  
*3  
MHz)  
VCC = 1.6 V to 1.8  
V
System clock VCC = 1.8 V to 5.5  
t
t
5.2  
13.2  
4
6.5  
15  
5
µs  
µs  
SBYHO  
source is  
HOCO  
V
*4  
VCC = 1.6 V to 1.8  
V
System clock VCC = 1.8 V to 5.5  
SBYMO  
source is  
MOCO (8  
MHz)  
V
VCC = 1.6 V to 1.8  
V
7.2  
9
Note 1. The division ratio of ICLK and PCLKx is the minimum division ratio within the allowable frequency range. The recovery time is  
determined by the system clock source.  
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05.  
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00.  
Note 4. The system clock is 24 MHz.  
Table 2.23  
Parameter  
Timing of recovery from low power modes (3)  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Recovery  
time from  
Software  
Standby  
Low-speed Crystal  
mode resonator  
System clock  
source is main  
t
2
3
ms  
Figure 2.10  
SBYMC  
connected to clock oscillator (2  
main clock  
oscillator  
*2  
MHz)  
*1  
mode  
External clock System clock  
input to main source is main  
t
t
14.5  
12  
16  
15  
µs  
µs  
SBYEX  
SBYMO  
clock  
oscillator  
clock oscillator (2  
MHz)  
*3  
System clock source is MOCO (2  
MHz)  
Note 1. The division ratio of ICLK and PCLKx is the minimum division ratio within the allowable frequency range. The recovery time is  
determined by the system clock source.  
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05.  
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00.  
Table 2.24  
Parameter  
Timing of recovery from low power modes (4)  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Recovery time  
from Software  
Standby mode  
Subosc-speed mode System clock source is  
sub-clock oscillator  
t
0.85  
1
ms  
Figure 2.10  
SBYSC  
*1  
(32.768 kHz)  
System clock source is  
LOCO (32.768 kHz)  
t
0.85  
1.2  
ms  
SBYLO  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 38 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Note 1. The sub-clock oscillator or LOCO itself continues oscillating in Software Standby mode during Subosc-speed mode.  
Oscillator  
ICLK  
IRQ  
Software Standby mode  
tSBYMC, tSBYEX,  
tSBYMO, tSBYHO  
Oscillator  
ICLK  
IRQ  
Software Standby mode  
tSBYSC, tSBYLO  
Figure 2.10  
Software Standby mode cancellation timing  
Table 2.25  
Parameter  
Timing of recovery from low power modes (5)  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Recovery time from Software High-speed mode  
t
4.1  
5.2  
µs  
Figure 2.11  
SNZ  
Standby mode to Snooze  
mode  
System clock source is  
HOCO  
Middle-speed mode  
System clock source is  
HOCO (24 MHz)  
t
4.2  
8.3  
6.7  
5.3  
10  
µs  
µs  
µs  
SNZ  
VCC = 1.8 V to 5.5 V  
Middle-speed mode  
System clock source is  
HOCO (24 MHz)  
t
t
SNZ  
SNZ  
VCC = 1.6 V to 1.8 V  
Low-speed mode  
System clock source is  
MOCO (2 MHz)  
8.0  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 39 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Oscillator  
ICLK (except DTC, SRAM)  
ICLK (to DTC, SRAM)*1 PCLK  
IRQ  
Software Standby mode  
Snooze mode  
tSNZ  
Note 1. When SNZCR.SNZDTCEN bit is set to 1, ICLK is supplied to DTC and SRAM.  
Figure 2.11  
Recovery timing from Software Standby mode to Snooze mode  
2.3.5  
NMI and IRQ Noise Filter  
Table 2.26  
Parameter  
NMI and IRQ noise filter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
NMI pulse  
width  
t
200  
ns  
NMI digital filter disabled  
t
t
× 2 ≤ 200 ns  
× 2 > 200 ns  
NMIW  
Pcyc  
*1  
t
× 2  
Pcyc  
Pcyc  
200  
NMI digital filter enabled  
t
t
× 3 ≤ 200 ns  
× 3 > 200 ns  
NMICK  
NMICK  
t
×
NMICK  
*2  
3.5  
IRQ pulse  
width  
t
200  
ns  
IRQ digital filter disabled  
IRQ digital filter enabled  
t
t
× 2 ≤ 200 ns  
× 2 > 200 ns  
IRQW  
Pcyc  
*1  
t
× 2  
Pcyc  
Pcyc  
200  
t
t
× 3 ≤ 200 ns  
× 3 > 200 ns  
IRQCK  
IRQCK  
t
×
IRQCK  
*3  
3.5  
Note:  
Note:  
200 ns minimum in Software Standby mode.  
If the clock source is being switched it is needed to add 4 clock cycle of switched source.  
Note 1.  
Note 2.  
Note 3.  
t
t
t
indicates the PCLKB cycle.  
Pcyc  
indicates the cycle of the NMI digital filter sampling clock.  
NMICK  
IRQCK  
indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).  
NMI  
tNMIW  
Figure 2.12  
NMI interrupt input timing  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 40 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
IRQ  
tIRQW  
Figure 2.13  
IRQ interrupt input timing  
2.3.6  
I/O Ports, POEG, GPT, AGT, KINT, and ADC12 Trigger Timing  
Table 2.27  
I/O Ports, POEG, GPT, AGT, KINT, and ADC12 trigger timing  
Test  
Parameter  
Symbol Min  
Max  
Unit  
conditions  
I/O Ports  
Input data pulse width  
2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.6 V ≤ VCC < 2.4 V  
t
2
t
Figure 2.14  
PRW  
Pcyc  
3
4
POEG  
GPT  
POEG input trigger pulse width  
Input capture pulse width  
t
t
3
t
t
Figure 2.15  
Figure 2.16  
POEW  
GTICW  
Pcyc  
Single edge  
1.5  
2.5  
250  
2000  
100  
800  
62.5  
125  
250  
500  
1.5  
250  
PDcyc  
Dual edge  
*1  
AGT  
AGTIO, AGTEE input cycle  
1.8 V ≤ VCC ≤ 5.5 V  
1.6 V ≤ VCC < 1.8 V  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.17  
t
ACYC  
AGTIO, AGTEE input high-level 1.8 V ≤ VCC ≤ 5.5 V  
width, low-level width  
t
t
,
ACKWH  
ACKWL  
1.6 V ≤ VCC < 1.8 V  
AGTIO, AGTO, AGTOA,  
AGTOB output cycle  
2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
t
Figure 2.17  
ACYC2  
ADC12  
KINT  
12-bit A/D converter trigger input pulse width  
KRn (n = 00 to 07) pulse width  
t
t
t
Figure 2.18  
Figure 2.19  
TRGW  
KR  
Pcyc  
ns  
Note 1. Constraints on AGTIO input: t  
× 2 (t  
: PCLKB cycle) < t  
.
Pcyc  
Pcyc  
ACYC  
Port  
tPRW  
Figure 2.14  
I/O ports input timing  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 41 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
POEG input trigger  
tPOEW  
Figure 2.15  
POEG input trigger timing  
Input capture  
tGTICW  
Figure 2.16  
GPT input capture timing  
tACYC  
tACKWL  
tACKWH  
AGTIO, AGTEE  
(input)  
tACYC2  
AGTIO, AGTO,  
AGTOA, AGTOB  
(output)  
Figure 2.17  
AGT I/O timing  
ADTRG0  
tTRGW  
Figure 2.18  
ADC12 trigger input timing  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 42 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
KR00 to KR07  
tKR  
Figure 2.19  
Key interrupt input timing  
2.3.7  
CAC Timing  
Table 2.28  
CAC timing  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Parameter  
Symbol Min  
4.5 × t  
Typ  
Max  
Unit  
Test conditions  
*1  
*1  
*2  
*2  
CAC  
CACREF input pulse  
width  
t
+ 3 × t  
ns  
t
t
≤ t  
> t  
CACREF  
CAC  
Pcyc  
Pcyc  
CAC  
5 × t  
+ 6.5 × t  
ns  
CAC  
Pcyc  
Pcyc  
CAC  
Note 1.  
Note 2.  
t
t
: PCLKB cycle.  
: CAC count clock source cycle.  
Pcyc  
CAC  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 43 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
2.3.8  
SCI Timing  
Table 2.29  
SCI timing (1)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
*1  
Parameter  
Symbol  
Min  
125  
250  
500  
1000  
187.5  
375  
750  
1500  
0.4  
Max  
0.6  
20  
20  
0.6  
20  
30  
20  
30  
40  
45  
Unit  
Test conditions  
SCI  
Input clock cycle Asynchronous  
2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
t
ns  
Figure 2.20  
Scyc  
Clock  
synchronous  
Input clock pulse width  
Input clock rise time  
Input clock fall time  
t
t
t
t
t
Scyc  
SCKW  
SCKr  
SCKf  
Scyc  
ns  
ns  
ns  
Output clock  
cycle  
Asynchronous  
2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
187.5  
375  
750  
1500  
125  
250  
500  
1000  
0.4  
Clock  
synchronous  
Output clock pulse width  
Output clock rise time  
t
t
t
Scyc  
SCKW  
1.8 V ≤ VCC ≤ 5.5 V  
1.6 V ≤ VCC < 1.8 V  
1.8 V ≤ VCC ≤ 5.5 V  
1.6 V ≤ VCC < 1.8 V  
1.8 V ≤ VCC ≤ 5.5 V  
1.6 V ≤ VCC < 1.8 V  
ns  
ns  
ns  
SCKr  
Output clock fall time  
t
t
SCKf  
Transmit data  
delay time  
(master)  
Clock  
synchronous  
Figure 2.21  
TXD  
Transmit data  
delay time (slave) synchronous  
Clock  
2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
2.7 V ≤ VCC ≤ 5.5 V  
1.6 V ≤ VCC < 2.7 V  
55  
60  
100  
125  
ns  
Receive data  
setup time  
(master)  
Clock  
synchronous  
t
45  
55  
90  
110  
40  
45  
ns  
RXS  
Receive data  
setup time  
(slave)  
Clock  
synchronous  
ns  
ns  
ns  
Receive data  
hold time  
(master)  
Clock synchronous  
Clock synchronous  
t
t
5
RXH  
Receive data  
40  
RXH  
hold time (slave)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 44 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Note 1.  
t
: PCLKB cycle.  
Pcyc  
tSCKW  
tSCKr  
tSCKf  
SCKn  
tScyc  
Note:  
n = 0 to 3, 9  
Figure 2.20  
SCK clock input timing  
SCKn  
TXDn  
RXDn  
tTXD  
tRXS tRXH  
Note:  
n = 0 to 3, 9  
Figure 2.21  
SCI input/output timing in clock synchronous mode  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 45 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.30  
SCI timing (2) (1 of 2)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Test  
conditions  
*1  
Parameter  
Symbol  
Min  
125  
250  
500  
1000  
187.5  
375  
750  
1500  
0.4  
0.4  
Max  
Unit  
Simple SCK clock cycle output  
2.7 V ≤ VCC ≤ 5.5 V  
t
ns  
Figure 2.22  
SPcyc  
SPI  
(master)  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
SCK clock cycle input  
(slave)  
SCK clock high pulse width  
SCK clock low pulse width  
t
t
0.6  
0.6  
20  
30  
t
t
SPCKWH  
SPcyc  
SPCKWL  
SPcyc  
SCK clock rise and fall  
time  
1.8 V ≤ VCC ≤ 5.5 V  
1.6 V ≤ VCC < 1.8 V  
2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
2.7 V ≤ VCC ≤ 5.5 V  
1.6 V ≤ VCC < 2.7 V  
t
t
,
ns  
SPCKr  
SPCKf  
Data input  
setup time  
Master  
t
45  
ns  
Figure 2.23 to  
Figure 2.26  
SU  
55  
80  
110  
40  
Slave  
45  
Data input  
hold time  
Master  
Slave  
t
33.3  
40  
ns  
H
SS input setup time  
SS input hold time  
t
t
t
1
t
t
LEAD  
LAG  
OD  
SPcyc  
1
SPcyc  
Data output  
delay time  
Master  
1.8 V ≤ VCC ≤ 5.5 V  
1.6 V ≤ VCC < 1.8 V  
2.4 V ≤ VCC ≤ 5.5 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
40  
50  
65  
100  
125  
ns  
ns  
ns  
Slave  
Data output  
hold time  
Master  
t
t
-10  
-20  
-30  
-40  
-10  
OH  
Slave  
Data rise and  
fall time  
Master  
1.8 V ≤ VCC ≤ 5.5 V  
1.6 V ≤ VCC < 1.8 V  
1.8 V ≤ VCC ≤ 5.5 V  
1.6 V ≤ VCC < 1.8 V  
, t  
20  
30  
20  
30  
Dr Df  
Slave  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 46 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.30  
SCI timing (2) (2 of 2)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Test  
conditions  
*1  
Parameter  
Symbol  
Min  
Max  
6
Unit  
Simple Slave access time  
SPI  
2.4 V ≤ VCC ≤ 5.5 V  
t
t
Figure 2.26  
SA  
Pcyc  
1.8 V ≤ VCC < 2.4 V 24 MHz ≤ PCLKB ≤  
32 MHz  
7
PCLKB < 24 MHz  
6
6
6
7
1.6 V ≤ VCC < 1.8 V  
Slave output release time 2.4 V ≤ VCC ≤ 5.5 V  
t
t
REL  
Pcyc  
1.8 V ≤ VCC < 2.4 V 24 MHz ≤ PCLKB ≤  
32 MHz  
PCLKB < 24 MHz  
6
6
1.6 V ≤ VCC < 1.8 V  
Note 1.  
t
: PCLKB cycle.  
Pcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VOH  
VOH  
VOL  
VOH  
VOH  
SCKn  
master select  
VOL  
tSPCKWL  
VOL  
output  
tSPcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VIH  
VIH  
VIL  
VIH  
VIH  
SCKn  
slave select input  
VIL  
tSPCKWL  
VIL  
tSPcyc  
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC  
Note:  
n = 0 to 3, 9  
Figure 2.22  
SCI simple SPI mode clock timing  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 47 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
SCKn  
CKPOL = 0  
output  
SCKn  
CKPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
Note:  
n = 0 to 3, 9  
Figure 2.23  
SCI simple SPI mode timing (master, CKPH = 1)  
SCKn  
CKPOL = 1  
output  
SCKn  
CKPOL = 0  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
Note:  
n = 0 to 3, 9  
Figure 2.24  
SCI simple SPI mode timing (master, CKPH = 0)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 48 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
tTD  
SSn  
input  
tLEAD  
tLAG  
SCKn  
CKPOL = 0  
input  
SCKn  
CKPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
MSB OUT  
DATA  
LSB OUT  
LSB IN  
MSB IN  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
Note:  
n = 0 to 3, 9  
Figure 2.25  
SCI simple SPI mode timing (slave, CKPH = 1)  
tTD  
SSn  
input  
tLEAD  
tLAG  
SCKn  
CKPOL = 1  
input  
SCKn  
CKPOL = 0  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
LSB OUT  
(Last data)  
MSB OUT  
tH  
DATA  
LSB OUT  
MSB OUT  
MSB IN  
tSU  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
LSB IN  
Note:  
n = 0 to 3, 9  
Figure 2.26  
SCI simple SPI mode timing (slave, CKPH = 0)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 49 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.31  
SCI timing (3)  
Conditions: VCC = AVCC0 = 2.7 to 5.5 V  
Parameter  
Symbol  
Min  
0
Max  
1000  
300  
Unit  
ns  
Test conditions  
Simple IIC  
SDA input rise time  
t
t
t
Figure 2.27  
Sr  
(Standard mode)  
SDA input fall time  
ns  
Sf  
*1  
SDA input spike pulse removal time  
ns  
4 × t  
SP  
IICcyc  
Data input setup time  
Data input hold time  
t
t
250  
0
ns  
ns  
pF  
SDAS  
SDAH  
*2  
SCL, SDA capacitive load  
400  
C
b
Sr  
Sf  
Simple IIC (Fast SDA input rise time  
t
t
t
0
300  
300  
ns  
ns  
ns  
Figure 2.27  
mode)  
SDA input fall time  
*1  
SDA input spike pulse removal time  
4 × t  
SP  
IICcyc  
Data input setup time  
Data input hold time  
t
t
100  
0
ns  
ns  
pF  
SDAS  
SDAH  
*2  
SCL, SDA capacitive load  
400  
C
b
Note 1.  
t
: Clock cycle selected by the SMR.CKS[1:0] bits.  
IICcyc  
Note 2. C indicates the total capacity of the bus line.  
b
VIH  
SDAn  
VIL  
tSr  
tSf  
tSP  
SCLn  
P*1  
P*1  
S*1  
Sr*1  
tSDAH  
tSDAS  
Test conditions:  
VIH = VCC × 0.7, VIL = VCC × 0.3  
VOL = 0.6 V, IOL = 6 mA  
Note:  
n = 0 to 3, 9  
Note 1. S, P, and Sr indicate the following conditions:  
S: Start condition  
P: Stop condition  
Sr: Restart condition  
Figure 2.27  
SCI simple IIC mode timing  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 50 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
2.3.9  
SPI Timing  
Table 2.32  
SPI timing (1 of 3)  
Test  
conditions  
*1  
Parameter  
Symbol Min  
Max  
Unit  
SPI RSPCK  
Master 2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
t
62.5  
125  
ns  
Figure 2.28  
C = 30 pF  
SPcyc  
clock cycle  
1.8 V ≤ VCC < 2.4 V  
250  
1.6 V ≤ VCC < 1.8 V  
500  
Slave  
2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
187.5  
375  
750  
1500  
RSPCK  
clock high  
pulse width  
Master  
t
t
(t  
-
-
ns  
ns  
SPCKWH  
SPcyc  
t
t
SPCKr  
) / 2 -  
SPCKf  
3
Slave  
3 × t  
Pcyc  
RSPCK  
Master  
(t  
-
SPCKWL  
SPcyc  
clock low  
pulse width  
t
t
-
SPCKr  
) / 2 -  
SPCKf  
3
Slave  
3 × t  
10  
15  
20  
30  
1
Pcyc  
RSPCK  
clock rise  
and fall time  
Output 2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC ≤ 2.4 V  
1.6 V ≤ VCC < 1.8 V  
Input  
t
t
,
ns  
µs  
SPCKr  
SPCKf  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 51 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.32  
SPI timing (2 of 3)  
Test  
conditions  
*1  
Parameter  
Symbol Min  
Max  
Unit  
SPI Data input  
setup time  
Master 2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V 16 MHz < PCLKB ≤ 32  
t
10  
30  
ns  
Figure 2.29  
to Figure  
2.34  
SU  
MHz  
C = 30 pF  
PCLKB ≤ 16 MHz  
10  
55  
1.8 V ≤ VCC < 2.4 V 16 MHz < PCLKB ≤ 32  
MHz  
8 MHz < PCLKB ≤ 16  
MHz  
30  
PCLKB ≤ 8 MHz  
1.6 V ≤ VCC < 1.8 V  
10  
10  
10  
15  
20  
0
Slave  
2.4 V ≤ VCC ≤ 5.5 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
Data input  
hold time  
Master  
t
t
ns  
ns  
HF  
(RSPCK is PCLKB/2)  
Master  
t
H
Pcyc  
(RSPCK is not PCLKB/2)  
Slave  
t
t
20  
H
SPI SSL setup  
time  
Master 1.8 V ≤ VCC ≤ 5.5 V  
-30 + N ×  
LEAD  
*2  
t
SPcyc  
1.6 V ≤ VCC < 1.8 V  
-50 + N ×  
*2  
t
SPcyc  
Slave  
6 × t  
ns  
ns  
Pcyc  
SSL hold  
time  
Master  
t
t
-30 + N ×  
LAG  
*3  
t
SPcyc  
Slave  
6 × t  
0
ns  
ns  
Pcyc  
Data output Master 2.7 V ≤ VCC ≤ 5.5 V  
14  
20  
25  
30  
50  
60  
85  
110  
OD  
delay time  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
Slave  
2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
Data output Master  
t
t
ns  
ns  
OH  
TD  
hold time  
Slave  
0
Successive Master  
transmission  
t
t
+ 2 × 8 × t  
2 × t  
+
SPcyc  
SPcyc  
Pcyc  
Pcyc  
delay time  
Slave  
6 × t  
Pcyc  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 52 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.32  
SPI timing (3 of 3)  
Test  
conditions  
*1  
Parameter  
Symbol Min  
Max  
10  
15  
20  
30  
1
Unit  
SPI MOSI and  
MISO rise  
Output 2.7 V ≤ VCC ≤ 5.5 V  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
Input  
t
, t  
ns  
Figure 2.29  
to Figure  
2.34  
Dr Df  
and fall time  
C = 30 pF  
µs  
ns  
SSL rise and Output 2.7 V ≤ VCC ≤ 5.5 V  
fall time  
t
t
,
10  
15  
20  
30  
1
SSLr  
SSLf  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
Input  
µs  
ns  
Slave access time  
2.4 V ≤ VCC ≤ 5.5 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
2.4 V ≤ VCC ≤ 5.5 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
t
2 × t  
100  
+
+
+
+
+
+
Figure 2.33  
and Figure  
2.34  
SA  
Pcyc  
Pcyc  
Pcyc  
Pcyc  
Pcyc  
Pcyc  
2 × t  
140  
C = 30 pF  
2 × t  
180  
Slave output release  
time  
t
2 × t  
100  
ns  
REL  
2 × t  
140  
2 × t  
180  
Note 1.  
t
: PCLKB cycle.  
Pcyc  
Note 2. N is set as an integer from 1 to 8 by the SPCKD register.  
Note 3. N is set as an integer from 1 to 8 by the SSLND register.  
tSPCKr  
tSPCKf  
tSPCKWH  
VOH  
VOH  
VOL  
VOH  
VOH  
RSPCKn  
master select  
output  
VOL  
tSPCKWL  
VOL  
tSPcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VIH  
VIH  
VIL  
VIH  
VIH  
RSPCKn  
slave select input  
VIL  
tSPCKWL  
VIL  
tSPcyc  
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC  
Note:  
n = A or B  
Figure 2.28  
SPI clock timing  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 53 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
Note:  
n = A or B  
Figure 2.29  
SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to any value other than 1/2)  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tHF  
tHF  
MISOn  
input  
LSB IN  
MSB IN  
DATA  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
DATA  
LSB OUT  
IDLE  
MSB OUT  
Note:  
n = A or B  
Figure 2.30  
SPI timing (master, CPHA = 0) (bit rate: PCLKB division ratio is set to 1/2)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 54 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
Note:  
n = A or B  
Figure 2.31  
SPI timing (master, CPHA = 1) (bit rate: PCLKB division ratio is set to any value other than 1/2)  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tHF  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
Note:  
n = A or B  
Figure 2.32  
SPI timing (master, CPHA = 1) (bit rate: PCLKB division ratio is set to 1/2)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 55 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
tTD  
SSLn0  
input  
tLEAD  
tLAG  
RSPCKn  
CPOL = 0  
input  
RSPCKn  
CPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
MSB OUT  
DATA  
LSB OUT  
LSB IN  
MSB IN  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
Note:  
n = A or B  
Figure 2.33  
SPI timing (slave, CPHA = 0)  
tTD  
SSLn0  
input  
tLEAD  
tLAG  
RSPCKn  
CPOL = 0  
input  
RSPCKn  
CPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
LSB OUT  
(Last data)  
MSB OUT  
tH  
DATA  
LSB OUT  
MSB OUT  
MSB IN  
tSU  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
LSB IN  
Note:  
n = A or B  
Figure 2.34  
SPI timing (slave, CPHA = 1)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 56 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
2.3.10  
IIC Timing  
Table 2.33  
IIC timing (1 of 2)  
Conditions: VCC = AVCC0 = 2.7 to 5.5 V  
*1  
Parameter  
Symbol  
Min  
Max  
Unit Test conditions  
IIC (standard mode, SCL input cycle time  
SMBus)  
t
t
t
t
t
t
6 (12) × t  
+ 1300  
IICcyc  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.35  
SCL  
SCLH  
SCLL  
Sr  
SCL input high pulse width  
3 (6) × t  
+ 300  
+ 300  
IICcyc  
IICcyc  
SCL input low pulse width  
SCL, SDA input rise time  
SCL, SDA input fall time  
3 (6) × t  
0
1000  
300  
1 (4) × t  
Sf  
SCL, SDA input spike pulse  
removal time  
SP  
IICcyc  
SDA input bus free time (when  
wakeup function is disabled)  
t
t
3 (6) × t  
3 (6) × t  
+ 300  
+ 4 ×  
ns  
ns  
BUF  
BUF  
IICcyc  
SDA input bus free time (when  
wakeup function is enabled)  
IICcyc  
t
+ 300  
Pcyc  
START condition input hold time  
(when wakeup function is disabled)  
t
t
t
t
+ 300  
ns  
ns  
ns  
STAH  
STAH  
IICcyc  
START condition input hold time  
(when wakeup function is enabled)  
1 (5) × t  
300  
+ t  
+
Pcyc  
IICcyc  
Repeated START condition input  
setup time  
1000  
STAS  
STOP condition input setup time  
Data input setup time  
t
t
t
1000  
ns  
ns  
ns  
pF  
STOS  
SDAS  
SDAH  
t
+ 50  
IICcyc  
Data input hold time  
0
SCL, SDA capacitive load  
C
400  
b
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 57 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.33  
IIC timing (2 of 2)  
Conditions: VCC = AVCC0 = 2.7 to 5.5 V  
*1  
Parameter  
Symbol  
Min  
Max  
Unit Test conditions  
IIC (Fast mode)  
SCL input cycle time  
t
t
t
t
t
t
6 (12) × t  
+ 600  
IICcyc  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.35  
SCL  
SCLH  
SCLL  
Sr  
SCL input high pulse width  
SCL input low pulse width  
SCL, SDA input rise time  
SCL, SDA input fall time  
3 (6) × t  
+ 300  
+ 300  
IICcyc  
IICcyc  
3 (6) × t  
0
300  
300  
1 (4) × t  
Sf  
SCL, SDA input spike pulse  
removal time  
SP  
IICcyc  
SDA input bus free time (When  
wakeup function is disabled)  
t
t
3 (6) × t  
3 (6) × t  
+ 300  
+ 4 ×  
ns  
ns  
BUF  
BUF  
IICcyc  
SDA input bus free time (When  
wakeup function is enabled)  
IICcyc  
t
+ 300  
Pcyc  
START condition input hold time  
(When wakeup function is  
disabled)  
t
t
+ 300  
ns  
STAH  
IICcyc  
START condition input hold time  
(When wakeup function is enabled)  
t
t
1 (5) × t  
300  
+ t +  
Pcyc  
ns  
ns  
STAH  
IICcyc  
Repeated START condition input  
setup time  
300  
STAS  
STOP condition input setup time  
Data input setup time  
t
t
t
300  
ns  
ns  
ns  
pF  
STOS  
SDAS  
SDAH  
t
+ 50  
IICcyc  
Data input hold time  
0
SCL, SDA capacitive load  
C
400  
b
Note:  
t
: IIC internal reference clock (IICφ) cycle, t  
: PCLKB cycle  
Pcyc  
IICcyc  
Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.  
VIH  
SDA0 and SDA1  
VIL  
tBUF  
tSCLH  
tSTAS  
tSTOS  
tSTAH  
tSP  
SCL0 and SCL1  
P*1  
P*1  
S*1  
tSf  
Sr*1  
tSCLL  
tSr  
tSDAS  
tSCL  
tSDAH  
Note:  
n = 0, 1  
Note 1. S, P, and Sr indicate the following conditions:  
S: Start condition  
P: Stop condition  
Sr: Restart condition  
I2C bus interface input/output timing  
Figure 2.35  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 58 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
2.3.11  
CLKOUT Timing  
Table 2.34  
Parameter  
CLKOUT  
CLKOUT timing  
Symbol  
Min  
62.5  
125  
250  
15  
Max  
Unit  
Test conditions  
*1  
2.7 V ≤ VCC ≤ 5.5 V  
1.8 V ≤ VCC < 2.7 V  
1.6 V ≤ VCC < 1.8 V  
2.7 V ≤ VCC ≤ 5.5 V  
1.8 V ≤ VCC < 2.7 V  
1.6 V ≤ VCC < 1.8 V  
2.7 V ≤ VCC ≤ 5.5 V  
1.8 V ≤ VCC < 2.7 V  
1.6 V ≤ VCC < 1.8 V  
t
ns  
Figure 2.36  
CLKOUT pin output cycle  
Ccyc  
CLKOUT pin high pulse  
t
t
t
t
ns  
ns  
ns  
ns  
CH  
CL  
Cr  
*2  
width  
30  
150  
15  
CLKOUT pin low pulse  
*2  
width  
30  
150  
CLKOUT pin output rise time 2.7 V ≤ VCC ≤ 5.5 V  
1.8 V ≤ VCC < 2.7 V  
12  
25  
50  
12  
25  
50  
1.6 V ≤ VCC < 1.8 V  
CLKOUT pin output fall time  
2.7 V ≤ VCC ≤ 5.5 V  
1.8 V ≤ VCC < 2.7 V  
1.6 V ≤ VCC < 1.8 V  
Cf  
Note 1. When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and the  
CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, specifications in Table 2.34 should be satisfied with 45% to 55% of  
input duty cycle.  
Note 2. When MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division ratio to  
be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b).  
tCcyc  
tCH  
tCf  
CLKOUT  
tCr  
tCL  
Test conditions: VOH = VCC × 0.7, VOL = VCC × 0.3, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF  
Figure 2.36  
CLKOUT output timing  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 59 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
2.4  
ADC12 Characteristics  
VREFH0  
5.5  
VREFH0  
5.5  
A/D Conversion  
Characteristics (1)  
5.0  
4.0  
3.0  
5.0  
4.0  
3.0  
A/D Conversion  
Characteristics (2)  
A/D Conversion  
Characteristics (4)  
A/D Conversion  
Characteristics (5)  
A/D Conversion  
Characteristics (3)  
2.7  
2.4  
2.7  
2.4  
A/D Conversion  
2.0  
2.0  
1.8  
1.6  
Characteristics (6)  
A/D Conversion  
Characteristics (7)  
1.0  
1.0  
2.42.7  
3.0  
5.5  
AVCC0  
1.8 2.42.7  
1.0 1.6 2.0 3.0  
5.5  
AVCC0  
1.0  
2.0  
4.0  
5.0  
4.0  
5.0  
ADCSR.ADHSC = 0  
ADCSR.ADHSC = 1  
Figure 2.37  
Table 2.35  
AVCC0 to VREFH0 voltage range  
A/D conversion characteristics (1) in high-speed A/D conversion mode (1 of 2)  
*5  
Conditions: VCC = AVCC0 = VREFH0 = 4.5 to 5.5 V , VSS = AVSS0 = VREFL0 = 0 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
64  
Unit  
MHz  
MHz  
pF  
Test conditions  
PCLKD (ADCLK) frequency  
1
ADACSR.ADSAC = 0  
ADACSR.ADSAC = 1  
High-precision channel  
48  
*2  
*3  
Cs  
Rs  
Analog input capacitance  
9
*3  
pF  
kΩ  
kΩ  
Normal-precision channel  
High-precision channel  
Normal-precision channel  
10  
*3  
Analog input resistance  
1.3  
5.0  
*3  
Analog input voltage range Ain  
0
VREFH0  
V
Resolution  
12  
Bit  
µs  
*1  
Permissible 0.70  
signal  
source  
impedance  
Max. = 0.3  
kΩ  
High-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 0x0D  
ADACSR.ADSAC = 0  
Conversion time  
(Operation at PCLKD = 64  
MHz)  
*4  
*4  
(0.211)  
1.34  
(0.852)  
µs  
µs  
µs  
Normal-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 0x36  
ADACSR.ADSAC = 0  
*1  
Permissible 0.67  
signal  
source  
impedance  
Max. = 0.3  
kΩ  
High-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 0x0A  
ADACSR.ADSAC = 1  
Conversion time  
*4  
*4  
(Operation at PCLKD = 48  
MHz)  
(0.219)  
1.29  
(0.844)  
Normal-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 0x28  
ADACSR.ADSAC = 1  
Offset error  
±1.0  
±1.0  
±4.5  
±6.0  
±4.5  
±6.0  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than specified  
High-precision channel  
Other than specified  
Full-scale error  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 60 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.35  
A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2)  
*5  
Conditions: VCC = AVCC0 = VREFH0 = 4.5 to 5.5 V , VSS = AVSS0 = VREFL0 = 0 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
±0.5  
±2.5  
Max  
Unit  
LSB  
LSB  
LSB  
LSB  
LSB  
Test conditions  
Quantization error  
Absolute accuracy  
±5.0  
±8.0  
High-precision channel  
Other than specified  
DNL differential nonlinearity error  
INL integral nonlinearity error  
±1.0  
±1.5  
±3.0  
Note:  
The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include  
quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include  
quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the  
test conditions.  
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics.  
Note 3. Reference data.  
Note 4. ( ) lists sampling time.  
Note 5. When VREFH0 < AVCC0, the MAX. values are as follows.  
Absolute accuracy/Offset error/Full-scale error:  
For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec.  
INL integral non-linearity error:  
For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec.  
Table 2.36  
A/D conversion characteristics (2) in high-speed A/D conversion mode  
*5  
Conditions: VCC = AVCC0 = VREFH0 = 2.7 to 5.5 V , VSS = AVSS0 = VREFL0 = 0 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
1
Typ  
Max  
Unit  
MHz  
pF  
Test conditions  
PCLKD (ADCLK) frequency  
48  
*2  
*3  
Cs  
Rs  
High-precision channel  
Analog input capacitance  
9
*3  
pF  
kΩ  
kΩ  
Normal-precision channel  
High-precision channel  
Normal-precision channel  
10  
*3  
Analog input resistance  
1.9  
*3  
6.0  
Analog input voltage range Ain  
0
VREFH0  
V
Resolution  
12  
Bit  
µs  
*1  
Permissible 0.67  
signal  
source  
impedance  
Max. = 0.3  
kΩ  
High-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 0x0A  
ADACSR.ADSAC = 1  
Conversion time  
(Operation at PCLKD = 48  
MHz)  
*4  
*4  
(0.219)  
1.29  
(0.844)  
µs  
Normal-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 0x28  
ADACSR.ADSAC = 1  
Offset error  
±1.0  
±1.0  
±5.5  
±7.0  
±5.5  
±7.0  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than specified  
High-precision channel  
Other than specified  
Full-scale error  
Quantization error  
Absolute accuracy  
±0.5  
±2.5  
±6.0  
±9.0  
High-precision channel  
Other than specified  
DNL differential nonlinearity error  
INL integral nonlinearity error  
±1.0  
±1.5  
±3.0  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 61 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Note:  
The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include  
quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include  
quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the  
test conditions.  
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics.  
Note 3. Reference data.  
Note 4. ( ) lists sampling time.  
Note 5. When VREFH0 < AVCC0, the MAX. values are as follows.  
Absolute accuracy/Offset error/Full-scale error:  
For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec.  
INL integral non-linearity error:  
For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec.  
Table 2.37  
A/D conversion characteristics (3) in high-speed A/D conversion mode  
*5  
Conditions: VCC = AVCC0 = VREFH0 = 2.4 to 5.5 V , VSS = AVSS0 = VREFL0 = 0 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
1
Max  
Unit  
MHz  
pF  
Test conditions  
PCLKD (ADCLK) frequency  
32  
*2  
*3  
Cs  
Rs  
High-precision channel  
Analog input capacitance  
9
*3  
pF  
kΩ  
kΩ  
Normal-precision channel  
High-precision channel  
Normal-precision channel  
10  
*3  
Analog input resistance  
2.2  
*3  
7.0  
Analog input voltage range Ain  
0
VREFH0  
V
Resolution  
12  
Bit  
µs  
*1  
Permissible 1.00  
signal  
source  
impedance  
Max. = 1.3  
kΩ  
High-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 0x0A  
ADACSR.ADSAC = 1  
Conversion time  
(Operation at PCLKD = 32  
MHz)  
*4  
*4  
(0.328)  
1.94  
(1.266)  
µs  
Normal-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 0x28  
ADACSR.ADSAC = 1  
Offset error  
±1.0  
±1.0  
±5.5  
±7.0  
±5.5  
±7.0  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than specified  
High-precision channel  
Other than specified  
Full-scale error  
Quantization error  
Absolute accuracy  
±0.5  
±2.50  
±6.0  
±9.0  
High-precision channel  
Other than specified  
DNL differential nonlinearity error  
INL integral nonlinearity error  
±1.0  
±1.5  
±3.0  
Note:  
The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include  
quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include  
quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the  
test conditions.  
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics.  
Note 3. Reference data.  
Note 4. ( ) lists sampling time.  
Note 5. When VREFH0 < AVCC0, the MAX. values are as follows.  
Absolute accuracy/Offset error/Full-scale error:  
For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec.  
INL integral non-linearity error:  
For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec.  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 62 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.38  
A/D conversion characteristics (4) in low-power A/D conversion mode  
*5  
Conditions: VCC = AVCC0 = VREFH0 = 2.7 to 5.5 V , VSS = AVSS0 = VREFL0 = 0 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
1
Typ  
Max  
Unit  
MHz  
pF  
Test conditions  
PCLKD (ADCLK) frequency  
24  
*2  
*3  
Cs  
Rs  
High-precision channel  
Analog input capacitance  
9
*3  
pF  
kΩ  
kΩ  
Normal-precision channel  
High-precision channel  
Normal-precision channel  
10  
*3  
Analog input resistance  
1.9  
*3  
6
Analog input voltage range Ain  
0
VREFH0  
V
Resolution  
12  
Bit  
µs  
*1  
Permissible 1.58  
signal  
source  
impedance  
Max. = 1.1  
kΩ  
High-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 0x0A  
ADACSR.ADSAC = 1  
Conversion time  
(Operation at PCLKD = 24  
MHz)  
*4  
(0.438)  
*4  
µs  
Normal-precision channel  
ADCSR.ADHSC = 1  
2.0 (0.854)  
ADSSTRn.SST[7:0] = 0x14  
ADACSR.ADSAC = 1  
Offset error  
±1.25  
±1.25  
±6.0  
±7.5  
±6.0  
±7.5  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than specified  
High-precision channel  
Other than specified  
Full-scale error  
Quantization error  
Absolute accuracy  
±0.5  
±3.25  
±7.0  
±10.0  
High-precision channel  
Other than specified  
DNL differential nonlinearity error  
INL integral nonlinearity error  
±1.5  
±1.75  
±4.0  
Note:  
The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include  
quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include  
quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the  
test conditions.  
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics.  
Note 3. Reference data.  
Note 4. ( ) lists sampling time.  
Note 5. When VREFH0 < AVCC0, the MAX. values are as follows.  
Absolute accuracy/Offset error/Full-scale error:  
For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec.  
INL integral non-linearity error:  
For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec.  
Table 2.39  
A/D conversion characteristics (5) in low-power A/D conversion mode (1 of 2)  
*5  
Conditions: VCC = AVCC0 = VREFH0 = 2.4 to 5.5 V , VSS = AVSS0 = VREFL0 = 0 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
1
Typ  
Max  
Unit  
MHz  
pF  
Test conditions  
PCLKD (ADCLK) frequency  
16  
*2  
*3  
Cs  
Rs  
High-precision channel  
Analog input capacitance  
9
*3  
pF  
kΩ  
kΩ  
Normal-precision channel  
High-precision channel  
Normal-precision channel  
10  
*3  
Analog input resistance  
2.2  
*3  
7
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 63 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.39  
A/D conversion characteristics (5) in low-power A/D conversion mode (2 of 2)  
*5  
Conditions: VCC = AVCC0 = VREFH0 = 2.4 to 5.5 V , VSS = AVSS0 = VREFL0 = 0 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
0
Typ  
Max  
VREFH0  
12  
Unit  
V
Test conditions  
Analog input voltage range Ain  
Resolution  
Bit  
µs  
*1  
Permissible 2.38  
High-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 0x0A  
ADACSR.ADSAC = 1  
Conversion time  
(Operation at PCLKD = 16  
MHz)  
*4  
signal  
(0.656)  
source  
impedance  
Max. = 2.2  
kΩ  
*4  
µs  
Normal-precision channel  
ADCSR.ADHSC = 1  
3.0 (1.281)  
ADSSTRn.SST[7:0] = 0x14  
ADACSR.ADSAC = 1  
Offset error  
±1.25  
±1.25  
±6.0  
±7.5  
±6.0  
±7.5  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than specified  
High-precision channel  
Other than specified  
Full-scale error  
Quantization error  
Absolute accuracy  
±0.5  
±3.25  
±7.0  
±10.0  
High-precision channel  
Other than specified  
DNL differential nonlinearity error  
INL integral nonlinearity error  
±1.5  
±1.75  
±4.0  
Note:  
The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include  
quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include  
quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the  
test conditions.  
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics.  
Note 3. Reference data.  
Note 4. ( ) lists sampling time.  
Note 5. When VREFH0 < AVCC0, the MAX. values are as follows.  
Absolute accuracy/Offset error/Full-scale error:  
For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec.  
INL integral non-linearity error:  
For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec.  
Table 2.40  
A/D conversion characteristics (6) in low-power A/D conversion mode (1 of 2)  
*5  
Conditions: VCC = AVCC0 = VREFH0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VSS = AVSS0 = VREFL0 = 0 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
1
Typ  
Max  
Unit  
MHz  
pF  
Test conditions  
PCLKD (ADCLK) frequency  
8
*2  
*3  
Cs  
Rs  
High-precision channel  
Analog input capacitance  
9
*3  
pF  
kΩ  
kΩ  
Normal-precision channel  
High-precision channel  
Normal-precision channel  
10  
*3  
Analog input resistance  
6
*3  
14  
Analog input voltage range Ain  
Resolution  
0
VREFH0  
12  
V
Bit  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 64 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.40  
A/D conversion characteristics (6) in low-power A/D conversion mode (2 of 2)  
*5  
Conditions: VCC = AVCC0 = VREFH0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VSS = AVSS0 = VREFL0 = 0 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
*1  
Permissible 4.75  
µs  
High-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 0x0A  
ADACSR.ADSAC = 1  
Conversion time  
*4  
signal  
source  
(Operation at PCLKD = 8  
MHz)  
(1.313)  
impedance  
Max. = 5 kΩ  
*4  
µs  
Normal-precision channel  
ADCSR.ADHSC = 1  
6.0 (2.563)  
ADSSTRn.SST[7:0] = 0x14  
ADACSR.ADSAC = 1  
Offset error  
±1.25  
±1.5  
±7.5  
±10.0  
±7.5  
±10.0  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than specified  
High-precision channel  
Other than specified  
Full-scale error  
Quantization error  
Absolute accuracy  
±0.5  
±3.75  
±9.5  
±13.5  
High-precision channel  
Other than specified  
DNL differential nonlinearity error  
INL integral nonlinearity error  
±2.0  
±2.25  
±4.5  
Note:  
The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include  
quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include  
quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the  
test conditions.  
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics.  
Note 3. Reference data.  
Note 4. ( ) lists sampling time.  
Note 5. When VREFH0 < AVCC0, the MAX. values are as follows.  
Absolute accuracy/Offset error/Full-scale error:  
For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec.  
INL integral non-linearity error:  
For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec.  
Table 2.41  
A/D conversion characteristics (7) in low-power A/D conversion mode (1 of 2)  
*5  
Conditions: VCC = AVCC0 = VREFH0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VSS = AVSS0 = VREFL0 = 0 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
1
Typ  
Max  
Unit  
MHz  
pF  
Test conditions  
PCLKD (ADCLK) frequency  
4
*2  
*3  
Cs  
Rs  
High-precision channel  
Analog input capacitance  
9
*3  
pF  
kΩ  
kΩ  
Normal-precision channel  
High-precision channel  
Normal-precision channel  
10  
*3  
Analog input resistance  
12  
*3  
28  
Analog input voltage range Ain  
0
VREFH0  
V
Resolution  
12  
Bit  
µs  
*1  
*4  
Permissible  
signal  
source  
impedance  
Max. = 9.9  
kΩ  
High-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 0x0A  
ADACSR.ADSAC = 1  
Conversion time  
(Operation at PCLKD = 4  
MHz)  
9.5 (2.625)  
12.0  
(5.125)  
µs  
Normal-precision channel  
ADCSR.ADHSC = 1  
*4  
ADSSTRn.SST[7:0] = 0x14  
ADACSR.ADSAC = 1  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 65 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.41  
A/D conversion characteristics (7) in low-power A/D conversion mode (2 of 2)  
*5  
Conditions: VCC = AVCC0 = VREFH0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VSS = AVSS0 = VREFL0 = 0 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
±7.5  
±10.0  
±7.5  
±10.0  
Unit  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Test conditions  
High-precision channel  
Other than specified  
High-precision channel  
Other than specified  
Offset error  
±1.25  
Full-scale error  
±1.5  
Quantization error  
Absolute accuracy  
±0.5  
±3.75  
±9.5  
±13.5  
High-precision channel  
Other than specified  
DNL differential nonlinearity error  
INL integral nonlinearity error  
±2.0  
±2.25  
±4.5  
Note:  
The characteristics apply when no pin functions other than 12-bit A/D converter input are used. Absolute accuracy does not include  
quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include  
quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the  
test conditions.  
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4. I/O VOH, VOL, and Other Characteristics.  
Note 3. Reference data.  
Note 4. ( ) lists sampling time.  
Note 5. When VREFH0 < AVCC0, the MAX. values are as follows.  
Absolute accuracy/Offset error/Full-scale error:  
For voltage difference between AVCC0 and VREFH0, it should be added ±0.75 LSB/V to the Max spec.  
INL integral non-linearity error:  
For voltage difference between AVCC0 and VREFH0, it should be added ±0.2 LSB/V to the Max spec.  
Figure 2.38 shows the equivalent circuit for analog input.  
MCU  
Analog input  
Rs  
ADC12  
ANn  
Vi  
Cin  
Cs  
Note:  
Terminal leakage current is not shown in this figure.  
Figure 2.38  
Table 2.42  
Equivalent circuit for analog input  
12-bit A/D converter channel classification  
Classification  
Channel  
Conditions  
Remarks  
High-precision channel  
Normal-precision channel  
AN000 to AN014  
AN017 to AN020  
AVCC0 = 1.6 to 5.5 V  
Pins AN000 to AN014 cannot  
be used as general I/O, TS  
transmission, when the A/D  
converter is in use.  
Internal reference voltage input channel  
Temperature sensor input channel  
Input channel from CTSU  
Internal reference voltage  
AVCC0 = 1.8 to 5.5 V  
AVCC0 = 1.8 to 5.5 V  
AVCC0 = 1.6 to 5.5 V  
Temperature sensor output  
CTSU TSCAP voltage  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 66 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.43  
A/D internal reference voltage characteristics  
*1  
Conditions: VCC = AVCC0 = VREFH0 = 1.8 to 5.5 V  
Parameter  
Min  
1.42  
1
Typ  
1.48  
Max  
1.54  
2
Unit  
Test conditions  
*2  
V
Internal reference voltage input channel  
*3  
MHz  
µs  
PCLKD (ADCLK) frequency  
*4  
5.0  
Sampling time  
Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 1.8 V.  
Note 2. The 12-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 12-bit A/D  
converter.  
Note 3. When the internal reference voltage is selected as the high-potential reference voltage.  
Note 4. When the internal reference voltage is converted.  
0xFFF  
Full-scale error  
Integral nonlinearity  
error (INL)  
A/D converter  
output code  
Ideal line of actual A/D  
conversion characteristic  
Actual A/D conversion  
characteristic  
Ideal A/D conversion  
characteristic  
Differential nonlinearity error (DNL)  
1-LSB width for ideal A/D  
conversion characteristic  
Differential nonlinearity error (DNL)  
1-LSB width for ideal A/D  
conversion characteristic  
Absolute accuracy  
Offset error  
0x000  
0
Analog input voltage  
VREFH0  
(full-scale)  
Figure 2.39  
Illustration of 12-bit A/D converter characteristic terms  
Absolute accuracy  
Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the  
actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog  
input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D  
conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference  
voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 67 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
input voltages. If analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D conversion result  
is in the range of 0x003 to 0x00D, though an output code of 0x008 can be expected from the theoretical A/D conversion  
characteristics.  
Integral nonlinearity error (INL)  
Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors  
are zeroed, and the actual output code.  
Differential nonlinearity error (DNL)  
Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and  
the width of the actual output code.  
Offset error  
Offset error is the difference between the transition point of the ideal first output code and the actual first output code.  
Full-scale error  
Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.  
2.5  
DAC12 Characteristics  
Table 2.44  
12-bit D/A conversion characteristics  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
Reference voltage = AVCC0 or AVSS0 selected  
Parameter  
Min  
Typ  
Max  
Unit  
bit  
Test conditions  
Resolution  
12  
Resistive load  
30  
kΩ  
pF  
Capacitive load  
50  
Output voltage range  
DNL differential nonlinearity error  
INL integral nonlinearity error  
Offset error  
0.35  
AVCC0-0.47  
V
±0.5  
±2.0  
±2.0  
±8.0  
±30  
±30  
LSB  
LSB  
mV  
mV  
Full-scale error  
Output impedance  
Conversion time  
5
30  
µs  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 68 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Gain error  
Full-scale error  
Upper output limit  
Integral nonlinearity error (INL)  
Offset error  
1-LSB width for ideal D/A conversion  
characteristic  
Output analog voltage  
Ideal output voltage  
Differential nonlinearity error  
(DNL)  
*1  
Lower output limit  
Actual D/A conversion characteristic  
Offset error  
Ideal output voltage  
0x000  
0xFFF  
D/A converter input code  
Note 1. Ideal D/A conversion output voltage that is adjusted so that offset and full scale errors are zeroed.  
Figure 2.40  
Illustration of D/A converter characteristic terms  
Integral nonlinearity error (INL)  
Integral nonlinearity error is the maximum deviation between the ideal output voltage based on the ideal conversion  
characteristic when the measured offset and full-scale errors are zeroed, and the actual output voltage.  
Differential nonlinearity error (DNL)  
Differential nonlinearity error is the difference between 1-LSB voltage width based on the ideal D/A conversion  
characteristics and the width of the actual output voltage.  
Offset error  
Offset error is the difference between the highest actual output voltage that falls below the lower output limit and the ideal  
output voltage based on the input code.  
Full-scale error  
Full-scale error is the difference between the lowest actual output voltage that exceeds the upper output limit and the ideal  
output voltage based on the input code.  
2.6  
TSN Characteristics  
Table 2.45  
TSN characteristics (1 of 2)  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
°C  
Test conditions  
2.4 V or above  
Below 2.4 V  
Relative accuracy  
± 1.5  
± 2.0  
°C  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 69 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.45  
TSN characteristics (2 of 2)  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
Parameter  
Symbol  
Min  
5
Typ  
-3.3  
1.05  
Max  
Unit  
mV/°C  
V
Test conditions  
Temperature slope  
Output voltage (at 25°C)  
Temperature sensor start time  
Sampling time  
VCC = 3.3 V  
t
5
µs  
START  
µs  
2.7  
OSC Stop Detect Characteristics  
Table 2.46  
Parameter  
Oscillation stop detection circuit characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
ms  
Test conditions  
Detection time  
t
1
Figure 2.41  
dr  
Main clock  
tdr  
OSTDSR.OSTDF  
MOCO clock  
ICLK  
Figure 2.41  
Oscillation stop detection timing  
2.8  
POR and LVD Characteristics  
Table 2.47  
Power-on reset circuit and voltage detection circuit characteristics (1) (1 of 2)  
Parameter  
Symbol  
Min  
Typ  
Max  
1.55  
1.54  
4.06  
4.00  
3.01  
2.96  
2.70  
2.64  
2.07  
2.02  
1.88  
1.82  
Unit  
Test Conditions  
Figure 2.42  
Voltage detection  
Power-on reset  
(POR)  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
V
V
V
1.47  
1.46  
3.74  
3.68  
2.73  
2.68  
2.44  
2.38  
1.83  
1.78  
1.66  
1.60  
1.51  
1.50  
3.91  
3.85  
2.9  
V
POR  
*1  
level  
Figure 2.43  
PDR  
Voltage detection  
V
Figure 2.44  
At falling edge  
VCC  
det0_0  
*2  
circuit (LVD0)  
V
det0_1  
V
det0_2  
V
det0_3  
V
det0_4  
2.85  
2.59  
2.53  
1.95  
1.90  
1.75  
1.69  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 70 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.47  
Power-on reset circuit and voltage detection circuit characteristics (1) (2 of 2)  
Parameter  
Symbol  
Min  
Typ  
Max  
4.55  
4.45  
4.39  
4.30  
4.29  
4.18  
4.06  
4.00  
3.29  
3.22  
3.17  
3.11  
3.08  
3.01  
2.96  
2.90  
2.85  
2.78  
2.75  
2.68  
2.63  
2.58  
2.36  
2.30  
2.09  
2.05  
1.99  
1.95  
1.88  
1.84  
1.78  
1.73  
4.57  
4.48  
4.42  
4.34  
4.28  
4.20  
4.08  
4.01  
Unit  
Test Conditions  
Voltage detection  
Voltage detection  
circuit (LVD1)  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
When power supply rise  
When power supply fall  
V
det1_0  
V
det1_1  
V
det1_2  
V
det1_3  
V
det1_4  
V
det1_5  
V
det1_6  
V
det1_7  
V
det1_8  
V
det1_9  
V
det1_A  
V
det1_B  
V
det1_C  
V
det1_D  
V
det1_E  
V
det1_F  
V
det2_0  
V
det2_1  
V
det2_2  
V
det2_3  
4.23  
4.13  
4.07  
3.98  
3.97  
3.86  
3.74  
3.68  
3.05  
2.98  
2.95  
2.89  
2.86  
2.79  
2.74  
2.68  
2.63  
2.58  
2.54  
2.48  
2.43  
2.38  
2.16  
2.10  
1.88  
1.84  
1.78  
1.74  
1.67  
1.63  
1.65  
1.60  
4.20  
4.11  
4.05  
3.97  
3.91  
3.83  
3.71  
3.64  
4.39  
4.29  
4.25  
4.16  
4.14  
4.03  
3.92  
3.86  
3.17  
3.10  
3.06  
3.00  
2.97  
2.90  
2.85  
2.79  
2.75  
2.68  
2.64  
2.58  
2.53  
2.48  
2.26  
2.20  
2
V
Figure 2.45  
At falling edge  
VCC  
*1  
*3  
level  
Voltage detection  
Voltage detection  
V
Figure 2.45  
At falling edge  
VCC  
*1  
*3  
level  
circuit (LVD1)  
1.96  
1.9  
1.86  
1.79  
1.75  
1.7  
1.65  
4.40  
4.31  
4.25  
4.17  
4.11  
4.03  
3.91  
3.84  
Voltage detection  
Voltage detection  
V
Figure 2.46  
At falling edge  
VCC  
*1  
*4  
level  
circuit (LVD2)  
Note 1. These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection  
level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage detection.  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 71 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Note 2. # in the symbol V  
Note 3. # in the symbol V  
Note 4. # in the symbol V  
denotes the value of the OFS1.VDSEL1[2:0] bits.  
denotes the value of the LVDLVLR.LVD1LVL[4:0] bits.  
denotes the value of the LVDLVLR.LVD2LVL[2:0] bits.  
det0_#  
det1_#  
det2_#  
Table 2.48  
Power-on reset circuit and voltage detection circuit characteristics (2)  
Parameter  
Symbol  
Min  
Typ  
4.3  
3.7  
1.4  
0.7  
Max  
Unit  
ms  
ms  
ms  
ms  
Test Conditions  
Wait time after power-on LVD0: enable  
reset cancellation  
t
t
t
t
t
t
t
t
t
POR  
LVD0: disable  
POR  
*1  
Wait time after voltage  
monitor 0, 1, 2 reset  
cancellation  
LVD0: enable  
LVD0,1,2  
LVD1,2  
*2  
LVD0: disable  
*3  
500  
500  
350  
600  
µs  
µs  
µs  
µs  
µs  
Figure 2.42, Figure 2.43  
Figure 2.44  
Power-on reset response delay time  
det  
*3  
LVD0 response delay time  
det  
*3  
Figure 2.45  
LVD1 response delay time  
det  
*3  
Figure 2.46  
LVD2 response delay time  
det  
Minimum VCC down time  
Power-on reset enable time  
500  
Figure 2.42, VCC = 1.0 V or  
above  
VOFF  
t
1
ms  
µs  
µs  
Figure 2.43, VCC = below 1.0  
V
W (POR)  
LVD1 operation stabilization time (after LVD1 is  
enabled)  
T
T
300  
1200  
Figure 2.45  
d (E-A)  
d (E-A)  
LVD2 operation stabilization time (after LVD2 is  
enabled)  
Figure 2.46  
Hysteresis width (POR)  
V
V
10  
60  
110  
70  
60  
50  
90  
mV  
mV  
PORH  
Hysteresis width (LVD0, LVD1 and LVD2)  
LVD0 selected  
LVH  
V
det1_0  
V
det1_3  
V
det1_A  
V
det1_C  
to V  
to V  
to V  
selected  
selected  
selected  
selected  
det1_2  
det1_9  
det1_B  
to V  
det1_F  
LVD2 selected  
Note 1. When OFS1.LVDAS = 0.  
Note 2. When OFS1.LVDAS = 1.  
Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V  
, V  
POR  
,
det0  
V
, and V  
det1  
for the POR/LVD.  
det2  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 72 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
tVOFF  
VCC  
VPOR  
1.0 V  
Internal reset signal  
(active-low)  
tdet  
tdet tPOR  
Figure 2.42  
Voltage detection reset timing  
VPOR  
VCC  
1.0 V  
tw(POR)  
*1  
Internal reset signal  
(active-low)  
tdet tPOR  
Note 1.  
t
is the time required for a power-on reset to be enabled while the external power VCC is being held below the  
w(POR)  
valid voltage (1.0 V).  
When VCC turns on, maintain t  
for 1.0 ms or more.  
w(POR)  
Figure 2.43  
Power-on reset timing  
tVOFF  
VLVH  
VCC  
Vdet0  
Internal reset signal  
(active-low)  
tdet  
tdet  
tLVD0  
Figure 2.44  
Voltage detection circuit timing (Vdet0)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 73 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
tVOFF  
VLVH  
VCC  
Vdet1  
LVCMPCR.LVD1E  
Td(E-A)  
LVD1  
Comparator output  
LVD1CR0.CMPE  
LVD1SR.MON  
Internal reset signal  
(active-low)  
When LVD1CR0.RN = 0  
tdet  
tLVD1  
tdet  
When LVD1CR0.RN = 1  
tLVD1  
Figure 2.45  
Voltage detection circuit timing (Vdet1)  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 74 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
tVOFF  
VLVH  
VCC  
Vdet2  
LVCMPCR.LVD2E  
Td(E-A)  
LVD2  
Comparator output  
LVD2CR0.CMPE  
LVD2SR.MON  
Internal reset signal  
(active-low)  
When LVD2CR0.RN = 0  
tdet  
tdet  
tLVD2  
When LVD2CR0.RN = 1  
tLVD2  
Figure 2.46  
Voltage detection circuit timing (Vdet2  
)
2.9  
CTSU Characteristics  
Table 2.49  
CTSU characteristics  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
10  
Max  
11  
Unit  
Test conditions  
External capacitance connected to TSCAP pin  
C
tscap  
9
nF  
2.10  
Comparator Characteristics  
Table 2.50  
ACMPLP characteristics (1 of 2)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V, VSS = AVSS0 = 0 V  
Parameter  
Symbol  
Min  
0
Typ  
Max  
Unit  
Test conditions  
Reference voltage range  
Input voltage range  
V
V
VCC-1.4  
VCC  
V
V
V
REF  
I
0
*1  
1.34  
1.44  
1.54  
Internal reference voltage  
Output delay time  
High-speed mode  
Low-speed mode  
Window mode  
T
d
1.2  
9
µs  
µs  
µs  
VCC = 3.0 V  
2
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 75 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.50  
ACMPLP characteristics (2 of 2)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V, VSS = AVSS0 = 0 V  
Parameter  
Symbol  
Min  
Typ  
Max  
50  
40  
60  
Unit  
Test conditions  
Offset voltage  
High-speed mode  
Low-speed mode  
Window mode  
mV  
mV  
mV  
V
Internal reference voltage for window mode  
V
V
0.76 × VCC  
RFH  
RFL  
cmp  
0.24 × VCC  
V
Operation  
stabilization wait  
time  
High-speed mode  
Low-speed mode  
T
100  
200  
µs  
Note 1. The internal reference voltage can be selected as ACMPLP reference voltage only when 2.94 V ≤ VCC ≤ 5.50 V.  
Output voltage  
Td  
Td  
+100 mV  
Reference voltage  
-100 mV  
Input voltage  
Figure 2.47  
Output delay time  
2.11  
Flash Memory Characteristics  
2.11.1  
Code Flash Memory Characteristics  
Table 2.51  
Code flash characteristics (1)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
*1  
N
PEC  
1000  
Times  
Year  
Reprogramming/erasure cycle  
*2 *3  
Data hold time After 1000 times N  
t
T = +85°C  
a
20  
PEC  
DRP  
T = +105°C  
a
Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 1,000),  
erasing can be performed n times for each block. For instance, when 4-byte programming is performed 512 times for different  
addresses in 2-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming  
the same address for several times as one erasure is not enabled (overwriting is prohibited).  
Note 2. Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics.  
Note 3. This result is target spec, may changed after reliability testing.  
Table 2.52  
Code flash characteristics (2) (1 of 2)  
High-speed operating mode  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
ICLK = 1 MHz  
ICLK = 48 MHz  
Parameter  
Symbol Min  
Typ  
86  
Max  
732  
355  
Min  
Typ  
34  
Max  
Unit  
µs  
Programming time  
Erasure time  
4-byte  
2-KB  
t
P4  
321  
215  
t
12.5  
5.6  
ms  
E2K  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 76 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.52  
Code flash characteristics (2) (2 of 2)  
High-speed operating mode  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
ICLK = 1 MHz  
ICLK = 48 MHz  
Parameter  
Symbol Min  
Typ  
Max  
46.5  
3681  
22.3  
570  
Min  
Typ  
Max  
8.3  
Unit  
µs  
Blank check time  
4-byte  
2-KB  
t
t
t
t
BC4  
240  
10.5  
423  
µs  
BC2K  
SED  
Erase suspended time  
µs  
Access window information program  
Start-up area selection and security  
setting time  
21.2  
11.4  
ms  
AWSSAS  
OCD/serial programmer ID setting  
time  
t
84.7  
2280  
45.3  
1690  
ms  
OSIS  
*1  
Flash memory mode transition wait  
time 1  
t
t
2
2
µs  
µs  
DIS  
MS  
Flash memory mode transition wait  
time 2  
15  
15  
Note:  
Note:  
Does not include the time until each operation of the flash memory is started after instructions are executed by software.  
The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the  
frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy  
of the clock source.  
Note:  
Note 1. Total time of four commands.  
Table 2.53  
Code flash characteristics (3)  
Middle-speed operating mode  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V, Ta = -40 to +85°C  
*2  
ICLK = 1 MHz  
ICLK = 8 MHz  
Parameter  
Symbol Min  
Typ  
86  
Max  
732  
Min  
Typ  
39  
Max  
Unit  
µs  
Programming time  
Erasure time  
4-byte  
2-KB  
t
t
t
t
t
t
356  
227  
11.3  
534  
11.7  
435  
P4  
12.5  
355  
6.2  
ms  
µs  
E2K  
Blank check time  
4-byte  
2-KB  
46.5  
3681  
22.3  
570  
BC4  
µs  
BC2K  
SED  
Erase suspended time  
µs  
Access window information program  
Start-up area selection and security  
setting time  
21.2  
12.2  
ms  
AWSSAS  
OCD/serial programmer ID setting  
time  
t
84.7  
2280  
48.7  
1740  
ms  
OSIS  
*1  
Flash memory mode transition wait  
time 1  
t
t
2
2
µs  
µs  
DIS  
MS  
Flash memory mode transition wait  
time 2  
15  
15  
Note:  
Note:  
Does not include the time until each operation of the flash memory is started after instructions are executed by software.  
The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the  
frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy  
of the clock source.  
Note:  
Note 1. Total time of four commands.  
Note 2. When 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 77 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.54  
Code flash characteristics (4)  
Low-speed operating mode  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V, Ta = -40 to +85°C  
ICLK = 1 MHz  
ICLK = 2 MHz  
Parameter  
Symbol Min  
Typ  
86  
Max  
732  
Min  
Typ  
57  
Max  
502  
Unit  
µs  
Programming time  
Erasure time  
4-byte  
2-KB  
t
t
t
t
t
t
P4  
12.5  
355  
8.8  
280  
ms  
µs  
E2K  
Blank check time  
4-byte  
2-KB  
46.5  
3681  
22.3  
570  
23.3  
1841  
16.2  
491  
BC4  
µs  
BC2K  
SED  
Erase suspended time  
µs  
Access window information program  
Start-up area selection and security  
setting time  
21.2  
15.9  
ms  
AWSSAS  
OCD/serial programmer ID setting  
time  
t
84.7  
2280  
63.5  
1964  
ms  
OSIS  
*1  
Flash memory mode transition wait  
time 1  
t
t
2
2
µs  
µs  
DIS  
MS  
Flash memory mode transition wait  
time 2  
15  
15  
Note:  
Note:  
Does not include the time until each operation of the flash memory is started after instructions are executed by software.  
The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the  
frequency can be set to 1 MHz or 2 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy  
of the clock source.  
Note:  
Note 1. Total time of four commands.  
2.11.2  
Data Flash Memory Characteristics  
Table 2.55  
Parameter  
Data flash characteristics (1)  
Symbol  
Min  
Typ  
Max  
Unit  
Times  
Year  
Year  
Year  
Conditions  
*1  
N
DPEC  
100000  
1000000  
Reprogramming/erasure cycle  
Data hold time  
*2 *3  
After 10000 times of N  
t
Ta = +85°C  
Ta = +105°C  
20  
DPEC  
DDRP  
*2 *3  
After 100000 times of N  
5
DPEC  
*2 *3  
After 1000000 times of N  
Ta = +25°C  
1
DPEC  
Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000),  
erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,000 times for different  
addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,  
programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.)  
Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics.  
Note 3. These results are target spec, may changed after reliability testing.  
Table 2.56  
Data flash characteristics (2) (1 of 2)  
High-speed operating mode  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
ICLK = 4 MHz  
ICLK = 48 MHz  
Parameter  
Symbol  
Min  
Typ  
45  
8.8  
Max  
404  
Min  
Typ  
34  
6.1  
Max  
Unit  
µs  
Programming time  
Erasure time  
1-byte  
1-KB  
t
t
t
t
t
321  
224  
8.3  
DP1  
280  
ms  
µs  
DE1K  
DBC1  
DBC1K  
DSED  
Blank check time  
1-byte  
1-KB  
15.2  
1832  
13.2  
466  
10.5  
µs  
Suspended time during erasing  
µs  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 78 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
Table 2.56  
Data flash characteristics (2) (2 of 2)  
High-speed operating mode  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
ICLK = 4 MHz  
ICLK = 48 MHz  
Parameter  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Data flash STOP recovery time  
t
250  
250  
ns  
DSTOP  
Note:  
Note:  
Does not include the time until each operation of the flash memory is started after instructions are executed by software.  
The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the  
frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy  
of the clock source.  
Note:  
Table 2.57  
Data flash characteristics (3)  
Middle-speed operating mode  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V, Ta = -40 to +85°C  
*1  
ICLK = 4 MHz  
ICLK = 8 MHz  
Parameter  
Symbol  
Min  
Typ  
45  
8.8  
Max  
404  
280  
15.2  
1.84  
13.2  
Min  
Typ  
39  
7.3  
Max  
Unit  
µs  
Programming time  
Erasure time  
1-byte  
1-KB  
t
t
t
t
t
t
356  
248  
11.3  
1.06  
11.7  
DP1  
ms  
µs  
DE1K  
DBC1  
DBC1K  
DSED  
DSTOP  
Blank check time  
1-byte  
1-KB  
ms  
µs  
Suspended time during erasing  
Data flash STOP recovery time  
250  
250  
ns  
Note:  
Note:  
Does not include the time until each operation of the flash memory is started after instructions are executed by software.  
The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the  
frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy  
of the clock source.  
Note:  
Note 1. When 1.8 V ≤ VCC = AVCC0 ≤ 5.5 V  
Table 2.58  
Data flash characteristics (4)  
Low-speed operating mode  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V, Ta = -40 to +85°C  
ICLK = 1 MHz  
ICLK = 2 MHz  
Parameter  
Symbol  
Min  
Typ  
86  
Max  
732  
504  
46.5  
7.3  
Min  
Typ  
57  
Max  
502  
354  
23.3  
3.66  
16.2  
Unit  
µs  
Programming time  
Erasure time  
1-byte  
1-KB  
t
t
t
t
t
t
DP1  
19.7  
12.4  
ms  
µs  
DE1K  
DBC1  
DBC1K  
DSED  
DSTOP  
Blank check time  
1-byte  
1-KB  
ms  
µs  
Suspended time during erasing  
Data flash STOP recovery time  
22.3  
250  
250  
ns  
Note:  
Note:  
Does not include the time until each operation of the flash memory is started after instructions are executed by software.  
The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 2 MHz, the  
frequency can be set to 1 MHz or 2 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of ICLK must be ± 1.0% during programming or erasing the flash memory. Confirm the frequency accuracy  
of the clock source.  
Note:  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 79 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
2.11.3  
Serial Wire Debug (SWD)  
Table 2.59  
SWD characteristics (1)  
Conditions: VCC = AVCC0 = 2.4 to 5.5 V  
Parameter  
Symbol  
Min  
80  
35  
35  
16  
16  
2
Typ  
Max  
5
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test conditions  
SWCLK clock cycle time  
SWCLK clock high pulse width  
SWCLK clock low pulse width  
SWCLK clock rise time  
SWCLK clock fall time  
SWDIO setup time  
t
t
t
t
t
t
t
t
Figure 2.48  
SWCKcyc  
SWCKH  
SWCKL  
SWCKr  
SWCKf  
SWDS  
5
70  
Figure 2.49  
SWDIO hold time  
SWDH  
SWDIO data delay time  
SWDD  
Table 2.60  
SWD characteristics (2)  
Conditions: VCC = AVCC0 = 1.6 to 2.4 V  
Parameter  
Symbol  
Min  
250  
120  
120  
Typ  
Max  
5
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test conditions  
SWCLK clock cycle time  
SWCLK clock high pulse width  
SWCLK clock low pulse width  
SWCLK clock rise time  
SWCLK clock fall time  
SWDIO setup time  
t
t
t
t
t
t
t
t
Figure 2.48  
SWCKcyc  
SWCKH  
SWCKL  
SWCKr  
SWCKf  
SWDS  
5
50  
170  
Figure 2.49  
SWDIO hold time  
50  
SWDH  
SWDIO data delay time  
2
SWDD  
tSWCKcyc  
tSWCKH  
tSWCKf  
SWCLK  
tSWCKr  
tSWCKL  
Figure 2.48  
SWD SWCLK timing  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 80 of 110  
RA2L1 Datasheet  
2. Electrical Characteristics  
SWCLK  
tSWDS  
tSWDH  
SWDIO  
(Input)  
tSWDD  
tSWDD  
tSWDD  
SWDIO  
(Output)  
SWDIO  
(Output)  
SWDIO  
(Output)  
Figure 2.49  
SWD input/output timing  
2.12  
DCDC Characteristics  
Table 2.61  
DCDC characteristics  
Conditions: VCC = AVCC0 = VCC_DCDC = 2.4 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
1.50  
Max  
Unit  
V
Test conditions  
DCDC output Voltage  
Power switching stabilization time  
1.42  
1.58  
22  
µs  
Switch from LDO power to DCDC  
power  
60  
60  
µs  
µs  
Switch from DCDC power to LDO  
power  
Switch from DCDC power to LDO  
power in the LC boost mode  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 81 of 110  
RA2L1 Datasheet  
Appendix 1. Port States in each Processing Mode  
Appendix 1.  
Port States in each Processing Mode  
Table 1.1  
Port name  
Port states in each processing mode (1 of 4)  
Reset  
Hi-Z  
Software Standby Mode  
*1  
P000/AN000/TS21/IRQ6  
P001/AN001/TS22/IRQ7  
P002/AN002/TS23/IRQ2  
Keep-O  
*1  
Hi-Z  
Keep-O  
*1  
Hi-Z  
Keep-O  
P003/AN003/TS24  
Hi-Z  
Hi-Z  
Keep-O  
*1  
P004/AN004/TS25/IRQ3  
Keep-O  
P005/AN011  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
P006/AN012  
P007/AN013  
P008/AN014  
P010/AN005/TS30-CFC  
P011/AN006/TS31-CFC  
P012/AN007/TS32-CFC  
P013/AN008/TS33-CFC  
P014/AN009/DA0  
[DA0 output (DACE0 = 1)]  
DA0 output retained  
[Other than the above (DACE0 = 0)]  
Keep-O  
*1  
P015/AN010/TS28-CFC/IRQ7_A  
Hi-Z  
Hi-Z  
Keep-O  
P100/CMPIN0/TS26-CFC/AGTIO0_A/GTETRGA_A/GTIOC5B_A/RXD0_A/  
MISO0_A/SCL0_A/SCK1_A/SCL1_B/MISOA_A/KRM00/IRQ2_A  
[AGTIO0_A output selected]  
AGTIO0_A output  
*2  
[Other than the above]  
*1  
Keep-O  
*1  
P101/CMPREF0/TS16-CFC/AGTEE0/GTETRGB_A/GTIOC5A_A/TXD0_A/  
MOSI0_A/SDA0_A/CTS1_RTS1_A/SDA1_B/MOSIA_A/KRM01/IRQ1_A  
Hi-Z  
Hi-Z  
Keep-O  
P102/CMPIN1/ADTRG0_A/TS15-CFC/AGTO0/GTOWLO_A/GTIOC2B_A/  
CRX0_C /SCK0_A/TXD2_D/MOSI2_D/SDA2_D/RSPCKA_A/KRM02  
[AGTO0 selected]  
AGTO0 output  
*2  
[Other than the above]  
*1  
Keep-O  
*1  
P103/CMPREF1/TS14-CFC/GTOWUP_A/GTIOC2A_A/CTX0_C/  
CTS0_RTS0_A/SSLA0_A/KRM03  
Hi-Z  
Hi-Z  
Keep-O  
*1  
P104/TS13-CFC/GTETRGB_B/GTIOC1B_C/RXD0_C/MISO0_C/SCL0_C/  
SSLA1_A/KRM04/IRQ1_B  
Keep-O  
*1  
P105/TS34-CFC/GTETRGA_C/GTIOC1A_C/SSLA2_A/KRM05/IRQ0_B  
P106/GTIOC8B_A/SSLA3_A/KRM06  
Hi-Z  
Hi-Z  
Hi-Z  
Keep-O  
*1  
Keep-O  
*1  
P107/GTIOC8A_A/KRM07  
Keep-O  
P108/SWDIO/GTOULO_C/GTIOC0B_A/CTS9_RTS9_B/SSLB0_B  
Pull-up  
Hi-Z  
Keep-O  
P109/TS10-CFC/GTOVUP_A/GTIOC1A_A/CTX0_A//SCK1_E/TXD9_B/  
MOSI9_B/SDA9_B/MOSIB_B/CLKOUT_B  
[CLKOUT selected]  
CLKOUT output  
[Other than the above]  
Keep-O  
P110/TS11-CFC/GTOVLO_A/GTIOC1B_A/CRX0_A/CTS2_RTS2_B/RXD9_B/ Hi-Z  
MISO9_B/SCL9_B/MISOB_B/IRQ3_A/VCOUT  
[ACMPLP selected]  
VCOUT output  
[Other than the above]  
*1  
Keep-O  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 82 of 110  
RA2L1 Datasheet  
Appendix 1. Port States in each Processing Mode  
Table 1.1  
Port name  
Port states in each processing mode (2 of 4)  
Reset  
Software Standby Mode  
P111/TS12-CFC/AGTOA0/GTIOC3A_A/SCK2_B/SCK9_B/RSPCKB_B/  
IRQ4_A  
Hi-Z  
[AGTOA0 selected]  
AGTOA0 output  
*2  
[Other than the above]  
*1  
Keep-O  
P112/TSCAP_C/AGTOB0/GTIOC3B_A/TXD2_B/MOSI2_B/SDA2_B/SCK1_D/ Hi-Z  
SSLB0_C  
[AGTOB0 selected]  
AGTOB0 output  
*2  
[Other than the above]  
Keep-O  
P113/TS27-CFC/GTIOC2A_C  
P114/TS29-CFC/GTIOC2B_C  
P115/TS35-CFC/GTIOC4A_C  
P200/NMI  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Pull-up  
Hi-Z  
Hi-Z  
Hi-Z  
Keep-O  
Keep-O  
Keep-O  
Hi-Z  
P201/MD  
Keep-O  
P202/SCK2_A/RXD9_A/MISO9_A/SCL9_A/MISOB_A  
P203/CTS2_RTS2_A/TXD9_A/MOSI9_A/SDA9_A/MOSIB_A  
Keep-O  
Keep-O  
P204/CACREF_A/TS0/AGTIO1_A/GTIW_A/GTIOC4B_B/SCK0_D/SCK9_A/  
SCL0_B/RSPCKB_A  
[AGTIO1_A output selected]  
AGTIO1_A output  
*2  
[Other than the above]  
*1  
Keep-O  
P205/AGTO1/GTIV_A/GTIOC4A_B/TXD0_D/MOSI0_D/SDA0_D/  
CTS9_RTS9_A/ SCL1_A/SSLB0_A/IRQ1/CLKOUT_A  
Hi-Z  
[AGTO1 selected]  
AGTO1 output  
*2  
[CLKOUT selected]  
CLKOUT output  
[Other than the above]  
*1  
Keep-O  
*1  
P206/GTIU_A/RXD0_D/MISO0_D/SCL0_D/SDA1_A/SSLB1_A/IRQ0  
Hi-Z  
Keep-O  
P207  
Hi-Z  
Hi-Z  
Keep-O  
P208/AGTOB0_A  
[AGTOB0_A selected]  
AGTOB0_A output  
*2  
[Other than the above]  
Keep-O  
*1  
P212/EXTAL /AGTEE1/GTETRGB_D/GTIOC0B_D/RXD1_A/MISO1_A/  
SCL1_A/IRQ3_B  
Hi-Z  
Keep-O  
*1  
P213/XTAL /GTETRGA_D/GTIOC0A_D/TXD1_A/MOSI1_A/SDA1_A/IRQ2_B Hi-Z  
Keep-O  
P214/XCOUT, P215/XCIN  
Hi-Z  
[Sub-clock Oscillator selected]  
Sub-clock Oscillator is operating  
[Other than the above]  
Hi-Z  
P300/SWCLK/GTOUUP_C/GTIOC0A_A/SSLB1_B  
Pull-up  
Hi-Z  
Keep-O  
P301/TS9-CFC/AGTIO0_D/GTOULO_A/GTIOC4B_A/RXD2_A/MISO2_A/  
SCL2_A/CTS9_RTS9_D/SSLB2_B/IRQ6_A  
[AGTIO0_D output selected]  
AGTIO0_D output  
*2  
[Other than the above]  
*1  
Keep-O  
*1  
P302/TS8-CFC/GTOUUP_A/GTIOC4A_A/TXD2_A/MOSI2_A/SDA2_A/  
SSLB3_B/IRQ5_A  
Hi-Z  
Keep-O  
P303/TS2-CFC/GTIOC7B_A  
P304/GTIOC7A_A  
Hi-Z  
Hi-Z  
Hi-Z  
Keep-O  
Keep-O  
Keep-O  
P305, P306, P307  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 83 of 110  
RA2L1 Datasheet  
Appendix 1. Port States in each Processing Mode  
Table 1.1  
Port name  
Port states in each processing mode (3 of 4)  
Reset  
Software Standby Mode  
P400/CACREF_C/AGTIO1_C/GTIOC6A_A/SCK0_B/SCK1_B/SCL0_A/  
IRQ0_A  
Hi-Z  
[AGTIO1_C output selected]  
AGTIO1_C output  
*2  
[Other than the above]  
*1  
Keep-O  
*1  
P401/GTETRGA_B/GTIOC6B_A/CTX0_B/CTS0_RTS0_B/TXD1_B/MOSI1_B/ Hi-Z  
SDA1_B/SDA0_A/IRQ5  
Keep-O  
P402/TS18/AGTIO0_E/AGTIO1_D/CRX0_B/RXD1_B/MISO1_B/SCL1_B/  
IRQ4  
Hi-Z  
[AGTIO0_E, AGTIO1_D output  
selected]  
*2  
AGTIO0_E, AGTIO1_D output  
[Other than the above]  
*1  
Keep-O  
P403/TS17/AGTIO0_F/AGTIO1_E/GTIOC3A_B/CTS1_RTS1_B  
Hi-Z  
[AGTIO0_F, AGTIO1_E output  
selected]  
*2  
AGTIO0_F, AGTIO1_E output  
[Other than the above]  
Keep-O  
*1  
P404/GTIOC3B_B,  
P405/GTIOC1A_B,  
P406/GTIOC1B_B  
Hi-Z  
Hi-Z  
Keep-O  
P407/ADTRG0_B/AGTIO0_C/RTCOUT/CTS0_RTS0_D/SDA0_B/SSLB3_A  
[AGTIO0_C output selected]  
AGTIO0_C output  
*2  
[RTCOUT selected]  
RTCOUT output  
[Other than the above]  
*1  
Keep-O  
*1  
P408/TS4/GTOWLO_B/GTIOC5B_B/CTS1_RTS1_D/RXD3_A/MISO3_A/  
SCL3_A/SCL0_C/IRQ7_B  
Hi-Z  
Keep-O  
*1  
P409/TS5/GTOWUP_B/GTIOC5A_B/TXD3_A/MOSI3_A/SDA3_A/IRQ6_B  
Hi-Z  
Hi-Z  
Keep-O  
P410/TS6/AGTOB1/GTOVLO_B/GTIOC9B_A/RXD0_B/MISO0_B/SCL0_B/  
SCK3_A/MISOA_B/IRQ5_B  
[AGTOB1 selected]  
AGTOB1 output  
*2  
[Other than the above]  
*1  
Keep-O  
P411/TS7/AGTOA1/GTOVUP_B/GTIOC9A_A/TXD0_B/MOSI0_B/SDA0_B/  
CTS3_RTS3_A/MOSIA_B/IRQ4_B  
Hi-Z  
[AGTOA1 selected]  
AGTOA1 output  
*2  
[Other than the above]  
*1  
Keep-O  
P412/GTOULO_B/SCK0_E/RSPCKA_B  
P413/GTOUUP_B/CTS0_RTS0_E/SSLA0_B  
P414/GTIOC0B_C/SSLA1_B  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
P415/GTIOC0A_C/SSLA2_B  
P500/GTIU_B/GTIOC2A_B  
P501/AN017/GTIV_B/GTIOC2B_B/TXD1_C/MOSI1_C/SDA1_C  
P502/AN018/GTIW_B/GTIOC3B_C/RXD1_C/MISO1_C/SCL1_C  
P503/AN019/GTETRGA_E/SCK1_C  
P504/AN020/GTETRGB_E/CTS1_RTS1_C  
P505  
P600/GTIOC6B_C/SCK9_C  
P601/GTIOC6A_C/RXD9_C/MISO9_C/SCL9_C  
P602/GTIOC7B_B/TXD9_C/MOSI9_C/SDA9_C  
P603/GTIOC7A_B/CTS9_RTS9_C  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 84 of 110  
RA2L1 Datasheet  
Appendix 1. Port States in each Processing Mode  
Table 1.1  
Port states in each processing mode (4 of 4)  
Port name  
Reset  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Software Standby Mode  
Keep-O  
P608/GTIOC4B_C  
P609/GTIOC5A_C  
P610/GTIOC5B_C  
P708/RXD1_D/MISO1_D/SCL1_D/SSLA3_B  
P714  
Keep-O  
Keep-O  
Keep-O  
Keep-O  
P808, P809  
Keep-O  
Note:  
Hi-Z: High-impedance  
Keep-O: Output pins retain their previous values. Input pins become high-impedance.  
Note 1. Input is enabled if the pin is specified as the Software Standby canceling source while it is used as an external interrupt pin.  
Note 2. AGTIO output is enabled while LOCO or SOSC is selected as a count source.  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 85 of 110  
RA2L1 Datasheet  
Appendix 2. Package Dimensions  
Appendix 2.  
Package Dimensions  
Information on the latest version of the package dimensions or mountings is displayed in “Packages” on the Renesas  
Electronics Corporation website.  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
JEITA Package Code  
0.6  
P-LFQFP100-14x14-0.50  
PLQP0100KB-B  
HD  
Unit: mm  
*1  
D
75  
51  
76  
50  
100  
26  
1
25  
NOTE 4  
NOTE)  
Index area  
NOTE 3  
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
F
S
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
y
S
*3  
b
p
e
M
D
E
13.9  
13.9  
14.0 14.1  
14.0 14.1  
A2  
HD  
HE  
A
1.4  
15.8  
15.8  
16.0 16.2  
16.0 16.2  
1.7  
A1  
bp  
c
0.05  
0.15  
0.09  
0  
0.15  
0.20 0.27  
3.5  
0.5  
0.20  
8  
Lp  
L1  
e
Detail F  
x
0.08  
0.08  
0.75  
y
Lp  
L1  
0.45  
0.6  
1.0  
© 2015 Renesas Electronics Corporation. All rights reserved.  
Figure 2.1  
LQFP 100-pin  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 86 of 110  
RA2L1 Datasheet  
Appendix 2. Package Dimensions  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
JEITA Package Code  
P-LFQFP80-12x12-0.50  
0.5  
PLQP0080KB-B  
HD  
Unit: mm  
*1  
D
60  
41  
61  
40  
21  
80  
1
20  
NOTE)  
NOTE 4  
Index area  
NOTE 3  
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
F
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
Dimensions in millimeters  
Reference  
S
Symbol  
Min Nom Max  
D
E
11.9  
11.9  
12.0 12.1  
12.0 12.1  
y
S
A2  
HD  
HE  
A
1.4  
*3  
13.8  
13.8  
14.0 14.2  
14.0 14.2  
b
p
e
M
1.7  
A1  
bp  
c
0.05  
0.15  
0.09  
0  
0.15  
0.20 0.27  
3.5  
0.5  
0.20  
8  
e
x
0.08  
0.08  
0.75  
y
Lp  
L1  
Lp  
L1  
0.45  
0.6  
1.0  
Detail F  
© 2017 Renesas Electronics Corporation. All rights reserved.  
Figure 2.2  
LQFP 80-pin  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 87 of 110  
RA2L1 Datasheet  
Appendix 2. Package Dimensions  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
JEITA Package Code  
P-LFQFP64-10x10-0.50  
0.3  
PLQP0064KB-C  
Unit: mm  
HD  
*1  
D
48  
33  
49  
32  
64  
17  
1
16  
NOTE 4  
Index area  
NOTE 3  
NOTE)  
F
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
S
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
y
S
*3  
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
b
p
e
M
D
E
9.9  
9.9  
10.0 10.1  
10.0 10.1  
A2  
HD  
HE  
A
1.4  
11.8  
11.8  
12.0 12.2  
12.0 12.2  
1.7  
A1  
bp  
c
0.05  
0.15  
0.09  
0  
0.15  
0.20 0.27  
3.5  
0.5  
0.20  
8  
Lp  
L1  
e
Detail F  
x
0.08  
0.08  
0.75  
y
Lp  
L1  
0.45  
0.6  
1.0  
© 2015 Renesas Electronics Corporation. All rights reserved.  
Figure 2.3  
LQFP 64-pin  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 88 of 110  
RA2L1 Datasheet  
Appendix 2. Package Dimensions  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
JEITA Package Code  
0.2  
P-LFQFP48-7x7-0.50  
PLQP0048KB-B  
HD  
D
Unit: mm  
*1  
36  
25  
37  
24  
48  
13  
1
12  
NOTE 4  
Index area  
NOTE 3  
NOTE)  
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
F
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
S
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
D
E
6.9  
6.9  
7.0  
7.0  
1.4  
9.0  
9.0  
7.1  
7.1  
y
S
*3  
b
e
p
M
A2  
HD  
HE  
A
8.8  
8.8  
9.2  
9.2  
1.7  
0.15  
A1  
bp  
c
0.05  
0.17  
0.09  
0  
0.20 0.27  
3.5  
0.5  
0.20  
8  
Lp  
L1  
e
x
0.08  
0.08  
0.75  
Detail F  
y
Lp  
L1  
0.45  
0.6  
1.0  
Figure 2.4  
LQFP 48-pin  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 89 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Appendix 3.  
I/O Registers  
This appendix describes I/O register addresses, access cycles, and reset values by function.  
3.1  
Peripheral Base Addresses  
This section provides the base addresses for peripherals described in this manual.  
Table 3.1 shows the name, description, and the base address of each peripheral.  
Table 3.1  
Name  
MPU  
Peripheral base address (1 of 2)  
Description  
Base address  
Memory Protection Unit  
0x4000_0000  
0x4000_2000  
0x4000_3000  
0x4000_5400  
0x4000_6000  
0x4001_B000  
0x4001_E000  
0x4004_0000  
0x4004_0020  
0x4004_0040  
0x4004_0060  
0x4004_0080  
0x4004_00A0  
0x4004_00C0  
0x4004_00E0  
0x4004_0100  
0x4004_0800  
0x4004_1000  
0x4004_2000  
0x4004_4000  
0x4004_4200  
0x4004_4400  
0x4004_4600  
0x4004_7000  
0x4005_0000  
0x4005_3000  
0x4005_3014  
0x4005_3100  
0x4005_4100  
0x4005_C000  
0x4005_E000  
0x4007_0000  
0x4007_0020  
0x4007_0040  
0x4007_0060  
SRAM  
BUS  
SRAM Control  
BUS Control  
DTC  
Data Transfer Controller  
Interrupt Controller  
ICU  
DBG  
Debug Function  
SYSC  
PORT0  
PORT1  
PORT2  
PORT3  
PORT4  
PORT5  
PORT6  
PORT7  
PORT8  
PFS  
System Control  
Port 0 Control Registers  
Port 1 Control Registers  
Port 2 Control Registers  
Port 3 Control Registers  
Port 4 Control Registers  
Port 5 Control Registers  
Port 6 Control Registers  
Port 7 Control Registers  
Port 8 Control Registers  
Pmn Pin Function Control Register  
Event Link Controller  
ELC  
POEG  
RTC  
Port Output Enable Module for GPT  
Realtime Clock  
WDT  
Watchdog Timer  
IWDT  
CAC  
Independent Watchdog Timer  
Clock Frequency Accuracy Measurement Circuit  
Module Stop Control B, C, D  
CAN0 Module  
MSTP  
CAN0  
IIC0  
Inter-Integrated Circuit 0  
Inter-Integrated Circuit 0 Wakeup Unit  
Inter-Integrated Circuit 1  
Data Operation Circuit  
IIC0WU  
IIC1  
DOC  
ADC12  
DAC12  
SCI0  
12-bit A/D Converter  
12-bit D/A Converter  
Serial Communication Interface 0  
Serial Communication Interface 1  
Serial Communication Interface 2  
Serial Communication Interface 3  
SCI1  
SCI2  
SCI3  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 90 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.1  
Name  
Peripheral base address (2 of 2)  
Description  
Base address  
SCI9  
Serial Communication Interface 9  
Serial Peripheral Interface 0  
Serial Peripheral Interface 1  
CRC Calculator  
0x4007_0120  
0x4007_2000  
0x4007_2100  
0x4007_4000  
0x4007_8000  
0x4007_8100  
0x4007_8200  
0x4007_8300  
0x4007_8400  
0x4007_8500  
0x4007_8600  
0x4007_8700  
0x4007_8800  
0x4007_8900  
0x4007_8FF0  
0x4008_0000  
0x4008_2000  
0x4008_4000  
0x4008_4100  
0x4008_5E00  
0x407E_C000  
SPI0  
SPI1  
CRC  
GPT320  
GPT321  
GPT322  
GPT323  
GPT164  
GPT165  
GPT166  
GPT167  
GPT168  
GPT169  
GPT_OPS  
KINT  
General PWM Timer 0 (32-bit)  
General PWM Timer 1 (32-bit)  
General PWM Timer 2 (32-bit)  
General PWM Timer 3 (32-bit)  
General PWM Timer 4 (16-bit)  
General PWM Timer 5 (16-bit)  
General PWM Timer 6 (16-bit)  
General PWM Timer 7 (16-bit)  
General PWM Timer 8 (16-bit)  
General PWM Timer 9 (16-bit)  
Output Phase Switching Controller  
Key Interrupt Function  
CTSU  
Capacitive Sensing Unit 2  
AGT0  
Low Power Asynchronous General Purpose Timer 0  
Low Power Asynchronous General Purpose Timer 1  
Low-Power Analog Comparator  
Flash I/O Registers  
AGT1  
ACMPLP  
FLCN  
Note:  
Name = Peripheral name  
Description = Peripheral functionality  
Base address = Lowest reserved address or address used by the peripheral  
3.2  
Access Cycles  
This section provides access cycle information for the I/O registers described in this manual.  
The following information applies to Table 3.2:  
Registers are grouped by associated module.  
The number of access cycles indicates the number of cycles based on the specified reference clock.  
In the internal I/O area, reserved addresses that are not allocated to registers must not be accessed, otherwise operations  
cannot be guaranteed.  
The number of I/O access cycles depends on bus cycles of the internal peripheral bus, divided clock synchronization  
cycles, and wait cycles of each module. Divided clock synchronization cycles differ depending on the frequency ratio  
between ICLK and PCLK.  
When the frequency of ICLK is equal to that of PCLK, the number of divided clock synchronization cycles is always  
constant.  
When the frequency of ICLK is greater than that of PCLK, at least 1 PCLK cycle is added to the number of divided  
clock synchronization cycles.  
Note:  
This applies to the number of cycles when access from the CPU does not conflict with the instruction fetching to the  
external memory or bus access from other bus master such as DTC.  
Table 3.2 shows the register access cycles for non-GPT modules.  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 91 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.2  
Access cycles for non-GPT modules  
Number of access cycles  
*1  
Address  
From  
ICLK = PCLK  
Read Write  
ICLK > PCLK  
Cycle  
unit  
Peripherals  
To  
Read Write  
Related function  
MPU, SRAM, BUS,  
DTC, ICU, DBG  
0x4000_2000 0x4001_BFFF  
0x4001_E000 0x4001_E6FF  
0x4004_0000 0x4004_7FFF  
3
4
ICLK  
Memory Protection Unit, SRAM,  
Buses, Data Transfer Controller,  
Interrupt Controller, CPU, Flash  
Memory  
SYSC  
ICLK  
Low Power Modes, Resets, Low  
Voltage Detection, Clock  
Generation Circuit, Register  
Write Protection  
PORTn, PFS, ELC,  
POEG, RTC, WDT,  
IWDT, CAC, MSTP  
3
3
2 to 3  
PCLKB  
I/O Ports, Event Link Controller,  
Port Output Enable for GPT,  
Realtime Clock, Watchdog Timer,  
Independent Watchdog Timer,  
Clock Frequency Accuracy  
Measurement Circuit, Module  
Stop Control  
CAN0,IICn (n = 0,  
1),IIC0WU, DOC,  
ADC12, DAC12  
0x4005_0000 0x4005_EFFF  
2 to 3  
PCLKB  
Controller Area Network Module,  
2
I C Bus Interface, Data  
Operation Circuit, 12-bit A/D  
Converter  
*2  
0x4007_0000 0x4007_0EFF  
0x4007_2000 0x4007_2FFF  
0x4007_4000 0x4007_4FFF  
5
5
3
2 to 3  
2 to 3  
2 to 3  
PCLKB  
PCLKB  
Serial Communications Interface  
Serial Peripheral Interface  
SCIn (n = 0 to 2, 9)  
*3  
SPIn (n = 0, 1)  
CRC  
PCLKB  
PCLKB  
CRC Calculator  
GPT32n (n = 0 to 3), 0x4007_8000 0x4007_BFFF  
See Table 3.3.  
General PWM Timer  
GPT16n (n = 4 to 9),  
GPT_OPS  
KINT, CTSU  
0x4008_0000 0x4008_2FFF  
0x4008_4000 0x4008_4FFF  
3
3
2 to 3  
PCLKB  
PCLKB  
Key interrupt Function,  
Capacitive Sensing Unit 2  
AGTn  
2 to 3  
Low Power Asynchronous  
General Purpose Timer  
ACMPLP  
FLCN  
0x4008_5000 0x4008_6FFF  
0x407E_C000 0x407E_FFFF  
3
7
2 to 3  
7
PCLKB  
ICLK  
Low-Power Analog Comparator  
Data Flash, Temperature Sensor,  
Capacitive Sensing Unit 2, Flash  
Control  
Note 1. If the number of PCLK cycles is non-integer (for example 1.5), the minimum value is without the decimal point, and the maximum  
value is rounded up to the decimal point. For example, 1.5 to 2.5 is 1 to 3.  
Note 2. When accessing a 16-bit register (FTDRHL, FRDRHL, FCR, FDR, LSR, and CDR), access is 2 cycles more than the value shown in  
Table 3.2. When accessing an 8-bit register (FTDRH, FTDRL, FRDRH, and FRDRL), the access cycles are as shown in Table 3.2.  
Note 3. When accessing the 32-bit register (SPDR), access is 2 cycles more than the value in Table 3.2. When accessing an 8-bit or 16-bit  
register (SPDR_HA), the access cycles are as shown in Table 3.2.  
Table 3.3 shows register access cycles for GPT modules.  
Table 3.3  
Access cycles for GPT modules (1 of 2)  
Number of access cycles  
Frequency ratio between ICLK  
and PCLK  
Read  
Write  
Cycle unit  
PCLKB  
PCLKB  
PCLKB  
PCLKB  
PCLKB  
ICLK > PCLKD = PCLKB  
ICLK > PCLKD > PCLKB  
PCLKD = ICLK = PCLKB  
PCLKD = ICLK > PCLKB  
PCLKD > ICLK = PCLKB  
5 to 6  
3 to 4  
6
3 to 4  
2 to 3  
4
2 to 3  
4
1 to 2  
3
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 92 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.3  
Access cycles for GPT modules (2 of 2)  
Number of access cycles  
Frequency ratio between ICLK  
and PCLK  
Read  
Write  
Cycle unit  
PCLKD > ICLK > PCLKB  
2 to 3  
1 to 2  
PCLKB  
3.3  
Register Descriptions  
This section provides information associated with registers described in this manual.  
Table 3.4 shows a list of registers including address offsets, address sizes, access rights, and reset values.  
Table 3.4  
Register description (1 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
0xFFFF  
MPU  
MPU  
MPU  
4
MMPUCTLA  
MMPUPTA  
Bus Master MPU Control Register  
Group A Protection of Register  
0x000  
0x102  
0x200  
16  
16  
16  
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
0xFFFF  
0x010 0-3  
0x010 0-3  
0x010 0-3  
MMPUACA%s  
Group A Region %s access control  
register  
0xFFFF  
MPU  
4
MMPUSA%s  
Group A Region %s Start Address  
Register  
0x204  
32  
R/W 0x00000000  
0x00000003  
MPU  
MPU  
MPU  
MPU  
4
MMPUEA%s  
SMPUCTL  
Group A Region %s End Address Register 0x208  
Slave MPU Control Register 0xC00  
Access Control Register for Memory Bus 1 0xC10  
32  
16  
16  
16  
R/W 0x00000003  
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
0x00000003  
0xFFFF  
SMPUMBIU  
SMPUFBIU  
0xFFFF  
Access Control Register for Internal  
Peripheral Bus 9  
0xC14  
0xFFFF  
MPU  
MPU  
SMPUSRAM0  
SMPUP0BIU  
Access Control Register for Memory Bus 4 0xC18  
16  
16  
R/W 0x0000  
R/W 0x0000  
0xFFFF  
0xFFFF  
Access Control Register for Internal  
Peripheral Bus 1  
0xC20  
0xC24  
0xC28  
0xD00  
0xD04  
MPU  
MPU  
MPU  
MPU  
SMPUP2BIU  
SMPUP6BIU  
MSPMPUOAD  
MSPMPUCTL  
Access Control Register for Internal  
Peripheral Bus 3  
16  
16  
16  
16  
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
0xFFFF  
0xFFFF  
0xFFFF  
0xFEFF  
Access Control Register for Internal  
Peripheral Bus 7  
Stack Pointer Monitor Operation After  
Detection Register  
Stack Pointer Monitor Access Control  
Register  
MPU  
MPU  
MSPMPUPT  
MSPMPUSA  
Stack Pointer Monitor Protection Register  
0xD06  
0xD08  
16  
32  
R/W 0x0000  
0xFFFF  
Main Stack Pointer (MSP) Monitor Start  
Address Register  
R/W 0x00000000  
0x00000000  
MPU  
MPU  
MPU  
MSPMPUEA  
PSPMPUOAD  
PSPMPUCTL  
Main Stack Pointer (MSP) Monitor End  
Address Register  
0xD0C  
0xD10  
0xD14  
0xD16  
32  
16  
16  
R/W 0x00000000  
R/W 0x0000  
0x00000000  
0xFFFF  
Stack Pointer Monitor Operation After  
Detection Register  
Stack Pointer Monitor Access Control  
Register  
R/W 0x0000  
0xFEFF  
MPU  
MPU  
PSPMPUPT  
PSPMPUSA  
Stack Pointer Monitor Protection Register  
16  
32  
R/W 0x0000  
0xFFFF  
Process Stack Pointer (PSP) Monitor Start 0xD18  
Address Register  
R/W 0x00000000  
0x00000000  
MPU  
PSPMPUEA  
PARIOAD  
Process Stack Pointer (PSP) Monitor End  
Address Register  
0xD1C  
32  
8
R/W 0x00000000  
R/W 0x00  
0x00000000  
0xFF  
SRAM  
SRAM Parity Error Operation After  
Detection Register  
0x00  
SRAM  
SRAM  
SRAM  
SRAM  
SRAMPRCR  
ECCMODE  
ECC2STS  
SRAM Protection Register  
0x04  
0xC0  
0xC1  
0xC2  
8
8
8
8
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
0xFF  
0xFF  
0xFF  
0xFF  
ECC Operating Mode Control Register  
ECC 2-Bit Error Status Register  
ECC1STSEN  
ECC 1-Bit Error Information Update  
Enable Register  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 93 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.4  
Register description (2 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
0xFF  
SRAM  
SRAM  
SRAM  
SRAM  
SRAM  
ECC1STS  
ECCETST  
ECCPRCR  
ECCPRCR2  
ECCOAD  
ECC 1-Bit Error Status Register  
ECC Test Control Register  
ECC Protection Register  
ECC Protection Register 2  
0xC3  
0xC4  
0xC4  
0xD0  
0xD8  
8
8
8
8
8
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
0xFF  
0xFF  
0xFF  
SRAM ECC Error Operation After  
Detection Register  
0xFF  
BUS  
BUS  
BUS  
BUS  
BUS  
BUS  
DTC  
DTC  
DTC  
DTC  
ICU  
8
0x1  
0-7  
BUSMCNTSYS  
BUSMCNTDMA  
BUS3ERRADD  
BUS3ERRSTAT  
BUS4ERRADD  
BUS4ERRSTAT  
DTCCR  
Master Bus Control Register SYS  
Master Bus Control Register DMA  
Bus Error Address Register 3  
BUS Error Status Register 3  
Bus Error Address Register 4  
BUS Error Status Register 4  
DTC Control Register  
0x1008  
0x100C  
0x1820  
0x1824  
0x1830  
0x1834  
0x00  
16  
16  
32  
8
R/W 0x0000  
R/W 0x0000  
0xFFFF  
0xFFFF  
0x00000000  
0xFE  
R
R
R
R
0x00000000  
0x00  
32  
8
0x00000000  
0x00  
0x00000000  
0xFE  
8
R/W 0x08  
0xFF  
DTCVBR  
DTC Vector Base Register  
DTC Module Start Register  
DTC Status Register  
0x04  
32  
8
R/W 0x00000000  
R/W 0x00  
0xFFFFFFFF  
0xFF  
DTCST  
0x0C  
DTCSTS  
0x0E  
16  
8
R
0x0000  
0xFFFF  
0xFF  
IRQCR%s  
IRQ Control Register  
0x000  
0x100  
0x120  
0x130  
R/W 0x00  
ICU  
NMICR  
NMI Pin Interrupt Control Register  
Non-Maskable Interrupt Enable Register  
8
R/W 0x00  
0xFF  
ICU  
NMIER  
16  
16  
R/W 0x0000  
R/W 0x0000  
0xFFFF  
0xFFFF  
ICU  
NMICLR  
Non-Maskable Interrupt Status Clear  
Register  
ICU  
32  
0x4  
0-31  
NMISR  
Non-Maskable Interrupt Status Register  
Wake Up Interrupt Enable Register  
ICU event Enable Register  
0x140  
0x1A0  
0x1C0  
0x200  
0x300  
0x00  
16  
32  
8
R
0x0000  
0xFFFF  
ICU  
WUPEN  
R/W 0x00000000  
R/W 0x00  
0xFFFFFFFF  
0xFF  
ICU  
IELEN  
ICU  
SELSR0  
SYS Event Link Setting Register  
ICU Event Link Setting Register %s  
Debug Status Register  
16  
32  
32  
32  
16  
32  
32  
8
R/W 0x0000  
0xFFFF  
ICU  
IELSR%s  
DBGSTR  
DBGSTOPCR  
SBYCR  
R/W 0x00000000  
0xFFFFFFFF  
0xFFFFFFFF  
0xFFFFFFFF  
0xFFFF  
DBG  
DBG  
SYSC  
SYSC  
SYSC  
SYSC  
SYSC  
R
0x00000000  
Debug Stop Control Register  
0x10  
R/W 0x00000003  
R/W 0x0000  
Standby Control Register  
0x00C  
0x01C  
0x020  
0x026  
0x031  
MSTPCRA  
SCKDIVCR  
SCKSCR  
MEMWAIT  
Module Stop Control Register A  
System Clock Division Control Register  
System Clock Source Control Register  
R/W 0xFFBFFFFF 0xFFFFFFFF  
R/W 0x04000404  
R/W 0x01  
0xFFFFFFFF  
0xFF  
Memory Wait Cycle Control Register for  
Code Flash  
8
R/W 0x00  
0xFF  
SYSC  
SYSC  
MOSCCR  
HOCOCR  
Main Clock Oscillator Control Register  
0x032  
0x036  
8
8
R/W 0x01  
R/W 0x00  
0xFF  
0xFE  
High-Speed On-Chip Oscillator Control  
Register  
SYSC  
MOCOCR  
Middle-Speed On-Chip Oscillator Control  
Register  
0x038  
8
R/W 0x00  
0xFF  
SYSC  
SYSC  
SYSC  
SYSC  
SYSC  
SYSC  
SYSC  
SYSC  
OSCSF  
Oscillation Stabilization Flag Register  
Clock Out Control Register  
0x03C  
0x03E  
8
8
8
8
8
8
8
8
R
0x00  
0xFE  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
CKOCR  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
OSTDCR  
OSTDSR  
LPOPT  
Oscillation Stop Detection Control Register 0x040  
Oscillation Stop Detection Status Register 0x041  
Lower Power Operation Control Register  
MOCO User Trimming Control Register  
HOCO User Trimming Control Register  
Snooze Control Register  
0x04C  
0x061  
0x062  
0x092  
MOCOUTCR  
HOCOUTCR  
SNZCR  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 94 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.4  
Register description (3 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
0xFF  
SYSC  
SYSC  
SYSC  
SYSC  
SYSC  
SNZEDCR0  
SNZREQCR  
PSMCR  
Snooze End Control Register  
Snooze Request Control Register  
Power Save Memory Control Register  
Operating Power Control Register  
0x094  
0x098  
0x09F  
0x0A0  
0x0A2  
8
R/W 0x00  
32  
8
R/W 0x00000000  
R/W 0x00  
0xFFFFFFFF  
0xFF  
OPCCR  
8
R/W 0x01  
0xFF  
MOSCWTCR  
Main Clock Oscillator Wait Control  
Register  
8
R/W 0x05  
0xFF  
SYSC  
SYSC  
SYSC  
SYSC  
SYSC  
SOPCCR  
RSTSR1  
LVD1CR1  
LVD1SR  
LVD2CR1  
Sub Operating Power Control Register  
Reset Status Register 1  
0x0AA  
0x0C0  
0x0E0  
0x0E1  
0x0E2  
8
R/W 0x00  
R/W 0x0000  
R/W 0x01  
R/W 0x02  
R/W 0x01  
0xFF  
16  
8
0xE0F8  
0xFF  
Voltage Monitor 1 Circuit Control Register  
Voltage Monitor 1 Circuit Status Register  
8
0xFF  
Voltage Monitor 2 Circuit Control Register  
1
8
0xFF  
SYSC  
SYSC  
SYSC  
SYSC  
SYSC  
SYSC  
LVD2SR  
PRCR  
Voltage Monitor 2 Circuit Status Register  
Protect Register  
0x0E3  
0x3FE  
0x040E  
0x410  
0x411  
0x413  
8
R/W 0x02  
R/W 0x0000  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
0xFF  
0xFFFF  
0xFF  
0xF0  
16  
8
SYOCDCR  
RSTSR0  
RSTSR2  
MOMCR  
System Control OCD Control Register  
Reset Status Register 0  
8
Reset Status Register 2  
8
0xFE  
0xFF  
Main Clock Oscillator Mode Oscillation  
Control Register  
8
SYSC  
SYSC  
SYSC  
LVCMPCR  
LVDLVLR  
LVD1CR0  
Voltage Monitor Circuit Control Register  
Voltage Detection Level Select Register  
0x417  
0x418  
0x41A  
8
8
8
R/W 0x00  
R/W 0x07  
R/W 0x80  
0xFF  
0xFF  
0xF7  
Voltage Monitor 1 Circuit Control Register  
0
SYSC  
LVD2CR0  
Voltage Monitor 2 Circuit Control Register  
0
0x41B  
8
R/W 0x80  
0xF7  
SYSC  
SYSC  
SYSC  
SYSC  
DCDCCTL  
VCCSEL  
SOSCCR  
SOMCR  
DCDC/LDO Control Register  
0x440  
0x441  
0x480  
0x481  
8
8
8
8
R/W 0xC0  
R/W 0x00  
R/W 0x01  
R/W 0x00  
0xFF  
0xFF  
0xFF  
0xFF  
Voltage Level Selection Control Register  
Sub-Clock Oscillator Control Register  
Sub-Clock Oscillator Mode Control  
Register  
SYSC  
SYSC  
SOMRG  
Sub-Clock Oscillator Margin Check  
Register  
0x482  
0x490  
8
8
R/W 0x00  
R/W 0x00  
0xFF  
0xFF  
LOCOCR  
Low-Speed On-Chip Oscillator Control  
Register  
SYSC  
LOCOUTCR  
PCNTR1  
PODR  
LOCO User Trimming Control Register  
Port Control Register 1  
Port Control Register 1  
Port Control Register 1  
Port Control Register 2  
Port Control Register 2  
Port Control Register 3  
Port Control Register 3  
Port Control Register 3  
Port Control Register 1  
Port Control Register 1  
Port Control Register 1  
Port Control Register 2  
Port Control Register 2  
0x492  
0x000  
0x000  
0x002  
0x004  
0x006  
0x008  
0x008  
0x00A  
0x000  
0x000  
0x002  
0x004  
0x004  
8
R/W 0x00  
0xFF  
PORT0,3-8  
PORT0,3-8  
PORT0,3-8  
PORT0,3-8  
PORT0,3-8  
PORT0,3-8  
PORT0,3-8  
PORT0,3-8  
PORT1-2  
PORT1-2  
PORT1-2  
PORT1-2  
PORT1-2  
32  
16  
16  
32  
16  
32  
16  
16  
32  
16  
16  
32  
16  
R/W 0x00000000  
R/W 0x0000  
R/W 0x0000  
0xFFFFFFFF  
0xFFFF  
PDR  
0xFFFF  
PCNTR2  
PIDR  
R
0x00000000  
0x0000  
0xFFFF0000  
0x0000  
R
PCNTR3  
PORR  
W
W
W
0x00000000  
0x0000  
0xFFFFFFFF  
0xFFFF  
POSR  
0x0000  
0xFFFF  
PCNTR1  
PODR  
R/W 0x00000000  
R/W 0x0000  
0xFFFFFFFF  
0xFFFF  
PDR  
R/W 0x0000  
0xFFFF  
PCNTR2  
EIDR  
R
R
0x00000000  
0x0000  
0xFFFF0000  
0xFFFF  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 95 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.4  
Register description (4 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
0x0000  
PORT1-2  
PORT1-2  
PORT1-2  
PORT1-2  
PORT1-2  
PORT1-2  
PORT1-2  
PFS  
9
PIDR  
Port Control Register 2  
0x006  
0x008  
0x008  
0x00A  
0x00C  
0x00C  
0x00E  
0x000  
0x002  
0x003  
0x028  
0x02A  
0x02B  
0x040  
0x042  
0x043  
0x060  
0x062  
0x063  
0x064  
0x066  
0x067  
0x068  
0x06A  
0x06B  
0x080  
0x082  
0x083  
0x084  
0x086  
0x087  
0x088  
0x08A  
0x08B  
0x0B0  
0x0B2  
0x0B3  
0x0C0  
0x0C2  
0x0C3  
0x0C4  
0x0C6  
0x0C7  
0x100  
0x102  
16  
32  
16  
16  
32  
16  
16  
32  
16  
8
R
0x0000  
PCNTR3  
Port Control Register 3  
W
W
W
0x00000000  
0x0000  
0xFFFFFFFF  
0xFFFF  
PORR  
Port Control Register 3  
POSR  
Port Control Register 3  
0x0000  
0xFFFF  
PCNTR4  
Port Control Register 4  
R/W 0x00000000  
R/W 0x0000  
R/W 0x0000  
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFF  
0xFFFF  
EORR  
Port Control Register 4  
EOSR  
Port Control Register 4  
0xFFFF  
0x4  
0x4  
0x4  
0x4  
0x4  
0x4  
0x4  
0x4  
0x4  
0-8  
0-8  
0-8  
10-15  
10-15  
10-15  
0-7  
0-7  
0-7  
P00%sPFS  
P00%sPFS_HA  
P00%sPFS_BY  
P0%sPFS  
Port 00%s Pin Function Select Register  
Port 00%s Pin Function Select Register  
Port 00%s Pin Function Select Register  
Port 0%s Pin Function Select Register  
Port 0%s Pin Function Select Register  
Port 0%s Pin Function Select Register  
Port 10%s Pin Function Select Register  
Port 10%s Pin Function Select Register  
Port 10%s Pin Function Select Register  
Port 108 Pin Function Select Register  
Port 108 Pin Function Select Register  
Port 108 Pin Function Select Register  
Port 109 Pin Function Select Register  
Port 109 Pin Function Select Register  
Port 109 Pin Function Select Register  
Port 1%s Pin Function Select Register  
Port 1%s Pin Function Select Register  
Port 1%s Pin Function Select Register  
Port 200 Pin Function Select Register  
Port 200 Pin Function Select Register  
Port 200 Pin Function Select Register  
Port 201 Pin Function Select Register  
Port 201 Pin Function Select Register  
Port 201 Pin Function Select Register  
Port 20%s Pin Function Select Register  
Port 20%s Pin Function Select Register  
Port 20%s Pin Function Select Register  
Port 2%s Pin Function Select Register  
Port 2%s Pin Function Select Register  
Port 2%s Pin Function Select Register  
Port 300 Pin Function Select Register  
Port 300 Pin Function Select Register  
Port 300 Pin Function Select Register  
Port 30%s Pin Function Select Register  
Port 30%s Pin Function Select Register  
Port 30%s Pin Function Select Register  
Port 40%s Pin Function Select Register  
Port 40%s Pin Function Select Register  
0xFFFFFFFD  
0xFFFD  
PFS  
9
PFS  
9
0xFD  
PFS  
6
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
PFS  
6
P0%sPFS_HA  
P0%sPFS_BY  
P10%sPFS  
P10%sPFS_HA  
P10%sPFS_BY  
P108PFS  
PFS  
6
0xFD  
PFS  
8
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
PFS  
8
PFS  
8
0xFD  
PFS  
6
32  
16  
8
R/W 0x00010010  
R/W 0x0010  
R/W 0x10  
0xFFFFFFFD  
0xFFFD  
PFS  
P108PFS_HA  
P108PFS_BY  
P109PFS  
PFS  
0xFD  
PFS  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
PFS  
P109PFS_HA  
P109PFS_BY  
P1%sPFS  
PFS  
0xFD  
PFS  
0x4  
0x4  
0x4  
10-15  
10-15  
10-15  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
PFS  
6
P1%sPFS_HA  
P1%sPFS_BY  
P200PFS  
PFS  
6
0xFD  
PFS  
7
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
PFS  
P200PFS_HA  
P200PFS_BY  
P201PFS  
PFS  
0xFD  
PFS  
32  
16  
8
R/W 0x00000010  
R/W 0x0010  
R/W 0x10  
0xFFFFFFFD  
0xFFFD  
PFS  
P201PFS_HA  
P201PFS_BY  
P20%sPFS  
P20%sPFS_HA  
P20%sPFS_BY  
P2%sPFS  
PFS  
0xFD  
PFS  
0x4  
0x4  
0x4  
0x4  
0x4  
0x4  
2-8  
2-8  
2-8  
12-15  
12-15  
12-15  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
PFS  
7
PFS  
7
0xFD  
PFS  
4
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
PFS  
4
P2%sPFS_HA  
P2%sPFS_BY  
P300PFS  
PFS  
4
0xFD  
PFS  
7
32  
16  
8
R/W 0x00010000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
PFS  
P300PFS_HA  
P300PFS_BY  
P30%sPFS  
P30%sPFS_HA  
P30%sPFS_BY  
P40%sPFS  
P40%sPFS_HA  
PFS  
0xFD  
PFS  
0x4  
0x4  
0x4  
0x4  
0x4  
1-7  
1-7  
1-7  
0-9  
0-9  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
PFS  
7
PFS  
7
0xFD  
PFS  
10  
10  
32  
16  
R/W 0x00000000  
R/W 0x0000  
0xFFFFFFFD  
0xFFFD  
PFS  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 96 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.4  
Register description (5 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
0xFD  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
PFS  
ELC  
ELC  
10  
6
0x4  
0x4  
0x4  
0x4  
0x4  
0x4  
0x4  
0x4  
0x4  
0x4  
0x4  
0x4  
0x4  
0-9  
10-15  
10-15  
10-15  
0-5  
0-5  
0-5  
0-3  
0-3  
0-3  
8-9  
8-9  
8-9  
P40%sPFS_BY  
P4%sPFS  
Port 40%s Pin Function Select Register  
Port 4%s Pin Function Select Register  
Port 4%s Pin Function Select Register  
Port 4%s Pin Function Select Register  
Port 50%s Pin Function Select Register  
Port 50%s Pin Function Select Register  
Port 50%s Pin Function Select Register  
Port 60%s Pin Function Select Register  
Port 60%s Pin Function Select Register  
Port 60%s Pin Function Select Register  
Port 60%s Pin Function Select Register  
Port 60%s Pin Function Select Register  
Port 60%s Pin Function Select Register  
Port 610 Pin Function Select Register  
Port 610 Pin Function Select Register  
Port 610 Pin Function Select Register  
Port 708 Pin Function Select Register  
Port 708 Pin Function Select Register  
Port 708 Pin Function Select Register  
Port 714 Pin Function Select Register  
Port 714 Pin Function Select Register  
Port 714 Pin Function Select Register  
Port 80%s Pin Function Select Register  
Port 80%s Pin Function Select Register  
Port 80%s Pin Function Select Register  
Write-Protect Register  
0x103  
0x128  
0x12A  
0x12B  
0x140  
0x142  
0x143  
0x180  
0x182  
0x183  
0x1A0  
0x1A2  
0x1A3  
0x1A8  
0x1AA  
0x1AB  
0x1E0  
0x1E2  
0x1E3  
0x1F8  
0x1FA  
0x1FB  
0x220  
0x222  
0x223  
0x503  
0x50F  
0x00  
8
R/W 0x00  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
0xFD  
6
P4%sPFS_HA  
P4%sPFS_BY  
P50%sPFS  
6
6
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
0xFD  
6
P50%sPFS_HA  
P50%sPFS_BY  
P60%sPFS  
6
4
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
0xFD  
4
P60%sPFS_HA  
P60%sPFS_BY  
P60%sPFS  
4
2
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
0xFD  
2
P60%sPFS_HA  
P60%sPFS_BY  
P610PFS  
2
2
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
0xFD  
P610PFS_HA  
P610PFS_BY  
P708PFS  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
0xFD  
P708PFS_HA  
P708PFS_BY  
P714PFS  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
0xFD  
P714PFS_HA  
P714PFS_BY  
P80%sPFS  
0x4  
0x4  
0x4  
8-9  
8-9  
8-9  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFD  
0xFFFD  
0xFD  
2
P80%sPFS_HA  
P80%sPFS_BY  
PWPR  
2
2
8
R/W 0x80  
0xFF  
PRWCNTR  
Port Read Wait Control Register  
8
R/W 0x01  
0xFF  
ELCR  
Event Link Controller Register  
8
R/W 0x00  
0xFF  
0x02  
0-1  
ELSEGR%s  
Event Link Software Event Generation  
Register %s  
0x02  
8
R/W 0x80  
0xFF  
ELC  
ELC  
ELC  
ELC  
ELC  
POEG  
POEG  
RTC  
RTC  
RTC  
RTC  
RTC  
RTC  
4
0x04  
0x04  
0-3  
8-9  
ELSR%s  
ELSR%s  
ELSR12  
Event Link Setting Register %s  
Event Link Setting Register %s  
Event Link Setting Register 12  
Event Link Setting Register %s  
Event Link Setting Register 18  
POEG Group A Setting Register  
POEG Group B Setting Register  
64-Hz Counter  
0x10  
0x30  
0x40  
0x48  
0x58  
0x000  
0x100  
0x00  
0x02  
16  
16  
16  
16  
16  
32  
32  
8
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
R/W 0x00000000  
R/W 0x00000000  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFFFFFF  
0xFFFFFFFF  
0x00  
2
2
0x04  
14-15  
ELSR%s  
ELSR18  
4
POEGGA  
POEGGB  
R64CNT  
BCNT%s  
RSECCNT  
RMINCNT  
RHRCNT  
RWKCNT  
R
0x00  
0x02  
0-3  
Binary Counter %s  
8
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
0x00  
Second Counter (in Calendar Count Mode) 0x02  
Minute Counter (in Calendar Count Mode) 0x04  
8
0x00  
8
0x00  
Hour Counter (in Calendar Count Mode)  
0x06  
0x08  
8
0x00  
Day-of-Week Counter (in Calendar Count  
Mode)  
8
0x00  
RTC  
RTC  
RDAYCNT  
RMONCNT  
Day Counter  
0x0A  
0x0C  
8
8
R/W 0x00  
R/W 0x00  
0xC0  
0xE0  
Month Counter  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 97 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.4  
Register description (6 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
0xFF00  
0x00  
RTC  
RTC  
RTC  
4
RYRCNT  
Year Counter  
0x0E  
0x10  
16  
8
R/W 0x0000  
R/W 0x00  
R/W 0x00  
0x02  
0-3  
BCNT%sAR  
RSECAR  
Binary Counter %s Alarm Register  
Second Alarm Register (in Calendar Count 0x10  
Mode)  
8
0x00  
RTC  
RTC  
RTC  
RMINAR  
RHRAR  
RWKAR  
Minute Alarm Register (in Calendar Count 0x12  
Mode)  
8
8
8
R/W 0x00  
R/W 0x00  
R/W 0x00  
0x00  
0x00  
0x00  
Hour Alarm Register (in Calendar Count  
Mode)  
0x14  
Day-of-Week Alarm Register (in Calendar  
Count Mode)  
0x16  
RTC  
RTC  
2
0x02  
0-1  
BCNT%sAER  
RDAYAR  
Binary Counter %s Alarm Enable Register 0x18  
8
8
R/W 0x00  
R/W 0x00  
0x00  
0x00  
Date Alarm Register (in Calendar Count  
Mode)  
0x18  
RTC  
RMONAR  
Month Alarm Register (in Calendar Count  
Mode)  
0x1A  
8
R/W 0x00  
0x00  
RTC  
RTC  
BCNT2AER  
RYRAR  
Binary Counter 2 Alarm Enable Register  
0x1C  
0x1C  
16  
16  
R/W 0x0000  
R/W 0x0000  
0xFF00  
0xFF00  
Year Alarm Register (in Calendar Count  
Mode)  
RTC  
RTC  
BCNT3AER  
RYRAREN  
Binary Counter 3 Alarm Enable Register  
0x1E  
0x1E  
8
8
R/W 0x00  
R/W 0x00  
0x00  
0x00  
Year Alarm Enable Register (in Calendar  
Count Mode)  
RTC  
RTC  
RCR1  
RCR2  
RTC Control Register 1  
0x22  
8
8
R/W 0x00  
R/W 0x00  
0x0A  
0x0E  
RTC Control Register 2 (in Calendar Count 0x24  
Mode)  
RTC  
RCR2  
RTC Control Register 2 (in Binary Count  
Mode)  
0x24  
8
R/W 0x00  
0x0E  
RTC  
RCR4  
RTC Control Register 4  
0x28  
0x2A  
0x2C  
0x2E  
0x00  
0x02  
0x04  
0x06  
0x08  
0x00  
0x04  
0x00  
0x01  
0x02  
0x03  
0x04  
0x06  
0x08  
0x0A  
0x000  
0x004  
0x008  
0x00C  
8
R/W 0x00  
R/W 0x0000  
R/W 0x0000  
R/W 0x00  
R/W 0xFF  
R/W 0x0000  
R/W 0x0000  
R/W 0x80  
R/W 0x80  
R/W 0xFF  
R/W 0x0000  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
0x7E  
RTC  
RFRH  
Frequency Register H  
16  
16  
8
0xFFFE  
0x0000  
0x00  
RTC  
RFRL  
Frequency Register L  
RTC  
RADJ  
Time Error Adjustment Register  
WDT Refresh Register  
WDT  
WDT  
WDT  
WDT  
WDT  
IWDT  
IWDT  
CAC  
CAC  
CAC  
CAC  
CAC  
CAC  
CAC  
CAC  
MSTP  
MSTP  
MSTP  
MSTP  
WDTRR  
WDTCR  
WDTSR  
WDTRCR  
WDTCSTPR  
IWDTRR  
IWDTSR  
CACR0  
8
0xFF  
WDT Control Register  
16  
16  
8
0xFFFF  
0xFFFF  
0xFF  
WDT Status Register  
WDT Reset Control Register  
WDT Count Stop Control Register  
IWDT Refresh Register  
8
0xFF  
8
0xFF  
IWDT Status Register  
16  
8
0xFFFF  
0xFF  
CAC Control Register 0  
CACR1  
CAC Control Register 1  
8
0xFF  
CACR2  
CAC Control Register 2  
8
0xFF  
CAICR  
CAC Interrupt Control Register  
CAC Status Register  
8
0xFF  
CASTR  
8
R
0x00  
0xFF  
CAULVR  
CALLVR  
CACNTBR  
MSTPCRB  
MSTPCRC  
MSTPCRD  
LSMRWDIS  
CAC Upper-Limit Value Setting Register  
CAC Lower-Limit Value Setting Register  
CAC Counter Buffer Register  
Module Stop Control Register B  
Module Stop Control Register C  
Module Stop Control Register D  
16  
16  
16  
32  
32  
32  
16  
R/W 0x0000  
R/W 0x0000  
0xFFFF  
0xFFFF  
0xFFFF  
R
0x0000  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
Low Speed Module R/W Disable Control  
Register  
R/W 0x0000  
0xFFFF  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 98 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.4  
Register description (7 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
0x00000001  
0x0000  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
8
0x10  
0x10  
0x10  
0x10  
0x10  
0x10  
0x10  
0x10  
0x10  
0x10  
0x10  
0x04  
0x04  
0-31  
0-31  
0-31  
0-31  
0-31  
0-31  
0-31  
0-31  
0-31  
0-31  
0-31  
MB%s_ID  
MB%s_DL  
MB%s_D0  
MB%s_D1  
MB%s_D2  
MB%s_D3  
MB%s_D4  
MB%s_D5  
MB%s_D6  
MB%s_D7  
MB%s_TS  
MKR[%s]  
FIDCR%s  
MKIVLR  
Mailbox ID Register %s  
0x200  
0x204  
0x206  
0x207  
0x208  
0x209  
0x20A  
0x20B  
0x20C  
0x20D  
0x20E  
0x400  
0x420  
0x428  
0x42C  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
Mailbox Data Length Register %s  
Mailbox Data Register %s  
Mailbox Data Register %s  
Mailbox Data Register %s  
Mailbox Data Register %s  
Mailbox Data Register %s  
Mailbox Data Register %s  
Mailbox Data Register %s  
Mailbox Data Register %s  
Mailbox Time Stamp Register %s  
Mask Register %s  
0x00  
8
R/W 0x00  
0x00  
8
R/W 0x00  
0x00  
8
R/W 0x00  
0x00  
8
R/W 0x00  
0x00  
8
R/W 0x00  
0x00  
8
R/W 0x00  
0x00  
8
R/W 0x00  
0x00  
16  
32  
32  
32  
32  
32  
R/W 0x0000  
R/W 0x00000000  
R/W 0x00000000  
R/W 0x00000000  
R/W 0x00000000  
R/W 0x00000000  
0x0000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
0x00000000  
2
0-1  
FIFO Received ID Compare Register %s  
Mask Invalid Register  
MIER  
Mailbox Interrupt Enable Register  
MIER_FIFO  
Mailbox Interrupt Enable Register for FIFO 0x42C  
Mailbox Mode  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
CAN0  
IIC0-1  
IIC0-1  
IIC0-1  
IIC0-1  
IIC0-1  
IIC0-1  
IIC0-1  
IIC0-1  
32  
32  
0x01  
0x01  
MCTL_RX[%s]  
MCTL_TX[%s]  
CTLR  
Message Control Register for Receive  
Message Control Register for Transmit  
Control Register  
0x820  
0x820  
0x840  
0x842  
0x844  
0x848  
0x849  
0x84A  
0x84B  
0x84C  
0x84D  
0x84E  
0x84F  
0x850  
0x851  
0x852  
0x853  
0x854  
0x856  
0x858  
0x00  
8
R/W 0x00  
R/W 0x00  
R/W 0x0500  
0xFF  
8
0xFF  
16  
16  
32  
8
0xFFFF  
0xFFFF  
0xFFFFFFFF  
0xFF  
STR  
Status Register  
R
0x0500  
BCR  
Bit Configuration Register  
R/W 0x00000000  
R/W 0x80  
RFCR  
RFPCR  
TFCR  
Receive FIFO Control Register  
Receive FIFO Pointer Control Register  
Transmit FIFO Control Register  
Transmit FIFO Pointer Control Register  
Error Interrupt Enable Register  
Error Interrupt Factor Judge Register  
Receive Error Count Register  
Transmit Error Count Register  
Error Code Store Register  
8
W
0x00  
R/W 0x80  
0x00  
0x00  
8
0xFF  
TFPCR  
EIER  
8
W
0x00  
8
R/W 0x00  
R/W 0x00  
0xFF  
EIFR  
8
0xFF  
RECR  
TECR  
8
R
R
0x00  
0x00  
0xFF  
8
0xFF  
ECSR  
CSSR  
MSSR  
MSMR  
TSR  
8
R/W 0x00  
R/W 0x00  
0xFF  
Channel Search Support Register  
Mailbox Search Status Register  
Mailbox Search Mode Register  
Time Stamp Register  
8
0x00  
8
R
0x80  
0xFF  
8
R/W 0x00  
0xFF  
16  
16  
8
R
0x0000  
0xFFFF  
0x0000  
0xFF  
AFSR  
Acceptance Filter Support Register  
Test Control Register  
R/W 0x0000  
R/W 0x00  
R/W 0x1F  
R/W 0x00  
R/W 0x08  
R/W 0x06  
R/W 0x00  
R/W 0x72  
R/W 0x09  
R/W 0x00  
TCR  
ICCR1  
ICCR2  
ICMR1  
ICMR2  
ICMR3  
ICFER  
ICSER  
ICIER  
I2C Bus Control Register 1  
8
0xFF  
I2C Bus Control Register 2  
0x01  
8
0xFF  
I2C Bus Mode Register 1  
0x02  
8
0xFF  
I2C Bus Mode Register 2  
0x03  
8
0xFF  
I2C Bus Mode Register 3  
0x04  
8
0xFF  
I2C Bus Function Enable Register  
I2C Bus Status Enable Register  
I2C Bus Interrupt Enable Register  
0x05  
8
0xFF  
0x06  
8
0xFF  
0x07  
8
0xFF  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 99 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.4  
Register description (8 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
0xFF  
IIC0-1  
IIC0-1  
IIC0-1  
IIC0-1  
IIC0-1  
IIC0-1  
IIC0-1  
IIC0-1  
IIC0WU  
IIC0WU  
DOC  
3
0-2  
0-2  
ICSR1  
I2C Bus Status Register 1  
I2C Bus Status Register 2  
Slave Address Register Ly  
Slave Address Register Uy  
I2C Bus Bit Rate Low-Level Register  
I2C Bus Bit Rate High-Level Register  
I2C Bus Transmit Data Register  
I2C Bus Receive Data Register  
I2C Bus Wakeup Unit Register  
I2C Bus Wakeup Unit Register 2  
DOC Control Register  
0x08  
0x09  
0x0A  
0x0B  
0x10  
0x11  
8
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0xFF  
R/W 0xFF  
R/W 0xFF  
ICSR2  
8
0xFF  
0x02  
0x02  
SARL%s  
SARU%s  
ICBRL  
8
0xFF  
3
8
0xFF  
8
0xFF  
ICBRH  
8
0xFF  
ICDRT  
0x12  
0x13  
0x02  
0x03  
0x00  
0x02  
0x04  
0x000  
0x004  
0x006  
0x008  
8
0xFF  
ICDRR  
8
R
0x00  
0xFF  
ICWUR  
ICWUR2  
DOCR  
8
R/W 0x10  
0xFF  
8
R/W 0xFD  
R/W 0x00  
0xFF  
8
0xFF  
DOC  
DODIR  
DOC Data Input Register  
16  
16  
16  
16  
16  
16  
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
DOC  
DODSR  
ADCSR  
ADANSA0  
ADANSA1  
ADADS0  
DOC Data Setting Register  
A/D Control Register  
ADC12  
ADC12  
ADC12  
ADC12  
A/D Channel Select Register A0  
A/D Channel Select Register A1  
A/D-Converted Value Addition/Average  
Channel Select Register 0  
ADC12  
ADC12  
ADADS1  
ADADC  
A/D-Converted Value Addition/Average  
Channel Select Register 1  
0x00A  
0x00C  
16  
8
R/W 0x0000  
R/W 0x00  
0xFFFF  
0xFF  
A/D-Converted Value Addition/Average  
Count Select Register  
ADC12  
ADC12  
ADCER  
A/D Control Extended Register  
0x00E  
0x010  
16  
16  
R/W 0x0000  
R/W 0x0000  
0xFFFF  
0xFFFF  
ADSTRGR  
A/D Conversion Start Trigger Select  
Register  
ADC12  
ADEXICR  
A/D Conversion Extended Input Control  
Registers  
0x012  
16  
R/W 0x0000  
0xFFFF  
ADC12  
ADC12  
ADC12  
ADC12  
ADC12  
ADANSB0  
ADANSB1  
ADDBLDR  
ADTSDR  
ADOCDR  
A/D Channel Select Register B0  
A/D Channel Select Register B1  
A/D Data Duplexing Register  
0x014  
0x016  
0x018  
0x01A  
0x01C  
16  
16  
16  
16  
16  
R/W 0x0000  
R/W 0x0000  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
R
R
R
0x0000  
0x0000  
0x0000  
A/D Temperature Sensor Data Register  
A/D Internal Reference Voltage Data  
Register  
ADC12  
ADC12  
ADC12  
ADC12  
ADC12  
15  
4
ADRD  
A/D Self-Diagnosis Data Register  
A/D Data Registers %s  
0x01E  
0x020  
0x040  
0x042  
0x07A  
16  
16  
16  
16  
8
R
R
R
R
0x0000  
0x0000  
0x0000  
0x0000  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFF  
0x2  
0-14  
ADDR%s  
ADCTDR  
ADDR%s  
ADDISCR  
A/D CTSU TSCAP Voltage Data Register  
A/D Data Registers %s  
0x2  
17-20  
A/D Disconnection Detection Control  
Register  
R/W 0x00  
R/W 0x00  
R/W 0x0000  
ADC12  
ADACSR  
A/D Conversion Operation Mode Select  
Register  
0x07E  
8
0xFF  
ADC12  
ADC12  
ADC12  
ADC12  
ADGSPCR  
A/D Group Scan Priority Control Register  
A/D Data Duplexing Register A  
0x080  
0x084  
0x086  
0x08A  
16  
16  
16  
8
0xFFFF  
0xFFFF  
0xFFFF  
0xFF  
ADDBLDRA  
ADDBLDRB  
ADHVREFCNT  
R
R
0x0000  
0x0000  
A/D Data Duplexing Register B  
A/D High-Potential/Low-Potential  
Reference Voltage Control Register  
R/W 0x00  
ADC12  
ADC12  
ADWINMON  
ADCMPCR  
A/D Compare Function Window A/B Status 0x08C  
Monitor Register  
8
R
0x00  
0xFF  
A/D Compare Function Control Register  
0x090  
16  
R/W 0x0000  
0xFFFF  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 100 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.4  
Register description (9 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
ADC12  
ADCMPANSER  
A/D Compare Function Window A  
Extended Input Select Register  
0x092  
8
R/W 0x00  
0xFF  
ADC12  
ADCMPLER  
A/D Compare Function Window A  
Extended Input Comparison Condition  
Setting Register  
0x093  
8
R/W 0x00  
0xFF  
ADC12  
ADC12  
ADC12  
ADC12  
ADC12  
ADC12  
ADC12  
ADC12  
ADC12  
ADC12  
ADC12  
ADC12  
2
0x2  
0-1  
ADCMPANSR0  
ADCMPANSR1  
ADCMPLR0  
ADCMPLR1  
ADCMPDR%s  
ADCMPSR0  
ADCMPSR1  
ADCMPSER  
ADCMPBNSR  
ADWINLLB  
A/D Compare Function Window A Channel 0x094  
Select Register 0  
16  
16  
16  
16  
16  
16  
16  
8
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
R/W 0x0000  
R/W 0x00  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFF  
A/D Compare Function Window A Channel 0x096  
Select Register 1  
A/D Compare Function Window A  
Comparison Condition Setting Register 0  
0x098  
0x09A  
0x09C  
A/D Compare Function Window A  
Comparison Condition Setting Register 1  
A/D Compare Function Window A Lower-  
Side/Upper-Side Level Setting Register  
A/D Compare Function Window A Channel 0x0A0  
Status Register 0  
A/D Compare Function Window A Channel 0x0A2  
Status Register1  
A/D Compare Function Window A  
0x0A4  
Extended Input Channel Status Register  
A/D Compare Function Window B Channel 0x0A6  
Select Register  
8
R/W 0x00  
0xFF  
A/D Compare Function Window B Lower-  
Side/Upper-Side Level Setting Register  
0x0A8  
0x0AA  
0x0AC  
16  
16  
8
R/W 0x0000  
R/W 0x0000  
R/W 0x00  
0xFFFF  
0xFFFF  
0xFF  
ADWINULB  
A/D Compare Function Window B Lower-  
Side/Upper-Side Level Setting Register  
ADCMPBSR  
A/D Compare Function Window B Status  
Register  
ADC12  
ADC12  
ADC12  
ADC12  
DAC12  
DAC12  
DAC12  
DAC12  
15  
0x1  
ADSSTRL  
ADSSTRT  
ADSSTRO  
ADSSTR%s  
DADR0  
A/D Sampling State Register  
A/D Sampling State Register  
A/D Sampling State Register  
A/D Sampling State Register  
D/A Data Register 0  
0x0DD  
0x0DE  
0x0DF  
0x0E0  
0x00  
8
R/W 0x0D  
R/W 0x0D  
R/W 0x0D  
R/W 0x0D  
R/W 0x0000  
R/W 0x1F  
R/W 0x00  
R/W 0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFFFF  
0xFF  
0xFF  
0xFF  
8
8
0-14  
8
16  
8
DACR  
D/A Control Register  
0x04  
DADPR  
DADR0 Format Select Register  
0x05  
8
DAADSCR  
D/A A/D Synchronous Start Control  
Register  
0x06  
8
DAC12  
SCI0  
DAVREFCR  
SMR  
D/A VREF Control Register  
0x07  
0x00  
8
8
R/W 0x00  
R/W 0x00  
0xFF  
0xFF  
Serial Mode Register for Non-Smart Card  
Interface Mode (SCMR.SMIF = 0)  
SCI0  
SMR_SMCI  
Serial Mode Register for Smart Card  
Interface Mode (SCMR.SMIF = 1)  
0x00  
0x01  
8
R/W 0x00  
0xFF  
SCI0  
SCI0  
BRR  
SCR  
Bit Rate Register  
8
8
R/W 0xFF  
R/W 0x00  
0xFF  
0xFF  
Serial Control Register for Non-Smart Card 0x02  
Interface Mode (SCMR.SMIF = 0)  
SCI0  
SCR_SMCI  
Serial Control Register for Smart Card  
Interface Mode (SCMR.SMIF = 1)  
0x02  
8
R/W 0x00  
0xFF  
SCI0  
SCI0  
TDR  
SSR  
Transmit Data Register  
0x03  
8
8
R/W 0xFF  
R/W 0x84  
0xFF  
0xFF  
Serial Status Register for Non-Smart Card 0x04  
Interface and Non-FIFO Mode  
(SCMR.SMIF = 0 and FCR.FM = 0)  
SCI0  
SSR_FIFO  
Serial Status Register for Non-Smart Card 0x04  
Interface and FIFO Mode (SCMR.SMIF = 0  
and FCR.FM = 1)  
8
R/W 0x80  
0xFD  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 101 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.4  
Register description (10 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
SCI0  
SSR_SMCI  
Serial Status Register for Smart Card  
Interface Mode (SCMR.SMIF = 1)  
0x04  
8
R/W 0x84  
0xFF  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI0  
SCI1-3,9  
RDR  
Receive Data Register  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x10  
0x0E  
0x10  
0x10  
0x0E  
0x11  
0x0F  
0x12  
0x13  
0x14  
0x16  
0x18  
0x1A  
0x1C  
0x00  
8
R/W 0x00  
R/W 0xF2  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
0xFF  
SCMR  
SEMR  
SNFR  
SIMR1  
SIMR2  
SIMR3  
SISR  
Smart Card Mode Register  
Serial Extended Mode Register  
Noise Filter Setting Register  
IIC Mode Register 1  
8
0xFF  
8
0xFF  
8
0xFF  
8
0xFF  
IIC Mode Register 2  
8
0xFF  
IIC Mode Register 3  
8
0xFF  
IIC Status Register  
8
R
0x00  
0xCB  
0xFF  
SPMR  
TDRHL  
FRDRHL  
FTDRHL  
RDRHL  
FRDRH  
FTDRH  
FRDRL  
FTDRL  
MDDR  
DCCR  
FCR  
SPI Mode Register  
8
R/W 0x00  
Transmit Data Register  
Receive FIFO Data Register  
Transmit FIFO Data Register  
Receive Data Register  
16  
16  
16  
16  
8
R/W 0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFF  
R
0x0000  
0xFFFF  
0x0000  
0x00  
W
R
Receive FIFO Data Register  
Transmit FIFO Data Register  
Receive FIFO Data Register  
Transmit FIFO Data Register  
Modulation Duty Register  
Data Compare Match Control Register  
FIFO Control Register  
R
8
W
R
0xFF  
0xFF  
8
0x00  
0xFF  
8
W
0xFF  
0xFF  
8
R/W 0xFF  
R/W 0x40  
R/W 0xF800  
0xFF  
8
0xFF  
16  
16  
16  
16  
8
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFF  
FDR  
FIFO Data Count Register  
Line Status Register  
R
R
0x0000  
0x0000  
LSR  
CDR  
Compare Match Data Register  
Serial Port Register  
R/W 0x0000  
R/W 0x03  
R/W 0x00  
SPTR  
SMR  
Serial Mode Register for Non-Smart Card  
Interface Mode (SCMR.SMIF = 0)  
8
0xFF  
SCI1-3,9  
SMR_SMCI  
Serial Mode Register for Smart Card  
Interface Mode (SCMR.SMIF = 1)  
0x00  
8
R/W 0x00  
0xFF  
SCI1-3,9  
SCI1-3,9  
BRR  
SCR  
Bit Rate Register  
0x01  
8
8
R/W 0xFF  
R/W 0x00  
0xFF  
0xFF  
Serial Control Register for Non-Smart Card 0x02  
Interface Mode (SCMR.SMIF = 0)  
SCI1-3,9  
SCR_SMCI  
Serial Control Register for Smart Card  
Interface Mode (SCMR.SMIF = 1)  
0x02  
8
R/W 0x00  
0xFF  
SCI1-3,9  
SCI1-3,9  
TDR  
SSR  
Transmit Data Register  
0x03  
8
8
R/W 0xFF  
R/W 0x84  
0xFF  
0xFF  
Serial Status Register for Non-Smart Card 0x04  
Interface and Non-FIFO Mode  
(SCMR.SMIF = 0 and FCR.FM = 0)  
SCI1-3,9  
SSR_SMCI  
Serial Status Register for Smart Card  
Interface Mode (SCMR.SMIF = 1)  
0x04  
8
R/W 0x84  
0xFF  
SCI1-3,9  
SCI1-3,9  
SCI1-3,9  
SCI1-3,9  
SCI1-3,9  
SCI1-3,9  
SCI1-3,9  
RDR  
Receive Data Register  
Smart Card Mode Register  
Serial Extended Mode Register  
Noise Filter Setting Register  
IIC Mode Register 1  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
8
8
8
8
8
8
8
R/W 0x00  
R/W 0xF2  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
SCMR  
SEMR  
SNFR  
SIMR1  
SIMR2  
SIMR3  
IIC Mode Register 2  
IIC Mode Register 3  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 102 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.4  
Register description (11 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
0xCB  
SCI1-3,9  
SCI1-3,9  
SCI1-3,9  
SCI1-3,9  
SCI1-3,9  
SCI1-3,9  
SCI1-3,9  
SCI1-3,9  
SPI0-1  
SPI0-1  
SPI0-1  
SPI0-1  
SPI0-1  
SPI0-1  
SPI0-1  
SPI0-1  
SPI0-1  
SPI0-1  
SPI0-1  
SPI0-1  
SPI0-1  
CRC  
SISR  
IIC Status Register  
0x0C  
0x0D  
0x0E  
0x10  
0x12  
0x13  
0x1A  
0x1C  
0x00  
0x01  
0x02  
0x03  
0x04  
0x04  
0x0A  
0x0B  
0x0C  
8
R
0x00  
SPMR  
SPI Mode Register  
8
R/W 0x00  
0xFF  
TDRHL  
RDRHL  
MDDR  
Transmit Data Register  
Receive Data Register  
Modulation Duty Register  
Data Compare Match Control Register  
Compare Match Data Register  
Serial Port Register  
16  
16  
8
R/W 0xFFFF  
0xFFFF  
0xFFFF  
0xFF  
R
0x0000  
R/W 0xFF  
DCCR  
8
R/W 0x40  
0xFF  
CDR  
16  
8
R/W 0x0000  
R/W 0x03  
0xFFFF  
0xFF  
SPTR  
SPCR  
SPI Control Register  
8
R/W 0x00  
0xFF  
SSLP  
SPI Slave Select Polarity Register  
SPI Pin Control Register  
SPI Status Register  
8
R/W 0x00  
0xFF  
SPPCR  
SPSR  
8
R/W 0x00  
0xFF  
8
R/W 0x20  
0xFF  
SPDR  
SPI Data Register  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0xFF  
0xFFFFFFFF  
0xFFFF  
0xFF  
SPDR_HA  
SPBR  
SPI Data Register  
SPI Bit Rate Register  
SPI Data Control Register  
SPI Clock Delay Register  
SPDCR  
SPCKD  
SSLND  
SPND  
8
R/W 0x00  
0xFF  
8
R/W 0x00  
0xFF  
SPI Slave Select Negation Delay Register 0x0D  
8
R/W 0x00  
0xFF  
SPI Next-Access Delay Register  
SPI Control Register 2  
0x0E  
0x0F  
0x10  
0x00  
0x01  
0x04  
0x04  
0x08  
0x08  
0x08  
0x0C  
0x00  
8
R/W 0x00  
0xFF  
SPCR2  
SPCMD0  
CRCCR0  
CRCCR1  
CRCDIR  
CRCDIR_BY  
CRCDOR  
CRCDOR_HA  
CRCDOR_BY  
CRCSAR  
GTWP  
8
R/W 0x00  
0xFF  
SPI Command Register 0  
CRC Control Register 0  
CRC Control Register 1  
CRC Data Input Register  
CRC Data Input Register  
CRC Data Output Register  
CRC Data Output Register  
CRC Data Output Register  
Snoop Address Register  
16  
8
R/W 0x070D  
R/W 0x00  
0xFFFF  
0xFF  
CRC  
8
R/W 0x00  
0xFF  
CRC  
32  
8
R/W 0x00000000  
R/W 0x00  
0xFFFFFFFF  
0xFF  
CRC  
CRC  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFF  
0xFFFF  
0xFF  
CRC  
CRC  
CRC  
16  
32  
R/W 0x0000  
R/W 0x00000000  
0xFFFF  
0xFFFFFFFF  
GPT320-3  
General PWM Timer Write-Protection  
Register  
GPT320-3  
GPT320-3  
GPT320-3  
GPT320-3  
GPT320-3  
GPT320-3  
GPT320-3  
GPT320-3  
GPT320-3  
GTSTR  
GTSTP  
General PWM Timer Software Start  
Register  
0x04  
0x08  
0x0C  
0x10  
0x14  
0x18  
0x1C  
0x20  
32  
32  
32  
32  
32  
32  
32  
32  
32  
R/W 0x00000000  
0xFFFFFFFF  
General PWM Timer Software Stop  
Register  
R/W 0xFFFFFFFF 0xFFFFFFFF  
GTCLR  
GTSSR  
GTPSR  
GTCSR  
GTUPSR  
GTDNSR  
GTICASR  
General PWM Timer Software Clear  
Register  
W
0x00000000  
0xFFFFFFFF  
0xFFFFFFFF  
0xFFFFFFFF  
0xFFFFFFFF  
0xFFFFFFFF  
0xFFFFFFFF  
0xFFFFFFFF  
General PWM Timer Start Source Select  
Register  
R/W 0x00000000  
R/W 0x00000000  
R/W 0x00000000  
R/W 0x00000000  
R/W 0x00000000  
R/W 0x00000000  
General PWM Timer Stop Source Select  
Register  
General PWM Timer Clear Source Select  
Register  
General PWM Timer Up Count Source  
Select Register  
General PWM Timer Down Count Source  
Select Register  
General PWM Timer Input Capture Source 0x24  
Select Register A  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 103 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.4  
Register description (12 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
GPT320-3  
GTICBSR  
General PWM Timer Input Capture Source 0x28  
Select Register B  
32  
R/W 0x00000000  
0xFFFFFFFF  
GPT320-3  
GPT320-3  
GTCR  
General PWM Timer Control Register  
0x2C  
0x30  
32  
32  
R/W 0x00000000  
R/W 0x00000001  
0xFFFFFFFF  
0xFFFFFFFF  
GTUDDTYC  
General PWM Timer Count Direction and  
Duty Setting Register  
GPT320-3  
GPT320-3  
GTIOR  
General PWM Timer I/O Control Register  
0x34  
0x38  
32  
32  
R/W 0x00000000  
R/W 0x00000000  
0xFFFFFFFF  
0xFFFFFFFF  
GTINTAD  
General PWM Timer Interrupt Output  
Setting Register  
GPT320-3  
GPT320-3  
GTST  
General PWM Timer Status Register  
0x3C  
0x40  
32  
32  
R/W 0x00008000  
R/W 0x00000000  
0xFFFFFFFF  
0xFFFFFFFF  
GTBER  
General PWM Timer Buffer Enable  
Register  
GPT320-3  
GPT320-3  
GTCNT  
General PWM Timer Counter  
0x48  
0x4C  
32  
32  
R/W 0x00000000  
0xFFFFFFFF  
GTCCRA  
General PWM Timer Compare Capture  
Register A  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
GPT320-3  
GPT320-3  
GPT320-3  
GPT320-3  
GPT320-3  
GPT320-3  
GPT320-3  
GPT320-3  
GPT320-3  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GTCCRB  
GTCCRC  
GTCCRE  
GTCCRD  
GTCCRF  
GTPR  
General PWM Timer Compare Capture  
Register B  
0x50  
0x54  
0x58  
0x5C  
0x60  
0x64  
0x68  
0x88  
0x8C  
0x00  
0x04  
0x08  
0x0C  
0x10  
0x14  
0x18  
0x1C  
0x20  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
General PWM Timer Compare Capture  
Register C  
General PWM Timer Compare Capture  
Register E  
General PWM Timer Compare Capture  
Register D  
General PWM Timer Compare Capture  
Register F  
General PWM Timer Cycle Setting  
Register  
GTPBR  
GTDTCR  
GTDVU  
GTWP  
General PWM Timer Cycle Setting Buffer  
Register  
General PWM Timer Dead Time Control  
Register  
R/W 0x00000000  
0xFFFFFFFF  
General PWM Timer Dead Time Value  
Register U  
R/W 0xFFFFFFFF 0xFFFFFFFF  
General PWM Timer Write-Protection  
Register  
R/W 0x00000000  
R/W 0x00000000  
0xFFFFFFFF  
0xFFFFFFFF  
GTSTR  
General PWM Timer Software Start  
Register  
GTSTP  
General PWM Timer Software Stop  
Register  
R/W 0xFFFFFFFF 0xFFFFFFFF  
GTCLR  
General PWM Timer Software Clear  
Register  
W
0x00000000  
0xFFFFFFFF  
0xFFFFFFFF  
0xFFFFFFFF  
0xFFFFFFFF  
0xFFFFFFFF  
0xFFFFFFFF  
0xFFFFFFFF  
0xFFFFFFFF  
0xFFFFFFFF  
GTSSR  
GTPSR  
GTCSR  
GTUPSR  
GTDNSR  
GTICASR  
GTICBSR  
GTCR  
General PWM Timer Start Source Select  
Register  
R/W 0x00000000  
R/W 0x00000000  
R/W 0x00000000  
R/W 0x00000000  
R/W 0x00000000  
R/W 0x00000000  
R/W 0x00000000  
R/W 0x00000000  
General PWM Timer Stop Source Select  
Register  
General PWM Timer Clear Source Select  
Register  
General PWM Timer Up Count Source  
Select Register  
General PWM Timer Down Count Source  
Select Register  
General PWM Timer Input Capture Source 0x24  
Select Register A  
General PWM Timer Input Capture Source 0x28  
Select Register B  
General PWM Timer Control Register  
0x2C  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 104 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.4  
Register description (13 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
GPT164-9  
GTUDDTYC  
General PWM Timer Count Direction and  
Duty Setting Register  
0x30  
32  
R/W 0x00000001  
0xFFFFFFFF  
GPT164-9  
GPT164-9  
GTIOR  
General PWM Timer I/O Control Register  
0x34  
0x38  
32  
32  
R/W 0x00000000  
R/W 0x00000000  
0xFFFFFFFF  
0xFFFFFFFF  
GTINTAD  
General PWM Timer Interrupt Output  
Setting Register  
GPT164-9  
GPT164-9  
GTST  
General PWM Timer Status Register  
0x3C  
0x40  
32  
32  
R/W 0x00008000  
R/W 0x00000000  
0xFFFFFFFF  
0xFFFFFFFF  
GTBER  
General PWM Timer Buffer Enable  
Register  
GPT164-9  
GPT164-9  
GTCNT  
General PWM Timer Counter  
0x48  
0x4C  
32  
32  
R/W 0x00000000  
0xFFFFFFFF  
GTCCRA  
General PWM Timer Compare Capture  
Register A  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
R/W 0xFFFFFFFF 0xFFFFFFFF  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GPT164-9  
GTCCRB  
GTCCRC  
GTCCRE  
GTCCRD  
GTCCRF  
GTPR  
General PWM Timer Compare Capture  
Register B  
0x50  
0x54  
0x58  
0x5C  
0x60  
0x64  
0x68  
0x88  
0x8C  
32  
32  
32  
32  
32  
32  
32  
32  
32  
General PWM Timer Compare Capture  
Register C  
General PWM Timer Compare Capture  
Register E  
General PWM Timer Compare Capture  
Register D  
General PWM Timer Compare Capture  
Register F  
General PWM Timer Cycle Setting  
Register  
GTPBR  
General PWM Timer Cycle Setting Buffer  
Register  
GTDTCR  
GTDVU  
General PWM Timer Dead Time Control  
Register  
R/W 0x00000000  
0xFFFFFFFF  
General PWM Timer Dead Time Value  
Register U  
R/W 0xFFFFFFFF 0xFFFFFFFF  
GPT_OPS  
KINT  
OPSCR  
Output Phase Switching Control Register  
Key Return Control Register  
Key Return Flag Register  
0x00  
0x00  
0x04  
0x08  
0x00  
0x00  
0x00  
0x01  
0x02  
0x03  
0x04  
0x04  
0x04  
0x05  
0x06  
0x07  
0x08  
0x08  
0x08  
0x09  
0x0A  
0x0A  
32  
8
R/W 0x00000000  
R/W 0x00  
0xFFFFFFFF  
0xFF  
KRCTL  
KINT  
KRF  
8
R/W 0x00  
0xFF  
KINT  
KRM  
Key Return Mode Register  
8
R/W 0x00  
0xFF  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSUCRA  
CTSUCRAL  
CTSUCR0  
CTSUCR1  
CTSUCR2  
CTSUCR3  
CTSUCRB  
CTSUCRBL  
CTSUSDPRS  
CTSUSST  
CTSUCRBH  
CTSUDCLKC  
CTSUMCH  
CTSUMCHL  
CTSUMCH0  
CTSUMCH1  
CTSUMCHH  
CTSUMFAF  
CTSU Control Register A  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFF  
0xFFFF  
0xFF  
CTSU Control Register A  
CTSU Control Register A  
CTSU Control Register A  
8
R/W 0x00  
0xFF  
CTSU Control Register A  
8
R/W 0x00  
0xFF  
CTSU Control Register A  
8
R/W 0x00  
0xFF  
CTSU Control Register B  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFF  
0xFFFF  
0xFF  
CTSU Control Register B  
CTSU Control Register B  
CTSU Control Register B  
8
R/W 0x00  
0xFF  
CTSU Control Register B  
16  
8
R/W 0x0000  
R/W 0x00  
0xFFFF  
0xFF  
CTSU Control Register B  
CTSU Measurement Channel Register  
CTSU Measurement Channel Register  
CTSU Measurement Channel Register  
CTSU Measurement Channel Register  
CTSU Measurement Channel Register  
CTSU Measurement Channel Register  
32  
16  
8
R/W 0x00003F3F  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFF  
0xFFFF  
0xFF  
8
R/W 0x00  
0xFF  
16  
8
R/W 0x3F3F  
R/W 0x3F  
0xFFFF  
0xFF  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 105 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.4  
Register description (14 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
0xFFFFFFFF  
0xFFFF  
0xFF  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSUCHACA  
CTSUCHACAL  
CTSUCHAC0  
CTSUCHAC1  
CTSUCHACAH  
CTSUCHAC2  
CTSUCHAC3  
CTSUCHACB  
CTSUCHACBL  
CTSUCHAC4  
CTSUCHTRCA  
CTSU Channel Enable Control Register A 0x0C  
CTSU Channel Enable Control Register A 0x0C  
CTSU Channel Enable Control Register A 0x0C  
CTSU Channel Enable Control Register A 0x0D  
CTSU Channel Enable Control Register A 0x0E  
CTSU Channel Enable Control Register A 0x0E  
CTSU Channel Enable Control Register A 0x0F  
CTSU Channel Enable Control Register B 0x10  
CTSU Channel Enable Control Register B 0x10  
CTSU Channel Enable Control Register B 0x10  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
8
R/W 0x00  
0xFF  
16  
8
R/W 0x0000  
R/W 0x00  
0xFFFF  
0xFF  
8
R/W 0x00  
0xFF  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFF  
0xFFFF  
0xFF  
CTSU Channel Transmit/Receive Control  
Register A  
0x14  
0x14  
0x14  
0x15  
0x16  
0x16  
0x17  
0x18  
0x18  
0x18  
32  
R/W 0x00000000  
0xFFFFFFFF  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSUCHTRCAL CTSU Channel Transmit/Receive Control  
Register A  
16  
8
R/W 0x0000  
R/W 0x00  
0xFFFF  
0xFF  
CTSUCHTRC0  
CTSU Channel Transmit/Receive Control  
Register A  
CTSUCHTRC1  
CTSU Channel Transmit/Receive Control  
Register A  
8
R/W 0x00  
0xFF  
CTSUCHTRCAH CTSU Channel Transmit/Receive Control  
Register A  
16  
8
R/W 0x0000  
R/W 0x00  
0xFFFF  
0xFF  
CTSUCHTRC2  
CTSUCHTRC3  
CTSUCHTRCB  
CTSU Channel Transmit/Receive Control  
Register A  
CTSU Channel Transmit/Receive Control  
Register A  
8
R/W 0x00  
0xFF  
CTSU Channel Transmit/Receive Control  
Register B  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFF  
0xFFFF  
0xFF  
CTSUCHTRCBL CTSU Channel Transmit/Receive Control  
Register B  
CTSUCHTRC4  
CTSU Channel Transmit/Receive Control  
Register B  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSU  
CTSUSR  
CTSU Status Register  
0x1C  
0x1C  
0x1C  
0x1D  
0x1E  
0x1E  
0x20  
0x20  
0x22  
0x24  
0x24  
0x28  
0x28  
0x2A  
0x2C  
32  
16  
8
R/W 0x00000000  
R/W 0x0000  
R/W 0x00  
0xFFFFFFFF  
0xFFFF  
CTSUSRL  
CTSUSR0  
CTSUST  
CTSU Status Register  
CTSU Status Register  
0xFF  
CTSU Status Register  
8
R/W 0x00  
0xFF  
CTSUSRH  
CTSUSR2  
CTSUSO  
CTSU Status Register  
16  
8
R/W 0x0000  
R/W 0x00  
0xFFFF  
CTSU Status Register  
0xFF  
CTSU Sensor Offset Register  
CTSU Sensor Offset Register  
CTSU Sensor Offset Register  
CTSU Sensor Counter Register  
CTSU Sensor Counter Register  
CTSU Calibration Register  
CTSU Calibration Register  
CTSU Calibration Register  
32  
16  
16  
32  
16  
32  
16  
16  
32  
R/W 0x00000000  
R/W 0x0000  
R/W 0x0000  
0xFFFFFFFF  
0xFFFF  
CTSUSO0  
CTSUSO1  
CTSUSCNT  
CTSUSC  
0xFFFF  
R
R
0x00000000  
0x0000  
0xFFFFFFFF  
0xFFFF  
CTSUCALIB  
CTSUDBGR0  
CTSUDBGR1  
CTSUSUCLKA  
R/W 0x00000000  
R/W 0x0000  
0xFFFFFFFF  
0xFFFF  
R/W 0x0000  
0xFFFF  
CTSU Sensor Unit Clock Control Register  
A
R/W 0x00000000  
0xFFFFFFFF  
CTSU  
CTSU  
CTSUSUCLK0  
CTSUSUCLK1  
CTSU Sensor Unit Clock Control Register  
A
0x2C  
0x2E  
16  
16  
R/W 0x0000  
R/W 0x0000  
0xFFFF  
0xFFFF  
CTSU Sensor Unit Clock Control Register  
A
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 106 of 110  
RA2L1 Datasheet  
Appendix 3. I/O Registers  
Table 3.4  
Register description (15 of 15)  
Peripheral  
name  
Dim  
Dim inc.  
Dim  
index  
Register  
name  
Address  
offset  
Description  
Size R/W Reset value  
Reset mask  
CTSU  
CTSU  
CTSU  
CTSUSUCLKB  
CTSUSUCLK2  
CTSUSUCLK3  
CTSUCFCCNT  
CTSU Sensor Unit Clock Control Register  
B
0x30  
0x30  
0x32  
32  
16  
16  
R/W 0x00000000  
0xFFFFFFFF  
CTSU Sensor Unit Clock Control Register  
B
R/W 0x0000  
0xFFFF  
0xFFFF  
CTSU Sensor Unit Clock Control Register  
B
R/W 0x0000  
CTSU  
CTSU CFC Counter Register  
0x34  
0x34  
0x00  
0x00  
0x02  
0x08  
0x09  
0x0A  
0x0C  
0x0D  
0x0E  
32  
16  
16  
16  
16  
8
R
R
0x00000000  
0x0000  
0xFFFFFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFF  
CTSU  
CTSUCFCCNTL CTSU CFC Counter Register  
AGT0-1  
AGT0-1  
AGT0-1  
AGT0-1  
AGT0-1  
AGT0-1  
AGT0-1  
AGT0-1  
AGT0-1  
AGT  
AGT Counter Register  
R/W 0xFFFF  
R/W 0xFFFF  
R/W 0xFFFF  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
AGTCMB  
AGTCMA  
AGTCR  
AGT Compare Match B Register  
AGT Compare Match A Register  
AGT Control Register  
AGTMR1  
AGTMR2  
AGTIOC  
AGTISR  
AGTCMSR  
AGT Mode Register 1  
8
0xFF  
AGT Mode Register 2  
8
0xFF  
AGT I/O Control Register  
AGT Event Pin Select Register  
8
0xFF  
8
0xFF  
AGT Compare Match Function Select  
Register  
8
0xFF  
AGT0-1  
ACMPLP  
ACMPLP  
ACMPLP  
FLCN  
AGTIOSEL  
COMPMDR  
COMPFIR  
COMPOCR  
DFLCTL  
AGT Pin Select Register  
0x00F  
0x00  
8
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
R/W 0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00  
ACMPLP Mode Setting Register  
ACMPLP Filter Control Register  
ACMPLP Output Control Register  
Data Flash Enable Register  
8
0x01  
8
0x02  
8
0x0090  
0x0228  
8
FLCN  
TSCDR  
Temperature Sensor Calibration Data  
Register  
16  
R
0x00  
FLCN  
FLCN  
CTSUTRIMA  
FLDWAITR  
CTSU Trimming Register A  
0x03A4  
0x3FC4  
32  
8
R/W 0x00000000  
R/W 0x00  
0x00000000  
0xFF  
Memory Wait Cycle Control Register for  
Data Flash  
FLCN  
PFBER  
Prefetch Buffer Enable Register  
0x3FC8  
8
R/W 0x00  
0xFF  
Note:  
Peripheral name = Name of peripheral  
Dim = Number of elements in an array of registers  
Dim inc. = Address increment between two simultaneous registers of a register array in the address map  
Dim index = Sub string that replaces the %s placeholder within the register name  
Register name = Name of register  
Description = Register description  
Address offset = Address of the register relative to the base address defined by the peripheral of the register  
Size = Bit width of the register  
Reset value = Default reset value of a register  
Reset mask = Identifies which register bits have a defined reset value  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 107 of 110  
RA2L1 Datasheet  
Revision History  
Revision History  
Revision 1.00 — Aug 06, 2020  
First edition, issued  
R01DS0385EJ0100 Rev.1.00  
Aug 06, 2020  
Page 108 of 110  
General Precautions in the Handling of Microprocessing Unit and Microcontroller  
Unit Products  
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the  
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.  
1. Precaution against Electrostatic Discharge (ESD)  
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps  
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be  
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.  
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and  
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor  
devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.  
2. Processing at power-on  
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of  
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset  
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins  
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the  
level at which resetting is specified.  
3. Input of signal during power-off state  
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O  
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal  
elements. Follow the guideline for input signal during power-off state as described in your product documentation.  
4. Handling of unused pins  
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are  
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of  
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal  
become possible.  
5. Clock signals  
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program  
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator  
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal  
produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.  
6. Voltage application waveform at input pin  
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL  
(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the  
input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).  
7. Prohibition of access to reserved addresses  
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these  
addresses as the correct operation of the LSI is not guaranteed.  
8. Differences between products  
Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.  
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms  
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,  
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-  
evaluation test for the given product.  
Notice  
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products  
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your  
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of  
these circuits, software, or information.  
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or  
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this  
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.  
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or  
others.  
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any  
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.  
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for  
each Renesas Electronics product depends on the product's quality grade, as indicated below.  
"Standard":  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home  
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key  
financial terminal systems; safety control equipment; etc.  
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas  
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to  
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;  
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims  
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is  
inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.  
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for  
Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by  
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas  
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such  
specified ranges.  
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific  
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability  
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products  
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,  
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety  
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging  
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are  
responsible for evaluating the safety of the final products or systems manufactured by you.  
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas  
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of  
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these  
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance  
with applicable laws and regulations.  
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is  
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations  
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.  
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or  
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.  
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas  
Electronics products.  
(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled  
subsidiaries.  
(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.  
(Rev.4.0-1 November 2017)  
Corporate Headquarters  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
Contact Information  
For further information on a product, technology, the most up-to-date  
version of a document, or your nearest sales office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas Electronics  
Corporation. All trademarks and registered trademarks are the property  
of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY