R7FA4M1AB3CFM [RENESAS]

High efficiency 48-MHz Arm Cortex-M4 core, 256-KB code flash memory;
R7FA4M1AB3CFM
型号: R7FA4M1AB3CFM
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

High efficiency 48-MHz Arm Cortex-M4 core, 256-KB code flash memory

文件: 总130页 (文件大小:1782K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Cover  
Renesas RA4M1 Group  
32  
Datasheet  
32-bit MCU  
Renesas Advanced (RA) Family  
Renesas RA4 Series  
All information contained in these materials, including products and product specifications,  
represents information on the product at the time of publication and is subject to change by  
Renesas Electronics Corp. without notice. Please review the latest information published by  
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.  
website (http://www.renesas.com).  
www.renesas.com  
Rev.1.00 Oct 2019  
RA4M1 Group  
Datasheet  
High efficiency 48-MHz Arm® Cortex®-M4 core, 256-KB code flash memory, 32-KB SRAM, Segment LCD Controller,  
Capacitive Touch Sensing Unit, USB 2.0 Full-Speed Module, 14-bit A/D Converter, 12-bit D/A Converter, security and  
safety features  
Features  
■ Arm Cortex-M4 Core with Floating Point Unit (FPU)  
Armv7E-M architecture with DSP instruction set  
Maximum operating frequency: 48 MHz  
■ System and Power Management  
Low power modes  
Realtime Clock (RTC) with calendar and Battery Backup support  
Event Link Controller (ELC)  
DMA Controller (DMAC) × 4  
Data Transfer Controller (DTC)  
Key Interrupt Function (KINT)  
Power-on reset  
Low Voltage Detection (LVD) with voltage settings  
Support for 4-GB address space  
Arm Memory Protection Unit (Arm MPU) with 8 regions  
Debug and Trace: ITM, DWT, FPB, TPIU, ETB  
CoreSight™ Debug Port: JTAG-DP and SW-DP  
■ Memory  
256-KB code flash memory  
8-KB data flash memory (100,000 program/erase (P/E) cycles)  
32-KB SRAM  
Flash Cache (FCACHE)  
Memory Protection Unit (MPU)  
128-bit unique ID  
■ Security and Encryption  
AES128/256  
GHASH  
True Random Number Generator (TRNG)  
■ Human Machine Interface (HMI)  
Segment LCD Controller (SLCDC)  
- Up to 38 segments × 4 commons  
- Up to 34 segments × 8 commons  
Capacitive Touch Sensing Unit (CTSU)  
■ Connectivity  
USB 2.0 Full-Speed Module (USBFS)  
- On-chip transceiver with voltage regulator  
- Compliant with USB Battery Charging Specification 1.2  
Serial Communications Interface (SCI) × 4  
- UART  
■ Multiple Clock Sources  
Main clock oscillator (MOSC)  
- Simple IIC  
(1 to 20 MHz when VCC = 2.4 to 5.5 V)  
(1 to 8 MHz when VCC = 1.8 to 2.4 V)  
(1 to 4 MHz when VCC = 1.6 to 1.8 V)  
Sub-clock oscillator (SOSC) (32.768 kHz)  
High-speed on-chip oscillator (HOCO)  
(24, 32, 48, 64 MHz when VCC = 2.4 to 5.5 V)  
(24, 32, 48 MHz when VCC = 1.8 to 5.5 V)  
(24, 32 MHz when VCC = 1.6 to 5.5 V)  
Middle-speed on-chip oscillator (MOCO) (8 MHz)  
Low-speed on-chip oscillator (LOCO) (32.768 kHz)  
IWDT-dedicated on-chip oscillator (15 kHz)  
Clock trim function for HOCO/MOCO/LOCO  
Clock out support  
- Simple SPI  
Serial Peripheral Interface (SPI) × 2  
I2C bus interface (IIC) × 2  
Controller Area Network (CAN) module  
Serial Sound Interface Enhanced (SSIE)  
■ Analog  
14-bit A/D Converter (ADC14)  
12-bit D/A Converter (DAC12)  
8-bit D/A Converter (DAC8) ×2 (for ACMPLP)  
Low-Power Analog Comparator (ACMPLP) × 2  
Operational Amplifier (OPAMP) × 4  
Temperature Sensor (TSN)  
■ General Purpose I/O Ports  
Up to 84 input/output pins  
- Up to 3 CMOS input  
■ Timers  
General PWM Timer 32-Bit (GPT32) × 2  
General PWM Timer 16-Bit (GPT16) × 6  
Asynchronous General-Purpose Timer (AGT) × 2  
Watchdog Timer (WDT)  
- Up to 81 CMOS input/output  
- Up to 9 input/output 5-V tolerant  
- Up to 2 high current (20 mA)  
■ Safety  
■ Operating Voltage  
VCC: 1.6 to 5.5 V  
Error Correction Code (ECC) in SRAM  
SRAM parity error check  
Flash area protection  
■ Operating Temperature and Packages  
Ta = -40°C to +85°C  
- 100-pin LGA (7 mm × 7 mm, 0.65 mm pitch)  
Ta = -40°C to +105°C  
ADC self-diagnosis function  
Clock Frequency Accuracy Measurement Circuit (CAC)  
Cyclic Redundancy Check (CRC) calculator  
Data Operation Circuit (DOC)  
Port Output Enable for GPT (POEG)  
Independent Watchdog Timer (IWDT)  
GPIO readback level detection  
Register write protection  
- 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)  
- 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)  
- 64-pin QFN (8 mm × 8 mm, 0.4 mm pitch)  
- 48-pin LQFP (7 mm × 7 mm, 0.5 mm pitch)  
- 48-pin QFN (7 mm × 7 mm, 0.5 mm pitch)  
- 40-pin QFN (6 mm × 6 mm, 0.5 mm pitch)  
Main oscillator stop detection  
Illegal memory access  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 2 of 130  
RA4M1 Group  
1. Overview  
1.  
Overview  
®
The MCU integrates multiple series of software- and pin-compatible Arm -based 32-bit cores that share a common set  
of Renesas peripherals to facilitate design scalability and efficient platform-based product development.  
®
The MCU provides an optimal combination of low-power, high-performance Arm Cortex -M4 core running up to  
48 MHz with the following features:  
256-KB code flash memory  
32-KB SRAM  
Segment LCD Controller (SLCDC)  
Capacitive Touch Sensing Unit (CTSU)  
USB 2.0 Full-Speed Module (USBFS)  
14-bit A/D Converter (ADC14)  
12-bit D/A Converter (DAC12)  
Security features.  
1.1  
Function Outline  
Table 1.1  
Feature  
Arm core  
Functional description  
Arm Cortex-M4 core  
Maximum operating frequency: up to 48 MHz  
Arm Cortex-M4 core  
- Revision: r0p1-01rel0  
- Armv7E-M architecture profile  
- Single precision floating-point unit compliant with the ANSI/IEEE Std 754-2008.  
Arm Memory Protection Unit (Arm MPU)  
- Armv7 Protected Memory System Architecture  
- 8 protected regions.  
SysTick timer  
- Driven by SYSTICCLK (LOCO) or ICLK.  
Table 1.2  
Memory  
Feature  
Functional description  
Code flash memory  
Data flash memory  
Option-setting memory  
Maximum 256-KB code flash memory. See section 44, Flash Memory in User’s Manual.  
8-KB data flash memory. See section 44, Flash Memory in User’s Manual.  
The option-setting memory determines the state of the MCU after a reset. See section 6,  
Option-Setting Memory in User’s Manual.  
SRAM  
On-chip high-speed SRAM with either parity bit or Error Correction Code (ECC). An area in  
SRAM0 provides error correction capability using ECC. See section 43, SRAM in User’s  
Manual.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 3 of 130  
RA4M1 Group  
1. Overview  
Table 1.3  
Feature  
System (1 of 2)  
Functional description  
Operating modes  
Two operating modes:  
Single-chip mode  
SCI/USB boot mode.  
See section 3, Operating Modes in User’s Manual.  
Resets  
14 resets:  
RES pin reset  
Power-on reset  
VBATT-selected voltage power-on reset  
Independent watchdog timer reset  
Watchdog timer reset  
Voltage monitor 0 reset  
Voltage monitor 1 reset  
Voltage monitor 2 reset  
SRAM parity error reset  
SRAM ECC error reset  
Bus master MPU error reset  
Bus slave MPU error reset  
CPU stack pointer error reset  
Software reset.  
See section 5, Resets in User’s Manual.  
Low Voltage Detection (LVD)  
Clocks  
Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and the  
detection level can be selected using a software program. See section 7, Low Voltage  
Detection (LVD) in User’s Manual.  
Main clock oscillator (MOSC)  
Sub-clock oscillator (SOSC)  
High-speed on-chip oscillator (HOCO)  
Middle-speed on-chip oscillator (MOCO)  
Low-speed on-chip oscillator (LOCO)  
PLL frequency synthesizer  
IWDT-dedicated on-chip oscillator  
Clock out support.  
See section 8, Clock Generation Circuit in User’s Manual.  
Clock Frequency Accuracy  
Measurement Circuit (CAC)  
The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be  
measured (measurement target clock) within the time generated by the clock to be used as a  
measurement reference (measurement reference clock), and determines the accuracy  
depending on whether the number of pulses is within the allowable range.  
When measurement is complete or the number of pulses within the time generated by the  
measurement reference clock is not within the allowable range, an interrupt request is  
generated.  
See section 9, Clock Frequency Accuracy Measurement Circuit (CAC) in User’s Manual.  
Interrupt Controller Unit (ICU)  
Key Interrupt Function (KINT)  
Low power modes  
The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC  
module and DMAC module. The ICU also controls NMI interrupts. See section 13, Interrupt  
Controller Unit (ICU) in User’s Manual.  
A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting  
a rising or falling edge to the key interrupt input pins. See section 20, Key Interrupt Function  
(KINT) in User’s Manual.  
Power consumption can be reduced in multiple ways, such as by setting clock dividers,  
stopping modules, selecting power control mode in normal operation, and transitioning to low  
power modes. See section 10, Low Power Modes in User’s Manual.  
Battery backup function  
A battery backup function is provided for partial powering by a battery. The battery powered  
area includes RTC, SOSC, LOCO, wakeup control, backup memory, VBATT_R low voltage  
detection, and switches between VCC and VBATT.  
During normal operation, the battery powered area is powered by the main power supply,  
which is the VCC pin. When a VCC voltage drop is detected, the power source is switched to  
the dedicated battery backup power pin, the VBATT pin.  
When the voltage rises again, the power source is switched from the VBATT pin to the VCC  
pin. See section 11, Battery Backup Function in User’s Manual.  
Register write protection  
The register write protection function protects important registers from being overwritten  
because of software errors. See section 12, Register Write Protection in User’s Manual.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 4 of 130  
RA4M1 Group  
1. Overview  
Table 1.3  
Feature  
System (2 of 2)  
Functional description  
Memory Protection Unit (MPU)  
Four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided  
for memory protection. See section 15, Memory Protection Unit (MPU) in User’s Manual.  
Watchdog Timer (WDT)  
The Watchdog Timer (WDT) is a 14-bit down-counter. It can be used to reset the MCU when  
the counter underflows because the system has run out of control and is unable to refresh the  
WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow. A  
refresh-permitted period can be set to refresh the counter and used as the condition to detect  
when the system runs out of control. See section 25, Watchdog Timer (WDT) in User’s  
Manual.  
Independent Watchdog Timer (IWDT) The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be  
serviced periodically to prevent counter underflow. It can be used to reset the MCU or to  
generate a non-maskable interrupt/interrupt for a timer underflow. Because the timer operates  
with an independent, dedicated clock source, it is particularly useful in returning the MCU to a  
known state as a fail-safe mechanism when the system runs out of control. The IWDT can be  
triggered automatically on a reset, underflow, refresh error, or by a refresh of the count value in  
the registers. See section 26, Independent Watchdog Timer (IWDT) in User’s Manual.  
Table 1.4  
Feature  
Event link  
Functional description  
Event Link Controller (ELC)  
The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral  
modules as event signals to connect them to different modules, enabling direct interaction  
between the modules without CPU intervention. See section 18, Event Link Controller (ELC) in  
User’s Manual.  
Table 1.5  
Direct memory access  
Feature  
Functional description  
Data Transfer Controller (DTC)  
A Data Transfer Controller (DTC) module is provided for transferring data when activated by an  
interrupt request. See section 17, Data Transfer Controller (DTC) in User’s Manual.  
DMA Controller (DMAC)  
A 4-channel DMA Controller (DMAC) module is provided for transferring data without the CPU.  
When a DMA transfer request is generated, the DMAC transfers data stored at the transfer  
source address to the transfer destination address. See section 16, DMA Controller (DMAC) in  
User’s Manual.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 5 of 130  
RA4M1 Group  
1. Overview  
Table 1.6  
Feature  
Timers  
Functional description  
General PWM Timer (GPT)  
The General PWM Timer (GPT) is a 32-bit timer with 2 channels and a 16-bit timer with 6  
channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or  
the up- and down-counter. In addition, PWM waveforms can be generated for controlling  
brushless DC motors. The GPT can also be used as a general-purpose timer. See section 22,  
General PWM Timer (GPT) in User’s Manual.  
Port Output Enable for GPT (POEG)  
Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT)  
output pins in the output disable state. See section 21, Port Output Enable for GPT (POEG).  
Asynchronous General Purpose  
Timer (AGT)  
The Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse  
output, external pulse width or period measurement, and counting of external events.  
This 16-bit timer consists of a reload register and a down-counter. The reload register and the  
down-counter are allocated to the same address, and they can be accessed with the AGT  
register. See section 23, Asynchronous General Purpose Timer (AGT) in User’s Manual.  
Realtime Clock (RTC)  
The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count  
mode, that are controlled by the register settings.  
For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and  
automatically adjusts dates for leap years.  
For binary count mode, the RTC counts seconds and retains the information as a serial value.  
Binary count mode can be used for calendars other than the Gregorian (Western) calendar.  
See section 24, Realtime Clock (RTC) in User’s Manual.  
Table 1.7  
Feature  
Communication interfaces (1 of 2)  
Functional description  
Serial Communications Interface  
(SCI)  
The Serial Communications Interface (SCI) is configurable to five asynchronous and  
synchronous serial interfaces:  
Asynchronous interfaces (UART and asynchronous communications interface adapter  
(ACIA))  
8-bit clock synchronous interface  
Simple IIC (master-only)  
Simple SPI  
Smart card interface.  
The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and  
transmission protocol.  
SCI0 and SCI1 have FIFO buffers to enable continuous and full-duplex communication, and  
the data transfer speed can be configured independently using an on-chip baud rate generator.  
See section 28, Serial Communications Interface (SCI) in User’s Manual.  
I2C Bus Interface (IIC)  
The 3-channel I2C Bus Interface (IIC) module conforms with and provides a subset of the NXP  
I2C bus (Inter-Integrated Circuit bus) interface functions. See section 29, I2C Bus Interface  
(IIC) in User’s Manual.  
Serial Peripheral Interface (SPI)  
Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, full-  
duplex synchronous serial communications with multiple processors and peripheral devices.  
See section 31, Serial Peripheral Interface (SPI) in User’s Manual.  
Serial Sound Interface Enhanced  
(SSIE)  
The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with  
digital audio devices for transmitting PCM audio data over a serial bus with the MCU. The  
SSIE supports an audio clock frequency of up to 50 MHz, and can be operated as a slave or  
master receiver, transmitter, or transceiver to suit various applications. The SSIE includes 8-  
stage FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven  
data reception and transmission. See section 33, Serial Sound Interface Enhanced (SSIE) in  
User’s Manual.  
Controller Area Network (CAN)  
module  
The Controller Area Network (CAN) module provides functionality to receive and transmit data  
using a message-based protocol between multiple slaves and masters in electromagnetically  
noisy applications.  
The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports  
up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox  
and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are  
supported. See section 30, Controller Area Network (CAN) Module in User’s Manual.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 6 of 130  
RA4M1 Group  
1. Overview  
Table 1.7  
Feature  
Communication interfaces (2 of 2)  
Functional description  
USB 2.0 Full-Speed Module (USBFS) The USB 2.0 Full-Speed Module (USBFS) can operate as a host controller or device controller.  
The module supports full-speed and low-speed (only for the host controller) transfer as defined  
in the Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and  
supports all of the transfer types defined in the Universal Serial Bus Specification 2.0. The USB  
has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be  
assigned any endpoint number based on the peripheral devices used for communication or  
based on the user system. The MCU supports revision 1.2 of the Battery Charging  
specification. Because the MCU can be powered at 5 V, the USB LDO regulator provides the  
internal USB transceiver power supply at 3.3 V. See section 27, USB 2.0 Full-Speed Module  
(USBFS) in User’s Manual.  
Table 1.8  
Feature  
Analog  
Functional description  
14-bit A/D Converter (ADC14)  
A 14-bit successive approximation A/D converter is provided. Up to 25 analog input channels  
are selectable. Temperature sensor output and internal reference voltage are selectable for  
conversion. The A/D conversion accuracy is selectable from 12-bit and 14-bit conversion  
making it possible to optimize the tradeoff between speed and resolution in generating a digital  
value. See section 35, 14-Bit A/D Converter (ADC14) in User’s Manual.  
12-Bit D/A Converter (DAC12)  
The 12-Bit D/A Converter (DAC12) converts data and includes an output amplifier. See section  
36, 12-Bit D/A Converter (DAC12) in User’s Manual.  
8-Bit D/A Converter (DAC8)  
for ACMPLP  
The 8-Bit D/A Converter (DAC8) converts data and does not include an output amplifier  
(DAC8). The DAC8 is used only as the reference voltage for ACMPLP. See section 40, 8-Bit D/  
A Converter (DAC8) in User’s Manual.  
Temperature Sensor (TSN)  
The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for  
reliable operation of the device. The sensor outputs a voltage directly proportional to the die  
temperature, and the relationship between the die temperature and the output voltage is linear.  
The output voltage is provided to the ADC14 for conversion and can be further used by the end  
application. See section 37, Temperature Sensor (TSN) in User’s Manual.  
Low-Power Analog Comparator  
(ACMPLP)  
The Low-Power Analog Comparator (ACMPLP) compares the reference input voltage and  
analog input voltage. The comparison result can be read through software and also be output  
externally. The reference voltage can be selected from an input to the CMPREFi(i = 0,1) pin,  
an internal 8-bit D/A converter output, or the internal reference voltage (Vref) generated  
internally in the MCU.  
The ACMPLP response speed can be set before starting an operation. Setting the high-speed  
mode decreases the response delay time, but increases current consumption. Setting the low-  
speed mode increases the response delay time, but decreases current consumption. See  
section 39, Low-Power Analog Comparator (ACMPLP) in User’s Manual.  
Operational Amplifier (OPAMP)  
The Operational Amplifier (OPAMP) amplifies small analog input voltages and outputs the  
amplified voltages. A total of four differential operational amplifier units with two input pins and  
one output pin are provided. See section 38, Operational Amplifier (OPAMP) in User’s Manual.  
Table 1.9  
Human machine interfaces  
Feature  
Functional description  
Segment LCD Controller (SLCDC)  
The Segment LCD Controller (SLCDC) provides the following functions:  
Waveform A or B selectable  
The LCD driver voltage generator can switch between an internal voltage boosting method,  
a capacitor split method, and an external resistance division method  
Automatic output of segment and common signals based on automatic display data register  
read  
The reference voltage generated when operating the voltage boost circuit can be selected in  
16 steps (contrast adjustment)  
The LCD can be made to blink.  
See section 45, Segment LCD Controller (SLCDC) in User’s Manual.  
Capacitive Touch Sensing Unit  
(CTSU)  
The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the  
touch sensor. Changes in the electrostatic capacitance are determined by software, which  
enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode  
surface of the touch sensor is usually enclosed within an electrical insulator so that fingers do  
not come into direct contact with the electrode. See section 41, Capacitive Touch Sensing Unit  
(CTSU) in User’s Manual.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 7 of 130  
RA4M1 Group  
1. Overview  
Table 1.10  
Feature  
Data processing  
Functional description  
Cyclic Redundancy Check (CRC)  
calculator  
The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the  
data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first  
communication. Additionally, various CRC generation polynomials are available. The snoop  
function allows monitoring reads from and writes to specific addresses. This function is useful  
in applications that require CRC code to be generated automatically in certain events, such as  
monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See  
section 32, Cyclic Redundancy Check (CRC) Calculator in User’s Manual.  
Data Operation Circuit (DOC)  
The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 42,  
Data Operation Circuit (DOC) in User’s Manual.  
Table 1.11  
Feature  
Security  
Functional description  
Secure Crypto Engine 5 (SCE5)  
Security algorithm  
- Symmetric algorithm: AES.  
Other support features  
- TRNG (True Random Number Generator)  
- Hash-value generation: GHASH.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 8 of 130  
RA4M1 Group  
1. Overview  
1.2  
Block Diagram  
Figure 1.1 shows a block diagram of the MCU superset. Some individual devices within the group have a subset of the  
features.  
Bus  
Memory  
Arm Cortex-M4  
System  
Clocks  
256 KB Code Flash  
DSP  
FPU  
POR/LVD  
Reset  
MPU  
MOSC/SOSC  
8 KB Data Flash  
32 KB SRAM  
MPU  
(HOCO/  
MOCO/  
LOCO)  
NVIC  
Mode Control  
Power Control  
PLL  
System Timer  
DMA  
DTC  
CAC  
Test and DBG Interface  
ICU  
Battery Backup  
Register Write  
Protection  
DMAC × 4  
KINT  
Timers  
Communication interfaces  
Human machine interfaces  
GPT32 × 2  
CAN × 1  
CTSU  
SLCDC  
SCI × 4  
IIC × 2  
GPT16 × 6  
AGT × 2  
RTC  
USBFS  
with Battery  
Charging  
revision 1.2  
SPI × 2  
SSIE × 1  
WDT/IWDT  
Event Link  
ELC  
Data processing  
Analog  
CRC  
ADC14  
DAC12  
TSN  
OPAMP × 4  
ACMPLP × 2  
DOC  
DAC8  
Security  
SCE5  
Figure 1.1  
Block diagram  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 9 of 130  
RA4M1 Group  
1. Overview  
1.3  
Part Numbering  
Figure 1.2 shows the product part number information, including memory capacity, and package type. Table 1.12 shows  
a product list.  
# A A  
R 7 F A 4 M 1 A B 3 C F P  
0
Production identification code  
Packaging, Terminal material (Pb-free)  
#AA: Tray/Sn (Tin) only  
#AC: Tray/others  
Package type  
FP: LQFP 100 pins  
FM: LQFP 64 pins  
FL: LQFP 48 pins  
LJ: LGA 100 pins  
NB: QFN 64 pins  
NE: QFN 48 pins  
NF: QFN 40 pins  
Quality Grade  
Operating temperature  
2: -40°C to 85°C  
3: -40°C to 105°C  
Code flash memory size  
B: 256 KB  
Feature set  
Group number  
Series name  
RA family  
Flash memory  
Renesas microcontroller  
Figure 1.2  
Part numbering scheme  
Product list  
Table 1.12  
Operating  
Code flash Data flash SRAM temperature  
Product part number  
R7FA4M1AB3CFP  
R7FA4M1AB2CLJ  
R7FA4M1AB3CFM  
R7FA4M1AB3CNB  
R7FA4M1AB3CFL  
R7FA4M1AB3CNE  
R7FA4M1AB3CNF  
Orderable part number  
R7FA4M1AB3CFP#AA0  
R7FA4M1AB2CLJ#AC0  
R7FA4M1AB3CFM#AA0  
R7FA4M1AB3CNB#AC0  
R7FA4M1AB3CFL#AA0  
R7FA4M1AB3CNE#AC0  
R7FA4M1AB3CNF#AC0  
Package code  
PLQP0100KB-B  
PTLG0100JA-A  
PLQP0064KB-C  
PWQN0064LA-A  
PLQP0048KB-B  
PWQN0048KB-A  
PWQN0040KC-A  
256 KB  
8 KB  
32 KB  
-40 to +105°C  
-40 to +85°C  
-40 to +105°C  
-40 to +105°C  
-40 to +105°C  
-40 to +105°C  
-40 to +105°C  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 10 of 130  
RA4M1 Group  
1. Overview  
1.4  
Function Comparison  
Table 1.13  
Function comparison  
R7FA4M1AB3CFM/  
R7FA4M1AB3CNB  
R7FA4M1AB3CFL/  
R7FA4M1AB3CNE  
Part numbers  
Pin count  
R7FA4M1AB3CFP  
100  
R7FA4M1AB2CLJ  
R7FA4M1AB3CNF  
100  
64  
LQFP/QFN  
256 KB  
8 KB  
48  
40  
Package  
LQFP  
LGA  
LQFP/QFN  
QFN  
Code flash memory  
Data flash memory  
SRAM  
32 KB  
Parity  
16 KB  
ECC  
16 KB  
System  
CPU clock  
48 MHz  
512 bytes  
Backup  
registers  
ICU  
Yes  
KINT  
8
5
3
Event control  
DMA  
ELC  
Yes  
Yes  
4
DTC  
DMAC  
External bus  
GPT32  
GPT16  
AGT  
Bus  
No  
2
Timers  
6
2
4
2
No  
RTC  
Yes  
Yes  
4
WDT/IWDT  
Communication SCI  
IIC  
2
SPI  
2
1
SSIE  
1
No  
14  
QSPI  
No  
No  
1
SDHI  
CAN  
USBFS  
ADC14  
DAC12  
DAC8  
Yes  
18  
1
Analog  
25  
11  
2
ACMPLP  
OPAMP  
TSN  
2
1
4
4
3
1
No  
Yes  
HMI  
SLCDC  
4 com × 38 seg or 8 com × 34 seg  
27  
4 com × 21 seg or  
8 com × 17 seg  
No  
CTSU  
CRC  
DOC  
24  
Yes  
15  
10  
Data  
processing  
Yes  
Security  
SCE5  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 11 of 130  
RA4M1 Group  
1. Overview  
1.5  
Pin Functions  
Table 1.14  
Pin functions (1 of 4)  
Function  
Signal  
I/O  
Description  
Power supply  
VCC  
Input  
Power supply pin. Connect this pin to the system power supply. Connect it to  
VSS through a 0.1-μF capacitor. The capacitor should be placed close to the  
pin.  
VCL  
I/O  
Connect this pin to the VSS pin through the smoothing capacitor used to  
stabilize the internal power supply. Place the capacitor close to the pin.  
VSS  
Input  
Ground pin. Connect to the system power supply (0 V).  
Backup power supply pin  
VBATT  
XTAL  
Input  
Clock  
Output  
Input  
Pins for a crystal resonator. An external clock signal can be input through the  
EXTAL pin.  
EXTAL  
XCIN  
Input  
Input/output pins for the sub-clock oscillator. Connect a crystal resonator  
between XCOUT and XCIN.  
XCOUT  
CLKOUT  
MD  
Output  
Output  
Input  
Clock output pin  
Operating mode  
control  
Pins for setting the operating mode. The signal levels on these pins must not  
be changed during operation mode transition on release from the reset state.  
System control  
RES  
Input  
Reset signal input pin. The MCU enters the reset state when this signal goes  
low.  
CAC  
CACREF  
NMI  
Input  
Input  
Input  
Measurement reference clock input pin  
Non-maskable interrupt request pin  
Maskable interrupt request pins  
Interrupt  
IRQ0 to IRQ12,  
IRQ14, IRQ15  
KINT  
KR00 to KR07  
Input  
Key interrupt input pins.  
A key interrupt (KINT) can be generated by inputting a falling edge to the key  
interrupt input pins.  
On-chip debug  
TMS  
I/O  
On-chip emulator or boundary scan pins  
TDI  
Input  
Input  
Output  
I/O  
TCK  
TDO  
SWDIO  
SWCLK  
SWO  
Serial wire debug data input/output pin  
Serial wire clock pin  
Input  
Output  
I/O  
Serial wire trace output pin  
Battery Backup  
GPT  
VBATWIO0 to  
VBATWIO2  
Output wakeup signal for the VBATT wakeup control function.  
External event input for the VBATT wakeup control function.  
GTETRGA,  
GTETRGB  
Input  
I/O  
External trigger input pin  
GTIOC0A to  
GTIOC7A,  
GTIOC0B to  
GTIOC7B  
Input capture, output capture, or PWM output pin  
GTIU  
Input  
Hall sensor input pin U  
GTIV  
Input  
Hall sensor input pin V  
GTIW  
Input  
Hall sensor input pin W  
GTOUUP  
GTOULO  
GTOVUP  
GTOVLO  
GTOWUP  
GTOWLO  
Output  
Output  
Output  
Output  
Output  
Output  
3-phase PWM output for BLDC motor control (positive U phase)  
3-phase PWM output for BLDC motor control (negative U phase)  
3-phase PWM output for BLDC motor control (positive V phase)  
3-phase PWM output for BLDC motor control (negative V phase)  
3-phase PWM output for BLDC motor control (positive W phase)  
3-phase PWM output for BLDC motor control (negative W phase)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 12 of 130  
RA4M1 Group  
1. Overview  
Table 1.14  
Pin functions (2 of 4)  
Function  
Signal  
I/O  
Description  
AGT  
AGTEE0, AGTEE1  
AGTIO0, AGTIO1  
AGTO0, AGTO1  
AGTOA0, AGTOA1  
AGTOB0, AGTOB1  
RTCOUT  
Input  
I/O  
External event input enable signals  
External event input and pulse output pins  
Pulse output pins  
Output  
Output  
Output  
Output  
Input  
I/O  
Output compare match A output pins  
Output compare match B output pins  
Output pin for 1-Hz/64-Hz clock  
Time capture event input pins  
Clock (clock synchronous mode) input/output pins  
RTC  
SCI  
RTCIC0 to RTCIC2  
SCK0 to SCK2,  
SCK9  
RXD0 to RXD2,  
RXD9  
Input  
Output  
I/O  
Received data (asynchronous mode/clock synchronous mode) input pins  
Transmitted data (asynchronous mode/clock synchronous mode) output pins  
TXD0 to TXD2,  
TXD9  
CTS0_RTS0 to  
CTS2_RTS2,  
CTS9_RTS9  
Input/output pins for controlling the start of transmission and reception  
(asynchronous mode/clock synchronous mode), active-low  
SCL0 to SCL2,  
SCL9  
I/O  
I/O  
I/O  
I/O  
I/O  
I2C clock (simple IIC) input/output pins  
SDA0 to SDA2,  
SDA9  
I2C data (simple IIC) input/output pins  
SCK0 to SCK2,  
SCK9  
Clock (simple SPI) input/output pins  
MISO0 to MISO2,  
MISO9  
Slave transmission of data (simple SPI) input/output pins  
Master transmission of data (simple SPI) input/output pins  
MOSI0 to MOSI2,  
MOSI9  
SS0 to SS2, SS9  
SCL0, SCL1  
Input  
I/O  
Slave-select input pins (simple SPI), active-low  
Clock input/output pins  
IIC  
SDA0, SDA1  
SSIBCK0  
I/O  
Data input/output pins  
SSIE  
I/O  
SSIE serial bit clock pin  
SSILRCK0/SSIFS0  
SSITXD0  
I/O  
Word select pins  
Output  
Input  
Input  
I/O  
Serial data output pin  
SSIRXD0  
Serial data input pin  
AUDIO_CLK  
External clock pin for audio (input oversampling clock)  
Clock input/output pin  
SPI  
RSPCKA, RSPCKB  
MOSIA, MOSIB  
MISOA, MISOB  
SSLA0, SSLB0  
I/O  
Input/output pins for data output from the master  
Input/output pins for data output from the slave  
Input/output pins for slave selection  
Output pins for slave selection  
I/O  
I/O  
SSLA1, SSLA2,  
SSLA3, SSLB1,  
SSLB2, SSLB3  
Output  
CAN  
CRX0  
CTX0  
Input  
Receive data  
Transmit data  
Output  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 13 of 130  
RA4M1 Group  
1. Overview  
Table 1.14  
Pin functions (3 of 4)  
Function  
Signal  
I/O  
Description  
USBFS  
VSS_USB  
VCC_USB_LDO  
VCC_USB  
Input  
Input  
I/O  
Ground pin  
Power supply pin for USB LDO regulator  
Input: USB transceiver power supply pin.  
Output: USB LDO regulator output pin. This pin should be connected to an  
external capacitor.  
USB_DP  
I/O  
D+ I/O pin of the USB on-chip transceiver. This pin should be connected to the  
D+ pin of the USB bus.  
USB_DM  
USB_VBUS  
I/O  
D- I/O pin of the USB on-chip transceiver. This pin should be connected to the  
D- pin of the USB bus.  
Input  
USB cable connection monitor pin. This pin should be connected to VBUS of  
the USB bus. The VBUS pin status (connected or disconnected) can be  
detected when the USB module is operating as a device controller.  
USB_EXICEN  
USB_VBUSEN  
Output  
Output  
Input  
Low power control signal for external power supply (OTG) chip  
VBUS (5 V) supply enable signal for external power supply chip  
USB_OVRCURA,  
USB_OVRCURB  
Connect the external overcurrent detection signals to these pins. Connect the  
VBUS comparator signals to these pins when the OTG power supply chip is  
connected.  
USB_ID  
Input  
Connect the MicroAB connector ID input signal to this pin during operation in  
OTG mode  
Analog power  
supply  
AVCC0  
AVSS0  
VREFH0  
VREFL0  
VREFH  
VREFL  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Analog voltage supply pin  
Analog voltage supply ground pin  
Analog reference voltage supply pin  
Reference power supply ground pin  
Analog reference voltage supply pin for D/A converter  
Analog reference ground pin for D/A converter  
Input pins for the analog signals to be processed by the A/D converter  
ADC14  
DAC12  
AN000 to AN014,  
AN016 to AN025  
ADTRG0  
Input  
Input pins for the external trigger signals that start the A/D conversion, active-  
low  
DA0  
Output  
Output  
Output pins for the analog signals to be processed by the D/A converter  
Comparator output pin  
Comparator  
output  
VCOUT  
ACMPLP  
OPAMP  
CMPREF0,  
CMPREF1  
Input  
Reference voltage input pin  
CMPIN0, CMPIN1  
AMP0+ to AMP3+  
AMP0- to AMP3-  
AMP0O to AMP3O  
Input  
Input  
Input  
Output  
Input  
Analog voltage input pins  
Analog voltage input pins  
Analog voltage input pins  
Analog voltage output pins  
Capacitive touch detection pins (touch pins)  
CTSU  
TS00 to TS13,  
TS17 to TS22,  
TS27 to TS31,  
TS34, TS35  
TSCAP  
-
Secondary power supply pin for the touch driver  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 14 of 130  
RA4M1 Group  
1. Overview  
Table 1.14  
Pin functions (4 of 4)  
Signal  
Function  
I/O  
Description  
I/O ports  
P000 to P008,  
P010 to P015  
I/O  
General-purpose input/output pins  
P100 to P115  
P200  
I/O  
General-purpose input/output pins  
General-purpose input pin  
Input  
I/O  
P201 to P206,  
P212, P213  
General-purpose input/output pins  
P214, P215  
Input  
I/O  
General-purpose input pins  
P300 to P307  
P400 to P415  
P500 to P505  
General-purpose input/output pins  
General-purpose input/output pins  
General-purpose input/output pins  
General-purpose input/output pins  
I/O  
I/O  
P600 to P603,  
P608 to P610  
I/O  
P708  
I/O  
General-purpose input/output pins  
P808, P809  
I/O  
General-purpose input/output pins  
P914, P915  
I/O  
General-purpose input/output pins  
SLCDC  
VL1, VL2, VL3, VL4  
CAPH, CAPL  
COM0 to COM7  
SEG00 to SEG37  
I/O  
Voltage pin for driving the LCD  
I/O  
Capacitor connection pin for the LCD controller/driver  
Common signal output pins for the LCD controller/driver  
Segment signal output pins for the LCD controller/driver  
Output  
Output  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 15 of 130  
RA4M1 Group  
1. Overview  
1.6  
Pin Assignments  
Figure 1.3 to Figure 1.6 show the pin assignments.  
76  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
P500  
P300/TCK/SWCLK  
P301  
77  
P501  
78  
P502  
P302  
79  
P503  
P303  
80  
P504  
P809  
81  
P505  
P808  
82  
VCC  
P304  
83  
VSS  
P305  
84  
P015  
P306  
85  
P014  
P307  
86  
P013/VREFL  
P200  
87  
P012/VREFH  
P201/MD  
RES  
R7FA4M1AB3CFP  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
AVCC0  
AVSS0  
P011/VREFL0  
P010/VREFH0  
P008  
VCC  
VSS  
P202  
P203  
P007  
P204  
P006  
P205  
P005  
P206  
P004  
VCC_USB_LDO  
VCC_USB  
P914/USB_DP  
P915/USB_DM  
VSS_USB  
P003  
P002  
P001  
P000  
Figure 1.3  
Pin assignment for 100-pin LQFP (top view)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 16 of 130  
RA4M1 Group  
1. Overview  
R7FA4M1AB2CLJ  
A
B
C
D
E
F
G
H
J
K
P212/  
EXTAL  
P215/  
XCIN  
10 P407  
P409  
P412  
VCC  
VCL  
P403  
P400  
P000 10  
P915/  
9
P914/  
USB_DM USB_DP  
P213/  
XTAL  
P214/  
XCOUT  
P413  
VSS  
P411  
P408  
P203  
RES  
P306  
VBATT  
P404  
P006  
P505  
P504  
P503  
P107  
P106  
P405  
P003  
P401  
P004  
P001  
P002  
9
8
7
6
5
4
3
2
1
VCC_  
USB  
VSS_ VCC_US  
USB  
8
7
6
5
4
3
2
1
P415  
P414  
P410  
P113  
P115  
P609  
P610  
P708  
P406  
P402  
P600  
P601  
P602  
P603  
B_LDO  
P205  
VSS  
P204  
P206  
P007  
P008  
P005  
P011/  
VREFL0 VREFH0  
P010/  
VCC  
P202  
AVSS0  
AVCC0  
P100  
P013/  
VREFL VREFH  
P012/  
P200 P201/MD P307  
P305  
P809  
P304  
P808  
P015  
VSS  
P014  
VCC  
P502  
P303 P110/TDI P111  
P103  
P300/  
TCK/  
SWCLK  
P302  
P301  
P114  
P101  
P501  
P108/  
TMS/  
P109/  
TDO/  
SWO  
P112  
C
P608  
D
VCC  
E
VSS  
F
P105  
G
P104  
H
P102  
J
P500  
K
SWDIO  
A
B
Figure 1.4  
Pin assignment for 100-pin LGA (upper perspective view)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 17 of 130  
RA4M1 Group  
1. Overview  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
P500  
P501  
P300/TCK/SWCLK  
P301  
P502  
P302  
P015  
P303  
P014  
P304  
P013/VREFL  
P012/VREFH  
AVCC0  
P200  
P201/MD  
RES  
R7FA4M1AB3CFM  
AVSS0  
P204  
P011/VREFL0  
P010/VREFH0  
P004  
P205  
P206  
VCC_USB_LDO  
VCC_USB  
P914/USB_DP  
P915/USB_DM  
VSS_USB  
P003  
P002  
P001  
P000  
Figure 1.5  
Pin assignment for 64-pin LQFP (top view)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 18 of 130  
RA4M1 Group  
1. Overview  
P500  
P501  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32 P300/TCK/SWCLK  
31  
P301  
30  
P502  
P015  
P302  
29  
P303  
28  
P014  
P304  
27  
P013/VREFL  
P012/VREFH  
AVCC0  
P200  
26  
P201/MD  
25  
RES  
R7FA4M1AB3CNB  
24  
AVSS0  
P011/VREFL0  
P204  
23  
P205  
22  
P010/VREFH0  
P004  
P206  
21  
VCC_USB_LDO  
20  
P003  
VCC_USB  
19  
P002  
P001  
P914/USB_DP  
18 P915/USB_DM  
17  
P000  
VSS_USB  
Figure 1.6  
Pin assignment for 64-pin QFN (upper perspective view)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 19 of 130  
RA4M1 Group  
1. Overview  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P500  
P015  
P300/TCK/SWCLK  
P301  
P014  
P302  
P013/VREFL  
P012/VREFH  
AVCC0  
P200  
P201/MD  
RES  
R7FA4M1AB3CFL  
AVSS0  
P206  
P011/VREFL0  
P010/VREFH0  
P002  
VCC_USB_LDO  
VCC_USB  
P914/USB_DP  
P915/USB_DM  
VSS_USB  
P001  
P000  
Figure 1.7  
Pin assignment for 48-pin LQFP (top view)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 20 of 130  
RA4M1 Group  
1. Overview  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
P500  
P015  
P014  
P300/TCK/SWCLK  
P301  
P302  
P013/VREFL  
P012/VREFH  
AVCC0  
P200  
P201/MD  
RES  
R7FA4M1AB3CNE  
AVSS0  
P011/VREFL0  
P010/VREFH0  
P002  
P206  
VCC_USB_LDO  
VCC_USB  
P914/USB_DP  
P001  
14 P915/USB_DM  
13  
P000  
VSS_USB  
Figure 1.8  
Pin assignment for 48-pin QFN (top view)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 21 of 130  
RA4M1 Group  
1. Overview  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
P015  
P300/TCK/SWCLK  
P014  
P013/VREFL  
P012/VREFH  
AVCC0  
P301  
P200  
P201/MD  
RES  
R7FA4M1AB3CNF  
AVSS0  
VCC_USB_LDO  
VCC_USB  
P914/USB_DP  
P915/USB_DM  
P011/VREFL0  
P010/VREFH0  
P001  
P000  
VSS_USB  
Figure 1.9  
Pin assignment for 40-pin QFN (top view)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 22 of 130  
RA4M1 Group  
1. Overview  
1.7  
Pin Lists  
Pin number  
Timers  
Communication interfaces  
Analogs  
HMI  
1
2
J10  
J9  
1
2
1
2
1
1
CACREF  
IRQ0  
IRQ5  
P400  
P401  
AGTIO1  
GTIOC6A  
SCK0 SCL0  
SCK1  
AUDIO_CL  
K
SEG04 TS20  
SEG05 TS19  
GTETRGA GTIOC6B  
CTX0  
CTS0_ SDA0  
RTS0/  
SS0  
TXD1/  
MOSI1/  
SDA1  
3
4
F6  
3
3
VBATWIO0 IRQ4  
VBATWIO1  
P402  
P403  
AGTIO0/  
AGTIO1  
RTCIC0 CRX0  
RXD1/  
MISO1/  
SCL1  
SEG06 TS18  
TS17  
H10  
AGTIO0/  
AGTIO1  
GTIOC3A RTCIC1  
CTS1_  
RTS1/  
SS1  
SSIBCK0  
5
6
7
8
9
G8  
H9  
F7  
VBATWIO2  
P404  
P405  
P406  
GTIOC3B RTCIC2  
GTIOC1A  
SSILRCK0/  
SSIFS0  
SSITXD0  
GTIOC1B  
SSIRXD0  
G9  
G10  
4
5
6
7
8
9
4
5
6
7
8
9
2
3
4
5
6
7
2
3
4
5
6
7
1
2
3
4
5
6
VBATT  
VCL  
10 F10  
11 F9  
12 D9  
13 E9  
XCIN  
XCOUT  
VSS  
P215  
P214  
XTAL  
EXTAL  
VCC  
IRQ2  
IRQ3  
P213  
P212  
GTETRGA GTIOC0A  
TXD1/  
MOSI1/  
SDA1  
14 E10 10 10  
8
9
8
9
7
8
AGTEE1 GTETRGB GTIOC0B  
RXD1/  
MISO1/  
SCL1  
15 D10 11 11  
16 F8  
P708  
RXD1/  
MISO1/  
SCL1  
SSLA3  
17 E8  
18 E7  
19 C9  
IRQ8  
IRQ9  
P415  
P414  
P413  
GTIOC0A  
GTIOC0B  
SSLA2  
SSLA1  
SSLA0  
CTS0_  
RTS0/  
SS0  
20 C10  
P412  
P411  
SCK0  
RSPCKA  
MOSIA  
21 D8 12 12  
IRQ4  
IRQ5  
AGTOA1 GTOVUP GTIOC6A  
AGTOB1 GTOVLO GTIOC6B  
TXD0/  
MOSI0/  
SDA0  
SEG07 TS07  
SEG08 TS06  
22 E6 13 13  
P410  
RXD0/  
MISO0/  
SCL0  
MISOA  
23 B10 14 14 10 10  
24 D7 15 15 11 11  
IRQ6  
IRQ7  
P409  
P408  
GTOWUP GTIOC5A  
GTOWLO GTIOC5B  
USB_EXI TXD9/  
SEG09 TS05  
SEG10 TS04  
CEN  
MOSI9/  
SDA9  
9
USB_ID CTS1_ SCL0  
RTS1/  
SS1  
RXD9/  
MISO9/  
SCL9  
25 A10 16 16 12 12 10  
P407  
AGTIO0  
RTCOUT USB_VB CTS0_ SDA0 SSLB3  
ADTRG0  
SEG11 TS03  
US  
RTS0/  
SS0  
26 B8 17 17 13 13 11 VSS_USB  
27 A9 18 18 14 14 12  
P915  
P914  
USB_DM  
USB_DP  
28 B9 19 19 15 15 13  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 23 of 130  
RA4M1 Group  
1. Overview  
Pin number  
Timers  
Communication interfaces  
Analogs  
HMI  
29 A8 20 20 16 16 14 VCC_USB  
30 C8 21 21 17 17 15 VCC_USB_  
LDO  
31 C7 22 22 18 18  
IRQ0  
IRQ1  
P206  
P205  
GTIU  
USB_VB RXD0/ SDA1 SSLB1  
SEG12 TS01  
USEN  
MISO0/  
SCL0  
32 A7 23 23  
CLKOUT  
CACREF  
AGTO1 GTIV  
GTIOC4A  
USB_OV TXD0/ SCL1  
SSLB0  
SEG13 TSCAP  
RCURA MOSI0/  
SDA0  
CTS9_  
RTS9/  
SS9  
33 B7 24 24  
P204  
P203  
AGTIO1 GTIW  
GTIOC4B  
GTIOC5A  
USB_OV SCK0 SCL0  
RCURB SCK9  
RSPCKB  
MOSIB  
SEG14 TS00  
34 D6  
CTS2_  
RTS2/  
SS2  
SEG15 TSCAP  
TXD9/  
MOSI9/  
SDA9  
35 C6  
P202  
GTIOC5B  
SCK2  
RXD9/  
MISO9/  
SCL9  
MISOB  
SEG16  
36 A6  
37 B6  
VSS  
VCC  
38 D5 25 25 19 19 16 RES  
39 B5 26 26 20 20 17 MD  
40 A5 27 27 21 21 18  
41 C5  
P201  
P200  
P307  
P306  
P305  
P304  
P808  
P809  
P303  
P302  
NMI  
SEG17  
42 D4  
SEG18  
43 A4  
IRQ8  
IRQ9  
SEG19  
44 B4 28 28  
45 C4  
GTIOC7A  
GTIOC7B  
SEG20 TS11  
SEG21  
46 A3  
SEG22  
47 B3 29 29  
48 B2 30 30 22 22  
SEG03/ TS02  
COM7  
IRQ5  
IRQ6  
GTOUUP GTIOC4A  
TXD2/  
MOSI2/  
SDA2  
SSLB3  
SSLB2  
SEG02/ TS08  
COM6  
49 C2 31 31 23 23 19  
P301  
AGTIO0 GTOULO GTIOC4B  
RXD2/  
MISO2/  
SCL2  
SEG01/ TS09  
COM5  
CTS9_  
RTS9/  
SS9  
50 A2 32 32 24 24 20 TCK/  
P300  
P108  
GTOUUP GTIOC0A  
GTOULO GTIOC0B  
SSLB1  
SSLB0  
SWCLK  
51 A1 33 33 25 25 21 TMS/  
CTS9_  
RTS9/  
SS9  
SWDIO  
52 B1 34 34 26 26 22 TDO/SWO/  
CLKOUT  
P109  
GTOVUP GTIOC1A  
CTX0  
CRX0  
SCK1  
TXD9/  
MOSI9/  
SDA9  
MOSIB  
SEG23 TS10  
53 C3 35 35 27 27 23 TDI  
IRQ3  
P110  
GTOVLO GTIOC1B  
CTS2_  
RTS2/  
SS2  
MISOB  
VCOUT  
SEG24  
RXD9/  
MISO9/  
SCL9  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 24 of 130  
RA4M1 Group  
1. Overview  
Pin number  
Timers  
Communication interfaces  
Analogs  
HMI  
54 D3 36 36 28 28 24  
IRQ4  
P111  
P112  
GTIOC3A  
GTIOC3B  
SCK2  
SCK9  
RSPCKB  
CAPH TS12  
55 C1 37 37 29 29 25  
TXD2/  
MOSI2/  
SDA2  
SCK1  
SSLB0  
SSIBCK0  
CAPL TSCAP  
56 E5 38 38  
P113  
P114  
P115  
P608  
P609  
P610  
GTIOC2A  
GTIOC2B  
GTIOC4A  
GTIOC4B  
GTIOC5A  
GTIOC5B  
SSILRCK0/  
SSIFS0  
SEG00/ TS27  
COM4  
57 D2  
SSIRXD0  
SEG25 TS29  
SEG26 TS35  
SEG27  
58 E4  
SSITXD0  
59 D1  
60 E3  
SEG28  
61 E2  
SEG29  
62 E1 39 39 30 30 26 VCC  
63 F1 40 40 31 31 27 VSS  
64 F2  
P603  
P602  
P601  
GTIOC7A  
GTIOC7B  
GTIOC6A  
CTS9_  
RTS9/  
SS9  
SEG30  
SEG31  
SEG32  
65 F3  
66 F4  
TXD9/  
MOSI9/  
SDA9  
RXD9/  
MISO9/  
SCL9  
67 F5  
P600  
P107  
P106  
GTIOC6B  
GTIOC0A  
SCK9  
SEG33  
68 G3 41 41  
69 G2 42 42  
70 G1 43 43  
71 H1 44 44 32 32  
KR07  
KR06  
COM3  
GTIOC0B  
SSLA3  
SSLA2  
SSLA1  
COM2  
KR05/ P105  
IRQ0  
GTETRGA GTIOC1A  
GTETRGB GTIOC1B  
COM1 TS34  
COM0 TS13  
KR04/ P104  
IRQ1  
RXD0/  
MISO0/  
SCL0  
72 H3 45 45 33 33  
KR03  
KR02  
P103  
P102  
GTOWUP GTIOC2A  
CTX0  
CRX0  
CTS0_  
RTS0/  
SS0  
SSLA0  
AN019  
CMPREF1 VL4  
73 J1 46 46 34 34 28  
AGTO0 GTOWLO GTIOC2B  
AGTEE0 GTETRGB GTIOC5A  
AGTIO0 GTETRGA GTIOC5B  
SCK0  
TXD2/  
MOSI2/  
SDA2  
RSPCKA  
AN020/  
ADTRG0  
CMPIN1  
VL3  
74 H2 47 47 35 35 29  
KR01/ P101  
IRQ1  
TXD0/ SDA1 MOSIA  
AN021  
AN022  
CMPREF0 VL2  
MOSI0/  
SDA0  
CTS1_  
RTS1/  
SS1  
75 H4 48 48 36 36 30  
KR00/ P100  
IRQ2  
RXD0/ SCL1  
MISO0/  
MISOA  
CMPIN0  
VL1  
SCL0  
SCK1  
76 K1 49 49 37 37  
77 J2 50 50  
P500  
AGTOA0 GTIU  
AGTOB0 GTIV  
GTIOC2A  
GTIOC2B  
USB_VB  
USEN  
AN016  
AN017  
CMPREF1 SEG34  
IRQ11 P501  
USB_OV TXD1/  
RCURA MOSI1/  
SDA1  
CMPIN1  
SEG35  
78 K2 51 51  
IRQ12 P502  
GTIW  
GTIOC3B  
USB_OV RXD1/  
RCURB MISO1/  
SCL1  
AN018  
CMPREF0 SEG36  
79 G4  
80 G5  
P503  
P504  
USB_EXI SCK1  
CEN  
AN023  
AN024  
CMPIN0  
SEG37  
USB_ID CTS1_  
RTS1/  
SS1  
81 G6  
IRQ14 P505  
AN025  
82 K3  
VCC  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 25 of 130  
RA4M1 Group  
1. Overview  
Pin number  
Timers  
Communication interfaces  
Analogs  
HMI  
83 J3  
VSS  
84 J4 52 52 38 38 31  
85 K4 53 53 39 39 32  
IRQ7  
P015  
P014  
P013  
P012  
AN010  
AN009  
AN008  
AN007  
TS28  
DA0  
86 J5 54 54 40 40 33 VREFL  
87 K5 55 55 41 41 34 VREFH  
88 H5 56 56 42 42 35 AVCC0  
89 H6 57 57 43 43 36 AVSS0  
90 J6 58 58 44 44 37 VREFL0  
91 K6 59 59 45 45 38 VREFH0  
92 J7  
AMP1+  
AMP1-  
IRQ15 P011  
P010  
AN006  
AN005  
AN014  
AN013  
AN012  
AN011  
AN004  
AN003  
AN002  
AN001  
AN000  
AMP2+  
AMP2-  
TS31  
TS30  
P008  
93 H7  
P007  
AMP3O  
AMP3-  
AMP3+  
AMP2O  
AMP1O  
AMP0O  
AMP0-  
AMP0+  
94 G7  
P006  
95 K7  
IRQ10 P005  
96 J8 60 60  
IRQ3  
P004  
P003  
P002  
P001  
P000  
97 H8 61 61  
98 K8 62 62 46 46  
99 K9 63 63 47 47 39  
100 K10 64 64 48 48 40  
IRQ2  
IRQ7  
IRQ6  
TS22  
TS21  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 26 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.  
Electrical Characteristics  
Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:  
VCC*1 = AVCC0 = VCC_USB*2 = VCC_USB_LDO*2 = 1.6 to 5.5V, VREFH = VREFH0 = 1.6 to AVCC0, VBATT =  
1.6 to 3.6V, VSS = AVSS0 = VREFL = VREFL0 = VSS_USB = 0V, T = T  
.
a
opr  
Note 1. The typical condition is set to VCC = 3.3V.  
Note 2. When USBFS is not used.  
Figure 2.1 shows the timing conditions.  
For example P100  
C
VOH = VCC × 0.7, VOL = VCC × 0.3  
IH = VCC × 0.7, VIL = VCC × 0.3  
V
Load capacitance C = 30 pF  
Figure 2.1  
Input or output timing measurement conditions  
The recommended measurement conditions for the timing specification of each peripheral provided are for the best  
peripheral operation. Make sure to adjust the driving abilities of each pin to meet your conditions.  
Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function  
pin is mixed, the AC specification of each function is not guaranteed.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 27 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.1  
Absolute Maximum Ratings  
Table 2.1  
Parameter  
Absolute maximum ratings  
Symbol  
VCC  
Value  
Unit  
Power supply voltage  
Input voltage  
-0.5 to +6.5  
V
V
V
V
V
V
V
V
V
V
V
5 V-tolerant ports*1  
Vin  
-0.3 to +6.5  
P000 to P008, P010 to P015 Vin  
-0.3 to AVCC0 + 0.3  
-0.3 to VCC + 0.3  
-0.3 to +6.5  
Others  
Vin  
Reference power supply voltage  
VREFH0  
VREFH  
VBATT  
VBATT power supply voltage  
Analog power supply voltage  
USB power supply voltage  
-0.5 to +6.5  
AVCC0  
-0.5 to +6.5  
VCC_USB  
VCC_USB_LDO  
VAN  
-0.5 to +6.5  
-0.5 to +6.5  
Analog input voltage  
LCD voltage  
When AN000 to AN014 are  
used  
-0.3 to AVCC0 + 0.3  
When AN016 to AN025 are  
used  
-0.3 to VCC + 0.3  
V
VL1 voltage  
VL2 voltage  
VL3 voltage  
VL4 voltage  
VL1  
VL2  
VL3  
VL4  
Topr  
-0.3 to +2.8  
-0.3 to +6.5  
-0.3 to +6.5  
-0.3 to +6.5  
-40 to +105  
-40 to +85  
V
V
V
V
Operating temperature*2,*3,*4  
Storage temperature  
°C  
Tstg  
-55 to +125  
°C  
Caution:  
Permanent damage to the MCU may result if absolute maximum ratings are exceeded.  
To preclude any malfunctions due to noise interference, insert capacitors of high frequency characteristics  
between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, between the VCC_USB and VSS_USB pins,  
between the VREFH0 and VREFL0 pins, and between the VREFH and VREFL pins. Place capacitors of about 0.1 μF  
as close as possible to every power supply pin and use the shortest and heaviest possible traces. Also, connect  
capacitors as stabilization capacitance.  
Connect the VCL pin to a VSS pin by a 4.7 µF capacitor. The capacitor must be placed close to the pin.  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that  
results from input of such a signal or I/O pull-up might cause malfunction and the abnormal current that passes in  
the device at this time might cause degradation of internal elements.  
Note 1. Ports P205, P206, P400 to P404, P407, P408 are 5 V tolerant.  
Note 2. See section 2.2.1, Tj/Ta Definition.  
Note 3. Contact a Renesas Electronics sales office for information on derating operation under Ta = +85°C to +105°C. Derating is the  
systematic reduction of load for improved reliability.  
Note 4. The upper limit of operating temperature is +85°C or +105°C, depending on the product. For details, see section 1.3, Part  
Numbering.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 28 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.2  
Recommended operating conditions  
Parameter  
Symbol  
Value  
Min  
Typ  
Max  
Unit  
Power supply voltages  
VCC*1, *2  
When USBFS is not  
used  
1.6  
-
5.5  
V
When USBFS is used VCC_USB  
USB Regulator  
Disable  
-
-
3.6  
5.5  
V
V
When USBFS is used VCC_USB  
USB Regulator  
Enable  
_LDO  
VSS  
-
-
0
-
-
V
V
USB power supply voltages  
VCC_USB  
When USBFS is not  
used  
VCC  
When USBFS is used 3.0  
USB Regulator  
Disable  
3.3  
3.6  
V
(Input)  
VCC_USB_LDO  
When USBFS is not  
used  
-
-
VCC  
VCC  
-
-
V
V
When USBFS is used  
USB Regulator  
Disable  
When USBFS is used 3.8  
USB Regulator  
Enable  
-
5.5  
V
VSS_USB  
VBATT  
-
0
-
-
V
V
VBATT power supply voltage  
Analog power supply voltages  
When the battery  
backup function is not  
used  
-
VCC  
When the battery  
backup function is  
used  
1.6  
-
3.6  
V
AVCC0*1, *2  
AVSS0  
1.6  
-
-
5.5  
V
V
V
V
V
V
0
-
-
VREFH0  
VREFL0  
VREFH  
When used as  
ADC14 Reference  
1.6  
-
AVCC0  
0
-
-
When used as  
DAC12 Reference  
1.6  
-
AVCC0  
-
VREFL  
0
Note 1. Use AVCC0 and VCC under the following conditions:  
AVCC0 and VCC can be set individually within the operating range when VCC ≥ 2.2 V and AVCC0 ≥ 2.2 V.  
AVCC0 = VCC when VCC < 2.2 V or AVCC0 < 2.2 V.  
Note 2. When powering on the VCC and AVCC0 pins, power them on at the same time, or power the VCC pin first and then the AVCC0  
pin.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 29 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.2  
DC Characteristics  
2.2.1  
Tj/T Definition  
a
Table 2.3  
DC Characteristics  
Conditions: Products with operating temperature (Ta) -40 to +105°C  
Parameter  
Symbol  
Typ  
Max  
125  
Unit  
Test conditions  
Permissible junction temperature  
Tj  
-
°C  
High-speed mode  
Middle-speed mode  
Low-voltage mode  
Low-speed mode  
Subosc-speed mode  
105*1  
Note:  
Make sure that Tj = Ta + θja × total power consumption (W),  
where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL + ICCmax × VCC.  
Note 1. The upper limit of operating temperature is +85°C or +105°C, depending on the product. For details, see section 1.3, Part  
Numbering. If the part number shows the operation temperature at 85°C, then the maximum value of Tj is +105°C, otherwise, it  
is +125°C.  
2.2.2  
I/O V , V  
IH IL  
Table 2.4  
I/O VIH, VIL (1)  
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 2.7 to 5.5V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0 V  
Parameter  
Symbol  
VIH  
Min  
Typ  
Max  
Unit  
Test conditions  
Schmitt trigger IIC*1 (except for SMBus)  
input voltage  
VCC × 0.7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5.8  
V
-
VIL  
-
VCC × 0.3  
ΔVT  
VIH  
VCC × 0.05  
-
RES, NMI  
Other peripheral input pins  
excluding IIC  
VCC × 0.8  
-
VIL  
-
VCC × 0.2  
ΔVT  
VIH  
VCC × 0.1  
-
Input voltage  
(except for  
Schmitt trigger  
input pin)  
IIC (SMBus)*2  
2.2  
-
VCC = 3.6 to 5.5 V  
VIH  
2.0  
-
VCC = 2.7 to 3.6 V  
-
VIL  
-
0.8  
5 V-tolerant ports*3  
P914, P915  
VIH  
VCC × 0.8  
5.8  
VIL  
-
VCC × 0.2  
VCC_USB + 0.3  
VCC_USB × 0.2  
-
VIH  
VCC_USB × 0.8  
VIL  
-
P000 to P008, P010 to P015 VIH  
VIL  
AVCC0 × 0.8  
-
AVCC0 × 0.2  
-
EXTAL  
VIH  
VIL  
VCC × 0.8  
-
Input ports pins except for  
P000 to P008, P010 to  
P015, P914, P915  
VCC × 0.2  
When VBATT  
power supply is  
selected  
P402, P403, P404  
VIH  
VIL  
VBATT × 0.8  
-
-
-
-
VBATT + 0.3  
VBATT × 0.2  
-
ΔVT  
VBATT × 0.05  
Note 1. P205, P206, P400, P401, P407, P408 (total 6 pins).  
Note 2. P100, P101, P204, P205, P206, P400, P401, P407, P408 (total 9 pins).  
Note 3. P205, P206, P400 to P404, P407, P408 (total 9 pins).  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 30 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.5  
I/O VIH, VIL (2)  
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 1.6 to 2.7 V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0 V  
Test  
Parameter  
Symbol  
VIH  
Min  
Typ  
Max  
Unit conditions  
Schmitt trigger  
input voltage  
RES, NMI  
Peripheral input pins  
VCC × 0.8  
-
-
-
-
-
-
-
-
-
-
-
-
V
-
VIL  
-
VCC × 0.2  
ΔVT  
VIH  
VCC × 0.01  
-
Input voltage  
(except for  
Schmitt trigger  
input pin)  
5 V-tolerant ports*1  
P914, P915  
VCC × 0.8  
5.8  
VIL  
-
VCC × 0.2  
VCC_USB + 0.3  
VCC_USB × 0.2  
-
VIH  
VCC_USB × 0.8  
VIL  
-
P000 to P008, P010 to P015 VIH  
VIL  
AVCC0 × 0.8  
-
AVCC0 × 0.2  
-
EXTAL  
VIH  
VIL  
VCC × 0.8  
-
Input ports pins except for  
P000 to P008, P010 to P015,  
P914, P915  
VCC × 0.2  
When VBATT  
power supply is  
selected  
P402, P403, P404  
VIH  
VIL  
VBATT × 0.8  
-
-
-
-
VBATT + 0.3  
VBATT × 0.2  
-
ΔVT  
VBATT × 0.01  
Note 1. P205, P206, P400 to P404, P407, P408 (total 9 pins)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 31 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.2.3  
I/O I , I  
OH OL  
Table 2.6  
I/O IOH, IOL (1 of 2)  
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 1.6 to 5.5 V  
Parameter  
Symbol  
IOH  
IOL  
Min  
Typ  
Max  
-4.0  
4.0  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Permissible output current  
(average value per pin)  
Ports P212, P213  
Port P408  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
Low drive*  
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
IOH  
IOL  
-4.0  
4.0  
Middle drive for IIC  
Fast-mode*  
VCC = 2.7 to 5.5 V  
-8.0  
8.0  
4
2
Middle drive*  
VCC = 3.0 to 5.5 V  
-20.0  
20.0  
-4.0  
4.0  
Port P409  
Low drive*1  
Middle drive*2  
VCC = 2.7 to 3.0 V  
-8.0  
8.0  
Middle drive*2  
VCC = 3.0 to 5.5 V  
-20.0  
20.0  
-4.0  
4.0  
Ports P100 to P115,  
Low drive*1  
Middle drive*2  
-
P201 to P204, P300 to P307,  
P500 to P503, P600 to P603,  
P608 to P610, P808, P809  
(total 41 pins)  
-4.0  
8.0  
Ports P914, P915  
Other output pin*3  
-4.0  
4.0  
Low drive*1  
Middle drive*2  
-4.0  
4.0  
-8.0  
8.0  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 32 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.6  
I/O IOH, IOL (2 of 2)  
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 1.6 to 5.5 V  
Parameter  
Symbol  
IOH  
Min  
-
Typ  
Max  
-4.0  
4.0  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Permissible output current  
(Max value per pin)  
Ports P212, P213  
Port P408  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IOL  
-
1
Low drive*  
IOH  
-
-4.0  
4.0  
IOL  
-
Middle drive for IIC  
Fast-mode*  
VCC = 2.7 to 5.5 V  
IOH  
-
-8.0  
8.0  
4
IOL  
-
2
Middle drive*  
VCC = 3.0 to 5.5 V  
IOH  
-
-20.0  
20.0  
-4.0  
4.0  
IOL  
-
Port P409  
Low drive*1  
IOH  
-
IOL  
-
Middle drive*2  
VCC = 2.7 to 3.0 V  
IOH  
-
-8.0  
8.0  
IOL  
-
Middle drive*2  
VCC = 3.0 to 5.5 V  
IOH  
-
-20.0  
20.0  
-4.0  
4.0  
IOL  
-
Low drive*1  
IOH  
-
Ports P100 to P115,  
P201 to P204, P300 to P307,  
P500 to P503, P600 to P603,  
P608 to P610, P808, P809  
(total 41 pins)  
IOL  
-
Middle drive*2  
-
IOH  
-
-4.0  
8.0  
IOL  
-
Ports P914, P915  
Other output pin*3  
IOH  
-
-4.0  
4.0  
IOL  
-
Low drive*1  
IOH  
-
-4.0  
4.0  
IOL  
-
Middle drive*2  
IOH  
-
-8.0  
8.0  
IOL  
-
Permissible output current  
(max value total pins)  
Total of ports P000 to P008, P010 to P015  
Ports P914, P915  
ΣIOH (max)  
ΣIOL (max)  
ΣIOH (max)  
ΣIOL (min)  
ΣIOH (max)  
ΣIOL (max)  
-
-30  
-
30  
-
-2.0  
2.0  
-
Total of all output pin*5  
-
-60  
-
60  
Caution:  
To protect the reliability of the MCU, the output current values should not exceed the values in this table. The  
average output current indicates the average value of current measured during 100 μs.  
Note 1. This is the value when low driving ability is selected with the Port Drive Capability bit in PmnPFS register.  
Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.  
Note 3. Except for ports P200, P214, P215, which are input ports.  
Note 4. This is the value when middle driving ability for IIC Fast-mode is selected with the Port Drive Capability bit in PmnPFS register.  
Note 5. For details on the permissible output current used with CTSU, see section 2.11, CTSU Characteristics.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 33 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.2.4  
I/O V , V , and Other Characteristics  
OH OL  
Table 2.7  
I/O VOH, VOL (1)  
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 4.0 to 5.5 V  
Parameter  
Symbol  
VOL  
Min  
Typ  
Max  
0.4  
0.6  
-
Unit  
Test conditions  
IOL = 3.0 mA  
IOL = 6.0 mA  
IOH = -20 mA  
IOL = 20 mA  
Output voltage IIC*1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V
VOL*2,*5  
VOH  
VOL  
-
3
Ports P408, P409*2,  
*
VCC - 1.0  
-
1.0  
-
Ports P000 to P008, Low drive  
P010 to P015  
VOH  
VOL  
AVCC0 - 0.8  
IOH = -2.0 mA  
IOL = 2.0 mA  
IOH = -4.0 mA  
IOL = 4.0 mA  
IOH = -2.0 mA  
IOL = 2.0 mA  
IOH = -2.0 mA  
IOL = 2.0 mA  
IOH = -4.0 mA  
IOL = 4.0 mA  
-
0.8  
-
Middle drive  
VOH  
VOL  
AVCC0 - 0.8  
-
0.8  
-
Ports P914, P915  
VOH  
VOL  
VCC_USB - 0.8  
-
0.8  
-
Other output pins*4 Low drive  
VOH  
VOL  
VCC - 0.8  
-
0.8  
-
Middle  
drive*6  
VOH  
VOL  
VCC - 0.8  
-
0.8  
Note 1. P100, P101, P204, P205, P206, P400, P401, P407, P408 (total 9 pins).  
Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.  
Note 3. Based on characterization data, not tested in production.  
Note 4. Except for ports P200, P214, P215, which are input ports.  
Note 5. This is the value when middle driving ability for IIC is selected in the Port Drive Capability bit in PmnPFS register for P408.  
Note 6. Except for P212, P213.  
Table 2.8  
I/O VOH, VOL (2)  
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 2.7 to 4.0 V  
Parameter  
Symbol  
Min  
Typ  
Max  
0.4  
0.6  
-
Unit  
Test conditions  
IOL = 3.0 mA  
Output voltage IIC*1  
VOL  
-
-
-
-
V
2, 5  
V
* *  
-
IOL = 6.0 mA  
OL  
3
Ports P408, P409*2,  
*
VOH  
VCC - 1.0  
IOH = -20 mA  
VCC = 3.3 V  
VOL  
-
-
1.0  
IOL = 20 mA  
VCC = 3.3 V  
Ports P000 to P008, Low drive  
P010 to P015  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
AVCC0 - 0.5  
-
-
-
-
-
-
-
-
-
-
-
IOH = -1.0 mA  
IOL = 1.0 mA  
IOH = -2.0 mA  
IOL = 2.0 mA  
IOH = -1.0 mA  
IOL = 1.0 mA  
IOH = -1.0 mA  
IOL = 1.0 mA  
IOH = -2.0 mA  
IOL = 2.0 mA  
-
0.5  
-
Middle drive  
AVCC0 - 0.5  
-
0.5  
-
Ports P914, P915  
VCC_USB - 0.5  
-
0.5  
-
Other output pins*4  
Low drive  
VCC - 0.5  
-
0.5  
-
Middle  
drive*6  
VCC - 0.5  
-
0.5  
Note 1. P100, P101, P204, P205, P206, P400, P401, P407, P408 (total 9 pins).  
Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.  
Note 3. Based on characterization data, not tested in production.  
Note 4. Except for ports P200, P214, P215, which are input ports.  
Note 5. This is the value when middle driving ability for IIC is selected in the Port Drive Capability bit in PmnPFS register for P408.  
Note 6. Except for P212, P213.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 34 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.9  
I/O VOH, VOL (3)  
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 1.6 to 2.7 V  
Parameter  
Symbol Min  
Typ  
Max  
-
Unit  
Test conditions  
IOH = -0.5 mA  
IOL = 0.5 mA  
IOH = -1.0 mA  
IOL = 1.0 mA  
IOH = -0.5 mA  
IOL = 0.5 mA  
IOH = -0.5 mA  
IOL = 0.5 mA  
IOH = -1.0 mA  
IOL = 1.0 mA  
Output voltage Ports P000 to P015  
Low drive  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
AVCC0 - 0.3  
-
-
-
-
-
-
-
-
-
-
V
-
0.3  
-
Middle drive  
AVCC0 - 0.3  
-
0.3  
-
Ports P914, P915  
Other output pins*1  
VCC_USB - 0.3  
-
0.3  
-
Low drive  
VCC - 0.3  
-
0.3  
-
Middle  
drive*2  
VCC - 0.3  
-
0.3  
Note 1. Except for ports P200, P214, P215, which are input ports.  
Note 2. Except for P212, P213.  
Table 2.10  
I/O other characteristics  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Parameter  
Symbol  
| Iin  
Min  
Typ  
Max  
Unit  
Test conditions  
Input leakage current  
RES, P200, P214, P215  
|
-
-
-
-
1.0  
1.0  
1.0  
μA  
Vin = 0 V  
Vin = VCC  
Three-state leakage  
current (off state)  
5 V-tolerant ports  
| ITSI  
|
-
-
μA  
Vin = 0 V  
Vin = 5.8 V  
Other ports  
Vin = 0 V  
(except for ports P200, P214,  
P215 and 5 V tolerant)  
Vin = VCC  
Input pull-up resistor  
Input capacitance  
All ports  
(except for ports P200, P214,  
P215, P914, P915)  
RU  
Cin  
10  
-
20  
-
50  
30  
15  
kΩ  
pF  
Vin = 0 V  
P914, P915,  
P100 to P103, P111, P112,  
P200  
Vin = 0 V  
f = 1 MHz  
Ta = 25°C  
Other input pins  
-
-
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 35 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.2.5  
I/O Pin Output Characteristics of Low Drive Capacity  
IOH/IOL vs VOH/VOL  
60  
50  
40  
30  
VCC = 5.5 V  
VCC = 3.3 V  
VCC = 2.7 V  
20  
10  
0
VCC = 1.6 V  
VCC = 1.6 V  
-10  
VCC = 2.7 V  
-20  
VCC = 3.3 V  
-30  
-40  
-50  
VCC = 5.5 V  
-60  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.2  
VOH/VOL and IOH/IOL Voltage Characteristics at Ta = 25°C when low drive output is selected  
(reference data)  
I
OH/IOL vs VOH/VOL  
3
2
Ta = -40°C  
Ta = 25°C  
Ta = 105°C  
1
0
-1  
-2  
-3  
Ta = 105°C  
Ta = 25°C  
Ta = -40°C  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
VOH/VOL [V]  
Figure 2.3  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when low drive output is selected  
(reference data)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 36 of 130  
RA4M1 Group  
2. Electrical Characteristics  
IOH/IOL vs VOH/VOL  
20  
15  
10  
5
Ta = -40°C  
Ta = 25°C  
Ta = 105°C  
0
-5  
Ta = 105°C  
Ta = 25°C  
-10  
-15  
-20  
Ta = -40°C  
0
0.5  
1
1.5  
2
2.5  
3
VOH/VOL [V]  
Figure 2.4  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when low drive output is selected  
(reference data)  
IOH/IOL vs VOH/VOL  
30  
20  
Ta = -40°C  
Ta = 25°C  
Ta = 105°C  
10  
0
-10  
-20  
-30  
Ta = 105°C  
Ta = 25°C  
Ta = -40°C  
0
0.5  
1
1.5  
VOH/VOL [V]  
2
2.5  
3
3.5  
Figure 2.5  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when low drive output is selected  
(reference data)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 37 of 130  
RA4M1 Group  
2. Electrical Characteristics  
I
OH/IOL vs VOH/VOL  
60  
40  
20  
0
Ta = -40°C  
Ta = 25°C  
Ta = 105°C  
-20  
-40  
-60  
Ta = 105°C  
Ta = 25°C  
Ta = -40°C  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.6  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when low drive output is selected  
(reference data)  
2.2.6  
I/O Pin Output Characteristics of Middle Drive Capacity  
IOH/IOL vs VOH/VOL  
140  
120  
100  
80  
VCC = 5.5 V  
60  
VCC = 3.3 V  
VCC = 2.7 V  
40  
20  
VCC = 1.6 V  
0
VCC = 1.6 V  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
VCC = 2.7 V  
VCC = 3.3 V  
VCC = 5.5 V  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.7  
VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected  
(reference data)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 38 of 130  
RA4M1 Group  
2. Electrical Characteristics  
IOH/IOL vs VOH/VOL  
6
4
Ta = -40°C  
Ta = 25°C  
Ta = 105°C  
2
0
-2  
-4  
-6  
Ta = 105°C  
Ta = 25°C  
Ta = -40°C  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
VOH/VOL [V]  
Figure 2.8  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when middle drive output is  
selected (reference data)  
IOH/IOL vs VOH/VOL  
40  
30  
Ta = -40°C  
Ta = 25°C  
Ta = 105°C  
20  
10  
0
-10  
-20  
-30  
-40  
Ta = 105°C  
Ta = 25°C  
Ta = -40°C  
0
0.5  
1
1.5  
2
2.5  
3
VOH/VOL [V]  
Figure 2.9  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is  
selected (reference data)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 39 of 130  
RA4M1 Group  
2. Electrical Characteristics  
IOH/IOL vs VOH/VOL  
60  
40  
Ta = -40°C  
Ta = 25°C  
Ta = 105°C  
20  
0
-20  
-40  
-60  
Ta = 105°C  
Ta = 25°C  
Ta = -40°C  
0
0.5  
1
1.5  
VOH/VOL [V]  
2
2.5  
3
3.5  
Figure 2.10  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is  
selected (reference data)  
IOH/IOL vs VOH/VOL  
140  
120  
Ta = -40°C  
Ta = 25°C  
100  
Ta = 105°C  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
Ta = 105°C  
-100  
Ta = 25°C  
-120  
Ta = -40°C  
-140  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.11  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is  
selected (reference data)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 40 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.2.7  
P408, P409 I/O Pin Output Characteristics of Middle Drive Capacity  
IOH/IOL vs VOH/VOL  
200  
180  
160  
140  
120  
100  
80  
VCC = 5.5 V  
VCC = 3.3 V  
VCC = 2.7 V  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
VCC = 2.7 V  
VCC = 3.3 V  
VCC = 5.5 V  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.12  
VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected  
(reference data)  
IOH/IOL vs VOH/VOL  
60  
40  
Ta = -40°C  
Ta = 25°C  
Ta = 105°C  
20  
0
-20  
-40  
-60  
Ta = 105°C  
Ta = 25°C  
Ta = -40°C  
0
0.5  
1
1.5  
2
2.5  
3
VOH/VOL [V]  
Figure 2.13  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is  
selected (reference data)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 41 of 130  
RA4M1 Group  
2. Electrical Characteristics  
IOH/IOL vs VOH/VOL  
100  
80  
60  
40  
20  
0
Ta = -40°C  
Ta = 25°C  
Ta = 105°C  
-20  
-40  
-60  
Ta = 105°C  
Ta = 25°C  
-80 Ta = -40°C  
-100  
0
0.5  
1
1.5  
VOH/VOL [V]  
2
2.5  
3
3.5  
Figure 2.14  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is  
selected (reference data)  
IOH/IOL vs VOH/VOL  
220  
Ta = -40°C  
180  
140  
100  
60  
Ta = 25°C  
Ta = 105°C  
20  
-20  
-60  
-100  
-140  
-180  
-220  
Ta = 105°C  
Ta = 25°C  
Ta = -40°C  
0
1
2
3
4
5
6
VOH/VOL [V]  
Figure 2.15  
VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is  
selected (reference data)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 42 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.2.8  
IIC I/O Pin Output Characteristics  
IOL vs VOL  
120  
110  
100  
90  
VCC = 5.5 V (Middle drive)  
80  
70  
60  
50  
VCC = 3.3V (Middle drive)  
VCC = 5.5V (Low drive)  
40  
30  
20  
10  
0
VCC = 2.7V (Middle drive)  
VCC = 3.3V (Low drive)  
VCC = 2.7V (Low drive)  
0
1
2
3
4
5
6
VOL [V]  
Figure 2.16  
VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 43 of 130  
RA4M1 Group  
2.2.9  
2. Electrical Characteristics  
Operating and Standby Current  
Table 2.11  
Operating and standby current (1) (1 of 2)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Test  
conditions  
10  
Parameter  
Symbol Typ*  
ICC  
Max  
Unit  
7
Supply  
High-speed  
mode*2  
Normal mode  
All peripheral clock  
ICLK = 48 MHz  
ICLK = 32 MHz  
ICLK = 16 MHz  
ICLK = 8 MHz  
ICLK = 48 MHz  
ICLK = 32 MHz  
ICLK = 16 MHz  
ICLK = 8 MHz  
ICLK = 48 MHz  
ICLK = 32 MHz  
ICLK = 16 MHz  
ICLK = 8 MHz  
ICLK = 48 MHz  
8.3  
5.8  
3.5  
2.2  
16.4  
11.3  
6.4  
4.0  
18.5  
13.8  
7.7  
4.5  
-
-
mA  
*
current*1  
disabled, while (1) code  
-
executing from flash*5  
-
-
All peripheral clock  
-
disabled, CoreMark code  
-
executing from flash*5  
-
-
9
All peripheral clock  
-
*
enabled, while (1) code  
8
executing from flash*5  
-
*
-
-
9
All peripheral clock  
enabled, code executing  
from SRAM*5  
50.0  
*
7
Sleep mode  
All peripheral clock  
disabled*5  
ICLK = 48 MHz  
ICLK = 32 MHz  
ICLK = 16 MHz  
ICLK = 8 MHz  
ICLK = 48 MHz  
ICLK = 32 MHz  
ICLK = 16 MHz  
ICLK = 8 MHz  
3.3  
2.4  
1.8  
1.4  
13.4  
10.4  
6.0  
3.6  
2.5  
2.5  
2.0  
0.9  
4.7  
3.7  
1.2  
5.7  
4.3  
1.5  
-
-
*
-
-
-
9
All peripheral clock  
enabled*5  
-
*
8
-
*
-
-
Increase during BGO operation*6  
-
-
7
Middle-speed Normal mode  
mode*2  
All peripheral clock  
ICLK = 12 MHz  
ICLK = 8 MHz  
ICLK = 1 MHz  
ICLK = 12 MHz  
ICLK = 8 MHz  
ICLK = 1 MHz  
ICLK = 12 MHz  
ICLK = 8 MHz  
ICLK = 1 MHz  
ICLK = 12 MHz  
ICC  
-
mA  
*
disabled, while (1) code  
-
executing from flash*5  
-
All peripheral clock  
-
disabled, CoreMark code  
-
executing from flash*5  
-
8
All peripheral clock  
-
*
enabled, while (1) code  
-
executing from flash*5  
-
All peripheral clock  
enabled, code executing  
from SRAM*5  
20.0  
7
Sleep mode  
All peripheral clock  
disabled*5  
ICLK = 12 MHz  
ICLK = 8 MHz  
ICLK = 1 MHz  
ICLK = 12 MHz  
ICLK = 8 MHz  
ICLK = 1 MHz  
1.2  
1.2  
0.8  
4.4  
3.4  
1.4  
2.5  
-
-
-
-
-
-
-
*
8
All peripheral clock  
enabled*5  
*
Increase during BGO operation*6  
-
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 44 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.11  
Operating and standby current (1) (2 of 2)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Test  
conditions  
10  
Parameter  
Symbol Typ*  
Max  
Unit  
7
Supply  
Low-speed  
mode*3  
Normal mode  
ICLK = 1 MHz  
ICC  
0.4  
-
mA  
All peripheral clock  
*
current*1  
disabled, while (1) code  
executing from flash*5  
All peripheral clock  
ICLK = 1 MHz  
ICLK = 1 MHz  
ICLK = 1 MHz  
0.6  
1.0  
-
-
disabled, CoreMark code  
executing from flash*5  
8
All peripheral clock  
-
*
enabled, while (1) code  
executing from flash*5  
All peripheral clock  
enabled, code executing  
from SRAM*5  
2.2  
7
Sleep mode  
All peripheral clock  
disabled*5  
ICLK = 1 MHz  
ICLK = 1 MHz  
ICLK = 4 MHz  
0.3  
0.9  
1.7  
-
-
-
*
8
All peripheral clock  
enabled*5  
*
7
Low-voltage  
mode*3  
Normal mode  
All peripheral clock  
ICC  
mA  
*
disabled, while (1) code  
executing from flash*5  
All peripheral clock  
ICLK = 4 MHz  
ICLK = 4 MHz  
ICLK = 4 MHz  
2.8  
3.0  
-
-
disabled, CoreMark code  
executing from flash*5  
8
All peripheral clock  
-
*
enabled, while (1) code  
executing from flash*5  
All peripheral clock  
enabled, code executing  
from SRAM*5  
8.0  
7
Sleep mode  
All peripheral clock  
disabled*5  
ICLK = 4 MHz  
1.3  
2.5  
8.5  
-
-
-
*
8
All peripheral clock  
enabled*5  
ICLK = 4 MHz  
*
8
Subosc-  
speed  
Normal mode  
All peripheral clock  
ICLK = 32.768 kHz  
ICC  
μA  
*
disabled, while (1) code  
mode*4  
executing from flash*5  
All peripheral clock  
enabled, while (1) code  
executing from flash  
ICLK = 32.768 kHz  
ICLK = 32.768 kHz  
14.9  
-
-
*5  
All peripheral clock  
83.0  
enabled, code executing  
*5  
from SRAM  
Sleep mode  
All peripheral clock  
disabled*5  
ICLK = 32.768 kHz  
ICLK = 32.768 kHz  
5.0  
-
-
All peripheral clock  
enabled*5  
11.4  
Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up  
MOSs are in the off state.  
Note 2. The clock source is HOCO.  
Note 3. The clock source is MOCO.  
Note 4. The clock source is the sub-clock oscillator.  
Note 5. This does not include BGO operation.  
Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution.  
Note 7. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64.  
Note 8. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are the same frequency as that of ICLK.  
Note 9. FCLK and PCLKB are set to divided by 2 and PCLKA, PCLKC, and PCLKD are the same frequency as that of ICLK.  
Note 10. VCC = 3.3 V.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 45 of 130  
RA4M1 Group  
2. Electrical Characteristics  
4 0  
3 5  
3 0  
2 5  
2 0  
1 5  
1 0  
5
* 2  
T a  
=
1 0 5 C , IC L K  
=
=
4 8 M H z  
3 2 M H z  
* 2  
T a  
T a  
=
=
1 0 5 C , IC L K  
* 1  
2 5 C , IC L K  
= 4 8 M H z  
* 2  
* 1  
* 2  
T a  
T a  
T a  
T a  
T a  
T a  
T a  
=
=
=
=
=
=
=
1 0 5  
2 5  
C
,
,
IC L K  
=
=
1 6 M H z  
3 2 M H z  
IC L K  
C
1 0 5  
C
,
,
IC L K  
=
8
M H z  
IC L K  
=
1 6 M H z * 1  
* 2  
M H z  
M H z * 1  
M H z * 1  
2 5  
C
1 0 5 C , IC L K  
=
=
=
4
8
4
,
,
IC L K  
IC L K  
2 5  
2 5  
C
C
0
1 .5  
2 .0  
2 .5  
3 .0  
3 .5  
4 .0  
4 .5  
5 .0  
5 .5  
6 .0  
V C C (V )  
T a  
T a  
T a  
T a  
T a  
=
=
=
=
=
2 5 C , IC L K  
=
=
=
=
=
4 8 M H z * 1  
3 2 M H z *1  
1 6 M H z * 1  
T a  
=
=
=
=
=
1 0 5 C , IC L K  
=
=
=
=
4 8 M H z *2  
3 2 M H z *2  
1 6 M H z *2  
2 5C  
,
IC L K  
IC L K  
IC L K  
IC L K  
T a  
T a  
T a  
T a  
1 0 5 C , IC L K  
1 0 5 C , IC L K  
2 5  
2 5  
2 5  
C
C
C
,
,
8
4
M H z * 1  
M H z * 1  
1 0 5  
C
C
,
IC L K  
IC L K  
8
M H z *2  
M H z *2  
,
1 0 5  
,
=
4
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual  
measurements of the sample cores during product evaluation.  
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the  
actual measurements for the upper limit samples during product evaluation.  
Figure 2.17  
Voltage dependency in high-speed operating mode (reference data)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 46 of 130  
RA4M1 Group  
2. Electrical Characteristics  
12  
10  
8
*2  
Ta = 105 C, ICLK = 12 MHz  
*2  
, ICLK = 8 MHz  
Ta = 105 C  
6
*1  
*2  
*1  
Ta = 25 C, ICLK = 12 MHz  
Ta = 105 C, ICLK = 4 MHz  
, ICLK = 8 MHz  
Ta = 25 C  
4
, ICLK = 4 MHz*1  
Ta = 25 C  
*2  
, ICLK = 1 MHz  
Ta = 105 C  
2
*1  
Ta = 25 C, ICLK = 1 MHz  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VCC (V)  
Ta = 25C, ICLK = 12 MHz *1  
Ta = 105C, ICLK = 12 MHz *2  
Ta = 105 C, ICLK = 8 MHz *2  
Ta = 25 C, ICLK = 8 MHz *1  
Ta = 105 C  
Ta = 25 C, ICLK = 4 MHz *1  
, ICLK = 4 MHz *2  
Ta = 25 C, ICLK = 1 MHz *1  
Ta = 105 C, ICLK = 1 MHz *2  
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual  
measurements of the sample cores during product evaluation.  
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the  
actual measurements for the upper limit samples during product evaluation.  
Figure 2.18  
Voltage dependency in middle-speed operating mode (reference data)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 47 of 130  
RA4M1 Group  
2. Electrical Characteristics  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
*2  
*1  
Ta = 105 C, ICLK = 1 MHz  
Ta = 25 C, ICLK = 1 MHz  
0.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VCC (V)  
Ta = 25 C, ICLK = 1 MHz *1  
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the  
actual measurements of the sample cores during product evaluation.  
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the  
actual measurements for the upper limit samples during product evaluation.  
Figure 2.19  
Voltage dependency in Low-speed mode (reference data)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 48 of 130  
RA4M1 Group  
2. Electrical Characteristics  
6
5
4
3
2
1
*2  
*1  
Ta = 105 C, ICLK = 4 MHz  
, ICLK = 4 MHz  
Ta = 25 C  
*2  
Ta = 105 C, ICLK = 1 MHz  
*1  
Ta = 25 C, ICLK = 1 MHz  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VCC (V)  
*1  
, ICLK = 4 MHz *2  
Ta = 105 C  
Ta = 25 C  
, ICLK = 4 MHz  
, ICLK = 1 MHz *1  
*2  
Ta = 25 C  
, ICLK = 1 MHz  
Ta = 105 C  
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the  
actual measurements of the sample cores during product evaluation.  
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the  
actual measurements for the upper limit samples during product evaluation.  
Figure 2.20  
Voltage dependency in low-voltage mode (reference data)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 49 of 130  
RA4M1 Group  
2. Electrical Characteristics  
55.0  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
*2  
Ta = 105 C, ICLK = 32 MHz  
*1  
Ta = 25 C, ICLK = 32 MHz  
0.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VCC (V)  
*1  
*2  
, ICLK = 32 MHz  
Ta = 25 C  
Ta = 105 C  
, ICLK = 32 MHz  
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the  
actual measurements of the sample cores during product evaluation.  
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the  
actual measurements for the upper limit samples during product evaluation.  
Figure 2.21  
Voltage dependency in Subosc-speed mode (reference data)  
Operating and standby current (2)  
Table 2.12  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Parameter  
Symbol Typ*4  
Max  
4.5  
7.1  
20.2  
53.7  
-
Unit  
Test conditions  
Supply  
current*1  
Software Standby Ta = 25°C  
ICC  
0.8  
1.3  
3.5  
8.7  
0.5  
μA  
-
mode*2  
Ta = 55°C  
Ta = 85°C  
Ta = 105°C  
Increment for RTC operation with  
low-speed on-chip oscillator*3  
-
Increment for RTC operation with  
sub-clock oscillator*3  
0.4  
1.2  
-
-
SOMCR.SODRV[1:0] are 11b  
(Low power mode 3)  
SOMCR.SODRV[1:0] are 00b  
(Normal mode)  
Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up  
MOSs are in the off state.  
Note 2. The IWDT and LVD are not operating.  
Note 3. Includes the current of sub-oscillation circuit or low-speed on-chip oscillator.  
Note 4. VCC = 3.3 V.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 50 of 130  
RA4M1 Group  
100  
2. Electrical Characteristics  
10  
1
0.1  
-40  
-20  
0
20  
40  
Ta ( C)  
60  
80  
100  
Average value of the tested middle samples during product evaluation.  
Average value of the tested upper-limit samples during product evaluation.  
Figure 2.22  
Table 2.13  
Temperature dependency in Software Standby mode all SRAM (reference data)  
Operating and standby current (3)  
Conditions: VCC = AVCC0 = 0V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0V  
Parameter  
Symbol Typ  
ICC  
Max  
Unit  
Test conditions  
Supply  
current*1  
RTC operation  
when VCC is off  
Ta = 25°C  
Ta = 55°C  
Ta = 85°C  
Ta = 105°C  
Ta = 25°C  
Ta = 55°C  
Ta = 85°C  
Ta = 105°C  
Ta = 25°C  
Ta = 55°C  
Ta = 85°C  
Ta = 105°C  
Ta = 25°C  
Ta = 55°C  
Ta = 85°C  
Ta = 105°C  
0.8  
0.9  
1.0  
1.1  
0.9  
1.0  
1.1  
1.2  
1.5  
1.7  
2.0  
2.2  
1.6  
1.8  
2.1  
2.3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
μA  
VBATT = 2.0 V  
SOMCR.SORDRV[1:0] = 11b  
(Low power mode 3)  
VBATT = 3.3 V  
SOMCR.SORDRV[1:0] = 11b  
(Low power mode 3)  
VBATT = 2.0 V  
SOMCR.SORDRV[1:0] = 00b  
(Normal mode)  
VBATT = 3.3 V  
SOMCR.SORDRV[1:0] = 00b  
(Normal mode)  
Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up  
MOSs are in the off state.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 51 of 130  
RA4M1 Group  
2. Electrical Characteristics  
10  
Normal drive capacity*1  
1
Low drive capacity*1  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Ta ( C)  
Low drive capacity*1  
Normal drive capacity*1  
Note 1. Average value of the tested middle sample during product evaluatio.n  
Figure 2.23  
Temperature dependency of RTC operation with VCC off (reference data)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 52 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.14  
Operating and standby current (4)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V, VREFH0 = 2.7 V to AVCC0  
Test  
Parameter  
Symbol Min Typ  
Max  
3.0  
1.0  
0.8  
1.0  
150  
60  
Unit  
mA  
mA  
mA  
μA  
μA  
nA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
conditions  
Analog power  
supply current  
During A/D conversion (at high-speed conversion)  
During A/D conversion (at low-power conversion)  
During D/A conversion (per channel)*1  
Waiting for A/D and D/A conversion (all units)*6  
During A/D conversion  
IAVCC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.4  
-
Reference  
power supply  
current  
IREFH0  
-
Waiting for A/D conversion (all units)  
During D/A conversion  
-
IREFH  
50  
-
100  
100  
-
Waiting for D/A conversion (all units)  
Temperature sensor  
ITNS  
75  
15  
10  
2
Low-Power  
Analog  
Comparator  
operating  
current  
Window mode  
ICMPLP  
-
Comparator High-speed mode  
Comparator Low-speed mode  
Comparator Low-speed mode using DAC8  
-
-
820  
2.5  
4.5  
6.5  
8.5  
140  
280  
420  
560  
0.34  
-
Operational  
Amplifier  
operating  
current  
Low power mode  
1 unit operating  
2 units operating  
3 units operating  
4 units operating  
1 unit operating  
2 units operating  
3 units operating  
4 units operating  
IAMP  
4.0  
8.0  
11.0  
14.0  
220  
410  
600  
780  
-
High-speed mode  
5
5
5
LCD operating  
current  
External resistance division method  
f = f = 128 Hz, 1/3 bias, and 4-time slice  
LCD  
ILCD1  
ILCD2  
ILCD3  
*
*
*
SUB  
Internal voltage boosting method (VLCD.VLCD = 04)  
= f = 128 Hz, 1/3 bias, and 4-time slice  
-
-
-
0.92  
0.19  
-
-
-
μA  
μA  
mA  
-
-
-
f
LCD  
SUB  
Capacitor split method  
= f = 128 Hz, 1/3 bias, and 4-time slice  
f
LCD  
SUB  
2
USB operating  
current  
During USB communication operation under the  
following settings and conditions:  
IUSBH  
*
4.3 (VCC)  
0.9 (VCC_USB)*4  
Host controller operation is set to full-speed mode  
Bulk OUT transfer (64 bytes) × 1,  
bulk IN transfer (64 bytes) × 1  
Connect peripheral devices via a 1-meter USB  
cable from the USB port.  
2
During USB communication operation under the  
following settings and conditions:  
Device controller operation is set to full-speed mode  
Bulk OUT transfer (64 bytes) × 1,  
bulk IN transfer (64 bytes) × 1  
Connect the host device via a 1-meter USB cable  
from the USB port.  
IUSBF  
*
-
-
3.6 (VCC)  
-
-
mA  
-
-
1.1 (VCC_USB)*4  
3
During suspended state under the following setting  
and conditions:  
ISUSP  
*
0.35 (VCC)  
170 (VCC_USB)*4  
μA  
Device controller operation is set to full-speed mode  
(pull up the USB_DP pin)  
Software standby mode  
Connect the host device via a 1-meter USB cable  
from the USB port.  
Note 1. The reference power supply current is included in the power supply current value for D/A conversion.  
Note 2. Current consumed only by the USBFS.  
Note 3. Includes the current supplied from the pull-up resistor of the USB_DP pin to the pull-down resistor of the host device, in addition  
to the current consumed by the MCU during the suspended state.  
Note 4. When VCC = VCC_USB = 3.3 V.  
Note 5. Current flowing only to the LCD controller. Not including the current that flows through the LCD panel.  
Note 6. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC140 module stop bit) is in the module-stop  
state.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 53 of 130  
RA4M1 Group  
2.2.10  
2. Electrical Characteristics  
VCC Rise and Fall Gradient and Ripple Frequency  
Table 2.15  
Rise and fall gradient characteristics  
Conditions: VCC = AVCC0 = 0 to 5.5 V  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test conditions  
Power-on VCC  
rising gradient  
Voltage monitor 0 reset disabled at startup (normal SrVCC 0.02  
startup)  
-
2
ms/V  
-
Voltage monitor 0 reset enabled at startup*1  
SCI/USB boot mode*2  
0.02  
0.02  
-
-
-
2
Note 1. When OFS1.LVDAS = 0.  
Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit.  
Table 2.16  
Rising and falling gradient and ripple frequency characteristics  
Conditions: VCC = AVCC0 = VCC_USB = 1.6 to 5.5 V  
The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (5.5 V) and lower limit  
(1.6 V).  
When VCC change exceeds VCC ±10%, the allowable voltage change rising/falling gradient dt/dVCC must be met.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Allowable ripple frequency  
fr (VCC)  
-
-
10  
kHz  
Figure 2.24  
Vr (VCC) ≤ VCC × 0.2  
-
-
-
-
1
MHz  
MHz  
ms/V  
Figure 2.24  
Vr (VCC) ≤ VCC × 0.08  
-
10  
-
Figure 2.24  
Vr (VCC) ≤ VCC × 0.06  
Allowable voltage change rising and  
falling gradient  
dt/dVCC  
1.0  
When VCC change exceeds VCC ±10%  
1/fr(VCC)  
VCC  
Vr(VCC)  
Figure 2.24  
Ripple waveform  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 54 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.3  
AC Characteristics  
2.3.1  
Frequency  
Table 2.17  
Operation frequency value in high-speed operating mode  
Conditions: VCC = AVCC0 = 2.4 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max*5  
48  
Unit  
Operation  
frequency  
System clock (ICLK)*4  
2.7 to 5.5 V  
2.4 to 2.7 V  
2.7 to 5.5 V  
2.4 to 2.7 V  
2.7 to 5.5 V  
2.4 to 2.7 V  
2.7 to 5.5 V  
2.4 to 2.7 V  
2.7 to 5.5 V  
2.4 to 2.7 V  
2.7 to 5.5 V  
2.4 to 2.7 V  
f
0.032768  
-
-
-
-
-
-
-
-
-
-
-
-
MHz  
0.032768  
16  
Flash interface clock (FCLK)*1,  
*
*
0.032768  
32  
2,  
4
0.032768  
16  
Peripheral module clock (PCLKA)*4  
Peripheral module clock (PCLKB)*4  
Peripheral module clock (PCLKC)*3,  
Peripheral module clock (PCLKD)*4  
-
-
-
-
-
-
-
-
48  
16  
32  
16  
4
*
64  
16  
64  
16  
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for  
programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer  
frequency such as 1.5 MHz cannot be set.  
Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency  
accuracy of the clock source.  
Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in  
use.  
Note 4. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,  
PCLKC, PCLKD, and FCLK.  
Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed  
operation, see Table 2.22, Clock timing.  
Table 2.18  
Operation frequency value in Middle-speed mode  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max*5  
12  
12  
8
Unit  
Operation  
frequency  
System clock (ICLK)*4  
2.7 to 5.5 V  
2.4 to 2.7 V  
1.8 to 2.4 V  
2.7 to 5.5 V  
2.4 to 2.7 V  
1.8 to 2.4 V  
2.7 to 5.5 V  
2.4 to 2.7 V  
1.8 to 2.4 V  
2.7 to 5.5 V  
2.4 to 2.7 V  
1.8 to 2.4 V  
2.7 to 5.5 V  
2.4 to 2.7 V  
1.8 to 2.4 V  
2.7 to 5.5 V  
2.4 to 2.7 V  
1.8 to 2.4 V  
f
0.032768  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
MHz  
0.032768  
0.032768  
Flash interface clock (FCLK)*1,  
*
*
0.032768  
12  
12  
8
2,  
4
0.032768  
0.032768  
Peripheral module clock (PCLKA)*4  
Peripheral module clock (PCLKB)*4  
Peripheral module clock (PCLKC)*3,  
Peripheral module clock (PCLKD)*4  
-
-
-
-
-
-
-
-
-
-
-
-
12  
12  
8
12  
12  
8
4
*
12  
12  
8
12  
12  
8
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 55 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for  
programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer  
frequency such as 1.5 MHz cannot be set.  
Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency  
accuracy of the clock source.  
Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.  
Note 4. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,  
PCLKC, PCLKD, FCLK.  
Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed  
operation, see Table 2.22, Clock timing.  
Table 2.19  
Operation frequency value in Low-speed mode  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max*4  
Unit  
Operation  
frequency  
System clock (ICLK)*3  
1.8 to 5.5 V  
1.8 to 5.5 V  
1.8 to 5.5 V  
1.8 to 5.5 V  
1.8 to 5.5 V  
1.8 to 5.5 V  
f
0.032768  
-
-
-
-
-
-
1
1
1
1
1
1
MHz  
Flash interface clock (FCLK)*1,  
*
0.032768  
3
Peripheral module clock (PCLKA)*3  
Peripheral module clock (PCLKB)*3  
Peripheral module clock (PCLKC)*2,  
Peripheral module clock (PCLKD)*3  
-
-
-
-
3
*
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory.  
Note 2. The lower-limit frequency of PCLKC is 1 MHz when the A/D converter is in use.  
Note 3. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,  
PCLKC, PCLKD, FCLK.  
Note 4. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed  
operation, see Table 2.22, Clock timing.  
Table 2.20  
Operation frequency value in low-voltage mode  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max*5  
Unit  
Operation  
frequency  
System clock (ICLK)*4  
1.6 to 5.5 V  
1.6 to 5.5 V  
1.6 to 5.5 V  
1.6 to 5.5 V  
1.6 to 5.5 V  
1.6 to 5.5 V  
f
0.032768  
-
-
-
-
-
-
4
4
4
4
4
4
MHz  
Flash interface clock (FCLK)*1,  
*
*
0.032768  
2,  
4
Peripheral module clock (PCLKA)*4  
Peripheral module clock (PCLKB)*4  
Peripheral module clock (PCLKC)*3,  
Peripheral module clock (PCLKD)*4  
-
-
-
-
4
*
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for  
programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer  
frequency such as 1.5 MHz cannot be set.  
Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency  
accuracy of the clock source.  
Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-Bit A/D converter is in  
use.  
Note 4. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,  
PCLKC, PCLKD, FCLK.  
Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed  
operation, see Table 2.22, Clock timing.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 56 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.21  
Operation frequency value in Subosc-speed mode  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Operation  
frequency  
System clock (ICLK)*3  
1.8 to 5.5 V  
1.8 to 5.5 V  
1.8 to 5.5 V  
1.8 to 5.5 V  
1.8 to 5.5 V  
1.8 to 5.5 V  
f
27.8528 32.768  
27.8528 32.768  
37.6832  
37.6832  
37.6832  
37.6832  
37.6832  
37.6832  
kHz  
Flash interface clock (FCLK)*1,  
*
3
Peripheral module clock (PCLKA)*3  
Peripheral module clock (PCLKB)*3  
Peripheral module clock (PCLKC)*2,  
Peripheral module clock (PCLKD)*3  
-
-
-
-
-
-
-
-
3
*
Note 1. Programming and erasing the flash memory is not possible.  
Note 2. The 14-bit A/D converter cannot be used.  
Note 3. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,  
PCLKC, PCLKD, FCLK.  
2.3.2  
Clock Timing  
Table 2.22  
Clock timing (1 of 2)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
ns  
Test conditions  
EXTAL external clock input cycle time  
EXTAL external clock input high pulse width  
EXTAL external clock input low pulse width  
EXTAL external clock rising time  
t
50  
-
-
Figure 2.25  
Xcyc  
t
20  
-
-
ns  
XH  
t
20  
-
-
ns  
XL  
t
-
-
5
ns  
Xr  
EXTAL external clock falling time  
t
-
-
5
ns  
Xf  
EXTAL external clock input wait time*1  
EXTAL external clock input frequency  
t
0.3  
-
-
μs  
-
EXWT  
fEXTAL  
-
-
20  
MHz  
2.4 ≤ VCC ≤ 5.5  
-
-
8
1.8 ≤ VCC < 2.4  
-
-
1
1.6 ≤ VCC < 1.8  
Main clock oscillator oscillation frequency  
f
1
-
20  
MHz  
2.4 ≤ VCC ≤ 5.5  
MAIN  
1
-
8
1.8 ≤ VCC < 2.4  
1
-
4
1.6 ≤ VCC < 1.8  
Main clock oscillation stabilization wait time (crystal)*9  
LOCO clock oscillation frequency  
tMAINOSCWT  
-
-
-*9  
ms  
-
f
27.8528  
32.768  
37.6832  
100  
17.25  
9.2  
kHz  
μs  
-
LOCO  
LOCO clock oscillation stabilization time  
IWDT-dedicated clock oscillation frequency  
MOCO clock oscillation frequency  
t
-
-
Figure 2.26  
LOCO  
f
12.75  
6.8  
-
15  
8
-
kHz  
MHz  
μs  
-
-
-
ILOCO  
fMOCO  
tMOCO  
MOCO clock oscillation stabilization time  
1
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 57 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.22  
Clock timing (2 of 2)  
Parameter  
Symbol  
f
Min  
Typ  
Max  
Unit  
Test conditions  
HOCO clock oscillation frequency  
23.64  
24  
24.36  
MHz  
Ta = -40 to -20°C  
1.8 ≤ VCC ≤ 5.5  
HOCO24  
22.68  
23.76  
23.52  
31.52  
30.24  
31.68  
31.36  
47.28  
47.52  
47.04  
63.04  
63.36  
62.72  
-
24  
24  
24  
32  
32  
32  
32  
48  
48  
48  
64  
64  
64  
-
25.32  
24.24  
24.48  
32.48  
33.76  
32.32  
32.64  
48.72  
48.48  
48.96  
64.96  
64.64  
65.28  
37.1  
Ta = -40 to 85°C  
1.6 ≤ VCC < 1.8  
Ta = -20 to 85°C  
1.8 ≤ VCC ≤ 5.5  
Ta = 85 to 105°C  
2.4 ≤ VCC ≤ 5.5  
f
HOCO32  
Ta = -40 to -20°C  
1.8 ≤ VCC ≤ 5.5  
Ta = -40 to 85°C  
1.6 ≤ VCC < 1.8  
Ta = -20 to 85°C  
1.8 ≤ VCC ≤ 5.5  
Ta = 85 to 105°C  
2.4 ≤ VCC ≤ 5.5  
4
f
f
*
Ta = -40 to -20°C  
1.8 ≤ VCC ≤ 5.5  
HOCO48  
Ta = -20 to 85°C  
1.8 ≤ VCC ≤ 5.5  
Ta = 85 to 105°C  
2.4 ≤ VCC ≤ 5.5  
5
*
Ta = -40 to -20°C  
2.4 ≤ VCC ≤ 5.5  
HOCO64  
Ta = -20 to 85°C  
2.4 ≤ VCC ≤ 5.5  
Ta = 85 to 105°C  
2.4 ≤ VCC ≤ 5.5  
HOCO clock oscillation  
7
μs  
Figure 2.27  
Except Low-Voltage tHOCO24  
stabilization time*6,  
*
mode  
tHOCO32  
tHOCO48  
tHOCO64  
-
-
-
-
-
-
43.3  
80.6  
100.9  
Low-Voltage mode  
tHOCO24  
tHOCO32  
tHOCO48  
tHOCO64  
PLL input frequency*2  
f
4
24  
-
-
12.5  
64  
55.5  
-
MHz  
MHz  
μs  
-
PLLIN  
PLL circuit oscillation frequency*2  
f
-
-
PLL  
PLL clock oscillation stabilization time*8  
PLL free-running oscillation frequency  
Sub-clock oscillator oscillation frequency  
Sub-clock oscillation stabilization time*3  
t
-
Figure 2.29  
PLL  
f
-
8
MHz  
kHz  
s
-
PLLFR  
f
-
32.768  
-
-
-
SUB  
t
-
-*3  
Figure 2.30  
SUBOSC  
Note 1. Time until the clock can be used after the Main Clock Oscillator Stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the  
external clock is stable.  
Note 2. The VCC range that the PLL can be used is 2.4 to 5.5 V.  
Note 3. After changing the setting of the SOSCCR.SOSTP bit so that the sub-clock oscillator operates, only start using the sub-clock  
after the sub-clock oscillation stabilization wait time elapses, that is greater than or equal to the value recommended by the  
oscillator manufacturer.  
Note 4. The 48-MHz HOCO can be used within a VCC range of 1.8 V to 5.5 V.  
Note 5. The 64-MHz HOCO can be used within a VCC range of 2.4 V to 5.5 V.  
Note 6. This is a characteristic when HOCOCR.HCSTP bit is set to 0 (oscillation) in MOCO stop state.  
When HOCOCR.HCSTP bit is set to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 μs.  
Note 7. Whether stabilization time has elapsed can be confirmed by OSCSF.HOCOSF.  
Note 8. This is a characteristic when PLLCR.PLLSTP bit is set to 0 (operation) in MOCO stop state.  
When PLLCR.PLLSTP bit is set to 0 (operation) during MOCO oscillation, this specification is shortened by 1 μs.  
Note 9. When setting up the main clock, ask the oscillator manufacturer for an oscillation evaluation and use the results as the  
recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the recommended  
stabilization time. After changing the setting of the MOSCCR.MOSTP bit so that the main clock oscillator operates, read the  
OSCSF.MOSCSF flag to confirm that it is 1, then start using the main clock.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 58 of 130  
RA4M1 Group  
2. Electrical Characteristics  
tXcyc  
tXH  
tXL  
EXTAL external clock input  
VCC × 0.5  
tXr  
tXf  
Figure 2.25  
EXTAL external clock input timing  
LOCOCR.LCSTP  
tLOCO  
LOCO clock oscillator output  
Figure 2.26  
LOCO clock oscillation start timing  
HOCOCR.HCSTP  
HOCO clock  
*1  
tHOCOx  
Note 1. x = 24, 32, 48, 64  
Figure 2.27  
HOCO clock oscillation start timing (started by setting HOCOCR.HCSTP bit)  
MOSCCR.MOSTP  
Main clock oscillator output  
tMAINOSCWT  
Main clock  
Figure 2.28  
Main clock oscillation start timing  
PLLCR.PLLSTP  
tPLL  
PLL clock  
Figure 2.29  
PLL clock oscillation start timing (PLL is operated after main clock oscillation has settled)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 59 of 130  
RA4M1 Group  
2. Electrical Characteristics  
SOSCCR.SOSTP  
tSUBOSC  
Sub-clock oscillator output  
Figure 2.30  
Sub-clock oscillation start timing  
MOCOCR.MCSTP  
tMOCO  
MOCO clock oscillator output  
Figure 2.31  
MOCO clock oscillation start timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 60 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.3.3  
Reset Timing  
Table 2.23  
Parameter  
Reset timing  
Test  
Symbol  
tRESWP  
tRESW  
Min  
3
Typ  
-
Max  
Unit  
ms  
μs  
conditions  
Figure 2.32  
Figure 2.33  
Figure 2.32  
-
RES pulse width  
At power-on  
30  
-
Other than above  
LVD0: enable*1  
LVD0: disable*2  
LVD0: enable*1  
LVD0: disable*2  
-
-
-
-
-
-
-
0.7  
0.3  
0.5  
0.05  
0.6  
0.15  
Wait time after RES cancellation  
(at power-on)  
tRESWT  
-
-
-
-
-
-
ms  
Wait time after RES cancellation  
(during powered-on state)  
tRESWT2  
ms  
ms  
Figure 2.33  
-
Internal reset cancellation time (Watchdog LVD0: enable*1  
timer reset, SRAM parity error reset,  
SRAM ECC error reset, Bus master MPU  
tRESWT3  
LVD0: disable*2  
error reset, Bus slave MPU error reset,  
Stack pointer error reset, Software reset)  
Note 1. When OFS1.LVDAS = 0.  
Note 2. When OFS1.LVDAS = 1.  
VCC  
RES  
tRESWP  
Internal reset  
tRESWT  
Figure 2.32  
Reset input timing at power-on  
tRESW  
RES  
Internal reset  
tRESWT2  
Figure 2.33  
Reset input timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 61 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.3.4  
Wakeup Time  
Table 2.24  
Parameter  
Timing of recovery from low power modes (1)  
Test  
Symbol Min Typ Max Unit conditions  
Recovery time  
from Software  
Standby mode*1  
High-speed  
mode  
Crystal  
System clock source is  
main clock oscillator  
(20 MHz)*2  
tSBYMC  
tSBYPC  
tSBYEX  
tSBYPE  
-
-
-
-
2
3
ms  
ms  
μs  
Figure 2.34  
resonator  
connected to  
main clock  
oscillator  
System clock source is  
PLL (48 MHz) with main  
clock oscillator*2  
2
3
External clock  
input to main  
clock oscillator  
System clock source is  
main clock oscillator  
(20 MHz)*3  
14  
53  
25  
76  
System clock source is  
PLL (48 MHz) with main  
clock oscillator*3  
μs  
System clock source is HOCO*4  
(HOCO clock is 32 MHz)  
tSBYHO  
tSBYHO  
tSBYHO  
tSBYMO  
-
-
-
-
43  
44  
82  
16  
52  
μs  
μs  
μs  
μs  
System clock source is HOCO*4  
(HOCO clock is 48 MHz)  
52  
System clock source is HOCO*5  
(HOCO clock is 64 MHz)  
110  
25  
System clock source is MOCO  
Note 1. The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time  
is determined by the system clock source.  
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.  
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.  
Note 4. The HOCO Clock Wait Control Register (HOCOWTCR) is set to 05h.  
Note 5. The HOCO Clock Wait Control Register (HOCOWTCR) is set to 06h.  
Table 2.25  
Parameter  
Timing of recovery from low power modes (2)  
Test  
Symbol Min Typ Max Unit conditions  
Recovery time  
from Software  
Standby mode*  
Middle-speed Crystal  
mode resonator  
System clock source is  
main clock oscillator  
(12 MHz)*  
tSBYMC  
tSBYPC  
tSBYEX  
tSBYPE  
-
-
-
-
2
3
ms  
ms  
μs  
Figure 2.34  
1
2
connected to  
main clock  
oscillator  
System clock source is  
PLL (24 MHz) with main  
2
3
2
clock oscillator*  
External clock  
input to main  
clock oscillator  
System clock source is  
main clock oscillator  
2.9  
49  
10  
76  
3
(12 MHz)*  
System clock source is  
PLL (24 MHz) with main  
μs  
3
clock oscillator*  
System clock source is HOCO (24 MHz)  
System clock source is MOCO  
tSBYHO  
tSBYMO  
-
-
38  
50  
μs  
μs  
3.5  
5.5  
Note 1. The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time  
is determined by the system clock source.  
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.  
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 62 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.26  
Parameter  
Timing of recovery from low power modes (3)  
Test  
Symbol Min Typ Max Unit conditions  
Recovery time  
from Software  
Standby mode*  
Low-speed  
mode  
Crystal  
System clock source is  
main clock oscillator  
(1 MHz)*  
tSBYMC  
-
2
3
ms  
Figure 2.34  
resonator  
connected to  
main clock  
oscillator  
1
2
External clock  
input to main  
clock oscillator  
System clock source is  
main clock oscillator  
(1 MHz)*  
tSBYEX  
-
-
28  
25  
50  
35  
μs  
μs  
3
System clock source is MOCO  
tSBYMO  
Note 1. The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time  
is determined by the system clock source.  
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.  
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.  
Table 2.27  
Parameter  
Timing of recovery from low power modes (4)  
Test  
Symbol Min Typ Max Unit conditions  
Recovery time  
from Software  
Standby mode*  
Low-voltage  
mode  
Crystal  
System clock source is  
main clock oscillator  
(4 MHz)*  
tSBYMC  
-
2
3
ms  
Figure 2.34  
resonator  
connected to  
main clock  
oscillator  
1
2
External clock  
input to main  
clock oscillator  
System clock source is  
main clock oscillator  
(4 MHz)*  
tSBYEX  
-
-
108  
108  
130  
130  
μs  
μs  
3
System clock source is HOCO  
tSBYHO  
Note 1. The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time  
is determined by the system clock source. When multiple oscillators are active, the recovery time can be determined by the  
following expression.  
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.  
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.  
Table 2.28  
Parameter  
Timing of recovery from low power modes (5)  
Test  
Symbol Min Typ Max Unit conditions  
Recovery time  
from Software  
Standby mode*1  
Subosc-speed mode  
System clock source is sub-clock tSBYSC  
oscillator (32.768 kHz)  
-
0.85  
1
ms  
Figure 2.34  
System clock source is LOCO  
(32.768 kHz)  
tSBYLO  
-
0.85 1.2  
ms  
Note 1. The sub-clock oscillator or LOCO itself continues to oscillate in Software Standby mode during Subosc-speed mode.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 63 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Oscillator  
ICLK  
IRQ  
Software Standby mode  
tSBYMC, tSBYPC, tSBYEX,  
tSBYPE, tSBYMO, tSBYHO  
Oscillator  
ICLK  
IRQ  
Software Standby mode  
tSBYSC, tSBYLO  
Figure 2.34  
Table 2.29  
Software Standby mode cancellation timing  
Timing of recovery from low power modes (6)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Recovery time from High-speed mode  
tSNZ  
-
36  
45  
μs  
Figure 2.35  
Software Standby  
mode to Snooze  
mode  
System clock source is HOCO  
Middle-speed mode  
System clock source is MOCO  
tSNZ  
tSNZ  
tSNZ  
-
-
-
1.3  
10  
87  
3.6  
13  
μs  
μs  
μs  
Low-speed mode  
System clock source is MOCO  
Low-voltage mode  
110  
System clock source is HOCO  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 64 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Oscillator  
ICLK (except DTC, SRAM)  
ICLK (to DTC, SRAM)*1  
PCLK  
IRQ  
Software Standby mode  
Snooze mode  
tSNZ  
Note 1. When SNZCR.SNZDTCEN is set to 1, ICLK is supplied to DTC and SRAM.  
Figure 2.35  
Software Standby mode to Snooze mode recovery timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 65 of 130  
RA4M1 Group  
2.3.5  
2. Electrical Characteristics  
NMI and IRQ Noise Filter  
Table 2.30  
NMI and IRQ noise filter  
Parameter  
Symbol Min  
tNMIW 200  
Pcyc × 2*  
200  
Typ  
Max  
Unit  
Test conditions  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NMI pulse width  
ns  
NMI digital filter disabled  
tPcyc × 2 ≤ 200 ns  
tPcyc × 2 > 200 ns  
tNMICK × 3 ≤ 200 ns  
tNMICK × 3 > 200 ns  
tPcyc × 2 ≤ 200 ns  
tPcyc × 2 > 200 ns  
tIRQCK × 3 ≤ 200 ns  
tIRQCK × 3 > 200 ns  
1
t
NMI digital filter enabled  
IRQ digital filter disabled  
IRQ digital filter enabled  
2
tNMICK × 3.5*  
200  
IRQ pulse width  
tIRQW  
ns  
1
tPcyc × 2*  
200  
3
tIRQCK × 3.5*  
Note:  
Note:  
Note 1.  
200 ns minimum in Software Standby mode.  
If the clock source is switched, add 4 clock cycles of the switched source.  
Pcyc indicates the cycle of PCLKB.  
t
Note 2. tNMICK indicates the cycle of the NMI digital filter sampling clock.  
Note 3.  
tIRQCK indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 12, 14, 15).  
NMI  
tNMIW  
Figure 2.36  
NMI interrupt input timing  
IRQ  
tIRQW  
Figure 2.37  
IRQ interrupt input timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 66 of 130  
RA4M1 Group  
2.3.6  
2. Electrical Characteristics  
I/O Ports, POEG, GPT, AGT, KINT, and ADC14 Trigger Timing  
Table 2.31  
I/O Ports, POEG, GPT, AGT, KINT, and ADC14 trigger timing  
Test  
Parameter  
Symbol Min  
Max  
Unit  
tPcyc  
us  
conditions  
I/O ports  
Input data pulse width  
tPRW  
1.5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Figure 2.38  
Input/output data cycle (P002, P003, P004, P007)  
POEG input trigger pulse width  
tPOcyc  
tPOEW  
tGTICW  
10  
POEG  
GPT  
3
tPcyc  
tPDcyc  
Figure 2.39  
Figure 2.40  
Input capture pulse width  
Single edge  
Dual edge  
1.5  
2.5  
1
AGT  
AGTIO, AGTEE input cycle  
2.7 V ≤ VCC ≤ 5.5 V tACYC  
*
250  
500  
1000  
2000  
100  
200  
400  
800  
62.5  
125  
250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.41  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
AGTIO, AGTEE input high level  
width, low-level width  
2.7 V ≤ VCC ≤ 5.5 V tACKWH,  
tACKWL  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
1.6 V ≤ VCC < 1.8 V  
2.7 V ≤ VCC ≤ 5.5 V tACYC2  
2.4 V ≤ VCC < 2.7 V  
1.8 V ≤ VCC < 2.4 V  
AGTIO, AGTO, AGTOA, AGTOB  
output cycle  
Figure 2.41  
1.6 V ≤ VCC < 1.8 V  
500  
1.5  
-
-
-
ns  
ADC14  
KINT  
14-bit A/D converter trigger input pulse width  
KRn (n = 00 to 07) pulse width  
tTRGW  
tKR  
tPcyc  
ns  
Figure 2.42  
Figure 2.43  
250  
Note 1. Constraints on input cycle:  
When not switching the source clock: tPcyc × 2 < tACYC should be satisfied.  
When switching the source clock: tPcyc × 6 < tACYC should be satisfied.  
Pcyc: PCLKB cycle, tPDcyc: PCLKD cycle  
Note:  
t
Port  
tPRW  
Figure 2.38  
I/O ports input timing  
POEG input trigger  
tPOEW  
Figure 2.39  
POEG input trigger timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 67 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Input capture  
tGTICW  
Figure 2.40  
GPT input capture timing  
tACYC  
tACKWL  
tACKWH  
AGTIO, AGTEE  
(input)  
tACYC2  
AGTIO, AGTO,  
AGTOA, AGTOB  
(output)  
Figure 2.41  
AGT I/O timing  
ADTRG0  
tTRGW  
Figure 2.42  
ADC14 trigger input timing  
KR00 to KR07  
tKR  
Figure 2.43  
Key interrupt input timing  
2.3.7  
CAC Timing  
Table 2.32  
Parameter  
CAC timing  
Test  
conditions  
Symbol Min  
Typ  
Max  
Unit  
ns  
2
2
1
1
CAC  
CACREF input pulse width  
tPBcyc*1 ≤ tcac  
PBcyc*1 > tcac  
*
tCACREF 4.5 × tcac + 3 × tPBcyc  
5 × tcac + 6.5 × tPBcyc  
*
-
-
-
-
-
t
*
*
ns  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 68 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Note 1. tPBcyc: PCLKB cycle.  
Note 2.  
tcac: CAC count clock source cycle.  
2.3.8  
SCI Timing  
Table 2.33  
SCI timing (1)  
Test  
conditions  
Parameter  
Symbol  
Min  
4
Max  
-
Unit*1  
SCI  
Input clock cycle  
Asynchronous  
tScyc  
tPcyc  
Figure 2.44  
Clock synchronous  
6
-
Input clock pulse width  
Input clock rise time  
Input clock fall time  
Output clock cycle  
tSCKW  
tSCKr  
tSCKf  
tScyc  
0.4  
-
0.6  
20  
20  
-
tScyc  
ns  
-
ns  
Asynchronous  
6
tPcyc  
Clock synchronous  
4
-
Output clock pulse width  
Output clock rise time  
tSCKW  
0.4  
-
0.6  
20  
30  
20  
30  
40  
45  
55  
60  
100  
125  
-
tScyc  
ns  
1.8 V or above tSCKr  
1.6 V or above  
-
Output clock fall time  
1.8 V or above tSCKf  
1.6 V or above  
-
ns  
ns  
ns  
-
Transmit data delay Clock  
1.8 V or above tTXD  
1.6 V or above  
-
Figure 2.45  
(master)  
synchronous  
-
Transmit data delay Clock  
2.7 V or above  
-
(slave)  
synchronous  
2.4 V or above  
-
1.8 V or above  
-
1.6 V or above  
-
Receive data setup Clock  
2.7 V or above tRXS  
2.4 V or above  
45  
55  
90  
110  
40  
45  
5
ns  
ns  
time (master)  
synchronous  
-
1.8 V or above  
-
1.6 V or above  
-
Receive data setup Clock  
2.7 V or above  
-
time (slave)  
synchronous  
1.6 V or above  
-
Receive data hold  
time (master)  
Clock synchronous  
tRXH  
tRXH  
-
ns  
ns  
Receive data hold  
time (slave)  
Clock synchronous  
40  
-
Note 1. tPcyc: PCLKA cycle.  
tSCKW  
tSCKr  
tSCKf  
SCKn  
(n = 0 to 2, 9)  
tScyc  
Figure 2.44  
SCK clock input timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 69 of 130  
RA4M1 Group  
2. Electrical Characteristics  
SCKn  
TXDn  
tTXD  
tRXS tRXH  
RXDn  
(n = 0 to 2, 9)  
Figure 2.45  
Table 2.34  
SCI input/output timing in clock synchronous mode  
SCI timing (2) (1 of 2)  
Parameter  
Symbol  
Min  
4
Max  
Unit  
Test conditions  
Simple SCK clock cycle output (master)  
tSPcyc  
65,536  
tPcyc  
Figure 2.46  
SPI  
SCK clock cycle input (slave)  
6
65,536  
SCK clock high pulse width  
SCK clock low pulse width  
SCK clock rise and fall time  
tSPCKWH  
tSPCKWL  
0.4  
0.4  
-
0.6  
0.6  
20  
30  
-
tSPcyc  
tSPcyc  
ns  
1.8 V or above tSPCKr,  
tSPCKf  
1.6 V or above  
-
Data input setup  
time  
Master  
2.7 V or above tSU  
2.4 V or above  
1.8 V or above  
1.6 V or above  
2.7 V or above  
1.6 V or above  
tH  
45  
55  
80  
110  
40  
45  
33.3  
40  
1
ns  
Figure 2.47 to  
Figure 2.50  
-
-
-
Slave  
-
-
Data input hold time Master  
Slave  
-
ns  
-
SS input setup time  
SS input hold time  
tLEAD  
tLAG  
-
tSPcyc  
tSPcyc  
ns  
1
-
Data output delay  
Master  
Slave  
1.8 V or above tOD  
1.6 V or above  
2.4 V or above  
1.8 V or above  
1.6 V or above  
2.7 V or above tOH  
2.4 V or above  
1.8 V or above  
1.6 V or above  
-
40  
50  
65  
100  
125  
-
-
-
-
-
Data output hold  
time  
Master  
-10  
-20  
-30  
-40  
-10  
-
ns  
ns  
-
-
-
Slave  
-
Data rise and fall  
time  
Master  
1.8 V or above tDr, tDf  
1.6 V or above  
20  
30  
20  
30  
-
Slave  
1.8 V or above  
-
1.6 V or above  
-
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 70 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.34  
Parameter  
SCI timing (2) (2 of 2)  
Symbol  
Min  
Max  
Unit  
Test conditions  
Simple Slave access time  
SPI  
tSA  
-
10 (PCLKA > tPcyc  
32 MHz),  
Figure 2.49 and  
Figure 2.50  
6 (PCLKA ≤  
32 MHz)  
Slave output release time  
tREL  
-
10 (PCLKA > tPcyc  
32 MHz),  
6 (PCLKA ≤  
32 MHz)  
tSPCKr  
tSPCKf  
tSPCKWH  
VOH  
VOH  
VOL  
VOH  
VOH  
SCKn  
master select  
output  
VOL  
tSPCKWL  
VOL  
tSPcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VIH  
VIH  
VIL  
VIH  
VIH  
SCKn  
slave select input  
VIL  
tSPCKWL  
VIL  
(n = 0 to 2, 9)  
tSPcyc  
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC  
Figure 2.46  
SCI simple SPI mode clock timing  
SCKn  
CKPOL = 0  
output  
SCKn  
CKPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
(n = 0 to 2, 9)  
Figure 2.47  
SCI simple SPI mode timing for master when CKPH = 1  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 71 of 130  
RA4M1 Group  
2. Electrical Characteristics  
SCKn  
CKPOL = 1  
output  
SCKn  
CKPOL = 0  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
(n = 0 to 2, 9)  
Figure 2.48  
SCI simple SPI mode timing for master when CKPH = 0  
tTD  
SSn  
input  
tLEAD  
tLAG  
SCKn  
CKPOL = 0  
input  
SCKn  
CKPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
MSB OUT  
DATA  
LSB OUT  
LSB IN  
MSB IN  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
(n = 0 to 2, 9)  
Figure 2.49  
SCI simple SPI mode timing for slave when CKPH = 1  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 72 of 130  
RA4M1 Group  
2. Electrical Characteristics  
tTD  
SSn  
input  
tLEAD  
tLAG  
SCKn  
CKPOL = 1  
input  
SCKn  
CKPOL = 0  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
LSB OUT  
(Last data)  
MSB OUT  
DATA  
LSB OUT  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
LSB IN  
(n = 0 to 2, 9)  
Figure 2.50  
Table 2.35  
SCI simple SPI mode timing for slave when CKPH = 0  
SCI timing (3)  
Conditions: VCC = 2.7 to 5.5 V  
Parameter  
Symbol  
tSr  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
pF  
ns  
ns  
ns  
ns  
ns  
pF  
Test conditions  
Simple I2C  
(Standard mode)  
SDA input rise time  
-
1000  
Figure 2.51  
SDA input fall time  
tSf  
-
300  
1
SDA input spike pulse removal time  
Data input setup time  
tSP  
0
4 × tIICcyc*  
tSDAS  
tSDAH  
Cb*2  
tSr  
250  
-
Data input hold time  
0
-
SCL, SDA capacitive load  
SDA input rise time  
-
400  
Simple I2C  
(Fast mode)  
-
300  
Figure 2.51  
For all ports  
SDA input fall time  
tSf  
-
300  
except P408, use  
PmnPFS.DSCR  
of middle drive.  
For port P408,  
use  
PmnPFS.DSCR1  
/DSCR of middle  
drive for IIC  
1
SDA input spike pulse removal time  
Data input setup time  
tSP  
0
4 × tIICcyc*  
tSDAS  
tSDAH  
Cb*1  
100  
-
Data input hold time  
0
-
-
SCL, SDA capacitive load  
400  
fast-mode.  
Note 1. tIICcyc: Clock cycle selected by the SMR.CKS[1:0] bits.  
Note 2. Cb indicates the total capacity of the bus line.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 73 of 130  
RA4M1 Group  
2. Electrical Characteristics  
VIH  
VIL  
SDAn  
tSr  
tSf  
tSP  
SCLn  
P*1  
P*1  
S*1  
Sr*1  
(n = 0 to 2, 9)  
tSDAH  
tSDAS  
Note 1. S, P, and Sr indicate the following:  
S: Start condition  
Test conditions:  
IH = VCC × 0.7, VIL = VCC × 0.3  
VOL = 0.6 V, IOL = 6 mA  
V
P: Stop condition  
Sr: Restart condition  
Figure 2.51  
SCI simple IIC mode timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 74 of 130  
RA4M1 Group  
2.3.9  
2. Electrical Characteristics  
SPI Timing  
Table 2.36  
SPI timing (1 of 2)  
Conditions: Middle drive output is selected in the Port Drive Capability bit in PmnPFS register  
*1  
Parameter  
SPI RSPCK clock cycle  
Symbol  
Min  
2*4  
6
Max  
4096  
4096  
-
Unit  
Test conditions  
Master  
Slave  
tSPcyc  
tPcyc  
Figure 2.52  
RSPCK clock high  
pulse width  
Master  
tSPCKWH (tSPcyc  
tSPCKr  
SPCKf) / 2 -  
-
ns  
ns  
-
t
3
Slave  
3 × tPcyc  
-
-
RSPCK clock low  
pulse width  
Master  
tSPCKWL  
(tSPcyc  
tSPCKr  
SPCKf) / 2 -  
-
-
t
3
Slave  
3 × tPcyc  
-
RSPCK clock rise  
and fall time  
Output  
2.7 V or above  
2.4 V or above  
1.8 V or above  
1.6 V or above  
tSPCKr,  
tSPCKf  
-
-
-
-
-
10  
15  
20  
30  
1
ns  
Input  
µs  
ns  
Data input setup time Master  
Slave  
tSU  
10  
10  
15  
20  
0
-
-
-
-
-
Figure 2.53 to  
Figure 2.58  
2.4 V or above  
1.8 V or above  
1.6 V or above  
Data input hold time  
Master  
(RSPCK is PCLKA/2)  
tHF  
tH  
ns  
ns  
Master  
(RSPCK is other than  
above.)  
tPcyc  
-
Slave  
tH  
20  
-
-
SSL setup time  
SSL hold time  
Master  
1.8 V or above  
1.6 V or above  
tLEAD  
-30 + N ×  
tSpcyc  
2
*
-50 + N ×  
tSpcyc  
-
2
*
Slave  
6 × tPcyc  
-
-
Master  
tLAG  
-30 + N ×  
tSpcyc  
3
*
Slave  
6 × tPcyc  
-
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 75 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.36  
SPI timing (2 of 2)  
Conditions: Middle drive output is selected in the Port Drive Capability bit in PmnPFS register  
*1  
Parameter  
SPI Data output delay  
Symbol  
Min  
Max  
14  
20  
25  
30  
50  
60  
85  
110  
-
Unit  
Test conditions  
Master  
Slave  
2.7 V or above  
2.4 V or above  
1.8 V or above  
1.6 V or above  
2.7 V or above  
2.4 V or above  
1.8 V or above  
1.6 V or above  
tOD  
-
ns  
Figure 2.53 to  
Figure 2.58  
-
-
-
-
-
-
-
Data output hold time Master  
Slave  
tOH  
0
0
ns  
ns  
-
Successive  
Master  
tTD  
tSPcyc + 2 × 8 × tSPcyc  
transmission delay  
tPcyc  
+ 2 × tPcyc  
Slave  
6 × tPcyc  
-
MOSI and MISO rise Output  
and fall time  
2.7 V or above  
2.4 V or above  
1.8 V or above  
1.6 V or above  
tDr, tDf  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10  
15  
20  
30  
1
ns  
Input  
µs  
ns  
SSL rise and fall time Output  
2.7 V or above  
2.4 V or above  
1.8 V or above  
1.6 V or above  
tSSLr,  
tSSLf  
10  
15  
20  
30  
1
Input  
µs  
Slave access time  
2.4 V or above  
1.8 V or above  
1.6 V or above  
2.4 V or above  
1.8 V or above  
1.6 V or above  
tSA  
2 × tPcyc + 100 ns  
2 × tPcyc + 140  
Figure 2.57 and  
Figure 2.58  
2 × tPcyc + 180  
Slave output release time  
tREL  
2 × tPcyc + 100 ns  
2 × tPcyc + 140  
2 × tPcyc + 180  
Note 1. tPcyc: PCLKA cycle.  
Note 2. N is set as an integer from 1 to 8 by the SPCKD register.  
Note 3. N is set as an integer from 1 to 8 by the SSLND register.  
Note 4. The upper limit of RSPCK is 16 MHz.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 76 of 130  
RA4M1 Group  
2. Electrical Characteristics  
tSPCKr  
tSPCKf  
tSPCKWH  
VOH  
VOH  
VOL  
VOH  
VOH  
RSPCKn  
master select  
output  
VOL  
tSPCKWL  
VOL  
tSPcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VIH  
VIH  
VIL  
VIH  
VIH  
RSPCKn  
slave select input  
VIL  
tSPCKWL  
VIL  
tSPcyc  
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC  
n = A or B  
Figure 2.52  
SPI clock timing  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
n = A or B  
Figure 2.53  
SPI timing for master when CPHA = 0 and the bit rate is set to any value other than PCLKA/2  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 77 of 130  
RA4M1 Group  
2. Electrical Characteristics  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tHF  
tSU  
tHF  
MISOn  
input  
LSB IN  
MSB IN  
DATA  
DATA  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
n = A or B  
Figure 2.54  
SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
n = A or B  
Figure 2.55  
SPI timing for master when CPHA = 1 and the bit rate is set to any value other than PCLKA/2  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 78 of 130  
RA4M1 Group  
2. Electrical Characteristics  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
n = A or B  
DATA  
tSU  
tHF  
tH  
MISOn  
input  
MSB IN  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
DATA  
LSB OUT  
IDLE  
MSB OUT  
n = A or B  
Figure 2.56  
SPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2  
tTD  
SSLn0  
input  
tLEAD  
tLAG  
RSPCKn  
CPOL = 0  
input  
RSPCKn  
CPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
MSB OUT  
DATA  
LSB OUT  
LSB IN  
MSB IN  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
n = A or B  
Figure 2.57  
SPI timing for slave when CPHA = 0  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 79 of 130  
RA4M1 Group  
2. Electrical Characteristics  
tTD  
SSLn0  
input  
tLEAD  
tLAG  
RSPCKn  
CPOL = 0  
input  
RSPCKn  
CPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
LSB OUT  
(Last data)  
MSB OUT  
tH  
DATA  
DATA  
LSB OUT  
MSB OUT  
MSB IN  
tSU  
tDr, tDf  
MOSIn  
input  
MSB IN  
LSB IN  
n = A or B  
Figure 2.58  
SPI timing for slave when CPHA = 1  
2.3.10  
IIC Timing  
Table 2.37  
IIC timing (1 of 2)  
Conditions: VCC = 2.7 to 5.5 V  
Test  
Parameter  
Symbol Min*1  
Max  
Unit conditions  
IIC  
SCL input cycle time  
tSCL  
6 (12) × tIICcyc  
1300  
+
-
ns  
ns  
ns  
Figure 2.59  
(standard mode,  
SMBus)  
SCL input high pulse width  
SCL input low pulse width  
tSCLH  
tSCLL  
3 (6) × tIICcyc  
300  
+
-
-
3 (6) × tIICcyc  
300  
+
SCL, SDA input rise time  
SCL, SDA input fall time  
tSr  
tSf  
-
1,000  
ns  
ns  
ns  
-
300  
SCL, SDA input spike pulse removal  
time  
tSP  
0
1 (4) × tIICcyc  
SDA input bus free time  
(When wakeup function is disabled)  
tBUF  
3 (6) × tIICcyc  
300  
+
+
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
SDA input bus free time  
(When wakeup function is enabled)  
tBUF  
3 (6) × tIICcyc  
4 × tPcyc + 300  
START condition input hold time  
(When wakeup function is disabled)  
tSTAH  
tSTAH  
tIICcyc + 300  
START condition input hold time  
(When wakeup function is enabled)  
1 (5) × tIICcyc  
tPcyc + 300  
+
Repeated START condition input setup tSTAS  
time  
1,000  
STOP condition input setup time  
Data input setup time  
tSTOS  
tSDAS  
tSDAH  
Cb  
1,000  
-
ns  
ns  
ns  
pF  
tIICcyc + 50  
-
Data input hold time  
0
-
-
SCL, SDA capacitive load  
400  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 80 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.37  
IIC timing (2 of 2)  
Conditions: VCC = 2.7 to 5.5 V  
Test  
Parameter  
Symbol Min*1  
Max  
Unit conditions  
IIC  
SCL input cycle time  
tSCL  
6 (12) × tIICcyc  
600  
+
-
ns  
ns  
ns  
Figure 2.59  
For all ports  
except P408,  
use  
PmnPFS.DSC  
R of middle  
drive.  
(Fast mode)  
SCL input high pulse width  
SCL input low pulse width  
tSCLH  
tSCLL  
3 (6) × tIICcyc  
300  
+
-
-
3 (6) × tIICcyc  
300  
+
For port P408,  
use  
SCL, SDA input rise time  
SCL, SDA input fall time  
tSr  
tSf  
-
300  
ns  
ns  
ns  
-
300  
PmnPFS.DSC  
R1/DSCR of  
middle drive  
for IIC fast-  
mode.  
SCL, SDA input spike pulse removal  
time  
tSP  
0
1 (4) × tIICcyc  
SDA input bus free time  
(When wakeup function is disabled)  
tBUF  
3 (6) × tIICcyc  
300  
+
+
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
SDA input bus free time  
(When wakeup function is enabled)  
tBUF  
3 (6) × tIICcyc  
4 × tPcyc + 300  
START condition input hold time  
(When wakeup function is disabled)  
tSTAH  
tSTAH  
tIICcyc + 300  
START condition input hold time  
(When wakeup function is enabled)  
1(5) × tIICcyc  
Pcyc + 300  
+
t
Repeated START condition input setup tSTAS  
time  
300  
STOP condition input setup time  
Data input setup time  
tSTOS  
tSDAS  
tSDAH  
Cb  
300  
-
ns  
ns  
ns  
pF  
tIICcyc + 50  
-
Data input hold time  
0
-
-
SCL, SDA capacitive load  
400  
Note:  
tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle  
Note 1. The value in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.  
VIH  
SDA0 to SDA1  
VIL  
tBUF  
tSCLH  
tSTAS  
tSTOS  
tSTAH  
tSP  
SCL0 to SCL1  
P*1  
P*1  
S*1  
Sr*1  
tSCLL  
tSr  
tSf  
tSDAS  
tSCL  
tSDAH  
Note 1. S, P, and Sr indicate the following conditions.  
S: Start condition  
P: Stop condition  
Sr: Restart condition.  
Figure 2.59  
IIC bus interface input/output timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 81 of 130  
RA4M1 Group  
2.3.11  
2. Electrical Characteristics  
SSIE Timing  
Table 2.38  
SSIE timing  
Conditions: VCC = 1.6 to 5.5 V  
Test conditions  
Parameter  
Symbol  
Min  
-
Max  
Unit  
SSIE  
AUDIO_CLK input  
frequency  
2.7 V or above  
1.6 V or above  
tAUDIO  
25  
MHz  
-
-
4
Output clock period  
Input clock period  
tO  
tI  
250  
250  
100  
200  
100  
200  
-
-
ns  
ns  
ns  
Figure 2.60  
-
Clock high pulse  
width  
1.8 V or above  
1.6 V or above  
1.8 V or above  
1.6 V or above  
tHC  
-
-
Clock low pulse  
width  
tLC  
-
ns  
-
Clock rise time  
Data delay  
tRC  
25  
65  
105  
140  
-
ns  
ns  
2.7 V or above  
1.8 V or above  
1.6 V or above  
2.7 V or above  
1.8 V or above  
1.6 V or above  
tDTR  
-
Figure 2.61,  
Figure 2.62  
-
-
Set-up time  
tSR  
65  
90  
140  
40  
-
ns  
-
-
Hold time  
tHTR  
-
ns  
ns  
SSITXD0 output  
delay from  
SSILRCK0/SSIFS0  
change time  
1.8 V or above  
1.6 V or above  
TDTRW  
105  
140  
Figure 2.63  
-
tHC  
tRC  
tLC  
SSIBCK0  
tI, tO  
Figure 2.60  
SSIE clock input/output timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 82 of 130  
RA4M1 Group  
2. Electrical Characteristics  
SSIBCK0  
(Input or Output)  
SSILRCK0/SSIFS0,  
SSIRXD0  
(Input)  
tSR  
tHTR  
SSILRCK0/SSIFS0,  
SSITXD0  
(Output)  
tDTR  
Figure 2.61  
SSIE data transmit/receive timing (SSICR.BCKP = 0)  
SSIBCK0  
(Input or Output)  
SSILRCK0/SSIFS0,  
SSIRXD0  
(Input)  
tSR  
tHTR  
SSILRCK0/SSIFS0,  
SSITXD0  
(Output)  
tDTR  
Figure 2.62  
SSIE data transmit/receive timing (SSICR.BCKP = 1)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 83 of 130  
RA4M1 Group  
2. Electrical Characteristics  
SSILRCK0/SSIFS0  
(Input)  
SSITXD0 (Output)  
tDTRW  
MSB bit output delay from SSILRCK0/SSIFS0 change time for  
slave transmitter when DEL = 1, SDTA = 0 or DEL = 1, SDTA = 1, SWL[2:0] = DWL[2:0]  
SSIE data output delay from SSILRCK0/SSIFS0 change time  
CLKOUT Timing  
Figure 2.63  
2.3.12  
Table 2.39  
Parameter  
CLKOUT timing  
Symbol  
Min  
62.5  
125  
250  
15  
30  
150  
15  
30  
150  
-
Max  
Unit*1  
Test conditions  
1
CLKOUT  
CLKOUT pin output cycle*  
VCC = 2.7 V or above  
VCC = 1.8 V or above  
VCC = 1.6 V or above  
VCC = 2.7 V or above  
VCC = 1.8 V or above  
VCC = 1.6 V or above  
VCC = 2.7 V or above  
VCC = 1.8 V or above  
VCC = 1.6 V or above  
VCC = 2.7 V or above  
VCC = 1.8 V or above  
VCC = 1.6 V or above  
VCC = 2.7 V or above  
VCC = 1.8 V or above  
VCC = 1.6 V or above  
t
t
t
t
t
-
ns  
Figure 2.64  
Ccyc  
CH  
CL  
Cr  
-
-
2
CLKOUT pin high pulse width*  
-
ns  
ns  
ns  
ns  
-
-
2
CLKOUT pin low pulse width*  
CLKOUT pin output rise time  
CLKOUT pin output fall time  
-
-
-
12  
25  
50  
12  
25  
50  
-
-
-
Cf  
-
-
Note 1. When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and  
the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to  
55%.  
Note 2. When the MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division  
ratio selection to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b).  
tCcyc  
tCH  
tCf  
CLKOUT pin output  
tCr  
tCL  
Test conditions: VOH = VCC × 0.7, VOL = VCC × 0.3, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF  
Figure 2.64  
CLKOUT output timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 84 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.4  
USB Characteristics  
2.4.1  
USBFS Timing  
Table 2.40  
USB characteristics  
Conditions: VCC = VCC_USB = 3.0 to 3.6 V, T = -20 to +85°C (USBCLKSEL = 1), T = -40 to +105°C (USBCLKSEL = 0)  
a
a
Max  
-
Parameter  
Symbol  
Min  
2.0  
-
Unit  
V
Test conditions  
Input  
Input high level voltage  
Input low level voltage  
V
V
V
V
-
IH  
IL  
characteristics  
0.8  
-
V
-
Differential input sensitivity  
0.2  
0.8  
V
|USB_DP - USB_DM |  
-
DI  
Differential common mode  
range  
2.5  
V
CM  
Output  
characteristics  
Output high level voltage  
Output low level voltage  
Cross-over voltage  
V
V
V
2.8  
0.0  
1.3  
4
VCC_USB  
0.3  
V
I
I
= -200 μA  
= 2 mA  
OH  
OH  
OL  
V
OL  
2.0  
V
Figure 2.65,  
Figure 2.66,  
Figure 2.67  
CRS  
Rise time  
FS  
LS  
FS  
LS  
t
20  
ns  
r
75  
4
300  
Fall time  
t
20  
ns  
%
Ω
f
75  
90  
80  
28  
300  
Rise/fall time ratio FS  
LS  
t /t  
111.11  
125  
r
f
Output resistance  
Z
44  
(Adjusting the resistance  
of external elements is not  
necessary.)  
DRV  
VBUS  
characteristics  
VBUS input voltage  
V
V
VCC × 0.8  
-
V
-
IH  
-
VCC × 0.2  
24.80  
1.575  
3.09  
175  
V
-
IL  
Pull-up,  
pull-down  
Pull-down resistor  
Pull-up resistor  
R
R
R
14.25  
0.9  
1.425  
25  
kΩ  
kΩ  
kΩ  
μA  
μA  
μA  
V
-
PD  
During idle state  
PUI  
During reception  
PUA  
Battery Charging D + sink current  
Specification  
D - sink current  
Ver 1.2  
I
I
I
-
DP_SINK  
DM_SINK  
DP_SRC  
25  
175  
-
DCD source current  
Data detection voltage  
D + source voltage  
D - source voltage  
7
13  
-
V
V
V
0.25  
0.5  
0.5  
0.4  
-
DAT_REF  
DP_SRC  
DM_SRC  
0.7  
V
Output current = 250 μA  
Output current = 250 μA  
0.7  
V
90%  
90%  
USB_DP,  
USB_DM  
VCRS  
10%  
10%  
tr  
tf  
Figure 2.65  
USB_DP and USB_DM output timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 85 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Observation  
point  
DP  
50 pF  
DM  
50 pF  
Figure 2.66  
Test circuit for Full-Speed (FS) connection  
Observation  
point  
DP  
200 pF to  
600 pF  
3.6 V  
1.5 K  
DM  
200 pF to  
600 pF  
Observation  
point  
Figure 2.67  
Test circuit for Low-Speed (LS) connection  
2.4.2  
USB External Supply  
Table 2.41  
Parameter  
USB regulator  
Min  
Typ  
Max  
Unit  
Test conditions  
VCC_USB supply current VCC_USB_LDO ≥ 3.8V  
VCC_USB_LDO ≥ 4.5V  
-
-
-
-
-
50  
mA  
mA  
V
-
-
-
100  
3.6  
VCC_USB supply voltage  
3.0  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 86 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.5  
ADC14 Characteristics  
VREFH0  
VREFH0  
5.5  
5.5  
A/D Conversion  
Characteristics (1)  
5.0  
4.0  
3.0  
5.0  
4.0  
3.0  
A/D Conversion  
Characteristics (2)  
A/D Conversion  
Characteristics (4)  
A/D Conversion  
Characteristics (5)  
A/D Conversion  
Characteristics (3)  
2.7  
2.4  
2.7  
2.4  
A/D Conversion  
2.0  
Characteristics (6)  
2.0  
1.8  
1.6  
A/D Conversion  
Characteristics (7)  
1.0  
1.0  
2.42.7  
3.0  
5.5 AVCC0  
1.8 2.42.7  
1.0 1.6 2.0 3.0  
5.5 AVCC0  
5.0  
1.0  
2.0  
4.0  
5.0  
4.0  
ADCSR.ADHSC = 0  
ADCSR.ADHSC = 1  
Figure 2.68  
Table 2.42  
AVCC0 to VREFH0 voltage range  
A/D conversion characteristics (1) in high-speed A/D conversion mode (1 of 2)  
Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
-
Frequency  
1
-
-
-
-
-
64  
MHz  
2
Analog input capacitance*  
Cs  
Rs  
8 (reference data) pF  
9 (reference data) pF  
High-precision channel  
Normal-precision channel  
High-precision channel  
-
Analog input resistance  
-
2.5 (reference  
data)  
kΩ  
kΩ  
V
-
-
-
6.7 (reference  
data)  
Normal-precision channel  
-
Analog input voltage range  
12-bit mode  
Ain  
0
VREFH0  
Resolution  
-
-
-
12  
-
Bit  
μs  
-
1
Conversion time*  
(Operation at  
PCLKC = 64 MHz)  
Permissible signal  
source impedance  
Max. = 0.3 kΩ  
0.70  
High-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 0Dh  
1.13  
-
-
μs  
Normal-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 28h  
Offset error  
-
-
±0.5  
±4.5  
±6.0  
±4.5  
±6.0  
-
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than above  
Full-scale error  
±0.75  
High-precision channel  
Other than above  
Quantization error  
Absolute accuracy  
-
-
±0.5  
-
±1.25  
±5.0  
±8.0  
-
High-precision channel  
Other than above  
DNL differential nonlinearity error  
INL integral nonlinearity error  
14-bit mode  
-
-
±1.0  
±1.0  
-
-
±3.0  
Resolution  
-
-
14  
Bit  
-
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 87 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.42  
A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2)  
Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
1
Conversion time*  
(Operation at  
Permissible signal  
source impedance  
Max. = 0.3 kΩ  
0.80  
-
-
μs  
High-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 0Dh  
PCLKC = 64 MHz)  
1.22  
-
-
μs  
Normal-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 28h  
Offset error  
-
-
±2.0  
±3.0  
±18  
±24.0  
±18  
±24.0  
-
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than above  
Full-scale error  
High-precision channel  
Other than above  
Quantization error  
Absolute accuracy  
-
-
±0.5  
±5.0  
-
±20  
±32.0  
-
High-precision channel  
Other than above  
DNL differential nonlinearity error  
INL integral nonlinearity error  
-
-
±4.0  
±4.0  
-
-
±12.0  
Note:  
The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not  
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do  
not include quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for  
the test conditions.  
Note 2. Except for I/O input capacitance (C ), see section 2.2.4, I/O V , V , and Other Characteristics.  
in  
OH  
OL  
Table 2.43  
A/D conversion characteristics (2) in high-speed A/D conversion mode (1 of 2)  
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
Unit  
MHz  
pF  
Test conditions  
-
Frequency  
1
-
-
-
-
-
-
-
48  
2
Analog input capacitance*  
Cs  
Rs  
Ain  
8 (reference data)  
9 (reference data)  
2.5 (reference data)  
6.7 (reference data)  
VREFH0  
High-precision channel  
Normal-precision channel  
High-precision channel  
Normal-precision channel  
-
-
pF  
Analog input resistance  
-
kΩ  
kΩ  
V
-
Analog input voltage range  
12-bit mode  
0
Resolution  
-
-
-
12  
-
Bit  
μs  
-
1
Conversion time*  
(Operation at  
PCLKC = 48 MHz)  
Permissible signal  
source impedance  
Max. = 0.3 kΩ  
0.94  
High-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 0Dh  
1.50  
-
-
μs  
Normal-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 28h  
Offset error  
-
-
±0.5  
±4.5  
±6.0  
±4.5  
±6.0  
-
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than above  
Full-scale error  
±0.75  
High-precision channel  
Other than above  
Quantization error  
Absolute accuracy  
-
-
±0.5  
-
±1.25  
±5.0  
±8.0  
-
High-precision channel  
Other than above  
DNL differential nonlinearity error  
INL integral nonlinearity error  
-
-
±1.0  
±1.0  
-
-
±3.0  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 88 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.43  
A/D conversion characteristics (2) in high-speed A/D conversion mode (2 of 2)  
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
14-bit mode  
Resolution  
Min  
Typ  
Max  
Unit  
Test conditions  
-
-
-
14  
-
Bit  
μs  
-
1
Conversion time*  
(Operation at  
PCLKC = 48 MHz)  
Permissible signal  
source impedance  
Max. = 0.3 kΩ  
1.06  
High-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 0Dh  
1.63  
-
-
μs  
Normal-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 28h  
Offset error  
-
-
±2.0  
±3.0  
±18  
±24.0  
±18  
±24.0  
-
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than above  
Full-scale error  
High-precision channel  
Other than above  
Quantization error  
Absolute accuracy  
-
-
±0.5  
±5.0  
-
±20  
±32.0  
-
High-precision channel  
Other than above  
DNL differential nonlinearity error  
INL integral nonlinearity error  
-
-
±4.0  
±4.0  
-
-
±12.0  
Note:  
The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not  
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do  
not include quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for  
the test conditions.  
Note 2. Except for I/O input capacitance (C ), see section 2.2.4, I/O V , V , and Other Characteristics.  
in  
OH  
OL  
Table 2.44  
A/D conversion characteristics (3) in high-speed A/D conversion mode (1 of 2)  
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
Unit  
MHz  
pF  
Test conditions  
-
Frequency  
1
-
-
-
-
-
-
-
32  
2
Analog input capacitance*  
Cs  
Rs  
Ain  
8 (reference data)  
9 (reference data)  
High-precision channel  
Normal-precision channel  
High-precision channel  
Normal-precision channel  
-
-
pF  
Analog input resistance  
-
2.5 (reference data) kΩ  
6.7 (reference data) kΩ  
-
Analog input voltage range  
12-bit mode  
0
VREFH0  
V
Resolution  
-
-
-
12  
-
Bit  
μs  
-
1
Conversion time*  
(Operation at  
Permissible signal  
source impedance  
1.41  
High-precision channel  
ADCSR.ADHSC = 0  
PCLKC = 32 MHz) Max. = 1.3 kΩ  
ADSSTRn.SST[7:0] = 0Dh  
2.25  
-
-
μs  
Normal-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 28h  
Offset error  
-
-
±0.5  
±4.5  
±6.0  
±4.5  
±6.0  
-
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than above  
High-precision channel  
Other than above  
-
Full-scale error  
±0.75  
Quantization error  
Absolute accuracy  
-
-
±0.5  
±1.25  
±5.0  
±8.0  
High-precision channel  
Other than above  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 89 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.44  
A/D conversion characteristics (3) in high-speed A/D conversion mode (2 of 2)  
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
±1.0  
±1.0  
Max  
-
Unit  
LSB  
LSB  
Test conditions  
DNL differential nonlinearity error  
INL integral nonlinearity error  
14-bit mode  
-
-
-
-
±3.0  
Resolution  
-
-
-
14  
-
Bit  
μs  
-
1
Conversion time*  
(Operation at  
Permissible signal  
source impedance  
1.59  
High-precision channel  
ADCSR.ADHSC = 0  
PCLKC = 32 MHz) Max. = 1.3 kΩ  
ADSSTRn.SST[7:0] = 0Dh  
2.44  
-
-
μs  
Normal-precision channel  
ADCSR.ADHSC = 0  
ADSSTRn.SST[7:0] = 28h  
Offset error  
-
-
±2.0  
±3.0  
±18  
±24.0  
±18  
±24.0  
-
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than above  
Full-scale error  
High-precision channel  
Other than above  
Quantization error  
Absolute accuracy  
-
-
±0.5  
±5.0  
-
±20  
±32.0  
-
High-precision channel  
Other than above  
DNL differential nonlinearity error  
INL integral nonlinearity error  
-
-
±4.0  
±4.0  
-
-
±12.0  
Note:  
The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not  
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do  
not include quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for  
the test conditions.  
Note 2. Except for I/O input capacitance (C ), see section 2.2.4, I/O V , V , and Other Characteristics.  
in  
OH  
OL  
Table 2.45  
A/D conversion characteristics (4) in low power A/D conversion mode (1 of 2)  
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
Unit  
MHz  
pF  
Test conditions  
-
Frequency  
1
-
-
-
-
-
-
-
24  
2
Analog input capacitance*  
Cs  
Rs  
Ain  
8 (reference data)  
9 (reference data)  
2.5 (reference data)  
6.7 (reference data)  
VREFH0  
High-precision channel  
Normal-precision channel  
High-precision channel  
Normal-precision channel  
-
-
pF  
Analog input resistance  
-
kΩ  
kΩ  
V
-
Analog input voltage range  
12-bit mode  
0
Resolution  
-
-
-
12  
-
Bit  
μs  
-
1
Conversion time*  
(Operation at  
Permissible  
signal source  
2.25  
High-precision channel  
ADCSR.ADHSC = 1  
PCLKC = 24 MHz) impedance Max.  
= 1.1 kΩ  
ADSSTRn.SST[7:0] = 0Dh  
3.38  
-
-
μs  
Normal-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 28h  
Offset error  
-
-
-
±0.5  
±0.75  
±0.5  
±4.5  
±6.0  
±4.5  
±6.0  
-
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than above  
High-precision channel  
Other than above  
-
Full-scale error  
Quantization error  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 90 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.45  
A/D conversion characteristics (4) in low power A/D conversion mode (2 of 2)  
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
±5.0  
±8.0  
-
Unit  
LSB  
LSB  
LSB  
LSB  
Test conditions  
Absolute accuracy  
-
±1.25  
High-precision channel  
Other than above  
DNL differential nonlinearity error  
INL integral nonlinearity error  
14-bit mode  
-
-
±1.0  
±1.0  
-
-
±3.0  
Resolution  
-
-
-
14  
-
Bit  
μs  
-
1
Conversion time*  
(Operation at  
Permissible  
signal source  
2.50  
High-precision channel  
ADCSR.ADHSC = 1  
PCLKC = 24 MHz) impedance Max.  
= 1.1 kΩ  
ADSSTRn.SST[7:0] = 0Dh  
3.63  
-
-
μs  
Normal-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 28h  
Offset error  
-
-
±2.0  
±3.0  
±18  
±24.0  
±18  
±24.0  
-
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than above  
Full-scale error  
High-precision channel  
Other than above  
Quantization error  
Absolute accuracy  
-
-
±0.5  
±5.0  
-
±20  
±32.0  
-
High-precision channel  
Other than above  
DNL differential nonlinearity error  
INL integral nonlinearity error  
-
-
±4.0  
±4.0  
-
-
±12.0  
Note:  
The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not  
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do  
not include quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for  
the test conditions.  
Note 2. Except for I/O input capacitance (C ), see section 2.2.4, I/O V , V , and Other Characteristics.  
in  
OH  
OL  
Table 2.46  
A/D conversion characteristics (5) in low power A/D conversion mode (1 of 2)  
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
Unit  
MHz  
pF  
Test conditions  
-
Frequency  
1
-
-
-
-
-
-
-
16  
2
Analog input capacitance*  
Cs  
Rs  
Ain  
8 (reference data)  
9 (reference data)  
2.5 (reference data)  
6.7 (reference data)  
VREFH0  
High-precision channel  
Normal-precision channel  
High-precision channel  
Normal-precision channel  
-
-
pF  
Analog input resistance  
-
kΩ  
kΩ  
V
-
Analog input voltage range  
12-bit mode  
0
Resolution  
-
-
-
12  
-
Bit  
μs  
-
1
Conversion time*  
(Operation at  
PCLKC = 16 MHz)  
Permissible signal 3.38  
sourceimpedance  
Max. = 2.2 kΩ  
High-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 0Dh  
5.06  
-
-
μs  
Normal-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 28h  
Offset error  
-
±0.5  
±4.5  
±6.0  
LSB  
LSB  
High-precision channel  
Other than above  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 91 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.46  
A/D conversion characteristics (5) in low power A/D conversion mode (2 of 2)  
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
±4.5  
±6.0  
-
Unit  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Test conditions  
Full-scale error  
-
±0.75  
High-precision channel  
Other than above  
Quantization error  
Absolute accuracy  
-
-
±0.5  
-
±1.25  
±5.0  
±8.0  
-
High-precision channel  
Other than above  
DNL differential nonlinearity error  
INL integral nonlinearity error  
14-bit mode  
-
-
±1.0  
±1.0  
-
-
±3.0  
Resolution  
-
-
-
14  
-
Bit  
μs  
-
1
Conversion time*  
(Operation at  
PCLKC = 16 MHz)  
Permissible signal 3.75  
sourceimpedance  
Max. = 2.2 kΩ  
High-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 0Dh  
5.44  
-
-
μs  
Normal-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 28h  
Offset error  
-
-
±2.0  
±3.0  
±18  
±24.0  
±18  
±24.0  
-
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than above  
Full-scale error  
High-precision channel  
Other than above  
Quantization error  
Absolute accuracy  
-
-
±0.5  
±5.0  
-
±20  
±32.0  
-
High-precision channel  
Other than above  
DNL differential nonlinearity error  
INL integral nonlinearity error  
-
-
±4.0  
±4.0  
-
-
±12.0  
Note:  
The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not  
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do  
not include quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for  
the test conditions.  
Note 2. Except for I/O input capacitance (C ), see section 2.2.4, I/O V , V , and Other Characteristics.  
in  
OH  
OL  
Table 2.47  
A/D conversion characteristics (6) in low power A/D conversion mode (1 of 2)  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
Unit  
MHz  
pF  
Test conditions  
-
Frequency  
1
-
-
-
-
-
-
-
8
2
Analog input capacitance*  
Cs  
Rs  
Ain  
8 (reference data)  
9 (reference data)  
High-precision channel  
Normal-precision channel  
High-precision channel  
Normal-precision channel  
-
-
pF  
Analog input resistance  
-
3.8 (reference data) kΩ  
8.2 (reference data) kΩ  
-
Analog input voltage range  
12-bit mode  
0
VREFH0  
V
Resolution  
-
-
-
12  
-
Bit  
μs  
-
1
Conversion time*  
(Operation at  
Permissible signal 6.75  
source  
High-precision channel  
ADCSR.ADHSC = 1  
PCLKC = 8 MHz)  
impedance Max.  
ADSSTRn.SST[7:0] = 0Dh  
= 5 kΩ  
10.13  
-
-
μs  
Normal-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 28h  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 92 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.47  
A/D conversion characteristics (6) in low power A/D conversion mode (2 of 2)  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
±7.5  
±10.0  
±7.5  
±10.0  
-
Unit  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Test conditions  
High-precision channel  
Other than above  
High-precision channel  
Other than above  
-
Offset error  
-
±1.0  
Full-scale error  
-
±1.5  
Quantization error  
Absolute accuracy  
-
-
±0.5  
±3.0  
±8.0  
±12.0  
-
High-precision channel  
Other than above  
-
DNL differential nonlinearity error  
INL integral nonlinearity error  
14-bit mode  
-
-
±1.0  
±1.0  
±3.0  
-
Resolution  
-
-
-
14  
-
Bit  
μs  
-
1
Conversion time*  
(Operation at  
Permissible signal 7.50  
source  
High-precision channel  
ADCSR.ADHSC = 1  
PCLKC = 8 MHz)  
impedance Max.  
ADSSTRn.SST[7:0] = 0Dh  
= 5 kΩ  
10.88  
-
-
μs  
Normal-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 28h  
Offset error  
-
-
±4.0  
±6.0  
±30.0  
±40.0  
±30.0  
±40.0  
-
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than above  
Full-scale error  
High-precision channel  
Other than above  
Quantization error  
Absolute accuracy  
-
-
±0.5  
-
±12.0  
±32.0  
±48.0  
-
High-precision channel  
Other than above  
DNL differential nonlinearity error  
INL integral nonlinearity error  
-
-
±4.0  
±4.0  
-
-
±12.0  
Note:  
The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not  
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do  
not include quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for  
the test conditions.  
Note 2. Except for I/O input capacitance (C ), see section 2.2.4, I/O V , V , and Other Characteristics.  
in  
OH  
OL  
Table 2.48  
A/D conversion characteristics (7) in low power A/D conversion mode (1 of 2)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
Unit  
MHz  
pF  
Test conditions  
-
Frequency  
1
-
-
-
-
-
-
-
4
2
Analog input capacitance*  
Cs  
Rs  
Ain  
8 (reference data)  
9 (reference data)  
13.1 (reference data)  
14.3 (reference data)  
VREFH0  
High-precision channel  
Normal-precision channel  
High-precision channel  
Normal-precision channel  
-
-
pF  
Analog input resistance  
-
kΩ  
kΩ  
V
-
Analog input voltage range  
12-bit mode  
0
Resolution  
-
-
12  
Bit  
-
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 93 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.48  
A/D conversion characteristics (7) in low power A/D conversion mode (2 of 2)  
Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V  
Reference voltage range applied to the VREFH0 and VREFL0.  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
1
Conversion time*  
(Operation at  
Permissible  
signal source  
impedance Max.  
= 9.9 kΩ  
13.5  
-
-
μs  
High-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 0Dh  
PCLKC = 4 MHz)  
20.25  
-
-
μs  
Normal-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 28h  
Offset error  
-
-
±1.0  
±1.5  
±7.5  
±10.0  
±7.5  
±10.0  
-
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than above  
Full-scale error  
High-precision channel  
Other than above  
Quantization error  
Absolute accuracy  
-
-
±0.5  
±3.0  
-
±8.0  
±12.0  
-
High-precision channel  
Other than above  
DNL differential nonlinearity error  
INL integral nonlinearity error  
14-bit mode  
-
-
±1.0  
±1.0  
-
-
±3.0  
Resolution  
-
-
-
14  
-
Bit  
μs  
-
1
Conversion time*  
(Operation at  
PCLKC = 4 MHz)  
Permissible  
signal source  
impedance Max.  
= 9.9 kΩ  
15.0  
High-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 0Dh  
21.75  
-
-
μs  
Normal-precision channel  
ADCSR.ADHSC = 1  
ADSSTRn.SST[7:0] = 28h  
Offset error  
-
-
±4.0  
±6.0  
±30.0  
±40.0  
±30.0  
±40.0  
-
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
High-precision channel  
Other than above  
Full-scale error  
High-precision channel  
Other than above  
Quantization error  
Absolute accuracy  
-
-
±0.5  
-
±12.0  
±32.0  
±48.0  
-
High-precision channel  
Other than above  
DNL differential nonlinearity error  
INL integral nonlinearity error  
-
-
±4.0  
±4.0  
-
-
±12.0  
Note:  
The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not  
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do  
not include quantization errors.  
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for  
the test conditions.  
Note 2. Except for I/O input capacitance (C ), see section 2.2.4, I/O V , V , and Other Characteristics.  
in  
OH  
OL  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 94 of 130  
RA4M1 Group  
2. Electrical Characteristics  
MCU  
Analog input  
ANn  
Rs  
Sensor  
Cin  
ADC  
Cs  
Analog input  
ANn  
Rs  
Cin  
Figure 2.69  
Table 2.49  
Equivalent circuit for analog input  
14-Bit A/D converter channel classification  
Classification  
Channel  
Conditions  
Remarks  
High-precision channel  
Normal-precision channel  
AN000 to AN014  
AN016 to AN025  
AVCC0 = 1.6 to 5.5 V  
Pins AN000 to AN014 cannot be used  
as general I/O, IRQ2, IRQ3 inputs,  
and TS transmission, when the A/D  
converter is in use  
Internal reference voltage  
input channel  
Internal reference voltage  
Temperature sensor output  
AVCC0 = 2.0 to 5.5 V  
AVCC0 = 2.0 to 5.5 V  
-
Temperature sensor input  
channel  
-
Table 2.50  
A/D internal reference voltage characteristics  
1
Conditions: VCC = AVCC0 = VREFH0 = 2.0 to 5.5 V*  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
Internal reference voltage input  
channel*  
1.36  
1.43  
1.50  
V
-
2
3
Frequency*  
1
-
-
2
-
MHz  
μs  
-
-
4
Sampling time*  
5.0  
Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V.  
Note 2. The 14-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 14-bit A/D  
converter.  
Note 3. This is a parameter for ADC14 when the internal reference voltage is used as the high-potential reference voltage.  
Note 4. This is a parameter for ADC14 when the internal reference voltage is selected for an analog input channel in ADC14.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 95 of 130  
RA4M1 Group  
2. Electrical Characteristics  
3FFFh  
Full-scale error  
Integral nonlinearity  
error (INL)  
A/D converter  
output code  
Ideal line of actual A/D  
conversion characteristic  
Actual A/D conversion  
characteristic  
Ideal A/D conversion  
characteristic  
Differential nonlinearity error (DNL)  
1-LSB width for ideal A/D  
conversion characteristic  
Differential nonlinearity error (DNL)  
1-LSB width for ideal A/D  
conversion characteristic  
Absolute accuracy  
0000h  
Offset error  
0
Analog input voltage  
VREFH0  
(full-scale)  
Figure 2.70  
Illustration of 14-bit A/D converter characteristic terms  
Absolute accuracy  
Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the  
actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog  
input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D  
conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference  
voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog  
input voltages. If analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D conversion  
result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical A/D  
conversion characteristics.  
Integral nonlinearity error (INL)  
Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale  
errors are zeroed, and the actual output code.  
Differential nonlinearity error (DNL)  
Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics  
and the width of the actually output code.  
Offset error  
Offset error is the difference between the transition point of the ideal first output code and the actual first output code.  
Full-scale error  
Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 96 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.6  
DAC12 Characteristics  
Table 2.51  
D/A conversion characteristics (1)  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
Reference voltage = VREFH or VREFL selected  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
Resolution  
-
-
12  
bit  
-
-
-
-
-
-
-
-
-
-
Resistive load  
30  
-
-
kΩ  
pF  
V
Load capacitance  
Output voltage range  
DNL differential nonlinearity error  
INL integral nonlinearity error  
Offset error  
-
-
50  
0.35  
-
AVCC0 - 0.47  
-
-
-
-
-
-
±0.5  
±1.0  
±8.0  
±20  
±20  
-
LSB  
LSB  
mV  
mV  
Ω
±2.0  
-
Full-scale error  
-
Output impedance  
Conversion time  
5
-
30  
μs  
Table 2.52  
D/A conversion characteristics (2)  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
Reference voltage = AVCC0 or AVSS0 selected  
Parameter  
Min  
Typ  
Max  
Unit  
bit  
Test conditions  
Resolution  
-
-
12  
-
-
-
-
-
-
-
-
-
-
Resistive load  
30  
-
-
kΩ  
pF  
Load capacitance  
Output voltage range  
DNL differential nonlinearity error  
INL integral nonlinearity error  
Offset error  
-
-
50  
0.35  
-
AVCC0 - 0.47  
V
-
-
-
-
-
-
±0.5  
±2.0  
±8.0  
±30  
±30  
-
LSB  
LSB  
mV  
mV  
Ω
±2.0  
-
Full-scale error  
-
Output impedance  
Conversion time  
5
-
30  
μs  
Table 2.53  
D/A conversion characteristics (3)  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
Reference voltage = internal reference voltage selected  
Parameter  
Min  
Typ  
Max  
12  
Unit  
bit  
Test conditions  
Resolution  
-
-
-
-
-
-
-
-
-
-
-
-
Internal reference voltage (Vbgr)  
Resistive load  
1.36  
1.43  
1.50  
-
V
30  
-
kΩ  
pF  
V
Load capacitance  
-
-
50  
Output voltage range  
DNL differential nonlinearity error  
INL integral nonlinearity error  
Offset error  
0.35  
-
Vbgr  
±16.0  
±16.0  
±30  
-
-
-
-
-
-
±2.0  
LSB  
LSB  
mV  
Ω
±8.0  
-
Output impedance  
Conversion time  
5
-
30  
μs  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 97 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Gain error  
Full-scale error  
Upper output limit  
Integral nonlinearity error (INL)  
Offset error  
1-LSB width for ideal D/A conversion  
characteristic  
Output analog voltage  
Ideal output voltage  
Differential nonlinearity error  
(DNL)  
*1  
Lower output limit  
Actual D/A conversion characteristic  
Offset error  
Ideal output voltage  
FFFh  
000h  
D/A converter input code  
Note 1. Ideal D/A conversion output voltage that is adjusted so that offset and full scale errors are zeroed.  
Figure 2.71  
Illustration of D/A converter characteristic terms  
Integral nonlinearity error (INL)  
Integral nonlinearity error is the maximum deviation between the ideal output voltage based on the ideal conversion  
characteristic when the measured offset and full-scale errors are zeroed, and the actual output voltage.  
Differential nonlinearity error (DNL)  
Differential nonlinearity error is the difference between 1-LSB voltage width based on the ideal D/A conversion  
characteristics and the width of the actual output voltage.  
Offset error  
Offset error is the difference between the highest actual output voltage that falls below the lower output limit and the  
ideal output voltage based on the input code.  
Full-scale error  
Full-scale error is the difference between the lowest actual output voltage that exceeds the upper output limit and the  
ideal output voltage based on the input code.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 98 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.7  
TSN Characteristics  
Table 2.54  
TSN characteristics  
Conditions: VCC = AVCC0 = 2.0 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
±1.5  
±2.0  
-3.65  
1.05  
-
Max  
Unit  
°C  
Test conditions  
Relative accuracy  
-
-
-
-
-
-
-
2.4 V or above  
-
°C  
Below 2.4 V  
Temperature slope  
-
-
mV/°C  
V
-
Output voltage (at 25°C)  
Temperature sensor start time  
Sampling time  
-
-
VCC = 3.3 V  
t
-
5
-
μs  
-
-
START  
-
5
-
μs  
2.8  
OSC Stop Detect Characteristics  
Table 2.55  
Oscillation stop detection circuit characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
ms  
Test conditions  
Detection time  
t
-
-
1
Figure 2.72  
dr  
Main clock  
Main clock  
OSTDSR.OSTDF  
PLL clock  
tdr  
tdr  
OSTDSR.OSTDF  
MOCO clock  
ICLK  
MOCO clock  
ICLK  
When the main clock is selected  
When the PLL clock is selected  
Figure 2.72  
Oscillation stop detection timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 99 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.9  
POR and LVD Characteristics  
Table 2.56  
Power-on reset circuit and voltage detection circuit characteristics (1)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Voltage detection  
level*  
Power-on reset (POR)  
V
1.27  
1.42  
1.57  
V
Figure 2.73,  
Figure 2.74  
POR  
1
2
Voltage detection circuit (LVD0)*  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
3.68  
2.68  
2.38  
1.78  
1.60  
4.13  
3.98  
3.86  
3.68  
2.98  
2.89  
2.79  
2.68  
2.58  
2.48  
2.38  
2.10  
1.84  
1.74  
1.63  
1.60  
4.11  
3.97  
3.83  
3.64  
3.85  
2.85  
2.53  
1.90  
1.69  
4.29  
4.16  
4.03  
3.86  
3.10  
3.00  
2.90  
2.79  
2.68  
2.58  
2.48  
2.20  
1.96  
1.86  
1.75  
1.65  
4.31  
4.17  
4.03  
3.84  
4.00  
2.96  
2.64  
2.02  
1.82  
4.45  
4.30  
4.18  
4.00  
3.22  
3.11  
3.01  
2.90  
2.78  
2.68  
2.58  
2.30  
2.05  
1.95  
1.84  
1.73  
4.48  
4.34  
4.20  
4.01  
V
Figure 2.75  
At falling edge  
VCC  
det0_0  
det0_1  
det0_2  
det0_3  
det0_4  
det1_0  
det1_1  
det1_2  
det1_3  
det1_4  
det1_5  
det1_6  
det1_7  
det1_8  
det1_9  
det1_A  
det1_B  
det1_C  
det1_D  
det1_E  
det1_F  
det2_0  
det2_1  
det2_2  
det2_3  
3
Voltage detection circuit (LVD1)*  
V
Figure 2.76  
At falling edge  
VCC  
4
Voltage detection circuit (LVD2)*  
V
Figure 2.77  
At falling edge  
VCC  
Note 1. These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection  
level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage  
detection.  
Note 2. # in the symbol V  
Note 3. # in the symbol V  
Note 4. # in the symbol V  
denotes the value of the OFS1.VDSEL1[2:0] bits.  
denotes the value of the LVDLVLR.LVD1LVL[4:0] bits.  
denotes the value of the LVDLVLR.LVD2LVL[2:0] bits.  
det0_#  
det1_#  
det2_#  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 100 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.57  
Parameter  
Power-on reset circuit and voltage detection circuit characteristics (2)  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Wait time after power-on  
reset cancellation  
LVD0:enable  
LVD0:disable  
LVD0:enable*  
t
t
t
t
t
-
1.7  
-
ms  
-
POR  
-
-
-
-
1.3  
0.6  
0.2  
-
-
ms  
ms  
ms  
μs  
-
-
-
POR  
1
Wait time after voltage  
monitor 0,1,2 reset  
cancellation  
-
LVD0,1,2  
LVD1,2  
det  
2
LVD0:disable*  
-
3
Response delay*  
350  
Figure 2.73,  
Figure 2.74  
Minimum VCC down time  
Power-on reset enable time  
t
t
450  
-
-
-
-
μs  
ms  
μs  
Figure 2.73,  
VCC = 1.0 V or above  
VOFF  
1
-
-
Figure 2.74,  
VCC = below 1.0 V  
W (POR)  
LVD operation stabilization time (after LVD is  
enabled)  
T
300  
Figure 2.76,  
Figure 2.77  
d (E-A)  
Hysteresis width (POR)  
V
V
-
-
-
-
-
-
-
110  
60  
-
-
-
-
-
-
-
mV  
mV  
mV  
-
PORH  
Hysteresis width (LVD0, LVD1 and LVD2)  
LVD0 selected  
LVH  
100  
60  
V
V
V
V
to V  
to V  
selected.  
selected.  
selected.  
selected.  
det1_0  
det1_3  
det1_A  
det1_C  
det1_2  
det1_9  
50  
or V  
or V  
det1_B  
det1_F  
40  
60  
LVD2 selected  
Note 1. When OFS1.LVDAS = 0.  
Note 2. When OFS1.LVDAS = 1.  
Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V  
,
POR  
V
, V  
, and V for the POR/LVD.  
det2  
det0  
det1  
tVOFF  
VCC  
VPOR  
1.0 V  
Internal reset signal  
(active-low)  
tdet  
tdet tPOR  
Figure 2.73  
Voltage detection reset timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 101 of 130  
RA4M1 Group  
2. Electrical Characteristics  
VPOR  
VCC  
1.0 V  
tW(POR)  
*1  
Internal reset signal  
(active-low)  
tdet tPOR  
Note:  
tW(POR) is the time required for a power-on reset to be enabled while the external power VCC is being held  
below the valid voltage (1.0 V).  
When VCC turns on, maintain tW(POR) for 1.0 ms or more.  
Figure 2.74  
Power-on reset timing  
tVOFF  
VLVH  
VCC  
Vdet0  
Internal reset signal  
(active-low)  
tdet  
tdet  
tLVD0  
Figure 2.75  
Voltage detection circuit timing (Vdet0)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 102 of 130  
RA4M1 Group  
2. Electrical Characteristics  
tVOFF  
VLVH  
VCC  
Vdet1  
LVCMPCR.LVD1E  
Td(E-A)  
LVD1  
Comparator output  
LVD1CR0.CMPE  
LVD1SR.MON  
Internal reset signal  
(active-low)  
When LVD1CR0.RN = 0  
tdet  
tLVD1  
tdet  
When LVD1CR0.RN = 1  
tLVD1  
Figure 2.76  
Voltage detection circuit timing (Vdet1)  
tVOFF  
VLVH  
VCC  
Vdet2  
LVCMPCR.LVD2E  
Td(E-A)  
LVD2  
Comparator output  
LVD2CR0.CMPE  
LVD2SR.MON  
Internal reset signal  
(active-low)  
When LVD2CR0.RN = 0  
tdet  
tdet  
tLVD2  
When LVD2CR0.RN = 1  
tLVD2  
Figure 2.77  
Voltage detection circuit timing (Vdet2)  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 103 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.10 VBATT Characteristics  
Table 2.58  
Battery backup function characteristics  
Conditions: VCC = AVCC0 = 1.6V to 5.5V, VBATT = 1.6 to 3.6 V  
Parameter  
Symbol  
Min  
1.99  
-
Typ  
2.09  
100  
-
Max  
2.19  
-
Unit  
V
Test conditions  
Voltage level for switching to battery backup (falling)  
Hysteresis width for switching to battery back up  
VCC-off period for starting power supply switching  
VDETBATT  
VVBATTH  
tVOFFBATT  
VVBATPOR  
Figure 2.78,  
Figure 2.79  
mV  
μs  
V
300  
1.30  
-
-
Voltage detection level  
VBATT_Power-on reset (VBATT_POR)  
1.40  
1.50  
Figure 2.78,  
Figure 2.79  
Wait time after VBATT_POR reset time cancellation  
tVBATPOR  
-
-
3
mS  
V
-
Level for detection of voltage drop on  
the VBATT pin (falling)  
VBTLVDLVL[1:0] = 10b VDETBATLVD 2.11  
2.2  
2.29  
2.08  
-
Figure 2.80  
VBTLVDLVL[1:0] = 11b  
1.92  
2
50  
-
V
Hysteresis width for VBATT pin LVD  
VVBATLVDTH  
td_vbat  
-
mV  
μs  
μs  
VBATT pin LVD operation stabilization time  
VBATT pin LVD response delay time  
-
300  
350  
-
Figure 2.80  
tdet_vbat  
-
-
Allowable voltage change rising/falling gradient  
VCC voltage level for access to the VBATT backup registers  
dt/dVCC  
V_BKBATT  
1.0  
1.8  
-
ms/V  
V
-
-
-
-
Note:  
The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the  
voltage level for switching to battery backup (VDETBATT).  
VLVH  
Vdet0  
VCC  
VVBATH  
VDETBATT  
VPOR  
VBATT  
VVBATPOR  
Internal reset signal  
(active-low)  
tdet  
tdet  
VCC supplied  
tLVD0  
Backup power area  
VBATT supplied  
VCC supplied  
Figure 2.78  
Power supply switching and LVD0 reset timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 104 of 130  
RA4M1 Group  
2. Electrical Characteristics  
VCC  
VVBATH  
VDETBATT  
VBATT  
VVBATPOR  
VBATT_POR  
(active-low)  
tVBATPOR  
Backup power area  
VCC supplied  
VBATT supplied  
not supplied  
VCC supplied  
Figure 2.79  
VBATT_POR reset timing  
VVBATLVDTH  
VBATT  
VDETBATLVD  
VBTCR2.VBTLVDEN  
Td_vbat  
VBATT pin LVD  
Comparator output  
VBTCMPCR.VBTCMPE  
VBTSR.VBTBLDF  
tdet_vbat  
tdet_vbat  
Figure 2.80  
VBATT pin voltage detection circuit timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 105 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.59  
Parameter  
VBATT-I/O characteristics  
Symbol  
VOH  
Min  
Typ  
Max  
-
Unit  
Test conditions  
IOH = -200 µA  
IOL = 200 µA  
IOH = -100 µA  
IOL = 100 µA  
IOH = -50 µA  
IOL = 50 µA  
VBATWIOnI/O VCC > VDETBATT VCC = 4.0 to 5.5 V  
output  
characteristics  
(n = 0 to 2)  
VCC - 0.8  
-
-
-
-
-
-
-
-
-
-
V
VOL  
-
0.8  
-
VCC = 2.7 to 4.0 V  
VOH  
VCC - 0.5  
VOL  
-
0.5  
-
VCC = VDETBATT to 2.7 V VOH  
VOL  
VCC - 0.3  
-
0.3  
-
VCC < VDETBATT VBATT = 2.7 to 3.6 V  
VOH  
VOL  
VOH  
VOL  
VBATT - 0.5  
IOH = -100 µA  
IOL = 100 µA  
IOH = -50 µA  
IOL = 50 µA  
-
0.5  
-
VBATT = 1.6 to 2.7 V  
VBATT - 0.3  
-
0.3  
2.11 CTSU Characteristics  
Table 2.60  
CTSU characteristics  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V  
Parameter  
Symbol  
Ctscap  
Cbase  
Min  
Typ  
Max  
11  
Unit  
Test conditions  
External capacitance connected to TSCAP pin  
TS pin capacitive load  
9
-
10  
-
nF  
pF  
mA  
-
-
50  
Permissible output high current  
ΣIoH  
-
-
-24  
When the mutual  
capacitance method  
is applied  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 106 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.12 Segment LCD Controller Characteristics  
2.12.1  
Resistance Division Method  
[Static Display Mode]  
Table 2.61  
Resistance division method LCD characteristics (1)  
Conditions: VL4 ≤ VCC ≤ 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
LCD drive voltage  
VL4  
2.0  
-
VCC  
V
-
[1/2 Bias Method, 1/4 Bias Method]  
Table 2.62  
Resistance division method LCD characteristics (2)  
Conditions: VL4 ≤ VCC ≤ 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
LCD drive voltage  
VL4  
2.7  
-
VCC  
V
-
[1/3 Bias Method]  
Table 2.63  
Resistance division method LCD characteristics (3)  
Conditions: VL4 ≤ VCC ≤ 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
LCD drive voltage  
VL4  
2.5  
-
VCC  
V
-
2.12.2  
Internal Voltage Boosting Method  
[1/3 Bias Method]  
Table 2.64 Internal voltage boosting method LCD characteristics  
Conditions: VCC = 1.8 V to 5.5 V  
Test  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
1.08  
1.13  
1.18  
1.23  
1.28  
1.33  
1.38  
1.43  
1.48  
1.53  
1.58  
1.63  
1.68  
1.73  
1.78  
1.83  
Unit  
V
conditions  
LCD output voltage  
variation range  
VL1  
C1 to C4*1 = 0.47 μF VLCD = 04h  
VLCD = 05h  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.0  
-
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
V
-
VLCD = 06h  
V
-
VLCD = 07h  
V
-
VLCD = 08h  
V
-
VLCD = 09h  
V
-
VLCD = 0Ah 1.20  
VLCD = 0Bh 1.25  
VLCD = 0Ch 1.30  
VLCD = 0Dh 1.35  
VLCD = 0Eh 1.40  
V
-
V
-
V
-
V
-
V
-
VLCD = 0Fh  
VLCD = 10h  
VLCD = 11h  
VLCD = 12h  
VLCD = 13h  
1.45  
V
-
1.50  
V
-
1.55  
V
-
1.60  
V
-
1.65  
V
-
Doubler output voltage VL2  
C1 to C4*1 = 0.47 μF  
C1 to C4*1 = 0.47 μF  
2 × VL1 - 0.1  
2 × VL1 2 × VL1  
V
-
Tripler output voltage  
VL4  
3 × VL1 - 0.15 3 × VL1 3 × VL1  
V
-
Reference voltage  
setup time*2  
tVL1S  
5
-
-
ms  
Figure 2.81  
LCD output voltage  
variation range*3  
tVLWT  
C1 to C4*1 = 0.47 μF  
500  
-
-
ms  
Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 107 of 130  
RA4M1 Group  
2. Electrical Characteristics  
C1: A capacitor connected between CAPH and CAPL  
C2: A capacitor connected between VL1 and GND  
C3: A capacitor connected between VL2 and GND  
C4: A capacitor connected between VL4 and GND  
C1 = C2 = C3 = C4 = 0.47 μF ±30%.  
Note 2. This is the time required to wait from when the reference voltage is specified using the VLCD register (or when the internal  
voltage boosting method is selected (by setting the MDSET[1:0] bits in the LCDM0 register to 01b) if the default value reference  
voltage is used) until voltage boosting starts (VLCON = 1).  
Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).  
[1/4 Bias Method]  
Table 2.65  
Internal voltage boosting method LCD characteristics  
Conditions: VCC = 1.8 V to 5.5 V  
Test  
Parameter  
Symbol Conditions  
Min  
Typ  
1.0  
Max  
1.08  
1.13  
1.18  
1.23  
1.28  
1.33  
1.38  
1.43  
1.48  
2VL1  
3VL1  
4VL1  
Unit  
V
conditions  
LCD output voltage  
variation range  
VL1  
C1 to C5*1 = 0.47 μF  
VLCD = 04h  
VLCD = 05h  
VLCD = 06h  
VLCD = 07h  
VLCD = 08h  
VLCD = 09h  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
-
-
-
-
-
-
-
-
-
-
-
-
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
V
V
V
V
V
VLCD = 0Ah 1.20  
VLCD = 0Bh 1.25  
VLCD = 0Ch 1.30  
V
V
V
Doubler output voltage VL2  
C1 to C5*1 = 0.47 μF  
C1 to C5*1 = 0.47 μF  
C1 to C5*1 = 0.47 μF  
2VL1 - 0.08 2VL1  
3VL1 - 0.12 3VL1  
4VL1 - 0.16 4VL1  
V
Tripler output voltage  
VL3  
VL4  
V
4
Quadruply output  
voltage  
*
V
Reference voltage  
setup time*2  
tVL1S  
5
-
-
-
-
ms  
ms  
Figure 2.81  
LCD output voltage  
variation range*3  
tVLWT  
C1 to C5*1 = 0.47 μF  
500  
Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.  
C1: A capacitor connected between CAPH and CAPL  
C2: A capacitor connected between VL1 and GND  
C3: A capacitor connected between VL2 and GND  
C4: A capacitor connected between VL3 and GND  
C5: A capacitor connected between VL4 and GND  
C1 = C2 = C3 = C4 = C5 = 0.47 μF ± 30%  
Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal  
voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits in the LCDM0 register to 01b) if the default  
value reference voltage is used) until voltage boosting starts (VLCON = 1).  
Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).  
Note 4.  
VL4 must be 5.5 V or lower.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 108 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.12.3  
Capacitor Split Method  
[1/3 Bias Method]  
Table 2.66  
Internal voltage boosting method LCD characteristics  
Conditions: VCC = 2.2 V to 5.5 V  
Test  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Unit conditions  
VL4 voltage*1  
VL2 voltage*1  
VL1 voltage*1  
VL4  
VL2  
VL1  
C1 to C4 = 0.47 μF*2  
-
VCC  
-
V
-
C1 to C4 = 0.47 μF*2 2/3 × VL4 - 0.07 2/3 × VL4  
C1 to C4 = 0.47 μF*2 1/3 × VL4 - 0.08 1/3 × VL4  
2/3 × VL4 + 0.07  
V
-
1/3 × VL4 + 0.08  
-
V
-
Capacitor split wait time*1 tWAIT  
100  
-
ms  
Figure 2.81  
Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).  
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.  
C1: A capacitor connected between CAPH and CAPL  
C2: A capacitor connected between VL1 and GND  
C3: A capacitor connected between VL2 and GND  
C4: A capacitor connected between VL4 and GND  
C1 = C2 = C3 = C4 = 0.47 μF ± 30%.  
MDSET0,  
MDSET1  
00b  
01b or 10b  
tVL1S  
VLCON  
tVLWT, tWAIT  
LCDON  
Figure 2.81  
LCD reference voltage setup time, voltage boosting wait time, and capacitor split wait time  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 109 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.13 Comparator Characteristics  
Table 2.67  
ACMPLP characteristics  
Conditions: VCC = 1.8 to 5.5 V  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Reference voltage range  
Standard  
IVREFn (n= 0,1)  
VREF  
0
-
VCC-1.4  
V
-
mode  
Window  
mode*2  
IVREF1  
IVREF0  
VREFH  
1.4  
-
VCC  
VCC-1.4  
VCC  
1.50  
1.2  
5
V
-
-
-
-
VREFL  
0
-
V
Input voltage range  
Internal reference voltage  
Output delay  
VI  
-
0
-
V
1.36  
1.44  
V
High-speed mode  
Low-speed mode  
Window mode  
Td  
-
-
-
-
-
-
-
-
μs  
μs  
μs  
mV  
mV  
mV  
μs  
VCC = 3.0  
Slew rate of input  
signal > 50 mV/μs  
-
-
2
Offset voltage*1  
High-speed mode  
Low-speed mode  
Window mode  
-
-
50  
-
-
-
-
-
-
40  
-
-
60  
Operation stabilization wait time  
Tcmp  
100  
-
Note 1. When 8-bit DAC output is used as the reference voltage, the offset voltage increases up to 2.5 x VCC/256.  
Note 2. In window mode, be sure to satisfy the following condition: IVREF1 - IVREF0 ≥ 0.2 V.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 110 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.14 OPAMP Characteristics  
Table 2.68  
OPAMP characteristics  
Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V)  
Parameter  
Symbol  
Vicm1  
Vicm2  
Vo1  
Conditions  
Min  
0.2  
0.3  
0.1  
0.1  
-10  
60  
-
Typ  
-
Max  
Unit  
V
Common mode input  
range  
Low power mode  
High-speed mode  
Low power mode  
High-speed mode  
3σ  
AVCC0 - 0.5  
-
AVCC0 - 0.6  
V
Output voltage range  
-
AVCC0 - 0.1  
V
Vo2  
-
AVCC0 - 0.1  
V
Input offset voltage  
Open gain  
Vioff  
-
10  
-
mV  
Av  
120  
0.04  
1.7  
-
dB  
Gain-bandwidth (GB)  
product  
GBW1  
GBW2  
PM  
Low power mode  
High-speed mode  
CL = 20 pF  
CL = 20 pF  
f = 1 kHz  
-
MHz  
MHz  
deg  
dB  
-
-
Phase margin  
50  
10  
-
-
Gain margin  
GM  
-
-
Equivalent input noise  
Vnoise1  
Vnoise2  
Vnoise3  
Vnoise4  
PSRR  
Low power mode  
High-speed mode  
230  
200  
90  
70  
90  
-
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
dB  
f = 10 kHz  
-
-
f = 1 kHz  
-
-
f = 2 kHz  
-
-
Power supply  
reduction ratio  
-
-
Common mode signal  
reduction ratio  
CMRR  
-
90  
-
dB  
Stabilization wait time  
Tstd1  
Tstd2  
Tstd3  
Tstd4  
CL = 20 pF  
Only operational amplifier is  
activated *1  
Low power mode  
High-speed mode  
Low power mode  
High-speed mode  
650  
13  
-
-
-
-
-
-
-
-
μs  
μs  
μs  
μs  
CL = 20 pF  
650  
13  
Operational amplifier and  
reference current circuit are  
activated simultaneously  
Settling time  
Slew rate  
Tset1  
Tset2  
Tslew1  
Tslew2  
Iload1  
Iload2  
CL  
CL = 20 pF  
Low power mode  
High-speed mode  
Low power mode  
High-speed mode  
-
-
750  
13  
-
μs  
-
-
μs  
CL = 20 pF  
-
0.02  
V/μs  
V/μs  
μA  
-
1.1  
-
Load current  
Load capacitance  
Low-power mode  
High-speed mode  
-100  
-100  
-
-
-
-
100  
100  
20  
μA  
pF  
Note 1. When the operational amplifier reference current circuit is activated in advance.  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 111 of 130  
RA4M1 Group  
2. Electrical Characteristics  
2.15 Flash Memory Characteristics  
2.15.1  
Code Flash Memory Characteristics  
Table 2.69  
Parameter  
Code flash characteristics (1)  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Reprogramming/erasure cycle*1  
Data hold time  
NPEC  
1000  
20*2,  
-
-
-
-
Times  
Year  
-
3
After 1000 times of NPEC tDRP  
*
Ta = +85°C  
Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 1,000),  
erasing can be done n times for each block. For instance, when 8-byte programming is performed 256 times for different  
addresses in 2-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,  
programming the same address for several times as one erasure is not enabled (overwriting is prohibited).  
Note 2. Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics.  
Note 3. This result is obtained from reliability testing.  
Table 2.70  
Code flash characteristics (2)  
High-speed operating mode  
Conditions: VCC = 2.7 to 5.5 V  
FCLK = 1 MHz  
FCLK = 32 MHz  
Parameter  
Symbol Min  
Typ  
116  
9.03  
-
Max  
Min  
Typ  
54  
5.67  
-
Max  
Unit  
μs  
Programming time  
Erasure time  
8-byte  
tP8  
-
-
-
-
-
-
-
-
2
998  
287  
56.8  
1899  
22.5  
585  
585  
585  
-
-
-
-
-
-
-
-
-
2
506  
222  
16.6  
140  
10.7  
447  
447  
447  
-
2-KB  
8-byte  
2-KB  
tE2K  
tBC8  
tBC2K  
tSED  
tSAS  
tAWS  
ms  
μs  
Blank check time  
-
-
μs  
Erase suspended time  
-
-
μs  
Startup area switching setting time  
Access window time  
21.7  
21.7  
21.7  
-
12.1  
12.1  
12.1  
-
ms  
ms  
ms  
μs  
OCD/serial programmer ID setting time tOSIS  
Flash memory mode transition wait  
time 1  
tDIS  
Flash memory mode transition wait  
time 2  
tMS  
5
-
-
5
-
-
μs  
Note:  
Note:  
Does not include the time until each operation of the flash memory is started after instructions are executed by software.  
The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below  
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.  
Note:  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 112 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.71  
Code flash characteristics (3)  
Middle-speed operating mode  
Conditions: VCC = 1.8 to 5.5 V, Ta = -40 to +85°C  
FCLK = 1 MHz  
FCLK = 8 MHz  
Parameter  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
966  
228  
52.5  
414  
21.6  
464  
464  
464  
-
Unit  
μs  
Programming time  
Erasure time  
8-byte  
2-KB  
tP8  
-
157  
1411  
289  
87.7  
1930  
32.7  
592  
592  
592  
-
-
101  
tE2K  
tBC8  
tBC2K  
tSED  
tSAS  
tAWS  
tOSIS  
-
9.10  
-
6.10  
ms  
μs  
Blank check time  
8-byte  
2-KB  
-
-
-
-
-
-
-
-
μs  
Erase suspended time  
-
-
-
-
μs  
Startup area switching setting time  
Access window time  
-
22.5  
22.5  
22.5  
-
-
14.0  
14.0  
14.0  
-
ms  
ms  
ms  
μs  
-
-
OCD/serial programmer ID setting time  
-
-
Flash memory mode transition wait time 1 tDIS  
Flash memory mode transition wait time 2 tMS  
2
2
720  
-
-
720  
-
-
ns  
Note:  
Note:  
Does not include the time until each operation of the flash memory is started after instructions are executed by software.  
The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below  
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.  
Note:  
2.15.2  
Data Flash Memory Characteristics  
Table 2.72  
Parameter  
Data flash characteristics (1)  
Symbol  
NDPEC  
tDDRP  
Min  
Typ  
Max  
Unit  
Test conditions  
Reprogramming/erasure cycle*1  
Data hold time After 10,000 times of NDPEC  
100,000  
1,000,000  
-
-
-
-
-
Times  
Year  
Year  
Year  
-
20*2,  
*
Ta = +85°C  
3
3
After 100,000 times of NDPEC  
5*2,  
-
*
-
3
After 1,000,000 times of  
NDPEC  
1*2,  
*
Ta = +25°C  
Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000),  
erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,000 times for different  
addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,  
programming the same address for several times as one erasure is not enabled. Overwriting is prohibited.  
Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics.  
Note 3. These results are obtained from reliability testing.  
Table 2.73  
Data flash characteristics (2)  
High-speed operating mode  
Conditions: VCC = 2.7 to 5.5 V  
FCLK = 4 MHz  
FCLK = 32 MHz  
Parameter  
Symbol  
tDP1  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
μs  
Programming time  
Erasure time  
1-byte  
-
52.4  
463  
286  
24.3  
1872  
13.0  
-
-
42.1  
387  
237  
16.6  
512  
10.7  
-
1-KB  
1-byte  
1-KB  
tDE1K  
-
8.98  
-
6.42  
ms  
μs  
Blank check time  
tDBC1  
-
-
-
-
-
-
-
-
-
-
tDBC1K  
tDSED  
tDSTOP  
-
-
μs  
Suspended time during erasing  
Data flash STOP recovery time  
-
-
μs  
5
5
μs  
Note:  
Note:  
Does not include the time until each operation of the flash memory is started after instructions are executed by software.  
The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below  
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.  
Note:  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 113 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.74  
Data flash characteristics (3)  
Middle-speed operating mode  
Conditions: VCC = 1.8 to 5.5 V, Ta = -40 to +85°C  
FCLK = 4 MHz  
FCLK = 8 MHz  
Parameter  
Symbol  
tDP1  
Min  
Typ  
Max  
Min  
Typ  
Max  
849  
273  
52.5  
1.51  
21.7  
-
Unit  
μs  
Programming time  
Erasure time  
1-byte  
1-KB  
-
94.7  
886  
299  
56.2  
2.17  
23.0  
-
-
89.3  
tDE1K  
-
9.59  
-
8.29  
ms  
μs  
Blank check time  
1-byte  
1-KB  
tDBC1  
-
-
-
-
-
-
-
-
-
-
tDBC1K  
tDSED  
tDSTOP  
-
-
ms  
μs  
Suspended time during erasing  
Data flash STOP recovery time  
-
-
720  
720  
ns  
Note:  
Note:  
Does not include the time until each operation of the flash memory is started after instructions are executed by software.  
The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below  
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.  
The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.  
Note:  
2.16 Boundary Scan  
Table 2.75  
Boundary scan  
Conditions: VCC = AVCC0 = 2.4 to 5.5 V  
Parameter  
Symbol  
tTCKcyc  
tTCKH  
tTCKL  
Min  
100  
45  
45  
-
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
Test conditions  
TCK clock cycle time  
TCK clock high pulse width  
TCK clock low pulse width  
TCK clock rise time  
TCK clock fall time  
TMS setup time  
-
-
-
-
-
-
-
-
-
-
-
-
Figure 2.82  
-
-
tTCKr  
5
5
-
tTCKf  
-
tTMSS  
tTMSH  
tTDIS  
20  
20  
20  
20  
-
Figure 2.83  
Figure 2.84  
TMS hold time  
-
TDI setup time  
-
TDI hold time  
tTDIH  
-
TDO data delay  
tTDOD  
tBSSTUP  
70  
-
Boundary Scan circuit start up time*1  
tRESWP  
Note 1. Boundary scan does not function until power-on-reset becomes negative.  
tTCKcyc  
tTCKH  
tTCKf  
TCK  
tTCKr  
tTCKL  
Figure 2.82  
Boundary scan TCK timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 114 of 130  
RA4M1 Group  
2. Electrical Characteristics  
TCK  
TMS  
TDI  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOD  
TDO  
Figure 2.83  
Boundary scan input/output timing  
VCC  
RES  
tBSSTUP  
(= tRESWP  
Boundary scan  
execute  
)
Figure 2.84  
Boundary scan circuit start up timing  
2.17 Joint Test Action Group (JTAG)  
Table 2.76  
JTAG (debug) characteristics (1)  
Conditions: VCC = 2.4 to 5.5 V  
Parameter  
Symbol  
tTCKcyc  
tTCKH  
tTCKL  
tTCKr  
Min  
80  
35  
35  
-
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test conditions  
TCK clock cycle time  
TCK clock high pulse width  
TCK clock low pulse width  
TCK clock rise time  
TCK clock fall time  
TMS setup time  
-
-
-
-
-
-
-
-
-
-
-
Figure 2.85  
-
-
5
5
-
tTCKf  
-
tTMSS  
tTMSH  
tTDIS  
16  
16  
16  
16  
-
Figure 2.86  
TMS hold time  
-
TDI setup time  
-
TDI hold time  
tTDIH  
-
TDO data delay time  
tTDOD  
70  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 115 of 130  
RA4M1 Group  
2. Electrical Characteristics  
Table 2.77  
JTAG (debug) characteristics (2)  
Conditions: VCC = 1.6 to 2.4 V  
Parameter  
Symbol  
tTCKcyc  
tTCKH  
tTCKL  
tTCKr  
Min  
250  
120  
120  
-
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test conditions  
TCK clock cycle time  
TCK clock high pulse width  
TCK clock low pulse width  
TCK clock rise time  
TCK clock fall time  
TMS setup time  
-
-
-
-
-
-
-
-
-
-
-
Figure 2.85  
-
-
5
tTCKf  
-
5
tTMSS  
tTMSH  
tTDIS  
50  
50  
50  
50  
-
-
Figure 2.86  
TMS hold time  
-
TDI setup time  
-
TDI hold time  
tTDIH  
-
TDO data delay time  
tTDOD  
150  
tTCKcyc  
tTCKH  
TCK  
tTCKf  
tTCKr  
tTCKL  
Figure 2.85  
JTAG TCK timing  
TCK  
TMS  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
TDI  
tTDOD  
TDO  
Figure 2.86  
JTAG input/output timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 116 of 130  
RA4M1 Group  
2.17.1  
2. Electrical Characteristics  
Serial Wire Debug (SWD)  
Table 2.78  
SWD characteristics (1)  
Conditions: VCC = 2.4 to 5.5 V  
Parameter  
Symbol  
tSWCKcyc  
tSWCKH  
tSWCKL  
tSWCKr  
tSWCKf  
tSWDS  
Min  
80  
35  
35  
-
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test conditions  
SWCLK clock cycle time  
SWCLK clock high pulse width  
SWCLK clock low pulse width  
SWCLK clock rise time  
SWCLK clock fall time  
SWDIO setup time  
-
-
-
-
-
-
-
-
-
Figure 2.87  
-
-
5
5
-
-
16  
16  
2
Figure 2.88  
SWDIO hold time  
tSWDH  
-
SWDIO data delay time  
tSWDD  
70  
Table 2.79  
SWD characteristics (2)  
Conditions: VCC = 1.6 to 2.4 V  
Parameter  
Symbol  
tSWCKcyc  
tSWCKH  
tSWCKL  
tSWCKr  
tSWCKf  
tSWDS  
Min  
250  
120  
120  
-
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test conditions  
SWCLK clock cycle time  
SWCLK clock high pulse width  
SWCLK clock low pulse width  
SWCLK clock rise time  
SWCLK clock fall time  
SWDIO setup time  
-
-
-
-
-
-
-
-
-
Figure 2.87  
-
-
5
-
5
50  
50  
2
-
Figure 2.88  
SWDIO hold time  
tSWDH  
-
SWDIO data delay time  
tSWDD  
150  
tSWCKcyc  
tSWCKH  
SWCLK  
tSWCKf  
tSWCKr  
tSWCKL  
Figure 2.87  
SWD SWCLK timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 117 of 130  
RA4M1 Group  
2. Electrical Characteristics  
SWCLK  
tSWDS tSWDH  
SWDIO  
(Input)  
tSWDD  
SWDIO  
(Output)  
tSWDD  
SWDIO  
(Output)  
tSWDD  
SWDIO  
(Output)  
Figure 2.88  
SWD input/output timing  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 118 of 130  
RA4M1 Group  
Appendix 1. Package Dimensions  
Appendix 1.Package Dimensions  
Information on the latest version of the package dimensions or mountings is shown in “Packages” on the Renesas  
Electronics Corporation website.  
JEITA Package Code  
P-TFLGA100-7x7-0.65  
RENESAS Code  
PTLG0100JA-A  
Previous Code  
100F0G  
MASS[Typ.]  
0.1g  
φ b1  
φ
×
M
S
AB  
φ b  
D
φ×  
M
S
AB  
w
S A  
ZD  
e
A
A
K
J
H
G
F
B
E
D
C
B
A
Dimension in Millimeters  
Reference  
Symbol  
Min Nom Max  
7.0  
7.0  
1
2
3
4
5
6
7
8
9
10  
y
S
×
4
D
E
v
v
Index mark  
Index mark  
S
(Laser mark)  
0.15  
w
A
e
0.20  
1.05  
0.65  
0.31 0.35 0.39  
b
b1 0.385 0.435 0.485  
x
0.08  
0.10  
y
ZD  
ZE  
0.575  
0.575  
Figure 1.1  
100-pin LGA  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 119 of 130  
RA4M1 Group  
Appendix 1. Package Dimensions  
JEITA Package Code  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
0.6  
P-LFQFP100-14x14-0.50  
PLQP0100KB-B  
HD  
Unit: mm  
*1  
D
75  
51  
76  
50  
100  
26  
1
25  
NOTE 4  
NOTE)  
Index area  
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
NOTE 3  
F
S
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
y
S
*3  
b
p
e
M
D
E
A2  
HD  
HE  
A
A1  
bp  
c
13.9  
13.9  

14.0 14.1  
14.0 14.1  
1.4  

15.8  
15.8  

16.0 16.2  
16.0 16.2  


1.7  
0.15  
0.05  
0.15  
0.09  
0q  
0.20 0.27  

3.5q  
0.5  

0.20  
8q  

Lp  
L1  
T
e
x
y
Lp  
L1  

Detail F  

0.08  
0.08  
0.75  



0.45  

0.6  
1.0  
© 2015 Renesas Electronics Corporation. All rights reserved.  
Figure 1.2  
100-pin LQFP  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 120 of 130  
RA4M1 Group  
Appendix 1. Package Dimensions  
JEITA Package Code  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
0.3  
P-LFQFP64-10x10-0.50  
PLQP0064KB-C  
Unit: mm  
HD  
*1  
D
48  
33  
49  
32  
64  
17  
1
16  
NOTE 4  
Index area  
NOTE 3  
NOTE)  
F
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
S
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
y
S
*3  
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
b
p
e
M
D
E
A2  
HD  
HE  
A
A1  
bp  
c
9.9  
9.9  

10.0 10.1  
10.0 10.1  
1.4  

11.8  
11.8  

12.0 12.2  
12.0 12.2  


1.7  
0.15  
0.05  
0.15  
0.09  
0q  
0.20 0.27  

3.5q  
0.5  

0.20  
8q  

Lp  
L1  
T
e
x
y
Lp  
L1  

Detail F  

0.08  
0.08  
0.75  



0.45  

0.6  
1.0  
© 2015 Renesas Electronics Corporation. All rights reserved.  
Figure 1.3  
64-pin LQFP  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 121 of 130  
RA4M1 Group  
Appendix 1. Package Dimensions  
JEITA Package code  
RENESAS code  
Previous code  
MASS(TYP.)[g]  
P-HWQFN64-8x8-0.40  
PWQN0064LA-A  
P64K8-40-9B5-3  
0.16  
D
33  
48  
32  
49  
DETAIL OF A PART  
E
A
A1  
c2  
64  
17  
16  
1
INDEX AREA  
A
S
y
S
Dimension in Millimeters  
Referance  
Symbol  
Nom  
8.00  
8.00  
Max  
8.05  
8.05  
0.80  
Min  
7.95  
7.95  
D
E
D2  
A
EXPOSED DIE PAD  
Lp  
A
16  
1
A1  
b
0.00  
0.17  
0.23  
0.20  
0.40  
0.40  
64  
17  
e
0.30  
0.15  
0.50  
0.05  
0.05  
Lp  
x
B
E2  
y
ZD  
ZE  
c2  
1.00  
1.00  
0.20  
6.50  
6.50  
ZE  
32  
49  
0.25  
48  
33  
D2  
E2  
ZD  
e
M
b
x
S A B  
2013 Renesas Electronics Corporation. All rights reserved.  
Figure 1.4  
64-pin QFN  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 122 of 130  
RA4M1 Group  
Appendix 1. Package Dimensions  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
JEITA Package Code  
0.2  
P-LFQFP48-7x7-0.50  
PLQP0048KB-B  
HD  
D
Unit: mm  
*1  
36  
25  
37  
24  
48  
13  
1
12  
NOTE 4  
Index area  
NOTE 3  
NOTE)  
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
F
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
S
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
D
E
6.9  
6.9  

7.0  
7.0  
1.4  
9.0  
9.0  

7.1  
7.1  

y
S
*3  
b
p
e
M
A2  
HD  
HE  
A
8.8  
8.8  

9.2  
9.2  
1.7  
0.15  
A1  
bp  
c
0.05  
0.17  
0.09  
0q  

0.20 0.27  

3.5q  
0.5  

0.20  
8q  
T
Lp  
L1  
e


x

0.08  
0.08  
0.75  

Detail F  
y


Lp  
L1  
0.45  

0.6  
1.0  
Figure 1.5  
48-pin LQFP  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 123 of 130  
RA4M1 Group  
Appendix 1. Package Dimensions  
JEITA Package code  
RENESAS code  
Previous code  
MASS(TYP.)[g]  
48PJN-A  
P48K8-50-5B4-6  
P-HWQFN48-7x7-0.50  
PWQN0048KB-A  
0.13  
D
25  
36  
24  
37  
DETAIL OF A PART  
E
A
A1  
c2  
13  
48  
12  
1
INDEX AREA  
A
S
y
S
Dimension in Millimeters  
Referance  
Symbol  
Nom  
7.00  
7.00  
Max  
7.05  
7.05  
0.80  
Min  
6.95  
6.95  
D
E
D2  
A
EXPOSED DIE PAD  
Lp  
A
12  
1
A1  
b
0.00  
0.18  
13  
0.30  
0.25  
0.50  
0.40  
48  
e
0.30  
0.15  
0.50  
0.05  
0.05  
Lp  
x
B
E2  
y
ZD  
ZE  
c2  
0.75  
0.75  
0.20  
5.50  
5.50  
ZE  
37  
24  
0.25  
36  
25  
D2  
E2  
ZD  
e
M
b
x
S A B  
2013 Renesas Electronics Corporation. All rights reserved.  
Figure 1.6  
48-pin QFN  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 124 of 130  
RA4M1 Group  
Appendix 1. Package Dimensions  
JEITA Package code  
RENESAS code  
Previous code  
MASS(TYP.)[g]  
P-HWQFN40-6x6-0.50  
PWQN0040KC-A  
P40K8-50-4B4-5  
0.09  
D
21  
30  
20  
31  
DETAIL OF A PART  
E
A
40  
11  
A1  
c2  
10  
1
INDEX AREA  
A
S
y
S
Dimension in Millimeters  
Referance  
Symbol  
Nom  
6.00  
6.00  
Max  
6.05  
6.05  
0.80  
Min  
5.95  
5.95  
D
E
D2  
A
Lp  
EXPOSED DIE PAD  
A
1
10  
A1  
b
0.00  
0.18  
0.30  
11  
0.25  
0.50  
0.40  
40  
e
0.30  
0.15  
0.50  
0.05  
0.05  
Lp  
x
B
E2  
y
ZD  
ZE  
c2  
0.75  
0.75  
0.20  
4.50  
4.50  
ZE  
20  
31  
0.25  
30  
21  
D2  
E2  
ZD  
e
M
b
x
S
A B  
Figure 1.7  
40-pin QFN  
R01DS0355EJ0100 Rev.1.00  
Oct 8, 2019  
Page 125 of 130  
Revision History  
RA4M1Group Datasheet  
Rev.  
1.00  
Date  
Summary  
Oct 8, 2019  
First release  
Proprietary Notice  
All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in  
this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and  
trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no  
part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated,  
transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior  
written consent from Renesas.  
®
®
Arm and Cortex are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited.  
®
CoreMark is a registered trademark of the Embedded Microprocessor Benchmark Consortium.  
Magic Packet™ is a trademark of Advanced Micro Devices, Inc.  
®
SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States  
and Japan.  
Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective  
holders.  
Colophon  
RA4M1 Group Datasheet  
Publication Date:  
Published by:  
Rev.1.00  
Oct 8, 2019  
Renesas Electronics Corporation  
Address List  
General Precautions  
1. Precaution against Electrostatic Discharge (ESD)  
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately  
degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and  
quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used.  
This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be  
stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit  
boards with mounted semiconductor devices.  
2. Processing at power-on  
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are  
indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished  
product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time  
when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset  
by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches  
the level at which resetting is specified.  
3. Input of signal during power-off state  
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results  
from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in  
the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-  
off state as described in your product documentation.  
4. Handling of unused pins  
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins  
of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state,  
extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally,  
and malfunctions occur due to the false recognition of the pin state as an input signal become possible.  
5. Clock signals  
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the  
clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated  
with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full  
stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or  
by an external oscillator while program execution is in progress, wait until the target clock signal is stable.  
6. Voltage application waveform at input pin  
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device  
stays in the area between V (Max.) and V (Min.) due to noise, for example, the device may malfunction. Take care to  
IL  
IH  
prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the  
input level passes through the area between V (Max.) and V (Min.).  
IL  
IH  
7. Prohibition of access to reserved addresses  
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of  
functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.  
8. Differences between products  
Before changing from one product to another, for example to a product with a different part number, confirm that the  
change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the  
same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and  
other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins,  
immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a  
system-evaluation test for the given product.  
Notice  
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for  
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by  
you or third parties arising from the use of these circuits, software, or information.  
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or  
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application  
examples.  
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.  
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by  
you or third parties arising from such alteration, modification, copying or reverse engineering.  
5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the  
product’s quality grade, as indicated below.  
"Standard":  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic  
equipment; industrial robots; etc.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.  
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are  
not intended or authorized for use in products or systems that may pose  
a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause  
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all  
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or  
other Renesas Electronics document.  
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the  
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation  
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified  
ranges.  
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a  
certain rate and malfunctions under certain use conditions. Unless designated as  
a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas  
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury  
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to  
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult  
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.  
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and  
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics  
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable  
laws and regulations.  
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws  
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or  
transactions.  
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third  
party in advance of the contents and conditions set forth in this document.  
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
(Rev.4.0-1 November 2017)  
SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
Renesas Electronics Corporation  
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan  
Renesas Electronics America Inc.  
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.  
Tel: +1-408-432-8888, Fax: +1-408-434-5351  
Renesas Electronics Canada Limited  
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3  
Tel: +1-905-237-2004  
Renesas Electronics Europe GmbH  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-6503-0, Fax: +49-211-6503-1327  
Renesas Electronics (China) Co., Ltd.  
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China  
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
Renesas Electronics (Shanghai) Co., Ltd.  
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China  
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999  
Renesas Electronics Hong Kong Limited  
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2265-6688, Fax: +852 2886-9022  
Renesas Electronics Taiwan Co., Ltd.  
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Singapore Pte. Ltd.  
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949  
Tel: +65-6213-0200, Fax: +65-6213-0300  
Renesas Electronics Malaysia Sdn.Bhd.  
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia  
Tel: +60-3-5022-1288, Fax: +60-3-5022-1290  
Renesas Electronics India Pvt. Ltd.  
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India  
Tel: +91-80-67208700  
Renesas Electronics Korea Co., Ltd.  
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea  
Tel: +82-2-558-3737, Fax: +82-2-558-5338  
© 2019 Renesas Electronics Corporation. All rights reserved.  
Colophon 8.0  
Back cover  
RA4M1 Group  
R01DS0355EJ0100  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY