R7FA6M1AD3CFP [RENESAS]

Armv7E-M architecture with DSP instruction set Maximum operating frequency: 120 MHz;
R7FA6M1AD3CFP
型号: R7FA6M1AD3CFP
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Armv7E-M architecture with DSP instruction set Maximum operating frequency: 120 MHz

文件: 总92页 (文件大小:1270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Cover  
Renesas RA6M1 Group  
32  
Datasheet  
32-bit MCU  
Renesas Advanced (RA) Family  
Renesas RA6 Series  
All information contained in these materials, including products and product specifications,  
represents information on the product at the time of publication and is subject to change by  
Renesas Electronics Corp. without notice. Please review the latest information published by  
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.  
website (http://www.renesas.com).  
www.renesas.com  
Rev.1.00 Oct 2019  
RA6M1 Group  
Datasheet  
Leading performance 120-MHz Arm® Cortex®-M4 core, 512-KB code flash memory, 256-KB SRAM, Capacitive  
Touch Sensing Unit, USB 2.0 Full-Speed, SDHI, Quad SPI, security and safety features, and advanced analog.  
Features  
■ Arm Cortex-M4 Core with Floating Point Unit (FPU)  
Armv7E-M architecture with DSP instruction set  
Maximum operating frequency: 120 MHz  
■ System and Power Management  
Low power modes  
Realtime Clock (RTC) with calendar and VBATT support  
Event Link Controller (ELC)  
DMA Controller (DMAC) × 8  
Support for 4-GB address space  
On-chip debugging system: JTAG, SWD, and ETM  
Boundary scan and Arm Memory Protection Unit (Arm MPU)  
Data Transfer Controller (DTC)  
Key Interrupt Function (KINT)  
Power-on reset  
■ Memory  
512-KB code flash memory (40 MHz zero wait states)  
8-KB data flash memory (125,000 erase/write cycles)  
256-KB SRAM  
Low Voltage Detection (LVD) with voltage settings  
■ Security and Encryption  
AES128/192/256  
3DES/ARC4  
SHA1/SHA224/SHA256/MD5  
GHASH  
RSA/DSA/ECC  
True Random Number Generator (TRNG)  
Flash Cache (FCACHE)  
Memory Protection Units (MPU)  
Memory Mirror Function (MMF)  
128-bit unique ID  
■ Connectivity  
USB 2.0 Full-Speed (USBFS) module  
- On-chip transceiver  
■ Human Machine Interface (HMI)  
Serial Communications Interface (SCI) with FIFO × 7  
Serial Peripheral Interface (SPI) × 2  
I2C bus interface (IIC) × 2  
Capacitive Touch Sensing Unit (CTSU)  
■ Multiple Clock Sources  
Main clock oscillator (MOSC) (8 to 24 MHz)  
Sub-clock oscillator (SOSC) (32.768 kHz)  
High-speed on-chip oscillator (HOCO) (16/18/20 MHz)  
Middle-speed on-chip oscillator (MOCO) (8 MHz)  
Low-speed on-chip oscillator (LOCO) (32.768 kHz)  
IWDT-dedicated on-chip oscillator (15 kHz)  
Clock trim function for HOCO/MOCO/LOCO  
Clock out support  
CAN module (CAN) × 2  
Serial Sound Interface Enhanced (SSIE)  
SD/MMC Host Interface (SDHI) × 2  
Quad Serial Peripheral Interface (QSPI)  
IrDA interface  
Sampling Rate Converter (SRC)  
External address space  
- 8-bit bus space  
■ General-Purpose I/O Ports  
Up to 76 input/output pins  
- Up to 9 CMOS input  
■ Analog  
12-bit A/D Converter (ADC12) with 3 sample-and-hold circuits  
each × 2  
12-bit D/A Converter (DAC12) × 2  
High-Speed Analog Comparator (ACMPHS) × 6  
Programmable Gain Amplifier (PGA) × 6  
Temperature Sensor (TSN)  
- Up to 67 CMOS input/output  
- Up to 14 input/output 5 V tolerant  
- Up to 13 high current (20 mA)  
■ Operating Voltage  
VCC: 2.7 to 3.6 V  
■ Timers  
■ Operating Temperature and Packages  
Ta = -40°C to +85°C  
- 100-pin LGA (7 mm × 7 mm, 0.65 mm pitch)  
Ta = -40°C to +105°C  
General PWM Timer 32-bit Enhanced High Resolution  
(GPT32EH) × 4  
General PWM Timer 32-bit Enhanced (GPT32E) × 4  
General PWM Timer 32-bit (GPT32) × 5  
Asynchronous General-Purpose Timer (AGT) × 2  
Watchdog Timer (WDT)  
- 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)  
- 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)  
- 64-pin QFN (8 mm × 8 mm, 0.4 mm pitch)  
■ Safety  
Error Code Correction (ECC) in SRAM  
SRAM parity error check  
Flash area protection  
ADC self-diagnosis function  
Clock Frequency Accuracy Measurement Circuit (CAC)  
Cyclic Redundancy Check (CRC) calculator  
Data Operation Circuit (DOC)  
Port Output Enable for GPT (POEG)  
Independent Watchdog Timer (IWDT)  
GPIO readback level detection  
Register write protection  
Main oscillator stop detection  
Illegal memory access  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 2 of 92  
RA6M1 Group  
1. Overview  
1.  
Overview  
®
The MCU integrates multiple series of software- and pin-compatible Arm -based 32-bit cores that share a common set  
of Renesas peripherals to facilitate design scalability and efficient platform-based product development.  
®
The MCU in this series incorporates a high-performance Arm Cortex -M4 core running up to 120 MHz with the  
following features:  
512-KB code flash memory  
256-KB SRAM  
Capacitive Touch Sensing Unit (CTSU)  
USBFS  
SD/MMC Host Interface  
Quad Serial Peripheral Interface (QSPI)  
Security and safety features  
12-bit A/D Converter (ADC12)  
12-bit D/A Converter (DAC12)  
Analog peripherals.  
1.1  
Function Outline  
Table 1.1  
Feature  
Arm core  
Functional description  
Arm Cortex-M4 core  
Maximum operating frequency: up to 120 MHz  
Arm Cortex-M4 core:  
- Revision: r0p1-01rel0  
- Armv7E-M architecture profile  
- Single precision floating-point unit compliant with the ANSI/IEEE Std 754-2008.  
Arm Memory Protection Unit (Arm MPU):  
- Armv7 Protected Memory System Architecture  
- 8 protect regions.  
SysTick timer:  
- Driven by SYSTICCLK (LOCO) or ICLK.  
Table 1.2  
Memory  
Feature  
Functional description  
Code flash memory  
Data flash memory  
Memory Mirror Function (MMF)  
512-KB code flash memory. See section 50, Flash Memory in User’s Manual.  
8-KB data flash memory. See section 50, Flash Memory in User’s Manual.  
The Memory Mirror Function (MMF) can be configured to mirror the target application image  
load address in code flash memory to the application image link address in the 23-bit unused  
memory space (memory mirror space addresses). Your application code is developed and  
linked to run from this MMF destination address. Your application code does not need to know  
the load location where it is stored in code flash memory. See section 5, Memory Mirror  
Function (MMF) in User’s Manual.  
Option-setting memory  
SRAM  
The option-setting memory determines the state of the MCU after a reset. See section 7,  
Option-Setting Memory in User’s Manual.  
On-chip high-speed SRAM with either parity-bit or Error Correction Code (ECC). The first  
32 KB of SRAM0 provides error correction capability using ECC. Parity check is performed for  
other areas. See section 48, SRAM in User’s Manual.  
Standby SRAM  
On-chip SRAM that can retain data in Deep Software Standby mode. See section 49, Standby  
SRAM in User’s Manual.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 3 of 92  
RA6M1 Group  
1. Overview  
Table 1.3  
Feature  
System (1 of 2)  
Functional description  
Operating modes  
Two operating modes:  
Single-chip mode  
SCI or USB boot mode.  
See section 3, Operating Modes in User’s Manual.  
Resets  
14 resets:  
RES pin reset  
Power-on reset  
Voltage monitor 0 reset  
Voltage monitor 1 reset  
Voltage monitor 2 reset  
Independent watchdog timer reset  
Watchdog timer reset  
Deep Software Standby reset  
SRAM parity error reset  
SRAM ECC error reset  
Bus master MPU error reset  
Bus slave MPU error reset  
Stack pointer error reset  
Software reset.  
See section 6, Resets in User’s Manual.  
Low Voltage Detection (LVD)  
Clocks  
The Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and  
the detection level can be selected using a software program. See section 8, Low Voltage  
Detection (LVD) in User’s Manual.  
Main clock oscillator (MOSC)  
Sub-clock oscillator (SOSC)  
High-speed on-chip oscillator (HOCO)  
Middle-speed on-chip oscillator (MOCO)  
Low-speed on-chip oscillator (LOCO)  
PLL frequency synthesizer  
IDWT-dedicated on-chip oscillator  
Clock out support.  
See section 9, Clock Generation Circuit in User’s Manual.  
Clock Frequency Accuracy  
Measurement Circuit (CAC)  
The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be  
measured (measurement target clock) within the time generated by the clock to be used as a  
measurement reference (measurement reference clock), and determines the accuracy  
depending on whether the number of pulses is within the allowable range.  
When measurement is complete or the number of pulses within the time generated by the  
measurement reference clock is not within the allowable range, an interrupt request is  
generated.  
See section 10, Clock Frequency Accuracy Measurement Circuit (CAC) in User’s Manual.  
Interrupt Controller Unit (ICU)  
Key Interrupt Function (KINT)  
Low power modes  
The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC  
module and DMAC module. The ICU also controls NMI interrupts. See section 14, Interrupt  
Controller Unit (ICU) in User’s Manual in User’s Manual.  
A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting  
a rising or falling edge to the key interrupt input pins. See section 21, Key Interrupt Function  
(KINT) in User’s Manual.  
Power consumption can be reduced in multiple ways, such as by setting clock dividers,  
controlling EBCLK output, stopping modules, selecting power control mode in normal  
operation, and transitioning to low power modes. See section 11, Low Power Modes in User’s  
Manual.  
Battery backup function  
A battery backup function is provided for partial powering by a battery. The battery-powered  
area includes the RTC, SOSC, backup memory, and switch between VCC and VBATT. See  
section 12, Battery Backup Function in User’s Manual.  
Register write protection  
The register write protection function protects important registers from being overwritten  
because of software errors. See section 13, Register Write Protection in User’s Manual.  
Memory Protection Unit (MPU)  
Four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided  
for memory protection. See section 16, Memory Protection Unit (MPU) in User’s Manual.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 4 of 92  
RA6M1 Group  
1. Overview  
Table 1.3  
Feature  
System (2 of 2)  
Functional description  
Watchdog Timer (WDT)  
The Watchdog Timer (WDT) is a 14-bit down-counter that can be used to reset the MCU when  
the counter underflows because the system has run out of control and is unable to refresh the  
WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow.  
A refresh-permitted period can be set to refresh the counter and used as the condition for  
detecting when the system runs out of control. See section 27, Watchdog Timer (WDT) in  
User’s Manual.  
Independent Watchdog Timer (IWDT) The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be  
serviced periodically to prevent counter underflow. The IWDT provides functionality to reset  
the MCU or to generate a non-maskable interrupt or interrupt for a timer underflow. Because  
the timer operates with an independent, dedicated clock source, it is particularly useful in  
returning the MCU to a known state as a fail-safe mechanism when the system runs out of  
control. The IWDT can be triggered automatically on a reset, underflow, or refresh error, or by  
a refresh of the count value in the registers. See section 28, Independent Watchdog Timer  
(IWDT) in User’s Manual.  
Table 1.4  
Feature  
Event link  
Functional description  
Event Link Controller (ELC)  
The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral  
modules as event signals to connect them to different modules, enabling direct interaction  
between the modules without CPU intervention. See section 19, Event Link Controller (ELC)  
in User’s Manual.  
Table 1.5  
Direct memory access  
Feature  
Functional description  
Data Transfer Controller (DTC)  
A Data Transfer Controller (DTC) module is provided for transferring data when activated by an  
interrupt request. See section 18, Data Transfer Controller (DTC) in User’s Manual.  
DMA Controller (DMAC)  
An 8-channel DMA Controller (DMAC) module is provided for transferring data without the  
CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the  
transfer source address to the transfer destination address. See section 17, DMA Controller  
(DMAC) in User’s Manual.  
Table 1.6  
External bus interface  
Feature  
Functional description  
External buses  
CS area (EXBIU): Connected to the external devices (external memory interface)  
QSPI area (EXBIUT2): Connected to the QSPI (external device interface).  
Table 1.7  
Feature  
Timers (1 of 2)  
Functional description  
General PWM Timer (GPT)  
The General PWM Timer (GPT) is a 32-bit timer with 13 channels. PWM waveforms can be  
generated by controlling the up-counter, down-counter, or up- and down-counter. In addition,  
PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be  
used as a general-purpose timer. See section 23, General PWM Timer (GPT) in User’s  
Manual.  
Port Output Enable for GPT (POEG)  
Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT)  
output pins in the output disable state. See section 22, Port Output Enable for GPT (POEG) in  
User’s Manual.  
Asynchronous General-Purpose  
Timer (AGT)  
The Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse  
output, external pulse width or period measurement, and counting of external events.  
This 16-bit timer consists of a reload register and a down-counter. The reload register and the  
down-counter are allocated to the same address, and can be accessed with the AGT register.  
See section 25, Asynchronous General-Purpose Timer (AGT) in User’s Manual.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 5 of 92  
RA6M1 Group  
1. Overview  
Table 1.7  
Feature  
Timers (2 of 2)  
Functional description  
Realtime Clock (RTC)  
The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count  
mode, that are controlled by the register settings.  
For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and  
automatically adjusts dates for leap years.  
For binary count mode, the RTC counts seconds and retains the information as a serial value.  
Binary count mode can be used for calendars other than the Gregorian (Western) calendar.  
See section 26, Realtime Clock (RTC) in User’s Manual.  
Table 1.8  
Feature  
Communication interfaces (1 of 2)  
Functional description  
Serial Communications Interface  
(SCI)  
The Serial Communications Interface (SCI) is configurable to five asynchronous and  
synchronous serial interfaces:  
Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter  
(ACIA))  
8-bit clock synchronous interface  
Simple IIC (master-only)  
Simple SPI  
Smart card interface.  
The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and  
transmission protocol.  
Each SCI has FIFO buffers to enable continuous and full-duplex communication, and the data  
transfer speed can section 30, Serial Communications Interface (SCI)be configured  
independently using an on-chip baud rate generator. See in User’s Manual.  
IrDA Interface (IrDA)  
The IrDA interface sends and receives IrDA data communication waveforms in cooperation  
with the SCI1 based on the IrDA (Infrared Data Association) standard 1.0. See section 31,  
IrDA Interface in User’s Manual.  
I2C bus interface (IIC)  
The 2-channel I2C bus interface (IIC) conforms with and provides a subset of the NXP I2C  
(Inter-Integrated Circuit) bus interface functions. See section 32, I2C Bus Interface (IIC) in  
User’s Manual.  
Serial Peripheral Interface (SPI)  
Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, full-  
duplex synchronous serial communications with multiple processors and peripheral devices.  
See section 34, Serial Peripheral Interface (SPI) in User’s Manual.  
Serial Sound Interface Enhanced  
(SSIE)  
The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with  
digital audio devices for transmitting I2S (Inter-Integrated Sound) 2ch, 4ch, 6ch, 8ch, Word  
Select (WS) Continue/Monaural/TDM audio data over a serial bus. The SSIE supports an  
audio clock frequency of up to 50 MHz, and can be operated as a slave or master receiver,  
transmitter, or transceiver to suit various applications. The SSIE includes 32-stage FIFO  
buffers in the receiver and transmitter, and supports interrupts and DMA-driven data reception  
and transmission. See section 37, Serial Sound Interface Enhanced (SSIE) in User’s Manual.  
Quad Serial Peripheral Interface  
(QSPI)  
The Quad Serial Peripheral Interface (QSPI) is a memory controller for connecting a serial  
ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM)  
that has an SPI-compatible interface. See section 35, Quad Serial Peripheral Interface (QSPI)  
in User’s Manual.  
Controller Area Network (CAN)  
module  
The Controller Area Network (CAN) module provides functionality to receive and transmit data  
using a message-based protocol between multiple slaves and masters in electromagnetically-  
noisy applications.  
The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports  
up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox  
and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are  
supported. See section 33, Controller Area Network (CAN) Module in User’s Manual.  
USB 2.0 Full-Speed Module (USBFS) The USB 2.0 Full-Speed (USBFS) module can operate as a host controller or device controller.  
module  
The module supports full-speed and low-speed (host controller only) transfer as defined in the  
Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and  
supports all of the transfer types defined in the Universal Serial Bus Specification 2.0.  
The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9  
can be assigned any endpoint number based on the peripheral devices used for  
communication or based on your system. See section 29, USB 2.0 Full-Speed Module  
(USBFS) in User’s Manual.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 6 of 92  
RA6M1 Group  
1. Overview  
Table 1.8  
Feature  
Communication interfaces (2 of 2)  
Functional description  
SD/MMC Host Interface (SDHI)  
The SDHI and MultiMediaCard (MMC) interface module provides the functionality required to  
connect a variety of external memory cards to the MCU. The SDHI supports both 1-bit and 4-  
bit buses for connecting memory cards that support SD, SDHC, and SDXC formats. When  
developing host devices that are compliant with the SD Specifications, you must comply with  
the SD Host/Ancillary Product License Agreement (SD HALA).  
The MMC interface supports 1-bit and 4-bit MMC buses that provide eMMC 4.51 (JEDEC  
Standard JESD 84-B451) device access. This interface also provides backward compatibility  
and supports high-speed SDR transfer modes. See section 39, SD/MMC Host Interface  
(SDHI) in User’s Manual.  
Table 1.9  
Feature  
Analog  
Functional description  
12-bit A/D Converter (ADC12)  
Up to two successive approximation 12-bit A/D Converters (ADC12) are provided. In unit 0, up  
to 11 analog input channels are selectable. In unit 1, up to eight analog input channels, the  
temperature sensor output, and an internal reference voltage are selectable for conversion.  
The A/D conversion accuracy is selectable from 12-bit, 10-bit, and 8-bit conversion, making it  
possible to optimize the tradeoff between speed and resolution in generating a digital value.  
See section 42, 12-Bit A/D Converter (ADC12) in User’s Manual.  
12-bit D/A Converter (DAC12)  
Temperature Sensor (TSN)  
A 12-bit D/A Converter (DAC12) converts data and includes an output amplifier. See section  
43, 12-Bit D/A Converter (DAC12) in User’s Manual.  
The on-chip Temperature Sensor (TSN) can determine and monitor the die temperature for  
reliable operation of the device. The sensor outputs a voltage directly proportional to the die  
temperature, and the relationship between the die temperature and the output voltage is linear.  
The output voltage is provided to the ADC12 for conversion and can also be used by the end  
application. See section 44, Temperature Sensor (TSN) in User’s Manual.  
High-Speed Analog Comparator  
(ACMPHS)  
The High-Speed Analog Comparator (ACMPHS) compares a test voltage with a reference  
voltage and provides a digital output based on the conversion result.  
Both the test and reference voltages can be provided to the comparator from internal sources  
such as the DAC12 output and internal reference voltage, and an external source with or  
without an internal PGA.  
Such flexibility is useful in applications that require go/no-go comparisons to be performed  
between analog signals without necessarily requiring A/D conversion. See section 45, High-  
Speed Analog Comparator (ACMPHS) in User’s Manual.  
Table 1.10  
Feature  
Human machine interfaces  
Functional description  
Capacitive Touch Sensing Unit  
(CTSU)  
The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the  
touch sensor. Changes in the electrostatic capacitance are determined by software, which  
enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode  
surface of the touch sensor is usually enclosed with an electrical insulator so that fingers do  
not come into direct contact with the electrodes. See section 46, Capacitive Touch Sensing  
Unit (CTSU) in User’s Manual.  
Table 1.11  
Feature  
Data processing (1 of 2)  
Functional description  
Cyclic Redundancy Check (CRC)  
calculator  
The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the  
data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first  
communication. Additionally, various CRC-generating polynomials are available. The snoop  
function allows monitoring reads from and writes to specific addresses. This function is useful  
in applications that require CRC code to be generated automatically in certain events, such as  
monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See  
section 36, Cyclic Redundancy Check (CRC) Calculator in User’s Manual.  
Data Operation Circuit (DOC)  
The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 47,  
Data Operation Circuit (DOC) in User’s Manual.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 7 of 92  
RA6M1 Group  
1. Overview  
Table 1.11  
Feature  
Data processing (2 of 2)  
Functional description  
Sampling Rate Converter (SRC)  
The Sampling Rate Converter (SRC) converts the sampling rate of data produced by various  
audio decoders, such as the WMA, MP3, and AAC. Both 16-bit stereo and monaural data are  
supported.  
See section 38, Sampling Rate Converter (SRC) in User’s Manual.  
Table 1.12  
Feature  
Security  
Functional description  
Secure Crypto Engine 7 (SCE7)  
Security algorithms:  
- Symmetric algorithms: AES, 3DES, and ARC4  
- Asymmetric algorithms: RSA, DSA, and ECC.  
Other support features:  
- TRNG (True Random Number Generator)  
- Hash-value generation: SHA1, SHA224, SHA256, GHASH, and MD5  
- 128-bit unique ID.  
1.2  
Block Diagram  
Figure 1.1 shows a block diagram of the MCU superset, some individual devices within the group have a subset of the  
features.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 8 of 92  
RA6M1 Group  
1. Overview  
Memory  
Bus  
Arm Cortex-M4  
System  
Clocks  
512 KB code flash  
8 KB data flash  
256 KB SRAM  
DSP  
FPU  
POR/LVD  
Reset  
External  
CSC  
MOSC/SOSC  
(H/M/L) OCO  
PLL  
MPU  
NVIC  
MPU  
Mode control  
8 KB Standby  
SRAM  
System timer  
Test and DBG interface  
Power control  
ICU  
CAC  
DMA  
DTC  
Battery backup  
Register write  
protection  
KINT  
DMAC × 8  
Timers  
Communication interfaces  
Human machine interfaces  
CTSU  
SCI × 7  
QSPI  
GPT32EH x 4  
GPT32E x 4  
GPT32 x 5  
IrDA × 1  
IIC × 2  
SDHI × 2  
CAN × 2  
SPI × 2  
AGT × 2  
RTC  
SSIE  
USBFS  
WDT/IWDT  
Event link  
ELC  
Data processing  
Analog  
TSN  
ADC12 with  
PGA × 2  
CRC  
SRC  
DOC  
DAC12  
ACMPHS × 6  
Security  
SCE7  
Figure 1.1  
Block diagram  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 9 of 92  
RA6M1 Group  
1. Overview  
1.3  
Part Numbering  
Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.13 shows a  
list of products.  
# A A  
R 7 F A 6 M 1 A D 3 C F P  
0
Production identification code  
Packaging, Terminal material (Pb-free)  
#AA: Tray/Sn (Tin) only  
#AC: Tray/others  
Package type  
FP: LQFP 100 pins  
FM: LQFP 64 pins  
LJ: LGA 100 pins  
NB: QFN 64 pins  
Quality Grade  
Operating temperature  
2: -40°C to 85°C  
3: -40°C to 105°C  
Code flash memory size  
D: 512 KB  
Feature set  
Group number  
Series name  
RA family  
Flash memory  
Renesas microcontroller  
Figure 1.2  
Part numbering scheme  
Product list  
Table 1.13  
Operating  
temperature  
Product part number  
R7FA6M1AD2CLJ  
R7FA6M1AD3CFP  
R7FA6M1AD3CFM  
R7FA6M1AD3CNB  
Orderable part number  
R7FA6M1AD2CLJ#AC0  
R7FA6M1AD3CFP#AA0  
R7FA6M1AD3CFM#AA0  
R7FA6M1AD3CNB#AC0  
Package code  
PTLG0100JA-A  
PLQP0100KB-B  
PLQP0064KB-C  
PWQN0064LA-A  
Code flash Data flash SRAM  
512 KB  
8 KB  
256 KB -40 to +85°C  
-40 to +105°C  
-40 to +105°C  
-40 to +105°C  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 10 of 92  
RA6M1 Group  
1. Overview  
1.4  
Function Comparison  
Table 1.14  
Functional comparison  
Part numbers  
R7FA6M1AD2CLJ  
100  
Function  
R7FA6M1AD3CFP  
100  
R7FA6M1AD3CFM  
R7FA6M1AD3CNB  
Pin count  
64  
64  
Package  
LGA  
LQFP  
LQFP  
QFN  
Code flash memory  
Data flash memory  
SRAM  
512 KB  
8 KB  
256 KB  
224 KB  
32 KB  
Parity  
ECC  
Standby SRAM  
System  
8 KB  
CPU clock  
120 MHz  
512 B  
Backup  
registers  
ICU  
Yes  
8
KINT  
Event link  
DMA  
ELC  
Yes  
Yes  
8
DTC  
DMAC  
External bus  
GPT32EH  
GPT32E  
GPT32  
AGT  
BUS  
8-bit bus  
No  
Timers  
4
4
5
3
4
2
Yes  
Yes  
7
RTC  
WDT/IWDT  
SCI  
Communication  
IIC  
2
SPI  
2
SSIE  
1
2
No  
No  
QSPI  
1
SDHI  
CAN  
2
USBFS  
ADC12  
DAC12  
ACMPHS  
TSN  
Yes  
Analog  
HMI  
19  
12  
10  
7
2
6
Yes  
CTSU  
Data processing CRC  
Yes  
Yes  
DOC  
SRC  
Yes  
Security  
SCE7  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 11 of 92  
RA6M1 Group  
1. Overview  
1.5  
Pin Functions  
Table 1.15  
Pin functions (1 of 4)  
Function  
Signal  
I/O  
Description  
Power supply  
VCC  
Input  
Power supply pin. This is used as the digital power supply for the respective  
modules and internal voltage regulator, and used to monitor the voltage of  
the POR/LVD. Connect this pin to the system power supply. Connect it to  
VSS by a 0.1-μF capacitor. Place the capacitor close to the pin.  
VCL0  
VCL  
Input  
Connect this pin to VSS through a 0.1-μF smoothing capacitor used to  
stabilize the internal power supply. Place the capacitor close to the pin.  
Input  
VSS  
Input  
Ground pin. Connect to the system power supply (0 V).  
Backup power pin  
VBATT  
XTAL  
Input  
Clock  
Output  
Input  
Pins for a crystal resonator. An external clock signal can be input through the  
EXTAL pin.  
EXTAL  
XCIN  
Input  
Input/output pins for the sub-clock oscillator. Connect a crystal resonator  
between XCOUT and XCIN.  
XCOUT  
EBCLK  
CLKOUT  
MD  
Output  
Output  
Output  
Input  
Outputs the external bus clock for external devices  
Clock output pin  
Operating mode  
control  
Pin for setting the operating mode. The signal level on this pin must not be  
changed during operation mode transition on release from the reset state.  
System control  
RES  
Input  
Reset signal input pin. The MCU enters the reset state when this signal goes  
low.  
CAC  
CACREF  
Input  
Input  
Input  
Input  
Measurement reference clock input pin  
Non-maskable interrupt request pin  
Maskable interrupt request pins  
Interrupt  
NMI  
IRQ0 to IRQ13  
KR00 to KR07  
KINT  
A key interrupt can be generated by inputting a falling edge to the key  
interrupt input pins  
On-chip emulator  
TMS  
I/O  
On-chip emulator or boundary scan pins  
TDI  
Input  
Input  
Output  
Output  
Output  
I/O  
TCK  
TDO  
TCLK  
This pin outputs the clock for synchronization with the trace data  
Trace data output  
TDATA0 to TDATA3  
SWDIO  
SWCLK  
SWO  
Serial wire debug data input/output pin  
Serial wire clock pin  
Input  
Output  
Output  
Serial wire trace output pin  
External bus  
interface  
RD  
Strobe signal indicating that reading from the external bus interface space is  
in progress, active-low  
WR0  
Output  
Strobe signal indicating that writing to the external bus interface space is in  
progress, active-low  
ALE  
Output  
Input  
Address latch signal when address/data multiplexed bus is selected  
Input pin for wait request signals in access to the external space, active-low  
Select signals for CS areas, active-low  
WAIT  
CS0, CS1,  
Output  
CS4 to CS7  
A00 to A12  
D00 to D07  
Output  
I/O  
Address bus  
Data bus  
A00/D00 to A07/D07 I/O  
Address/data multiplexed bus  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 12 of 92  
RA6M1 Group  
1. Overview  
Table 1.15  
Pin functions (2 of 4)  
Signal  
Function  
I/O  
Description  
GPT  
GTETRGA,  
GTETRGB,  
GTETRGC,  
GTETRGD  
Input  
External trigger input pins  
GTIOC0A to  
GTIOC12A,  
GTIOC0B to  
GTIOC12B  
I/O  
Input capture, output compare, or PWM output pins  
GTIU  
Input  
Hall sensor input pin U  
GTIV  
Input  
Hall sensor input pin V  
GTIW  
Input  
Hall sensor input pin W  
GTOUUP  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
3-phase PWM output for BLDC motor control (positive U phase)  
3-phase PWM output for BLDC motor control (negative U phase)  
3-phase PWM output for BLDC motor control (positive V phase)  
3-phase PWM output for BLDC motor control (negative V phase)  
3-phase PWM output for BLDC motor control (positive W phase)  
3-phase PWM output for BLDC motor control (negative W phase)  
External event input enable signals  
GTOULO  
GTOVUP  
GTOVLO  
GTOWUP  
GTOWLO  
AGT  
AGTEE0, AGTEE1  
AGTIO0, AGTIO1  
AGTO0, AGTO1  
AGTOA0, AGTOA1  
AGTOB0, AGTOB1  
RTCOUT  
I/O  
External event input and pulse output pins  
Pulse output pins  
Output  
Output  
Output  
Output  
Input  
Output compare match A output pins  
Output compare match B output pins  
RTC  
SCI  
Output pin for 1-Hz or 64-Hz clock  
RTCIC0 to RTCIC2  
Time capture event input pins  
SCK0 to SCK4,  
SCK8, SCK9  
I/O  
Input/output pins for the clock (clock synchronous mode)  
RXD0 to RXD4,  
RXD8, RXD9  
Input  
Output  
I/O  
Input pins for received data (asynchronous mode/clock synchronous mode)  
TXD0 to TXD4,  
TXD8, TXD9  
Output pins for transmitted data (asynchronous mode/clock synchronous  
mode)  
CTS0_RTS0 to  
CTS4_RTS4,  
CTS8_RTS8,  
CTS9_RTS9  
Input/output pins for controlling the start of transmission and reception  
(asynchronous mode/clock synchronous mode), active-low  
SCL0 to SCL4,  
SCL8, SCL9  
I/O  
Input/output pins for the IIC clock (simple IIC mode)  
Input/output pins for the IIC data (simple IIC mode)  
SDA0 to SDA4,  
SDA8, SDA9  
I/O  
SCK0 to SCK4,  
SCK8, SCK9  
I/O  
Input/output pins for the clock (simple SPI mode)  
MISO0 to MISO4,  
MISO8, MISO9  
I/O  
Input/output pins for slave transmission of data (simple SPI mode)  
Input/output pins for master transmission of data (simple SPI mode)  
Chip-select input pins (simple SPI mode), active-low  
MOSI0 to MOSI4,  
MOSI8, MOSI9  
I/O  
SS0 to SS4, SS8,  
SS9  
Input  
IIC  
SCL0, SCL1  
SDA0, SDA1  
SSIBCK0  
I/O  
Input/output pins for the clock  
Input/output pins for data  
I/O  
SSIE  
I/O  
SSIE serial bit clock pins  
SSILRCK0/SSIFS0  
SSITXD0  
I/O  
LR clock/frame synchronization pins  
Serial data output pins  
Output  
Input  
Input  
SSIRXD0  
Serial data input pins  
AUDIO_CLK  
External clock pin for audio (input oversampling clock)  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 13 of 92  
RA6M1 Group  
1. Overview  
Table 1.15  
Pin functions (3 of 4)  
Function  
Signal  
I/O  
Description  
SPI  
RSPCKA, RSPCKB  
MOSIA, MOSIB  
MISOA, MISOB  
SSLA0, SSLB0  
I/O  
Clock input/output pin  
I/O  
Input or output pins for data output from the master  
Input or output pins for data output from the slave  
Input or output pin for slave selection  
Output pins for slave selection  
I/O  
I/O  
SSLA1 to SSLA3,  
SSLB1 to SSLB3  
Output  
QSPI  
QSPCLK  
Output  
Output  
I/O  
QSPI clock output pin  
QSPI slave output pin  
Data0 to Data3  
Receive data  
QSSL  
QIO0 to QIO3  
CRX0, CRX1  
CTX0, CTX1  
VCC_USB  
VSS_USB  
USB_DP  
CAN  
Input  
Output  
Input  
Input  
I/O  
Transmit data  
USBFS  
Power supply pins  
Ground pins  
D+ I/O pin of the USB on-chip transceiver. Connect this pin to the D+ pin of  
the USB bus  
USB_DM  
I/O  
D- I/O pin of the USB on-chip transceiver. Connect this pin to the D- pin of  
the USB bus  
USB_VBUS  
Input  
USB cable connection monitor pin. Connect this pin to VBUS of the USB  
bus. The VBUS pin status (connected or disconnected) can be detected  
when the USB module is operating as a device controller.  
USB_EXICEN  
USB_VBUSEN  
Output  
Output  
Input  
Low-power control signal for external power supply (OTG) chip  
VBUS (5 V) supply enable signal for external power supply chip  
USB_OVRCURA,  
USB_OVRCURB  
Connect the external overcurrent detection signals to these pins. Connect  
the VBUS comparator signals to these pins when the OTG power supply  
chip is connected.  
USB_ID  
Input  
Connect the MicroAB connector ID input signal to this pin during operation in  
OTG mode  
SDHI  
SD0CLK, SD1CLK  
SD0CMD, SD1CMD  
Output  
I/O  
SD clock output pins  
Command output pin and response input signal pins  
SD and MMC data bus pins  
SD0DAT0 to  
SD0DAT3,  
SD1DAT0 to  
SD1DAT3  
I/O  
SD0CD  
SD0WP  
AVCC0  
Input  
Input  
Input  
SD card detection pins  
SD write-protect signals  
Analog power  
supply  
Analog voltage supply pin. This is used as the analog power supply for the  
respective modules. Supply this pin with the same voltage as the VCC pin.  
AVSS0  
Input  
Input  
Analog ground pin. This is used as the analog ground for the respective  
modules. Supply this pin with the same voltage as the VSS pin.  
VREFH0  
Analog reference voltage supply pin for the ADC12 (unit 0). Connect this pin  
to VCC when not using the ADC12 (unit 0) and sample-and-hold circuit for  
AN000 to AN002.  
VREFL0  
VREFH  
VREFL  
Input  
Input  
Input  
Analog reference ground pin for the ADC12. Connect this pin to VSS when  
not using the ADC12 (unit 0) and sample-and-hold circuit for AN000 to  
AN002  
Analog reference voltage supply pin for the ADC12 (unit 1) and D/A  
Converter. Connect this pin to VCC when not using the ADC12 (unit 1),  
sample-and-hold circuit for AN100 to AN102, and D/A Converter.  
Analog reference ground pin for the ADC12 and D/A Converter. Connect this  
pin to VSS when not using the ADC12 (unit 1), sample-and-hold circuit for  
AN100 to AN102, and D/A Converter.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 14 of 92  
RA6M1 Group  
1. Overview  
Table 1.15  
Pin functions (4 of 4)  
Signal  
Function  
I/O  
Description  
ADC12  
AN000 to AN003,  
AN005 to AN007,  
AN016 to AN018,  
AN020  
Input  
Input pins for the analog signals to be processed by the ADC12  
AN100 to AN102,  
AN105 to AN107,  
AN116, AN117  
Input  
ADTRG0  
ADTRG1  
Input  
Input  
Input  
Input pins for the external trigger signals that start the A/D conversion  
Differential input pins  
PGAVSS000,  
PGAVSS100  
DAC12  
DA0, DA1  
Output  
Output  
Input  
Input  
Input  
-
Output pins for the analog signals processed by the D/A converter  
Comparator output pin  
ACMPHS  
VCOUT  
IVREF0 to IVREF3  
IVCMP0 to IVCMP3  
TS01 to TS12  
TSCAP  
Reference voltage input pins for comparator  
Analog voltage input pins for comparator  
Capacitive touch detection pins (touch pins)  
Secondary power supply pin for the touch driver  
General-purpose input pins  
CTSU  
I/O ports  
P000 to P007  
P008, P014, P015  
P100 to P115  
P200  
Input  
I/O  
General-purpose input/output pins  
General-purpose input/output pins  
General-purpose input pin  
I/O  
Input  
I/O  
P201, P205 to P214  
P300 to P307  
P400 to P415  
P500 to P504, P508  
General-purpose input/output pins  
General-purpose input/output pins  
General-purpose input/output pins  
General-purpose input/output pins  
General-purpose input/output pins  
I/O  
I/O  
I/O  
P600 to P602,  
P608 to P610  
I/O  
P708  
I/O  
General-purpose input/output pin  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 15 of 92  
RA6M1 Group  
1. Overview  
1.6  
Pin Assignments  
Figure 1.3 to Figure 1.6 show the pin assignments.  
R7FA6M1AD2CLJ  
A
B
C
D
E
F
G
H
J
K
P212/  
EXTAL  
10 P407  
P409  
P412  
VCC  
XCOUT  
VCL0  
P403  
P400  
P000 10  
P213/  
XTAL  
9
8
7
6
5
4
3
2
1
USB_DM USB_DP P411  
VSS  
P413  
P408  
P211  
RES  
P306  
XCIN  
P708  
P406  
P402  
P600  
P601  
P602  
VSS  
VBATT  
P404  
P006  
P508  
P504  
P503  
P107  
P106  
P405  
P003  
P007  
P401  
P004  
P008  
P001  
P002  
P005  
9
8
7
6
5
4
3
2
1
VCC_  
USB  
VSS_  
USB  
P207  
P206  
P210  
P415  
P414  
P410  
P113  
P115  
P609  
P610  
P205  
P209  
P214  
P208  
AVSS0 VREFL0 VREFH0  
AVCC0 VREFL VREFH  
P200 P201/MD P307  
VCC  
VSS  
P304  
P305  
P100  
P103  
P101  
P015  
VSS  
P014  
VCC  
P502  
P303 P110/TDI P111  
P300/  
TCK/  
P302  
P301  
P114  
P501  
SWCLK  
P108/  
TMS/  
SWDIO  
P109/  
TDO  
P112  
C
P608  
D
VCC  
E
VCL  
F
P105  
G
P104  
H
P102  
J
P500  
K
A
B
Figure 1.3  
Pin assignment for 100-pin LGA (top view)  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 16 of 92  
RA6M1 Group  
1. Overview  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
P500  
P501  
P300/TCK/SWCLK  
P301  
P502  
P302  
P503  
P303  
P504  
VCC  
P508  
VSS  
VCC  
P304  
VSS  
P305  
P015  
P306  
P014  
P307  
VREFL  
VREFH  
AVCC0  
AVSS0  
VREFL0  
VREFH0  
P008  
P200  
P201/MD  
RES  
R7FA6M1AD3CFP  
P208  
P209  
P210  
P211  
P007  
P214  
P006  
P205  
P005  
P206  
P004  
P207  
P003  
VCC_USB  
USB_DP  
USB_DM  
VSS_USB  
P002  
P001  
P000  
Figure 1.4  
Pin assignment for 100-pin LQFP (top view)  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 17 of 92  
RA6M1 Group  
1. Overview  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
P500  
P501  
P300/TCK/SWCLK  
P301  
VCC  
P302  
VSS  
VCC  
P015  
VSS  
P014  
P200  
VREFL  
VREFH  
AVCC0  
AVSS0  
P201/MD  
RES  
R7FA6M1AD3CFM  
P210  
P205  
VREFL0  
VREFH0  
P003  
P206  
P207  
VCC_USB  
USB_DP  
USB_DM  
VSS_USB  
P002  
P001  
P000  
Figure 1.5  
Pin assignment for 64-pin LQFP (top view)  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 18 of 92  
RA6M1 Group  
1. Overview  
P500  
P501  
VCC  
VSS  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32 P300/TCK/SWCLK  
31  
P301  
30  
P302  
29  
VCC  
28  
P015  
P014  
VREFL  
VREFH  
AVCC0  
AVSS0  
VSS  
27  
P200  
26  
P201/MD  
25  
RES  
R7FA6M1AD3CNB  
24  
P210  
23  
P205  
22  
VREFL0  
VREFH0  
P003  
P206  
21  
P207  
20  
VCC_USB  
19  
P002  
P001  
USB_DP  
18 USB_DM  
17  
P000  
VSS_USB  
Figure 1.6  
Pin assignment for 64-pin QFN (top view)  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 19 of 92  
RA6M1 Group  
1. Overview  
1.7  
Pin Lists  
Pin number  
Timers  
Communication interfaces  
Analog  
HMI  
J10  
J9  
1
2
3
4
5
1
2
3
-
1
2
3
-
-
-
IRQ0  
P400  
-
-
-
-
-
AGTIO1  
-
-
GTIOC6  
A
-
-
-
SCK4  
-
-
-
-
-
SCL0_  
A
-
-
-
-
-
AUDIO_  
CLK  
-
-
-
-
-
ADTRG1  
-
-
-
-
-
-
-
-
-
-
IRQ5- P401  
DS  
GTETRGA  
GTIOC6  
B
CTX0 CTS4_RT  
S4/SS4  
SDA0_  
A
-
-
-
-
-
F6  
CACREF IRQ4- P402  
DS  
AGTIO0/A  
GTIO1  
-
-
-
-
RTCI CRX0  
C0  
-
-
-
-
-
-
AUDIO_  
CLK  
H10  
G8  
-
-
P403  
AGTIO0/A  
GTIO1  
GTIOC3 RTCI  
C1  
GTIOC3 RTCI  
-
SSIBCK  
0_A  
A
-
-
-
-
P404  
-
-
SSILRC  
K0/SSIF  
S0_A  
B
C2  
H9  
F7  
6
7
-
-
-
-
-
-
-
-
P405  
P406  
-
-
-
-
-
-
GTIOC1  
A
-
-
-
-
-
-
-
-
-
-
-
-
SSITXD  
0_A  
-
-
-
-
-
-
-
-
GTIOC1  
B
SSIRXD  
0_A  
G9  
G10  
F9  
8
4
5
6
7
8
9
4
5
6
7
8
9
VBATT  
VCL0  
XCIN  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
9
-
-
-
-
10  
11  
12  
13  
-
-
-
-
F10  
D9  
XCOUT  
VSS  
-
-
-
-
-
-
-
-
E9  
XTAL  
IRQ2  
P213  
GTETRGC  
GTIOC0  
A
TXD1/MO  
SI1/SDA1  
ADTRG1  
E10  
14  
10  
10  
EXTAL  
IRQ3  
P212  
-
AGTEE1 GTETRGD  
GTIOC0  
B
-
-
-
RXD1/MIS  
O1/SCL1  
-
-
-
-
-
-
-
D10  
F8  
15  
16  
11  
-
11  
-
VCC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CACREF IRQ11 P708  
RXD1/MIS  
O1/SCL1  
SSLA3_ AUDIO_  
B
TS12  
CLK  
E8  
17  
18  
19  
20  
21  
22  
23  
24  
25  
-
-
-
-
-
-
-
-
-
-
-
IRQ8  
IRQ9  
-
P415  
P414  
P413  
P412  
P411  
P410  
P409  
P408  
P407  
-
-
-
-
-
-
-
-
-
-
-
-
-
GTIOC0  
A
-
-
-
-
-
-
USB_V  
BUSEN  
-
-
-
-
-
-
-
-
-
-
-
-
-
SSLA2_  
B
-
SD0CD  
SD0WP  
-
-
-
-
-
-
-
-
-
-
TS11  
TS10  
TS09  
TS08  
TS07  
TS06  
TS05  
TS04  
TS03  
E7  
-
-
-
GTIOC0  
B
-
-
-
-
-
SSLA1_  
B
-
-
-
-
-
-
-
-
-
D8  
-
-
GTOUUP  
-
CTS0_RT  
S0/SS0  
SSLA0_  
B
SD0CLK  
_A  
-
C10  
C9  
-
-
-
AGTEE1 GTOULO  
AGTOA1 GTOVUP  
AGTOB1 GTOVLO  
-
SCK0  
RSPCK  
A_B  
SD0CMD  
_A  
-
12  
13  
14  
15  
16  
12  
13  
14  
15  
16  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
-
GTIOC9  
A
TXD0/MO CTS3_RT  
SI0/SDA0 S3/SS3  
MOSIA_  
B
SD0DAT  
0_A  
-
E6  
GTIOC9  
B
RXD0/MIS SCK3  
O0/SCL0  
MISOA_  
B
SD0DAT  
1_A  
-
B10  
D7  
-
GTOWUP  
GTOWLO  
-
GTIOC10 -  
A
USB_E  
XICEN  
-
TXD3/MO  
SI3/SDA3  
-
-
-
-
-
-
-
-
GTIOC10 -  
B
USB_ID -  
RXD3/MIS SCL0_  
O3/SCL3  
-
B
A10  
AGTIO0  
-
RTCO USB_V CTS4_RT  
UT  
-
SDA0_  
B
ADTRG0  
BUS  
S4/SS4  
B8  
A9  
26  
27  
17  
18  
17  
18  
VSS_USB  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USB_D  
M
B9  
28  
19  
19  
-
-
-
-
-
-
-
-
USB_D  
P
-
-
-
-
-
-
-
-
-
A8  
C8  
C7  
29  
30  
31  
20  
21  
22  
20  
21  
22  
VCC_USB  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P207  
-
QSSL  
-
TS02  
TS01  
IRQ0- P206 WAIT  
DS  
GTIU  
USB_V RXD4/MIS  
BUSEN O4/SCL4  
SDA1_  
A
SD0DAT  
2_A  
A7  
32  
23  
23  
CLKOUT IRQ1- P205  
DS  
-
AGTO1  
GTIV  
GTIOC4  
A
-
USB_O TXD4/MO CTS9_RT SCL1_  
-
-
SD0DAT  
3_A  
-
-
TSCAP  
VRCUR SI4/SDA4 S9/SS9  
A-DS  
A
-
B7  
D6  
33  
34  
-
-
-
-
TRCLK  
-
-
P214  
-
-
-
GTIU  
GTIV  
-
-
-
-
-
-
-
QSPCL  
K
-
-
SD0CLK  
_B  
-
-
-
-
-
-
TRDATA0  
P211 CS7  
-
-
-
-
QIO0  
SD0CMD  
_B  
C6  
A6  
B6  
35  
36  
37  
24  
-
24  
-
TRDATA1  
TRDATA2  
TRDATA3  
-
-
-
P210 CS6  
P209 CS5  
P208 CS4  
-
-
-
GTIW  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
QIO1  
QIO2  
QIO3  
-
-
-
SD0CD  
SD0WP  
-
-
-
-
-
-
-
-
-
GTOVUP  
GTOVLO  
-
-
SD0DAT  
0_B  
D5  
B5  
A5  
C5  
D4  
C4  
38  
39  
40  
41  
42  
43  
25  
26  
27  
-
25  
26  
27  
-
RES  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
MD  
-
P201  
P200  
-
-
-
-
-
-
NMI  
-
-
-
P307 A12  
P306 A11  
P305 A10  
GTOUUP  
GTOULO  
GTOWUP  
QIO0  
QSSL  
-
-
-
-
-
IRQ8  
QSPCL  
K
B4  
44  
-
-
-
IRQ9  
P304 A09  
-
GTOWLO  
GTIOC7  
A
-
-
-
-
-
-
-
-
-
-
-
A3  
A4  
B3  
45  
46  
47  
28  
29  
-
28  
29  
-
VSS  
VCC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P303 A08  
P302 A07  
P301 A06  
GTIOC7  
B
B2  
C2  
A2  
A1  
48  
49  
50  
51  
30  
31  
32  
33  
30  
31  
32  
33  
-
-
IRQ5  
-
GTOUUP  
GTOULO  
GTOUUP  
GTOULO  
GTIOC4  
A
-
-
-
-
-
-
-
-
TXD2/MO  
SI2/SDA2  
-
-
-
-
-
SSLB3_  
B
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IRQ6  
AGTIO0  
GTIOC4  
B
RXD2/MIS CTS9_RT  
O2/SCL2 S9/SS9  
SSLB2_  
B
TCK/SWC  
LK  
-
-
P300  
P108  
-
-
-
-
GTIOC0  
A_A  
-
-
SSLB1_  
B
TMS/SWD  
IO  
GTIOC0  
B_A  
-
CTS9_RT  
S9/SS9  
SSLB0_  
B
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 20 of 92  
RA6M1 Group  
1. Overview  
Pin number  
Timers  
Communication interfaces  
Analog  
HMI  
B1  
C3  
D3  
C1  
E5  
52  
53  
54  
55  
56  
34  
35  
36  
37  
-
34  
35  
36  
37  
-
CLKOUT/T -  
DO/SWO  
P109  
P110  
P111  
-
-
-
-
-
-
GTOVUP  
GTIOC1  
A_A  
-
-
-
-
-
CTX1  
-
TXD9/MO  
SI9/SDA9  
-
-
-
-
-
MOSIB_  
B
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TDI  
IRQ3  
-
GTOVLO  
GTIOC1  
B_A  
CRX1 CTS2_RT RXD9/MIS  
MISOB_  
B
VCOUT  
-
-
-
-
S2/SS2  
O9/SCL9  
-
-
-
IRQ4  
A05  
-
-
-
GTIOC3  
A_A  
-
-
-
SCK2  
SCK9  
RSPCK  
B_B  
-
-
-
-
-
P112 A04  
P113 A03  
GTIOC3  
B_A  
TXD2/MO SCK1  
SI2/SDA2  
SSLB0_ SSIBCK  
B
0_B  
GTIOC2  
A
RXD2/MIS  
O2/SCL2  
-
-
SSILRC  
K0/SSIF  
S0_B  
D2  
E4  
D1  
E3  
E2  
57  
58  
59  
60  
61  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P114 A02  
P115 A01  
P608 A00  
P609 CS1  
P610 CS0  
-
-
-
-
-
-
-
-
-
-
GTIOC2  
B
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SSIRXD  
0_B  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
GTIOC4  
A
-
SSITXD  
0_B  
GTIOC4  
B
-
-
-
-
GTIOC5  
A
CTX1  
CRX1  
GTIOC5  
B
E1  
F2  
F1  
F3  
62  
63  
64  
65  
38  
39  
40  
-
38  
39  
40  
-
VCC  
VSS  
VCL  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P602 EBCL  
K
GTIOC7  
B
TXD9  
F4  
F5  
G3  
66  
67  
68  
-
-
-
-
P601 WR0  
-
-
-
-
-
GTIOC6  
A
-
-
-
-
-
-
-
-
RXD9  
SCK9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CLKOUT/  
CACREF  
-
P600 RD  
GTIOC6  
B
-
41  
41  
-
-
-
-
-
-
-
-
KR07  
P107 D07[A AGTOA0  
GTIOC8  
A
CTS8_RT  
S8/SS8  
QIO3  
07/D0  
7]  
G2  
G1  
H1  
H3  
J1  
69  
70  
71  
72  
73  
74  
75  
42  
43  
44  
45  
46  
47  
48  
42  
43  
44  
45  
46  
47  
48  
KR06  
P106 D06[A AGTOB0  
-
GTIOC8  
B
-
-
-
-
-
-
-
-
-
-
SCK8  
-
-
-
-
-
-
-
-
-
-
SSLA3_  
A/QIO2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
06/D0  
6]  
IRQ0/K P105 D05[A  
R05  
-
-
-
GTETRGA  
GTETRGB  
GTOWUP  
GTOWLO  
GTIOC1  
A
TXD8/MO  
SI8/SDA8  
SSLA2_  
A/QIO1  
05/D0  
5]  
IRQ1/K P104 D04[A  
R04  
GTIOC1  
B
RXD8/MIS  
O8/SCL8  
SSLA1_  
A/QIO0  
04/D0  
4]  
KR03  
P103 D03[A  
GTIOC2  
A_A  
CTX0 CTS0_RT  
S0/SS0  
SSLA0_  
A
03/D0  
3]  
KR02  
P102 D02[A AGTO0  
GTIOC2  
B_A  
CRX0 SCK0  
RSPCK  
A_A  
ADTRG0  
02/D0  
2]  
H2  
H4  
IRQ1/K P101 D01[A AGTEE0 GTETRGB  
R01  
GTIOC5  
A
-
-
TXD0/MO CTS1_RT SDA1_ MOSIA_  
SI0/SDA0 S1/SS1  
-
-
01/D0  
1]  
B
A
IRQ2/K P100 D00[A AGTIO0  
R00  
GTETRGA  
GTIOC5  
B
RXD0/MIS SCK1  
O0/SCL0  
SCL1_ MISOA_  
B
00/D0  
0]  
A
K1  
J2  
76  
77  
49  
50  
49  
50  
-
-
-
P500  
-
AGTOA0 GTIU  
AGTOB0 GTIV  
GTIOC11  
A
-
-
USB_V  
BUSEN  
-
-
-
-
-
QSPCL  
K
-
-
SD1CLK AN016  
_A  
IVREF0  
IVREF1  
-
-
IRQ11 P501  
IRQ12 P502  
-
GTIOC11  
B
USB_O  
VRCUR  
A
-
QSSL  
SD1CMD AN116  
_A  
K2  
78  
-
-
-
-
-
-
GTIW  
GTIOC12 -  
A
USB_O  
VRCUR  
B
-
-
-
-
QIO0  
-
SD1DAT AN017  
0_A  
IVCMP0  
-
G4  
G5  
G6  
79  
80  
81  
-
-
-
-
-
-
-
-
-
-
-
-
P503  
-
-
-
GTETRGC  
GTETRGD  
-
GTIOC12 -  
B
USB_E  
XICEN  
-
-
-
-
-
-
QIO1  
QIO2  
-
-
-
-
SD1DAT AN117  
1_A  
-
-
-
-
-
-
P504 ALE  
-
-
USB_ID -  
SD1DAT AN018  
2_A  
P508  
-
-
-
-
-
SD1DAT AN020  
3_A  
K3  
J3  
J4  
82  
83  
84  
51  
52  
53  
51  
52  
53  
VCC  
VSS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IRQ13 P015  
AN006/A DA1/  
N106  
IVCMP1  
K4  
85  
54  
54  
-
-
P014  
-
-
-
-
-
-
-
-
-
-
-
-
AN005/A DA0/  
-
N105  
IVREF3  
J5  
86  
87  
88  
89  
90  
91  
92  
55  
56  
57  
58  
59  
60  
-
55  
56  
57  
58  
59  
60  
-
VREFL  
VREFH  
AVCC0  
AVSS0  
VREFL0  
VREFH0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
K5  
H5  
H6  
J6  
-
-
-
-
K6  
J7  
-
IRQ12- P008  
DS  
AN003  
H7  
G7  
K7  
J8  
93  
94  
95  
96  
97  
98  
-
-
-
-
-
-
-
-
-
P007  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PGAVSS1 -  
00/AN107  
-
-
-
-
-
-
-
-
IRQ11- P006  
DS  
AN102  
AN101  
AN100  
IVCMP2  
-
-
IRQ10- P005  
DS  
IVCMP2  
IVCMP2  
-
-
IRQ9- P004  
DS  
H8  
K8  
61  
62  
61  
62  
-
P003  
PGAVSS0 -  
00/AN007  
IRQ8- P002  
DS  
AN002  
IVCMP2  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 21 of 92  
RA6M1 Group  
1. Overview  
Pin number  
Timers  
Communication interfaces  
Analog  
HMI  
K9  
99  
63  
64  
63  
64  
-
-
IRQ7- P001  
DS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AN001  
AN000  
IVCMP2  
IVCMP2  
-
-
K10  
100  
IRQ6- P000  
DS  
Note:  
Some pin names have the added suffix of _A and _B. When assigning the GPT, IIC, SPI, SSIE, and SDHI functionality, select  
the functional pins with the same suffix.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 22 of 92  
RA6M1 Group  
2. Electrical Characteristics  
2.  
Electrical Characteristics  
Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:  
VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V  
2.7 ≤ VREFH0/VREFH ≤ AVCC0  
VSS = AVSS0 = VREFL0/VREFL = VSS_USB = 0 V  
T = T  
.
opr  
a
Figure 2.1 shows the timing conditions.  
For example P100  
C
VOH = VCC × 0.7, VOL = VCC × 0.3  
V
IH = VCC × 0.7, VIL = VCC × 0.3  
Load capacitance C = 30 pF  
Figure 2.1  
Input or output timing measurement conditions  
The measurement conditions for the timing specification of each peripheral are recommended for the best peripheral  
operation. However, make sure to adjust the driving abilities of each pin to meet the conditions of your system.  
Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function  
pin is mixed, the A/C specification of each function is not guaranteed.  
2.1  
Absolute Maximum Ratings  
Table 2.1  
Absolute maximum ratings  
Parameter  
Symbol  
Value  
Unit  
V
Power supply voltage  
VCC, VCC_USB *2  
-0.3 to +4.0  
VBATT power supply voltage  
Input voltage (except for 5 V-tolerant ports*1)  
Input voltage (5 V-tolerant ports*1)  
Reference power supply voltage  
Analog power supply voltage  
Analog input voltage (except for P000 to P007)  
VBATT  
-0.3 to +4.0  
V
Vin  
-0.3 to VCC + 0.3  
-0.3 to + VCC + 4.0 (max. 5.8)  
-0.3 to AVCC0 + 0.3  
-0.3 to +4.0  
V
Vin  
V
VREFH/VREFH0  
AVCC0 *2  
VAN  
V
V
-0.3 to AVCC0 + 0.3  
-0.3 to AVCC0 + 0.3  
V
Analog input voltage (P000 to P007) when PGA  
differential input is disabled  
VAN  
V
Analog input voltage (P000 to P002, P004 to P006)  
when PGA differential input is enabled  
VAN  
-1.3 to AVCC0 + 0.3  
-0.8 to AVCC0 + 0.3  
V
Analog input voltage (P003, P007) when PGA differential VAN  
input is enabled  
V
4,  
5
Operating temperature*3,  
*
*
Topr  
-40 to +85  
-40 to +105  
°C  
°C  
Storage temperature  
Tstg  
-55 to +125  
Caution:  
Permanent damage to the MCU might result if absolute maximum ratings are exceeded.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 23 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Note 1. Ports P205, P206, P400, P401, P407 to P415, and P708 are 5 V tolerant.  
Note 2. Connect AVCC0 and VCC_USB to VCC.  
Note 3. See section 2.2.1, Tj/Ta Definition.  
Note 4. Contact Renesas Electronics sales office for information on derating operation when Ta = +85°C to +105°C. Derating is the  
systematic reduction of load for improved reliability.  
Note 5. The upper limit of operating temperature is +85°C or +105°C, depending on the product. For details, see section 1.3, Part  
Numbering.  
Table 2.2  
Recommended operating conditions  
Parameter  
Symbol  
Value  
Min  
Typ  
Max  
Unit  
V
Power supply voltages  
VCC  
When USB is not used  
When USB is used  
2.7  
-
3.6  
3.0  
-
3.6  
V
VSS  
-
0
-
V
USB power supply voltages  
VCC_USB  
VSS_USB  
VBATT  
-
VCC  
-
V
-
0
-
V
VBATT power supply voltage  
Analog power supply voltages  
1.8  
-
3.6  
V
AVCC0*1  
AVSS0  
-
-
VCC  
0
-
-
V
V
Note 1. Connect AVCC0 to VCC. When the A/D converter, the D/A converter, or the comparator are not in use, do not leave the  
AVCC0, VREFH/VREFH0, AVSS0, and VREFL/VREFL0 pins open. Connect the AVCC0 and VREFH/VREFH0 pins to VCC,  
and the AVSS0 and VREFL/VREFL0 pins to VSS, respectively.  
2.2  
DC Characteristics  
T /T Definition  
2.2.1  
j
a
Table 2.3  
DC characteristics  
Conditions: Products with operating temperature (Ta) -40 to +105°C.  
Parameter  
Symbol Typ  
Tj  
Max  
Unit  
Test conditions  
Permissible junction temperature  
100-pin LQFP  
64-pin LQFP  
-
125  
°C  
High-speed mode  
Low-speed mode  
Subosc-speed mode.  
64-pin QFN  
100-pin LGA  
117  
105  
Note:  
Make sure that Tj = Ta + θja × total power consumption (W),  
where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL + ICCmax × VCC.  
The upper limit of operating temperature is +85°C or +105°C, depending on the product. For details, see section 1.3, Part  
Numbering.  
2.2.2  
I/O V , V  
IH IL  
Table 2.4  
Parameter  
I/O VIH, VIL (1 of 2)  
Symbo  
l
Min  
Typ Max  
Unit  
Input voltage  
(except for  
Schmitt trigger pin  
input pins)  
Peripheral EXTAL(external clock input), WAIT, SPI  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
VIH  
VCC × 0.8  
-
-
-
-
-
-
-
-
V
function  
(except RSPCK)  
-
VCC × 0.2  
D00 to D07  
VCC × 0.7  
-
-
VCC × 0.3  
IIC (SMBus)*1  
IIC (SMBus)*2  
2.1  
-
-
0.8  
2.1  
VCC + 3.6  
(max 5.8)  
VIL  
-
-
0.8  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 24 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.4  
Parameter  
I/O VIH, VIL (2 of 2)  
Symbo  
l
Min  
Typ Max  
Unit  
Schmitt trigger Peripheral IIC (except for SMBus)*1  
VIH  
VIL  
VCC × 0.7  
-
-
-
-
-
-
V
input voltage  
function  
pin  
VCC × 0.3  
-
ΔVT  
VIH  
VCC × 0.05  
VCC × 0.7  
IIC (except for SMBus)*2  
VCC + 3.6  
(max 5.8)  
V
VIL  
-
-
-
-
VCC × 0.3  
-
ΔVT  
VIH  
VCC × 0.05  
VCC × 0.8  
7
5 V-tolerant ports*3,  
*
VCC + 3.6  
(max 5.8)  
VIL  
-
-
-
-
VCC × 0.2  
ΔVT  
VIH  
VCC × 0.05  
-
RTCIC0, When using the When VBATT  
VBATT ×  
0.8  
VBATT + 0.3  
RTCIC1, battery backup  
RTCIC2 function  
power supply is  
selected  
VIL  
-
-
-
VBATT × 0.2  
-
ΔVT  
VBATT ×  
0.05  
When VCC  
power supply is  
selected  
VIH  
VCC × 0.8  
-
Higher  
voltage  
either  
VCC + 0.3 V  
or  
VBATT + 0.3  
V
VIL  
-
-
-
-
-
-
-
-
-
-
VCC × 0.2  
ΔVT  
VCC × 0.05  
VCC × 0.8  
-
-
When not using the battery backup VIH  
VCC + 0.3  
function  
VIL  
VCC × 0.2  
ΔVT  
VCC × 0.05  
VCC × 0.8  
-
-
Other input pins*4  
VIH  
VIL  
-
VCC × 0.2  
-
ΔVT  
VIH  
VCC × 0.05  
VCC × 0.8  
7
Ports  
5 V-tolerant ports*5,  
Other input pins*6  
*
VCC + 3.6  
(max 5.8)  
V
VIL  
VIH  
VIL  
-
-
-
-
VCC × 0.2  
-
VCC × 0.8  
-
VCC × 0.2  
Note 1. SCL1_B, SDA1_B (total 2 pins).  
Note 2. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A (total 6 pins).  
Note 3. RES and peripheral function pins associated with P205, P206, P400, P401, P407 to P415, P708 (total 15 pins).  
Note 4. All input pins except for the peripheral function pins already described in the table.  
Note 5. P205, P206, P400, P401, P407 to P415, P708 (total 14 pins).  
Note 6. All input pins except for the ports already described in the table.  
Note 7. When VCC is less than 2.7 V, the input voltage of 5 V-tolerant ports should be less than 3.6 V, otherwise breakdown may occur  
because 5 V-tolerant ports are electrically controlled so as not to violate the breakdown voltage.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 25 of 92  
RA6M1 Group  
2. Electrical Characteristics  
2.2.3  
I/O I , I  
OH OL  
Table 2.5  
Parameter  
I/O IOH, IOL  
Symbol  
Min  
Typ  
Max  
-2.0  
2.0  
-4.0  
4.0  
-2.0  
2.0  
-4.0  
4.0  
-20  
20  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Permissible output current  
(average value per pin)  
Ports P008, P201  
Ports P014, P015  
-
I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
OH  
I
OL  
-
I
OH  
I
OL  
1
Ports P205, P206, P407 to P415,  
P602, P708 (total 13 pins)  
Low drive*  
I
OH  
I
OL  
2
Middle drive*  
I
OH  
I
OL  
3
High drive*  
I
OH  
I
OL  
4
1
Other output pins*  
Low drive*  
I
-2.0  
2.0  
-4.0  
4.0  
-16  
16  
OH  
I
OL  
2
Middle drive*  
I
OH  
I
OL  
3
High drive*  
I
OH  
I
OL  
Permissible output current  
(max value per pin)  
Ports P008, P201  
Ports P014, P015  
-
-
I
-4.0  
4.0  
-8.0  
8.0  
-4.0  
4.0  
-8.0  
8.0  
-40  
40  
OH  
I
OL  
I
OH  
I
OL  
1
Ports P205, P206, P407 to P415,  
P602, P708 (total 13 pins)  
Low drive*  
I
OH  
I
OL  
2
Middle drive*  
I
OH  
I
OL  
3
High drive*  
I
OH  
I
OL  
4
1
Other output pins*  
Low drive*  
I
-4.0  
4.0  
-8.0  
8.0  
-32  
32  
OH  
I
OL  
2
Middle drive*  
I
OH  
I
OL  
3
High drive*  
I
OH  
I
OL  
Permissible output current  
(max value of total of all pins)  
Maximum of all output pins  
ΣI  
-80  
80  
OH (max)  
ΣI  
OL (max)  
Caution:  
To protect the reliability of the MCU, the output current values should not exceed the values in this table. The  
average output current indicates the average value of current measured during 100 μs.  
Note 1. This is the value when low driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving  
ability is retained in Deep Software Standby mode.  
Note 2. This is the value when middle driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected  
driving ability is retained in Deep Software Standby mode.  
Note 3. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected  
driving ability is retained in Deep Software Standby mode.  
Note 4. Except for P000 to P007, P200, which are input ports.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 26 of 92  
RA6M1 Group  
2. Electrical Characteristics  
2.2.4  
I/O V , V , and Other Characteristics  
OH OL  
Table 2.6  
I/O VOH, VOL, and other characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
0.4  
Unit  
Test conditions  
Output voltage  
IIC  
V
-
-
-
-
-
-
V
I
I
I
= 3.0 mA  
= 6.0 mA  
= 15.0 mA  
OL  
OL  
OL  
OL  
OL  
OL  
V
V
0.6  
IIC*1  
0.4  
(ICFER.FMPE = 1)  
V
V
V
-
0.4  
-
I = 20.0 mA  
OL  
OH  
OL  
OH  
OL  
(ICFER.FMPE = 1)  
Ports P205, P206, P407 to P415,  
P602, P708 (total of 13 pins)*  
VCC - 1.0  
-
-
-
-
I
= -20 mA  
OH  
VCC = 3.3 V  
2
1.0  
I
= 20 mA  
OL  
VCC = 3.3 V  
Other output pins  
RES  
V
V
|I  
VCC - 0.5  
-
-
-
-
I
= -1.0 mA  
= 1.0 mA  
OH  
OL  
-
-
0.5  
5.0  
I
OL  
|
Input leakage current  
μA  
V
V
= 0 V  
= 5.5 V  
in  
in  
in  
Ports P000 to P002, P004 to P006,  
P200  
-
-
-
-
-
-
-
-
1.0  
45.0  
1.0  
5.0  
1.0  
-10  
16  
V
V
= 0 V  
= VCC  
in  
in  
Ports P003, P007 Before  
-
V
V
= 0 V  
= VCC  
in  
in  
3
initialization*  
After  
initialization*  
-
V
V
= 0 V  
= VCC  
in  
in  
4
Three-state leakage  
current (off state)  
5 V-tolerant ports  
|I  
I
|
-
μA  
V
V
= 0 V  
= 5.5 V  
TSI  
in  
in  
Other ports (except for ports P000  
to P007, P200)  
-
V
V
= 0 V  
= VCC  
in  
in  
Input pull-up MOS current  
Input capacitance  
Ports P0 to P7 (except for ports  
P000 to P007)  
-300  
-
μA  
pF  
VCC = 2.7 to 3.6 V  
= 0 V  
p
V
in  
USB_DP, USB_DM, and ports  
P003, P007, P014, P015, P400,  
P401  
C
Vbias = 0 V  
Vamp = 20 mV  
f = 1 MHz  
in  
T
= 25°C  
a
Other input pins  
-
-
8
Note 1. SCL0_A, SDA0_A (total 2 pins).  
Note 2. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register.  
The selected driving ability is retained in Deep Software Standby mode.  
Note 3. P0nPFS.ASEL(n = 3 or 7) = 1  
Note 4. P0nPFS.ASEL(n = 3 or 7) = 0  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 27 of 92  
RA6M1 Group  
2. Electrical Characteristics  
2.2.5  
Operating and Standby Current  
Table 2.7  
Operating and standby current (1 of 2)  
Parameter  
Symbol  
Min  
Typ  
-
Max  
Unit  
Test conditions  
2
3
Supply  
Maximum*  
I
*
-
-
-
87  
-
mA  
ICLK = 120 MHz  
PCLKA = 120 MHz  
PCLKB = 60 MHz  
PCLKC = 60 MHz  
PCLKD = 120 MHz  
FCLK = 60 MHz  
BCLK = 120 MHz  
CC  
current*1  
® 5  
CoreMark *  
17  
24  
Normal mode  
All peripheral clocks enabled,  
while (1) code executing from  
flash*  
-
4
All peripheral clocks disabled,  
while (1) code executing from  
-
12  
-
5,  
6
flash*  
*
5,  
6
Sleep mode*  
*
-
-
-
-
-
-
-
-
-
-
-
-
-
-
9
33.5  
-
Increase during BGO  
operation  
Data flash P/E  
Code flash P/E  
6
8
-
Low-speed mode*5  
1.2  
1.0  
1.3  
1.3  
28  
-
ICLK = 1 MHz  
ICLK = 32.768 kHz  
Ta 85°C  
Ta 105°C  
Ta 85°C  
Ta 105°C  
Ta 85°C  
Ta 105°C  
Ta 85°C  
Ta 105°C  
-
Subosc-speed mode*5  
Software Standby mode  
-
13  
21  
65  
93  
28  
32  
21  
26  
-
Power supplied to Standby SRAM and USB resume  
detecting unit  
μA  
28  
Power not supplied to  
SRAM or USB resume  
detecting unit  
Power-on reset circuit low  
power function disabled  
11.6  
11.6  
4.9  
4.9  
4.4  
Power-on reset circuit low  
power function enabled  
Increase when the RTC  
and AGT are operating  
When the low-speed on-chip  
oscillator (LOCO) is in use  
When a crystal oscillator for  
low clock loads is in use  
-
-
-
-
-
-
1.0  
1.4  
0.9  
1.1  
1.0  
1.6  
-
-
-
-
-
-
-
-
When a crystal oscillator for  
standard clock loads is in use  
RTC operating while VCC is off (with When a crystal  
the battery backup function, only the oscillator for low clock  
VBATT = 1.8 V,  
VCC = 0 V  
RTC and sub-clock oscillator  
operate)  
loads is in use  
VBATT = 3.3 V,  
VCC = 0 V  
When a crystal  
oscillator for standard  
clock loads is in use  
VBATT = 1.8 V,  
VCC = 0 V  
VBATT = 3.3 V,  
VCC = 0 V  
Analog  
power  
supply  
current  
During 12-bit A/D conversion  
AI  
-
-
-
-
-
-
-
-
-
-
-
-
0.8  
2.3  
1
1.1  
3.3  
3
mA  
mA  
mA  
µA  
-
-
-
-
-
-
-
-
-
-
-
-
CC  
During 12-bit A/D conversion with S/H amp  
PGA (1ch)  
ACMPHS (1 unit)  
100  
0.1  
0.1  
0.6  
0.9  
2
150  
0.2  
0.2  
1.1  
1.6  
8
Temperature sensor  
mA  
mA  
mA  
mA  
µA  
During D/A conversion (per unit)  
Without AMP output  
With AMP output  
Waiting for A/D, D/A conversion (all units)  
ADC12, DAC12 in standby modes (all units)*  
During 12-bit A/D conversion (unit 0)  
Waiting for 12-bit A/D conversion (unit 0)  
ADC12 in standby modes (unit 0)  
7
Reference  
power  
supply  
current  
(VREFH0)  
70  
120  
0.5  
0.5  
μA  
AIREFH0  
0.07  
0.07  
μA  
µA  
Reference  
power  
supply  
current  
(VREFH)  
During 12-bit A/D conversion (unit 1)  
-
-
-
-
-
70  
120  
0.4  
0.4  
0.8  
0.8  
µA  
mA  
mA  
µA  
µA  
-
-
-
-
-
AIREFH  
During D/A conversion  
(per unit)  
Without AMP output  
With AMP ouput  
0.1  
0.1  
Waiting for 12-bit A/D (unit 1), D/A (all units) conversion  
ADC12 unit 1 in standby modes  
0.07  
0.07  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 28 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.7  
Operating and standby current (2 of 2)  
Parameter  
Symbol  
Min  
Typ  
3.5  
4.0  
Max  
6.5  
Unit  
mA  
mA  
Test conditions  
VCC_USB  
USB  
operating  
current  
Low speed  
Full speed  
USB  
I
-
-
CCUSBLS  
USB  
I
10.0  
VCC_USB  
CCUSBFS  
Note 1. Supply current values are with all output pins unloaded and all input pull-up MOS transistors in the off state.  
Note 2. Measured with clocks supplied to the peripheral functions. This does not include the BGO operation.  
Note 3. ICC depends on f (ICLK) as follows. (ICLK:PCLKA:PCLKB:PCLKC:PCLKD:BCK:EBCLK = 2:2:1:1:2:1:1)  
ICC Max. = 0.53 x f + 23 (maximum operation in High-speed mode)  
ICC Typ. = 0.08 x f + 2.4 (normal operation in High-speed mode)  
ICC Typ. = 0.1 x f + 1.1 (Low-speed mode)  
ICC Max. = 0.09 x f + 23 (Sleep mode).  
Note 4. This does not include the BGO operation.  
Note 5. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.  
Note 6. FCLK, BCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (3.75 MHz).  
Note 7. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (12-bit A/D Converter 0 Module Stop bit) and  
MSTPCRD.MSTPD15 (12-bit A/D Converter 1 Module Stop bit) are in the module-stop state.  
See section 42.6.8, Available functions and register settings of AN000 to AN002, AN007, AN100 to AN102, and AN107 in  
User’s Manual.  
Figure 2.2  
Temperature dependency in Software Standby mode (reference data)  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 29 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Figure 2.3  
Temperature dependency in Deep Software Standby mode, power supplied to standby SRAM and  
USB resume detecting unit (reference data)  
Figure 2.4  
Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB  
resume detecting unit, power-on reset circuit low power function disabled (reference data)  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 30 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Figure 2.5  
Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB  
resume detecting unit, power-on reset circuit low power function enabled (reference data)  
2.2.6  
VCC Rise and Fall Gradient and Ripple Frequency  
Table 2.8  
Parameter  
Rise and fall gradient characteristics  
Symbol Min  
Typ  
Max  
20  
-
Unit  
Test conditions  
VCC rising gradient Voltage monitor 0 reset disabled at startup SrVCC 0.0084  
-
-
-
-
ms/V  
-
-
-
-
Voltage monitor 0 reset enabled at startup  
SCI/USB boot mode*1  
0.0084  
0.0084  
0.0084  
20  
-
VCC falling gradient*2  
SfVCC  
ms/V  
Note 1. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit.  
Note 2. This applies when VBATT is used.  
Table 2.9  
Rise and fall gradient and ripple frequency characteristics  
The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (3.6 V) and lower limit  
(2.7 V). When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Allowable ripple frequency  
fr (VCC)  
-
-
10  
kHz  
Figure 2.6  
Vr (VCC) ≤ VCC × 0.2  
-
-
-
-
1
MHz  
MHz  
ms/V  
Figure 2.6  
Vr (VCC) ≤ VCC × 0.08  
-
10  
-
Figure 2.6  
Vr (VCC) ≤ VCC × 0.06  
Allowable voltage change rising  
and falling gradient  
dt/dVCC  
1.0  
When VCC change exceeds VCC ±10%  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 31 of 92  
RA6M1 Group  
2. Electrical Characteristics  
1/fr(VCC)  
VCC  
Vr(VCC)  
Figure 2.6  
Ripple waveform  
2.3  
AC Characteristics  
Frequency  
2.3.1  
Table 2.10  
Parameter  
Operation frequency value in high-speed mode  
Symbol  
Min  
Typ  
Max  
120  
120  
60  
Unit  
Operation frequency  
System clock (ICLK*2)  
f
-
-
-
-
-
-
-
-
-
-
-
MHz  
Peripheral module clock (PCLKA)*2  
Peripheral module clock (PCLKB)*2  
Peripheral module clock (PCLKC)*2  
Peripheral module clock (PCLKD)*2  
Flash interface clock (FCLK)*2  
External bus clock (BCLK)*2  
EBCLK pin output  
3
-*  
60  
-
120  
60  
1
-*  
-
-
120  
60  
Note 1. FCLK must run at a frequency of at least 4 MHz when programming or erasing the flash memory.  
Note 2. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,  
PCLKD, FCLK, and BCLK frequencies.  
Note 3. When the ADC12 is used, the PCLKC frequency must be at least 1 MHz.  
Table 2.11  
Parameter  
Operation frequency value in low-speed mode  
Symbol  
Min  
Typ  
Max  
1
Unit  
Operation frequency  
System clock (ICLK)*2  
f
-
-
-
-
-
-
-
-
-
MHz  
Peripheral module clock (PCLKA)*2  
Peripheral module clock (PCLKB)*2  
Peripheral module clock (PCLKC)*2,*3  
-
1
-
1
-*3  
-
1
Peripheral module clock (PCLKD)*2  
1
2
Flash interface clock (FCLK)*1,  
External bus clock (BCLK)  
EBCLK pin output  
*
-
1
-
1
-
1
Note 1. Programming or erasing the flash memory is disabled in Low-speed mode.  
Note 2. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,  
PCLKD, FCLK, and BCLK frequencies.  
Note 3. When the ADC12 is used, the PCLKC frequency must be set to at least 1 MHz.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 32 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.12  
Parameter  
Operation frequency value in Subosc-speed mode  
Symbol  
Min  
Typ  
Max  
36.1  
36.1  
36.1  
36.1  
36.1  
36.1  
36.1  
36.1  
Unit  
Operation frequency  
System clock (ICLK)*2  
f
29.4  
-
-
-
-
-
-
-
-
kHz  
Peripheral module clock (PCLKA)*2  
Peripheral module clock (PCLKB)*2  
Peripheral module clock (PCLKC)*2,*3  
-
-
-
Peripheral module clock (PCLKD)*2  
-
2
Flash interface clock (FCLK)*1,  
External bus clock (BCLK)*2  
EBCLK pin output  
*
29.4  
-
-
Note 1. Programming or erasing the flash memory is disabled in Subosc-speed mode.  
Note 2. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,  
PCLKD, FCLK, and BCLK frequencies.  
Note 3. The ADC12 cannot be used.  
2.3.2  
Clock Timing  
Table 2.13  
Clock timing except for sub-clock oscillator (1 of 2)  
Parameter  
Symbol  
tBcyc  
tCH  
Min  
Typ  
Max  
-
Unit  
ns  
Test conditions  
EBCLK pin output cycle time  
EBCLK pin output high pulse width  
EBCLK pin output low pulse width  
EBCLK pin output rise time  
16.6  
-
-
-
-
-
-
-
-
-
-
-
-
Figure 2.7  
3.3  
-
ns  
tCL  
3.3  
-
ns  
tCr  
-
5.0  
5.0  
-
ns  
EBCLK pin output fall time  
tCf  
-
ns  
EXTAL external clock input cycle time  
EXTAL external clock input high pulse width  
EXTAL external clock input low pulse width  
EXTAL external clock rise time  
EXTAL external clock fall time  
Main clock oscillator frequency  
tEXcyc  
tEXH  
tEXL  
41.66  
ns  
Figure 2.8  
15.83  
-
ns  
15.83  
-
ns  
tEXr  
-
5.0  
5.0  
24  
-*1  
ns  
tEXf  
-
ns  
fMAIN  
tMAINOSCWT  
8
-
MHz  
ms  
-
Main clock oscillation stabilization wait time  
(crystal) *1  
Figure 2.9  
LOCO clock oscillation frequency  
fLOCO  
29.4912  
-
32.768  
-
36.0448  
60.4  
kHz  
μs  
-
LOCO clock oscillation stabilization wait time  
ILOCO clock oscillation frequency  
tLOCOWT  
fILOCO  
Figure 2.10  
13.5  
15  
8
16.5  
kHz  
MHz  
μs  
-
MOCO clock oscillation frequency  
FMOCO  
6.8  
9.2  
-
MOCO clock oscillation stabilization wait time  
tMOCOWT  
fHOCO16  
fHOCO18  
fHOCO20  
fHOCO16  
fHOCO18  
fHOCO20  
fHOCO16  
fHOCO18  
fHOCO20  
-
-
15.0  
-
HOCO clock oscillator  
oscillation frequency  
Without FLL  
15.78  
17.75  
19.72  
15.71  
17.68  
19.64  
15.955  
17.949  
19.944  
16  
18  
20  
16  
18  
20  
16  
18  
20  
16.22  
18.25  
20.28  
16.29  
18.32  
20.36  
16.045  
18.051  
20.056  
MHz  
-20 ≤ Ta ≤ 105°C  
-40 ≤ Ta ≤ -20°C  
With FLL  
-40 ≤ Ta ≤ 105°C  
Sub-clock  
frequency accuracy  
is ±50 ppm.  
HOCO clock oscillation stabilization wait time*2  
FLL stabilization wait time  
tHOCOWT  
tFLLWT  
fPLL  
-
-
-
-
64.7  
1.8  
μs  
-
-
-
-
ms  
PLL clock frequency  
120  
240  
MHz  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 33 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.13  
Clock timing except for sub-clock oscillator (2 of 2)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
PLL clock oscillation stabilization wait time  
tPLLWT  
-
-
174.9  
μs  
Figure 2.11  
Note 1. When setting up the main clock oscillator, ask the oscillator manufacturer for an oscillation evaluation, and use the results as  
the recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the  
recommended value.  
After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm  
that it is 1, and then start using the main clock oscillator.  
Note 2. This is the time from release from reset state until the HOCO oscillation frequency (fHOCO) reaches the range for guaranteed  
operation.  
Table 2.14  
Parameter  
Clock timing for the sub-clock oscillator  
Symbol  
Min  
Typ  
32.768  
-
Max  
-
Unit  
kHz  
s
Test conditions  
Sub-clock frequency  
fSUB  
-
-
-
Sub-clock oscillation stabilization wait time  
tSUBOSCWT  
-*1  
Figure 2.12  
Note 1. When setting up the sub-clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the  
recommended oscillation stabilization time.  
After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after  
the sub-clock oscillation stabilization time elapses with an adequate margin. A value that is two times the value shown is  
recommended.  
tBcyc  
tCH  
tCf  
EBCLK pin output  
tCr  
tCL  
Figure 2.7  
Figure 2.8  
Figure 2.9  
EBCLK output timing  
tEXcyc  
tEXH  
tEXL  
EXTAL external clock input  
VCC × 0.5  
tEXr  
tEXf  
EXTAL external clock input timing  
MOSCCR.MOSTP  
Main clock oscillator output  
Main clock  
tMAINOSCWT  
Main clock oscillation start timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 34 of 92  
RA6M1 Group  
2. Electrical Characteristics  
LOCOCR.LCSTP  
On-chip oscillator output  
tLOCOWT  
LOCO clock  
Figure 2.10  
LOCO clock oscillation start timing  
PLLCR.PLLSTP  
PLL circuit output  
tPLLWT  
OSCSF.PLLSF  
PLL clock  
Figure 2.11  
PLL clock oscillation start timing  
Note:  
Only operate the PLL after the main clock oscillation has stabilized.  
SOSCCR.SOSTP  
Sub-clock oscillator output  
tSUBOSCWT  
Sub-clock  
Figure 2.12  
Sub-clock oscillation start timing  
2.3.3  
Reset Timing  
Table 2.15  
Parameter  
Reset timing (1 of 2)  
Test  
Symbol  
tRESWP  
tRESWD  
tRESWS  
Min  
1
Typ  
Max  
Unit  
ms  
conditions  
Figure 2.13  
Figure 2.14  
RES pulse width  
Power-on  
-
-
-
-
-
-
Deep Software Standby mode  
0.6  
0.3  
ms  
Software Standby mode, Subosc-speed  
mode  
ms  
All other  
tRESW  
200  
-
-
-
μs  
μs  
Wait time after RES cancellation  
tRESWT  
29  
32  
Figure 2.13  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 35 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.15  
Parameter  
Reset timing (2 of 2)  
Test  
conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Wait time after internal reset cancellation (IWDT reset, WDT  
reset, software reset, SRAM parity error reset, SRAM ECC error  
reset, bus master MPU error reset, bus slave MPU error reset,  
stack pointer error reset)  
tRESW2  
-
320  
390  
μs  
-
VCC  
RES  
tRESWP  
Internal reset signal  
(active-low)  
tRESWT  
Figure 2.13  
Power-on reset timing  
tRESWD, tRESWS, tRESW  
RES  
Internal reset signal  
(active-low)  
tRESWT  
Figure 2.14  
Reset input timing  
2.3.4  
Wakeup Timing  
Table 2.16  
Parameter  
Timing of recovery from low power modes (1 of 2)  
Symbol  
Test  
conditions  
Min  
Typ  
Max  
Unit  
Recovery time  
from Software  
Standby mode*1  
Crystal  
System clock source is main  
clock oscillator*2  
tSBYMC  
-
2.4*9  
2.8*9  
ms  
Figure 2.15  
The division  
ratio of all  
resonator  
connected  
to main  
clock  
System clock source is PLL  
with main clock oscillator*3  
tSBYPC  
-
2.7*9  
3.2*9  
ms  
oscillators is 1.  
oscillator  
External  
clock input  
to main  
clock  
System clock source is main  
clock oscillator*4  
tSBYEX  
tSBYPE  
-
-
230*9  
570*9  
280*9  
700*9  
μs  
μs  
System clock source is PLL  
with main clock oscillator*5  
oscillator  
System clock source is sub-clock  
oscillator*8  
tSBYSC  
-
1.2*9  
1.3*9  
1.4*9  
ms  
System clock source is LOCO*8  
System clock source is HOCO*6  
tSBYLO  
tSBYHO  
-
-
1.2*9  
ms  
µs  
240*9,  
*
300  
10  
9, 10  
*
*
System clock source is MOCO*7  
tSBYMO  
-
220*9  
300*9  
µs  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 36 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.16  
Parameter  
Timing of recovery from low power modes (2 of 2)  
Symbol  
Test  
conditions  
Min  
Typ  
0.65  
-
Max  
1.0  
35  
Unit  
ms  
tcyc  
μs  
Recovery time from Deep Software Standby mode  
tDSBY  
tDSBYWT  
tSNZ  
-
Figure 2.16  
Wait time after cancellation of Deep Software Standby mode  
34  
-
10  
Recovery time  
from Software  
Standby mode to  
Snooze mode  
High-speed mode when system clock  
source is HOCO (20 MHz)  
35*9,  
*
70  
Figure 2.17  
9, 10  
*
*
High-speed mode when system clock  
source is MOCO (8 MHz)  
tSNZ  
-
11*9  
14*9  
μs  
Note 1. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be  
determined with the following equation:  
Total recovery time = recovery time for an oscillator as the system clock source + the longest oscillation stabilization time of any  
oscillators requiring longer stabilization times than the system clock source + 2 LOCO cycles (when LOCO is operating) + 3  
SOSC cycles (when Subosc is oscillating and MSTPC0 = 0 (CAC module stop)).  
Note 2. When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For  
other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:  
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 05h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =  
05h))  
Note 3. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For other  
settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:  
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 05h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =  
05h))  
Note 4. When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h).  
For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:  
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 00h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =  
00h))  
Note 5. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h). For other  
settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:  
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 00h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =  
00h))  
Note 6. The HOCO frequency is 20 MHz.  
Note 7. The MOCO frequency is 8 MHz.  
Note 8. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode.  
Note 9. When the SNZCR.RXDREQEN bit is set to 0, the following time is added as the power supply recovery time:  
STCONR.STCON[1:0] = 00b:16 µs (typical), 34 µs (maximum)  
STCONR.STCON[1:0] = 11b:16 µs (typical), 104 µs (maximum).  
Note 10. When the SNZCR.RXDREQEN bit is set to 0, 16 μs (typical) or 18 μs (maximum) is added as the HOCO wait time.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 37 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Oscillator  
(system clock)  
tSBYOSCWT  
tSBYSEQ  
Oscillator  
(not the system clock)  
ICLK  
IRQ  
Software Standby mode  
tSBYMC, tSBYEX, tSBYPC, tSBYPE,  
tSBYPH, tSBYSC, tSBYHO, tSBYLO  
When stabilization of the system clock oscillator is slower  
Oscillator  
(system clock)  
tSBYSEQ  
tSBYOSCWT  
Oscillator  
(not the system clock)  
tSBYOSCWT  
ICLK  
IRQ  
Software Standby mode  
tSBYMC, tSBYEX, tSBYPC, tSBYPE,  
tSBYPH, tSBYSC, tSBYHO, tSBYLO  
When stabilization of an oscillator other than the system clock is slower  
Figure 2.15  
Software Standby mode cancellation timing  
Oscillator  
IRQ  
Deep Software Standby reset  
(active-low)  
Internal reset  
(active-low)  
Deep Software Standby mode  
tDSBY  
tDSBYWT  
Reset exception handling start  
Figure 2.16  
Deep Software Standby mode cancellation timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 38 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Oscillator  
ICLK(except DTC, SRAM)  
ICLK(to DTC, SRAM)*1 PCLK  
IRQ  
Software Standby mode  
Snooze mode  
tSNZ  
Note 1. When SNZCR.SNZDTCEN is set to 1, ICLK is supplied to DTC and SRAM.  
Figure 2.17  
Recovery timing from Software Standby mode to Snooze mode  
2.3.5  
NMI and IRQ Noise Filter  
Table 2.17  
NMI and IRQ noise filter  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test conditions  
NMI pulse width  
tNMIW  
200  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
NMI digital filter disabled  
NMI digital filter enabled  
IRQ digital filter disabled  
IRQ digital filter enabled  
tPcyc × 2 ≤ 200 ns  
tPcyc × 2 > 200 ns  
1
tPcyc × 2*  
200  
t
NMICK × 3 ≤ 200 ns  
2
tNMICK × 3.5*  
tNMICK × 3 > 200 ns  
tPcyc × 2 ≤ 200 ns  
tPcyc × 2 > 200 ns  
tIRQCK × 3 ≤ 200 ns  
tIRQCK × 3 > 200 ns  
IRQ pulse width  
tIRQW  
200  
ns  
1
t
Pcyc × 2*  
200  
IRQCK × 3.5*  
3
t
Note:  
Note:  
200 ns minimum in Software Standby mode.  
If the clock source is switched, add 4 clock cycles of the switched source.  
Note 1. tPcyc indicates the PCLKB cycle.  
Note 2. tNMICK indicates the cycle of the NMI digital filter sampling clock.  
Note 3. tIRQCK indicates the cycle of the IRQi digital filter sampling clock.  
NMI  
tNMIW  
Figure 2.18  
NMI interrupt input timing  
IRQ  
tIRQW  
Figure 2.19  
IRQ interrupt input timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 39 of 92  
RA6M1 Group  
2. Electrical Characteristics  
2.3.6  
Bus Timing  
Table 2.18  
Conditions:  
Bus timing  
BCLK = 8 to 120 MHz, EBCLK = 8 to 60 MHz.  
VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V, VREFH/VREFH0 = 2.7 V to AVCC0.  
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF.  
EBCLK: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Others: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol  
tAD  
Min  
Max  
12.5  
12.5  
12.5  
12.5  
-
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test conditions  
Address delay  
CS delay  
-
Figure 2.20 to  
Figure 2.25  
tCSD  
-
ALE delay time  
RD delay  
tALED  
tRSD  
-
-
Read data setup time  
Read data hold time  
WR0 delay  
tRDS  
12.5  
tRDH  
tWRD  
tWDD  
tWDH  
tWTS  
tWTH  
0
-
-
12.5  
12.5  
-
Write data delay  
Write data hold time  
WAIT setup time  
WAIT hold time  
-
0
12.5  
0
-
Figure 2.26  
-
Data cycle  
Tend  
Address cycle  
Ta1  
Ta1  
Tan  
TW1  
TW2  
TW3  
TW4  
Tn1  
Tn2  
TW5  
EBCLK  
tAD  
Address bus  
tRDS tRDH  
tAD  
tAD  
Address bus/  
data bus  
tALED  
tALED  
Address latch  
(ALE)  
tRSD  
tRSD  
Data read  
(RD)  
tCSD  
tCSD  
Chip select  
(CSn)  
Figure 2.20  
Address/data multiplexed bus read access timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 40 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Address cycle  
Data cycle  
Ta1  
Ta1  
Tan  
TW1  
TW2  
TW3  
TW4  
Tend  
Tn1  
Tn2  
Tn3  
TW5  
EBCLK  
tAD  
Address bus  
tAD  
tWDD  
tWDH  
tAD  
Address bus/  
data bus  
tALED  
tALED  
Address latch  
(ALE)  
tWRD  
tWRD  
Data write  
(WR0)  
tCSD  
tCSD  
Chip select  
(CSn)  
Figure 2.21  
Address/data multiplexed bus write access timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 41 of 92  
RA6M1 Group  
2. Electrical Characteristics  
CSRWAIT: 2  
RDON:1  
CSON: 0  
CSROFF: 2  
TW1  
TW2  
Tend  
Tn1  
Tn2  
EBCLK  
tAD  
tAD  
A12 to A00  
tCSD  
tCSD  
CS7 to CS4, CS1, CS0  
tRSD  
tRSD  
RD (read)  
tRDS  
tRDH  
D07 to D00 (read)  
Figure 2.22  
External bus timing for normal read cycle with bus clock synchronized  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 42 of 92  
RA6M1 Group  
2. Electrical Characteristics  
CSWWAIT: 2  
WRON: 1  
WDON: 1*1  
CSWOFF: 2  
WDOFF: 1*1  
Tn1  
CSON:0  
TW1  
TW2  
Tend  
Tn2  
EBCLK  
tAD  
tAD  
A12 to A00  
tCSD  
tCSD  
CS7 to CS4, CS1, CS0  
tWRD  
tWRD  
WR0 (write)  
tWDD  
tWDH  
D07 to D00 (write)  
Note 1. Always specify WDON and WDOFF as at least one EBCLK cycle.  
Figure 2.23  
External bus timing for normal write cycle with bus clock synchronized  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 43 of 92  
RA6M1 Group  
2. Electrical Characteristics  
CSRWAIT:2  
RDON:1  
CSON:0  
CSPRWAIT:2  
RDON:1  
CSPRWAIT:2  
RDON:1  
CSPRWAIT:2  
RDON:1  
CSROFF:2  
TW1  
TW2  
Tend  
Tpw1  
Tpw2  
Tend  
Tpw1  
Tpw2  
Tend  
Tpw1  
Tpw2  
Tend  
Tn1  
Tn2  
EBCLK  
tAD  
tAD  
tAD  
tAD  
tAD  
A12 to A00  
tCSD  
tCSD  
CS7 to CS4, CS1, CS0  
RD (Read)  
tRSD  
tRSD  
tRSD  
tRSD  
tRSD  
tRSD  
tRSD  
tRSD  
tRDS  
tRDH  
tRDS  
tRDH  
tRDS  
tRDH  
tRDS  
tRDH  
D07 to D00 (Read)  
Figure 2.24  
External bus timing for page read cycle with bus clock synchronized  
CSPWWAIT:2  
CSWWAIT:2  
WRON:1  
WDON:1*1  
CSON:0  
CSPWWAIT:2  
CSWOFF:2  
WRON:1  
WRON:1  
WDOFF:1*1  
Tdw1  
WDOFF:1*1  
Tn1  
WDOFF:1*1  
Tdw1  
WDON:1*1  
Tpw1  
WDON:1*1  
Tpw1  
TW2  
Tend  
Tpw2  
Tpw2  
TW1  
Tend  
Tend  
Tn2  
EBCLK  
tAD  
tAD  
tAD  
tAD  
A12 to A00  
tCSD  
tCSD  
CS7 to CS4, CS1, CS0  
tWRD  
tWRD  
tWRD  
tWRD  
tWRD  
tWRD  
WR0 (write)  
tWDD  
tWDD  
tWDD  
tWDH  
tWDH  
tWDH  
D07 to D00 (write)  
Note 1. Always specify WDON and WDOFF as at least one EBCLK cycle.  
Figure 2.25  
External bus timing for page write cycle with bus clock synchronized  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 44 of 92  
RA6M1 Group  
2. Electrical Characteristics  
CSRWAIT:3  
CSWWAIT:3  
TW1  
TW2  
TW3  
(Tend  
)
Tend  
Tn1  
Tn2  
EBCLK  
A12 to A00  
CS7 to CS4, CS1, CS0  
RD (read)  
WR0 (write)  
External wait  
tWTS tWTH tWTS tWTH  
WAIT  
Figure 2.26  
External bus timing for external wait control  
2.3.7  
I/O Ports, POEG, GPT32, AGT, KINT, and ADC12 Trigger Timing  
Table 2.19  
I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (1 of 2)  
GPT32 conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
AGT conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Test  
Parameter  
I/O ports  
POEG  
Symbol Min  
Max  
Unit  
conditions  
Input data pulse width  
tPRW  
1.5  
-
tPcyc  
tPcyc  
tPDcyc  
Figure 2.27  
Figure 2.28  
Figure 2.29  
POEG input trigger pulse width  
Input capture pulse width  
tPOEW  
tGTICW  
3
-
GPT32  
Single edge  
1.5  
-
Dual edge  
2.5  
-
1
GTIOCxY output skew  
(x = 0 to 7, Y= A or B)  
Middle drive buffer  
High drive buffer  
Middle drive buffer  
High drive buffer  
Middle drive buffer  
High drive buffer  
tGTISK  
*
-
-
-
-
-
-
-
4
4
4
4
6
6
5
ns  
Figure 2.30  
GTIOCxY output skew  
(x = 8 to 12, Y = A or B)  
GTIOCxY output skew  
(x = 0 to 12, Y = A or B)  
OPS output skew  
GTOUUP, GTOULO, GTOVUP,  
GTOVLO, GTOWUP, GTOWLO  
tGTOSK  
ns  
ns  
Figure 2.31  
Figure 2.32  
2
GPT  
GTIOCxY_Z output skew  
tHRSK  
*
-
2.0  
(PWM Delay  
Generation  
Circuit)  
(x = 0 to 3, Y = A or B, Z = A)  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 45 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.19  
I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (2 of 2)  
GPT32 conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
AGT conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Test  
Parameter  
Symbol Min  
Max  
Unit  
ns  
conditions  
3
AGT  
AGTIO, AGTEE input cycle  
tACYC  
*
100  
40  
-
-
Figure 2.33  
AGTIO, AGTEE input high width, low width  
tACKWH  
tACKWL  
,
ns  
AGTIO, AGTO, AGTOA, AGTOB output cycle  
ADC12 trigger input pulse width  
tACYC2  
tTRGW  
62.5  
1.5  
-
-
ns  
ADC12  
KINT  
tPcyc  
Figure 2.34  
Figure 2.35  
KRn(n = 00 to 07) pulse width  
tKR  
250  
-
ns  
Note:  
tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle.  
Note 1. This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not  
guaranteed.  
Note 2. The load is 30 pF.  
Note 3. Constraints on input cycle:  
When not switching the source clock: tPcyc × 2 < tACYC should be satisfied.  
When switching the source clock: tPcyc × 6 < tACYC should be satisfied.  
Port  
tPRW  
Figure 2.27  
I/O ports input timing  
POEG input trigger  
tPOEW  
Figure 2.28  
POEG input trigger timing  
Input capture  
tGTICW  
Figure 2.29  
GPT32 input capture timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 46 of 92  
RA6M1 Group  
2. Electrical Characteristics  
PCLKD  
Output delay  
GPT32 output  
tGTISK  
Figure 2.30  
Figure 2.31  
Figure 2.32  
GPT32 output delay skew  
PCLKD  
Output delay  
GPT32 output  
tGTOSK  
GPT32 output delay skew for OPS  
PCLKD  
Output delay  
GPT32 output  
(PWM delay  
generation circuit)  
tHRSK  
GPT32 (PWM delay generation circuit) output delay skew  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 47 of 92  
RA6M1 Group  
2. Electrical Characteristics  
tACYC  
tACKWL  
tACKWH  
AGTIO, AGTEE  
(input)  
tACYC2  
AGTIO, AGTO,  
AGTOA, AGTOB  
(output)  
Figure 2.33  
AGT input/output timing  
ADTRG0,  
ADTRG1  
tTRGW  
Figure 2.34  
ADC12 trigger input timing  
KR00 to KR07  
tKR  
Figure 2.35  
Key interrupt input timing  
2.3.8  
PWM Delay Generation Circuit Timing  
Table 2.20  
PWM Delay Generation Circuit timing  
Parameter  
Min  
Typ  
-
Max  
Unit  
Test conditions  
Operation frequency  
Resolution  
80  
-
120  
MHz  
ps  
-
260  
±2.0  
-
-
PCLKD = 120 MHz  
-
DNL*1  
-
LSB  
Note 1. This value normalizes the differences between lines in 1-LSB resolution.  
2.3.9  
CAC Timing  
Table 2.21  
CAC timing  
Test  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
ns  
conditions  
2
2
CAC  
CACREF input pulse width  
tPBcyc ≤ tcac  
*
tCACREF 4.5 × tcac + 3 × tPBcyc  
5 × tcac + 6.5 × tPBcyc  
-
-
-
-
-
tPBcyc > tcac  
*
ns  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 48 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Note 1. tPBcyc: PCLKB cycle.  
Note 2. tcac: CAC count clock source cycle.  
2.3.10  
SCI Timing  
Table 2.22  
SCI timing (1)  
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SCK0 to SCK4,  
SCK8, SCK9.  
For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Test  
conditions  
Parameter  
Symbol Min  
Max  
Unit*1  
SCI  
Input clock cycle  
Asynchronous  
tScyc  
4
6
-
-
tPcyc  
Figure 2.36  
Clock  
synchronous  
Input clock pulse width  
Input clock rise time  
Input clock fall time  
Output clock cycle  
tSCKW  
tSCKr  
tSCKf  
tScyc  
0.4  
-
0.6  
5
tScyc  
ns  
-
5
ns  
Asynchronous  
6
-
tPcyc  
Clock  
4
-
synchronous  
Output clock pulse width  
Output clock rise time  
Output clock fall time  
Transmit data delay  
tSCKW  
tSCKr  
tSCKf  
tTXD  
0.4  
0.6  
5
tScyc  
ns  
-
-
-
5
ns  
Clock  
25  
ns  
Figure 2.37  
synchronous  
Receive data setup time  
Receive data hold time  
Clock  
synchronous  
tRXS  
tRXH  
15  
5
-
-
ns  
ns  
Clock  
synchronous  
Note 1. tPcyc: PCLKA cycle.  
tSCKW  
tSCKr  
tSCKf  
SCKn  
(n = 0 to 4, 8, 9)  
tScyc  
Figure 2.36  
SCK clock input/output timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 49 of 92  
RA6M1 Group  
2. Electrical Characteristics  
SCKn  
TxDn  
tTXD  
tRXS tRXH  
RxDn  
(n = 0 to 4, 8, 9)  
Figure 2.37  
Table 2.23  
SCI input/output timing in clock synchronous mode  
SCI timing (2)  
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SCK0 to SCK4,  
SCK8, SCK9.  
For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Test  
Parameter  
Symbol  
Min  
Max  
Unit  
conditions  
Simple SCK clock cycle output  
tSPcyc  
4 (PCLKA ≤ 60 MHz)  
8 (PCLKA > 60 MHz)  
65536  
tPcyc  
Figure 2.38  
SPI  
(master)  
SCK clock cycle input (slave)  
-
6 (PCLKA ≤ 60 MHz)  
12 (PCLKA > 60 MHz)  
65536  
SCK clock high pulse width  
SCK clock low pulse width  
SCK clock rise and fall time  
Data input setup time  
Data input hold time  
tSPCKWH  
tSPCKWL  
tSPCKr, tSPCKf  
tSU  
0.4  
0.6  
tSPcyc  
tSPcyc  
ns  
0.4  
0.6  
-
20  
33.3  
-
ns  
Figure 2.39 to  
Figure 2.42  
tH  
33.3  
-
ns  
SS input setup time  
tLEAD  
tLAG  
1
-
tSPcyc  
tSPcyc  
ns  
SS input hold time  
1
-
Data output delay  
tOD  
-
33.3  
-
Data output hold time  
Data rise and fall time  
SS input rise and fall time  
Slave access time  
tOH  
-10  
ns  
t
t
Dr, tDf  
-
-
-
16.6  
16.6  
ns  
SSLr, tSSLf  
ns  
tSA  
4 (PCLKA ≤ 60 MHz)  
8 (PCLKA > 60 MHz)  
tPcyc  
Figure 2.42  
Slave output release time  
tREL  
-
5 (PCLKA ≤ 60 MHz)  
10 (PCLKA > 60 MHz)  
tPcyc  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 50 of 92  
RA6M1 Group  
2. Electrical Characteristics  
tSPCKr  
tSPCKf  
tSPCKWH  
VOH  
VOH  
VOL  
VOH  
VOH  
SCKn  
master select  
output  
VOL  
tSPCKWL  
VOL  
tSPcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VIH  
VIH  
VIL  
VIH  
VIH  
SCKn  
slave select input  
VIL  
tSPCKWL  
VIL  
(n = 0 to 4, 8, 9)  
tSPcyc  
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC  
Figure 2.38  
SCI simple SPI mode clock timing  
SCKn  
CKPOL = 0  
output  
SCKn  
CKPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
(n = 0 to 4, 8, 9)  
Figure 2.39  
SCI simple SPI mode timing for master when CKPH = 1  
SCKn  
CKPOL = 1  
output  
SCKn  
CKPOL = 0  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
(n = 0 to 4, 8, 9)  
Figure 2.40  
SCI simple SPI mode timing for master when CKPH = 0  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 51 of 92  
RA6M1 Group  
2. Electrical Characteristics  
tTD  
SSn  
input  
tLEAD  
tLAG  
SCKn  
CKPOL = 0  
input  
SCKn  
CKPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
MSB OUT  
DATA  
LSB OUT  
LSB IN  
MSB IN  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
(n = 0 to 4, 8, 9)  
Figure 2.41  
SCI simple SPI mode timing for slave when CKPH = 1  
tTD  
SSn  
input  
tLEAD  
tLAG  
SCKn  
CKPOL = 1  
input  
SCKn  
CKPOL = 0  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
LSB OUT  
(Last data)  
MSB OUT  
DATA  
LSB OUT  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
LSB IN  
(n = 0 to 4, 8, 9)  
Figure 2.42  
SCI simple SPI mode timing for slave when CKPH = 0  
Table 2.24  
SCI timing (3) (1 of 2)  
Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol  
tSr  
Min  
Max  
1000  
300  
Unit  
ns  
Test conditions  
Simple IIC  
(Standard mode)  
SDA input rise time  
-
Figure 2.43  
SDA input fall time  
tSf  
-
ns  
SDA input spike pulse removal time  
Data input setup time  
tSP  
0
4 × tIICcyc  
ns  
tSDAS  
tSDAH  
250  
-
ns  
Data input hold time  
0
-
-
ns  
1
SCL, SDA capacitive load  
Cb*  
400  
pF  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 52 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.24  
SCI timing (3) (2 of 2)  
Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol  
tSr  
Min  
Max  
Unit  
ns  
Test conditions  
Simple IIC  
SDA input rise time  
-
300  
Figure 2.43  
(Fast mode)  
SDA input fall time  
tSf  
-
300  
ns  
SDA input spike pulse removal time  
Data input setup time  
tSP  
0
4 × tIICcyc  
ns  
tSDAS  
tSDAH  
100  
-
ns  
Data input hold time  
0
-
-
ns  
1
SCL, SDA capacitive load  
Cb*  
400  
pF  
Note:  
tIICcyc: IIC internal reference clock (IICφ) cycle.  
Note 1. Cb indicates the total capacity of the bus line.  
VIH  
VIL  
SDAn  
tSr  
tSf  
tSP  
SCLn  
P*1  
P*1  
S*1  
Sr*1  
(n = 0 to 4, 8, 9)  
tSDAH  
tSDAS  
Note 1. S, P, and Sr indicate the following:  
S: Start condition  
Test conditions:  
IH = VCC × 0.7, VIL = VCC × 0.3  
VOL = 0.6 V, IOL = 6 mA  
V
P: Stop condition  
Sr: Restart condition  
Figure 2.43  
SCI simple IIC mode timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 53 of 92  
RA6M1 Group  
2. Electrical Characteristics  
2.3.11  
SPI Timing  
Table 2.25  
Conditions:  
SPI timing  
For RSPCKA and RSPCKB pins, high drive output is selected with the Port Drive Capability bit in the PmnPFS register.  
For other pins, middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
SPI RSPCK clock cycle  
Symbol Min  
tSPcyc 2 (PCLKA 60 MHz)  
Max  
Unit*1 Test conditions*2  
Master  
4096  
tPcyc  
Figure 2.44  
C = 30 pF  
4 (PCLKA > 60 MHz)  
Slave  
4
4096  
-
RSPCK clock high  
pulse width  
Master  
tSPCKWH (tSPcyc - tSPCKr  
SPCKf) / 2 - 3  
-
-
ns  
t
Slave  
2 × tPcyc  
-
-
RSPCK clock low pulse Master  
width  
tSPCKWL (tSPcyc - tSPCKr  
ns  
t
SPCKf) / 2 - 3  
Slave  
2 × tPcyc  
-
RSPCK clock rise and Master  
tSPCKr,  
tSPCKf  
-
5
1
-
ns  
µs  
ns  
fall time  
Slave  
-
Data input setup time  
Data input hold time  
Master  
Slave  
tSU  
4
5
0
Figure 2.45 to  
Figure 2.50  
C = 30 pF  
-
Master  
tHF  
-
ns  
(PCLKA division ratio  
set to 1/2)  
Master  
tH  
tPcyc  
-
(PCLKA division ratio  
set to a value other  
than 1/2)  
Slave  
tH  
20  
-
SSL setup time  
SSL hold time  
Master  
tLEAD  
N × tSPcyc - 10*3  
N ×  
tSPcyc  
100*3  
ns  
+
+
Slave  
6 x tPcyc  
-
ns  
ns  
Master  
tLAG  
N × tSPcyc - 10 *4  
N ×  
tSPcyc  
100*4  
Slave  
6 x tPcyc  
-
ns  
ns  
Data output delay  
Master  
Slave  
tOD  
tOH  
tTD  
-
6.3  
20  
-
-
Data output hold time  
Master  
Slave  
0
ns  
ns  
0
-
Successive  
Master  
tSPcyc + 2 × tPcyc  
8 ×  
transmission delay  
tSPcyc  
+
2 × tPcyc  
Slave  
Output  
Input  
6 × tPcyc  
MOSI and MISO rise  
and fall time  
tDr, tDf  
-
-
-
-
-
5
1
5
1
ns  
μs  
ns  
μs  
SSL rise and fall time  
Output  
Input  
tSSLr,  
tSSLf  
Slave access time  
tSA  
2 x tPcyc ns  
+ 28  
Figure 2.49 and  
Figure 2.50  
C = 30PF  
Slave output release time  
tREL  
-
2 x tPcyc  
+ 28  
Note 1. tPcyc: PCLKA cycle.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 54 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Note 2. Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the SPI  
interface, the AC portion of the electrical characteristics is measured for each group.  
Note 3. N is set to an integer from 1 to 8 by the SPCKD register.  
Note 4. N is set to an integer from 1 to 8 by the SSLND register.  
tSPCKr  
tSPCKf  
tSPCKWH  
SPI  
VOH  
VOH  
VOL  
VOH  
VOH  
RSPCKn  
master select  
output  
VOL  
VOL  
tSPCKWL  
tSPcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VIH  
VIH  
VIL  
VIH  
VIH  
RSPCKn  
slave select input  
VIL  
VIL  
tSPCKWL  
tSPcyc  
n = A or B  
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC  
Figure 2.44  
SPI clock timing  
SPI  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
n = A or B  
Figure 2.45  
SPI timing for master when CPHA = 0  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 55 of 92  
RA6M1 Group  
2. Electrical Characteristics  
SPI  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tHF  
tHF  
MISOn  
input  
LSB IN  
MSB IN  
DATA  
DATA  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
n = A or B  
Figure 2.46  
SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2  
SPI  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
n = A or B  
Figure 2.47  
SPI timing for master when CPHA = 1  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 56 of 92  
RA6M1 Group  
2. Electrical Characteristics  
SPI  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tHF  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
n = A or B  
Figure 2.48  
RSPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2  
SPI  
tTD  
SSLn0  
input  
tLEAD  
tLAG  
RSPCKn  
CPOL = 0  
input  
RSPCKn  
CPOL = 1  
input  
tSA  
tOH  
MSB OUT  
tH  
MSB IN  
tOD  
tREL  
MSB IN  
MISOn  
output  
DATA  
LSB OUT  
LSB IN  
MSB OUT  
MSB IN  
tSU  
tDr, tDf  
MOSIn  
input  
DATA  
n = A or B  
Figure 2.49  
SPI timing for slave when CPHA = 0  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 57 of 92  
RA6M1 Group  
2. Electrical Characteristics  
SPI  
tTD  
SSLAn  
input  
tLEAD  
tLAG  
RSPCKn  
CPOL = 0  
input  
RSPCKn  
CPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
LSB OUT  
(last data)  
MSB OUT  
tH  
DATA  
DATA  
LSB OUT  
MSB OUT  
MSB IN  
tSU  
tDr, tDf  
MOSIn  
input  
MSB IN  
LSB IN  
n = A or B  
Figure 2.50  
SPI timing for slave when CPHA = 1  
2.3.12  
QSPI Timing  
Table 2.26  
QSPI timing  
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
QSPI QSPCK clock cycle  
Symbol  
tQScyc  
tQSWH  
tQSWL  
tSu  
Min  
Max  
Unit*1  
tPcyc  
ns  
Test conditions  
2
48  
Figure 2.51  
QSPCK clock high pulse width  
QSPCK clock low pulse width  
Data input setup time  
tQScyc × 0.4  
-
tQScyc × 0.4  
-
ns  
8
-
ns  
Figure 2.52  
Data input hold time  
tIH  
0
-
ns  
QSSL setup time  
tLEAD  
(N+0.5) x  
t
(N+0.5) x  
t
Qscyc +100 *2  
ns  
Qscyc - 5 *2  
QSSL hold time  
tLAG  
(N+0.5) x  
Qscyc - 5 *3  
(N+0.5) x  
t
Qscyc +100 *3  
ns  
t
Data output delay  
tOD  
tOH  
tTD  
-
4
ns  
Data output hold time  
Successive transmission delay  
-3.3  
1
-
ns  
16  
tQScyc  
Note 1. tPcyc: PCLKA cycle.  
Note 2. N is set to 0 or 1 in SFMSLD.  
Note 3. N is set to 0 or 1 in SFMSHD.  
tQSWH  
tQSWL  
QSPCLK output  
tQScyc  
Figure 2.51  
QSPI clock timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 58 of 92  
RA6M1 Group  
2. Electrical Characteristics  
tTD  
QSSL  
output  
tLEAD  
tLAG  
QSPCLK  
output  
tSU  
tH  
QIO0-3  
input  
MSB IN  
DATA  
LSB IN  
tOH  
tOD  
QIO0-3  
output  
MSB OUT  
DATA  
LSB OUT  
IDLE  
Figure 2.52  
Transmit and receive timing  
2.3.13  
IIC Timing  
Table 2.27  
IIC timing (1) (1 of 2)  
(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B,  
SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.  
(2) The following pins do not require setting: SCL0_A, SDA0_A.  
(3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the  
AC portion of the electrical characteristics is measured for each group.  
Test  
Parameter  
Symbol Min*1  
Max  
Unit conditions*3  
IIC  
SCL input cycle time  
tSCL  
tSCLH  
tSCLL  
tSr  
6 (12) × tIICcyc + 1300  
-
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.53  
(Standard mode,  
SMBus)  
ICFER.FMPE = 0  
SCL input high pulse width  
SCL input low pulse width  
SCL, SDA input rise time  
SCL, SDA input fall time  
3 (6) × tIICcyc + 300  
-
3 (6) × tIICcyc + 300  
-
-
1000  
tSf  
-
300  
SCL, SDA input spike pulse removal tSP  
time  
0
1 (4) × tIICcyc  
SDA input bus free time when  
wakeup function is disabled  
tBUF  
3 (6) × tIICcyc + 300  
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
SDA input bus free time when  
wakeup function is enabled  
tBUF  
3 (6) × tIICcyc + 4 × tPcyc  
+ 300  
START condition input hold time  
when wakeup function is disabled  
tSTAH  
tSTAH  
tSTAS  
tIICcyc + 300  
START condition input hold time  
when wakeup function is enabled  
1 (5) × tIICcyc + tPcyc  
300  
+
Repeated START condition input  
setup time  
1000  
STOP condition input setup time  
Data input setup time  
tSTOS  
tSDAS  
tSDAH  
Cb  
1000  
-
ns  
ns  
ns  
pF  
tIICcyc + 50  
-
Data input hold time  
0
-
-
SCL, SDA capacitive load  
400  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 59 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.27  
IIC timing (1) (2 of 2)  
(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B,  
SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.  
(2) The following pins do not require setting: SCL0_A, SDA0_A.  
(3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the  
AC portion of the electrical characteristics is measured for each group.  
Test  
Parameter  
Symbol Min*1  
Max  
Unit conditions*3  
IIC  
SCL input cycle time  
tSCL  
tSCLH  
tSCLL  
tSr  
6 (12) × tIICcyc + 600  
-
ns  
ns  
ns  
ns  
Figure 2.53  
(Fast mode)  
SCL input high pulse width  
SCL input low pulse width  
SCL, SDA input rise time  
3 (6) × tIICcyc + 300  
3 (6) × tIICcyc + 300  
-
-
20 × (external pullup  
voltage/5.5V)*2  
300  
SCL, SDA input fall time  
tSf  
20 × (external pullup  
voltage/5.5V)*2  
300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL, SDA input spike pulse removal tSP  
time  
0
1 (4) × tIICcyc  
SDA input bus free time when  
wakeup function is disabled  
tBUF  
3 (6) × tIICcyc + 300  
-
-
-
-
-
SDA input bus free time when  
wakeup function is enabled  
tBUF  
3 (6) × tIICcyc + 4 × tPcyc  
+ 300  
START condition input hold time  
when wakeup function is disabled  
tSTAH  
tSTAH  
tSTAS  
tIICcyc + 300  
START condition input hold time  
when wakeup function is enabled  
1 (5) × tIICcyc + tPcyc  
300  
+
Repeated START condition input  
setup time  
300  
STOP condition input setup time  
Data input setup time  
tSTOS  
tSDAS  
tSDAH  
Cb  
300  
-
ns  
ns  
ns  
pF  
tIICcyc + 50  
-
Data input hold time  
0
-
-
SCL, SDA capacitive load  
400  
Note:  
tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle.  
Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.  
Note 2. Only supported for SCL0_A, SDA0_A.  
Note 3. Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the IIC  
interface, the AC portion of the electrical characteristics is measured for each group.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 60 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.28  
IIC timing (2)  
Setting of the SCL0_A, SDA0_A pins is not required with the Port Drive Capability bit in the PmnPFS register.  
Test  
Parameter  
Symbol Min*1,*2  
Max  
Unit conditions  
IIC  
SCL input cycle time  
tSCL  
tSCLH  
tSCLL  
tSr  
6 (12) × tIICcyc + 240  
-
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.53  
(Fast mode+)  
ICFER.FMPE = 1  
SCL input high pulse width  
SCL input low pulse width  
SCL, SDA input rise time  
SCL, SDA input fall time  
3 (6) × tIICcyc + 120  
-
3 (6) × tIICcyc + 120  
-
-
120  
tSf  
-
120  
SCL, SDA input spike pulse removal  
time  
tSP  
0
1 (4) × tIICcyc  
SDA input bus free time when  
wakeup function is disabled  
tBUF  
3 (6) × tIICcyc + 120  
-
-
-
-
ns  
ns  
ns  
ns  
SDA input bus free time when  
wakeup function is enabled  
tBUF  
3 (6) × tIICcyc + 4 × tPcyc  
+ 120  
Start condition input hold time when  
wakeup function is disabled  
tSTAH  
tSTAH  
tIICcyc + 120  
START condition input hold time  
when wakeup function is enabled  
1 (5) × tIICcyc + tPcyc  
120  
+
Restart condition input setup time  
Stop condition input setup time  
Data input setup time  
tSTAS  
tSTOS  
tSDAS  
tSDAH  
Cb  
120  
-
ns  
ns  
ns  
ns  
pF  
120  
-
tIICcyc + 30  
-
Data input hold time  
0
-
-
SCL, SDA capacitive load  
550  
Note:  
tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle.  
Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.  
Note 2. Cb indicates the total capacity of the bus line.  
VIH  
SDA0, SDA1  
VIL  
tBUF  
tSCLH  
tSTAS  
tSTOS  
tSTAH  
tSP  
SCL0, SCL1  
P*1  
P*1  
S*1  
Sr*1  
tSCLL  
tSr  
tSf  
tSDAS  
tSCL  
tSDAH  
Test conditions:  
Note 1. S, P, and Sr indicate the following:  
S: Start condition  
V
V
V
IH = VCC × 0.7, VIL = VCC × 0.3  
OL = 0.6 V, IOL = 6 mA (ICFER.FMPE = 0)  
OL = 0.4 V, IOL = 15 mA (ICFER.FMPE = 1)  
P: Stop condition  
Sr: Restart condition  
Figure 2.53  
I2C bus interface input/output timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 61 of 92  
RA6M1 Group  
2.3.14  
2. Electrical Characteristics  
SSIE Timing  
Table 2.29  
SSIE timing  
(1) High drive output is selected with the Port Drive Capability bit in the PmnPFS register.  
(2) Use pins that have a letter appended to their names, for instance “_A” or “_B” to indicate group membership. For the SSIE interface,  
the AC portion of the electrical characteristics is measured for each group.  
Target specification  
Parameter  
Symbol  
Min.  
80  
80  
0.35  
0.35  
-
Max.  
Unit  
ns  
Comments  
SSIBCK0  
Cycle  
Master  
Slave  
tO  
-
Figure 2.54  
tI  
-
ns  
High level/low level  
Master  
Slave  
tHC/tLC  
-
tO  
-
tI  
Rising time/falling time Master  
Slave  
tRC/tFC  
0.15  
tO / tI  
tO / tI  
ns  
-
0.15  
SSILRCK0/SSIFS0, Input set up time  
SSITXD0, SSIRXD0  
Master  
Slave  
tSR  
12  
12  
8
-
Figure 2.56,  
Figure 2.57  
-
ns  
Input hold time  
Master  
Slave  
tHR  
-
ns  
15  
-10  
0
-
ns  
Output delay time  
Master  
Slave  
tDTR  
5
20  
ns  
ns  
Figure 2.56,  
Figure 2.57  
Output delay time from Slave  
SSILRCK0/SSIFS0  
change  
tDTRW  
-
20  
ns  
Figure 2.58*1  
GTIOC1A,  
AUDIO_CLK  
Cycle  
tEXcyc  
tEXL  
tEXH  
20  
-
ns  
Figure 2.55  
High level/low level  
/
0.4  
0.6  
tEXcyc  
Note 1. For slave-mode transmission, SSIE has a path through which the signal input from the SSILRCK0/SSIFS0 pin is used to  
generate transmit data, and the transmit data is logically output to the SSITXD0 pin.  
tHC  
tRC  
tFC  
tLC  
SSIBCK0  
tO, tI  
Figure 2.54  
SSIE clock input/output timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 62 of 92  
RA6M1 Group  
2. Electrical Characteristics  
tEXcyc  
tEXH  
tEXL  
GTIOC1A,  
AUDIO_CLK  
(input)  
1/2 VCC  
tEXf  
tEXr  
Figure 2.55  
Clock input timing  
SSIBCK0  
(input or output)  
SSILRCK0/SSIFS0 (input),  
SSIRXD0 (input)  
tSR  
tHR  
SSILRCK0/SSIFS0 (output),  
SSITXD0 (output)  
tDTR  
Figure 2.56  
SSIE data transmit and receive timing when SSICR.BCKP = 0  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 63 of 92  
RA6M1 Group  
2. Electrical Characteristics  
SSIBCK0  
(input or output)  
SSILRCK0/SSIFS0 (input),  
SSIRXD0 (input)  
tSR  
tHR  
SSILRCK0/SSIFS0 (output),  
SSITXD0 (output)  
tDTR  
Figure 2.57  
SSIE data transmit and receive timing when SSICR.BCKP = 1  
SSILRCK0/SSIFS0 (input)  
SSITXD0 (output)  
tDTRW  
MSB bit output delay after SSILRCK0/SSIFS0 change for slave  
transmitter when DEL = 1, SDTA = 0 or DEL = 1, SDTA = 1, SWL[2:0] = DWL[2:0] in SSICR.  
Figure 2.58  
SSIE data output delay after SSILRCK0/SSIFS0 change  
2.3.15  
SD/MMC Host Interface Timing  
Table 2.30  
SD/MMC Host Interface signal timing  
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Clock duty ratio is 50%.  
Parameter  
Symbol  
TSDCYC  
TSDWH  
TSDWL  
TSDLH  
Min  
20  
6.5  
6.5  
-
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test conditions*1  
SDCLK clock cycle  
-
Figure 2.59  
SDCLK clock high pulse width  
SDCLK clock low pulse width  
SDCLK clock rise time  
-
-
3
3
5
-
SDCLK clock fall time  
TSDHL  
-
SDCMD/SDDAT output data delay  
SDCMD/SDDAT input data setup  
SDCMD/SDDAT input data hold  
TSDODLY  
TSDIS  
-6  
4
TSDIH  
2
-
Note 1. Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership.  
For the SD/MMC Host interface, the AC portion of the electrical characteristics is measured for each group.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 64 of 92  
RA6M1 Group  
2. Electrical Characteristics  
TSDCYC  
TSDWL  
TSDWH  
SDnCLK  
(output)  
TSDLH  
TSDHL  
TSDODLY(max)  
TSDODLY(min)  
SDnCMD/SDnDATm  
(output)  
TSDIS  
TSDIH  
SDnCMD/SDnDATm  
(input)  
n = 0, 1, m = 0 to 3  
Figure 2.59  
SD/MMC Host Interface signal timing  
2.4  
USB Characteristics  
2.4.1  
USBFS Timing  
Table 2.31  
USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics)  
Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, UCLK = 48 MHz  
Parameter  
Symbol  
VIH  
Min  
2.0  
-
Typ  
Max  
-
Unit  
V
Test conditions  
Input  
characteristics  
Input high voltage  
-
-
-
-
-
Input low voltage  
VIL  
0.8  
-
V
-
Differential input sensitivity  
VDI  
0.2  
0.8  
V
| USB_DP - USB_DM |  
-
Differential common-mode  
range  
VCM  
2.5  
V
Output  
characteristics  
Output high voltage  
Output low voltage  
Cross-over voltage  
Rise time  
VOH  
VOL  
VCRS  
tLR  
2.8  
0.0  
1.3  
75  
-
-
-
-
-
-
-
3.6  
V
IOH = -200 μA  
IOL= 2 mA  
0.3  
V
2.0  
V
Figure 2.60  
300  
300  
125  
24.80  
ns  
ns  
%
kΩ  
Fall time  
tLF  
75  
Rise/fall time ratio  
t
LR / tLF  
80  
tLR/ tLF  
-
Pull-up and pull-  
down  
characteristics  
USB_DP and USB_DM pull-  
down resistance in host  
controller mode  
Rpd  
14.25  
90%  
90%  
VCRS  
USB_DP,  
USB_DM  
10%  
tLR  
USB_DP and USB_DM output timing in low-speed mode  
10%  
tLF  
Figure 2.60  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 65 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Observation  
point  
USB_DP  
USB_DM  
200 pF to  
600 pF  
3.6 V  
27  
1.5 K  
200 pF to  
600 pF  
Figure 2.61  
Table 2.32  
Test circuit in low-speed mode  
USBFS full-speed characteristics (USB_DP and USB_DM pin characteristics)  
Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, UCLK = 48 MHz  
Parameter  
Symbol  
VIH  
Min  
2.0  
-
Typ  
Max  
-
Unit  
V
Test conditions  
Input  
characteristics  
Input high voltage  
-
-
-
-
-
Input low voltage  
VIL  
0.8  
-
V
-
Differential input sensitivity  
VDI  
0.2  
0.8  
V
| USB_DP - USB_DM |  
-
Differential common-mode  
range  
VCM  
2.5  
V
Output  
characteristics  
Output high voltage  
Output low voltage  
Cross-over voltage  
Rise time  
VOH  
VOL  
2.8  
0.0  
1.3  
4
-
-
-
-
-
-
-
-
-
3.6  
V
IOH = -200 μA  
IOL= 2 mA  
0.3  
V
VCRS  
tLR  
2.0  
V
Figure 2.62  
20  
ns  
ns  
%
Fall time  
tLF  
4
20  
Rise/fall time ratio  
Output resistance  
tLR / tLF  
ZDRV  
Rpu  
90  
111.11  
44  
tFR/ tFF  
28  
USBFS: Rs = 27 Ω included  
During idle state  
Pull-up and pull- DM pull-up resistance in  
down  
characteristics  
0.900  
1.425  
1.575  
3.090  
kΩ  
kΩ  
device controller mode  
During transmission and  
reception  
USB_DP and USB_DM pull-  
down resistance in host  
controller mode  
Rpd  
14.25  
-
24.80  
kΩ  
-
90%  
90%  
VCRS  
USB_DP,  
USB_DM  
10%  
tFR  
10%  
tFF  
Figure 2.62  
USB_DP and USB_DM output timing in full-speed mode  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 66 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Observation  
point  
USB_DP  
USB_DM  
50 pF  
50 pF  
27  
Figure 2.63  
Test circuit in full-speed mode  
2.5  
ADC12 Characteristics  
Table 2.33  
A/D conversion characteristics for unit 0 (1 of 2)  
Conditions: PCLKC = 1 to 60 MHz  
Parameter  
Min  
Typ  
Max  
60  
30  
-
Unit  
MHz  
pF  
Test conditions  
Frequency  
1
-
-
-
-
-
-
Analog input capacitance  
Quantization error  
Resolution  
-
-
±0.5  
LSB  
Bits  
μs  
-
-
-
12  
-
Channel-dedicated  
sample-and-hold  
circuits in use*3  
Conversion time*1  
(operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
1.06  
(0.4 + 0.25)*2  
Sampling of channel-  
dedicated sample-and-hold  
circuits in 24 states  
(AN000 to AN002)  
Sampling in 15 states  
Offset error  
-
-
±1.5  
±1.5  
±3.5  
±3.5  
LSB  
LSB  
AN000 to AN002 = 0.25 V  
Full-scale error  
AN000 to AN002 =  
VREFH0- 0.25 V  
Absolute accuracy  
-
-
-
-
±2.5  
±1.0  
±1.5  
-
±5.5  
±2.0  
±3.0  
20  
LSB  
LSB  
LSB  
μs  
-
-
-
-
DNL differential nonlinearity error  
INL integral nonlinearity error  
Holding characteristics of sample-and hold  
circuits  
Dynamic range  
0.25  
-
-
VREFH0  
- 0.25  
V
-
Channel-dedicated  
sample-and-hold  
circuits not in use  
(AN000 to AN002)  
Conversion time*1  
(operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.48 (0.267)*2  
-
μs  
Sampling in 16 states  
Offset error  
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
-
±2.5  
±2.5  
±4.5  
±1.5  
±2.5  
-
LSB  
LSB  
LSB  
LSB  
LSB  
μs  
-
Full-scale error  
Absolute accuracy  
-
-
-
-
DNL differential nonlinearity error  
INL integral nonlinearity error  
-
-
-
-
High-precision  
channels  
(AN003, AN005,  
AN006)  
Conversion time*1  
(operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.48 (0.267)*2  
Sampling in 16 states  
Max. = 400 Ω  
0.40 (0.183)*2  
-
-
μs  
Sampling in 11 states  
VCC = AVCC0 = 3.0 to 3.6 V  
3.0 V ≤ VREFH0 ≤ AVCC0  
Offset error  
-
-
-
-
±1.0  
±1.0  
±2.0  
±0.5  
±2.5  
±2.5  
±4.5  
±1.5  
LSB  
LSB  
LSB  
LSB  
-
-
-
-
Full-scale error  
Absolute accuracy  
DNL differential nonlinearity error  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 67 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.33  
A/D conversion characteristics for unit 0 (2 of 2)  
Conditions: PCLKC = 1 to 60 MHz  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
High-precision  
channels  
INL integral nonlinearity error  
-
±1.0  
±2.5  
LSB  
-
(AN003, AN005,  
AN006)  
High-precision  
channels  
(AN007)  
Conversion time*1  
(operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.75 (0.533)*2  
-
-
μs  
Sampling in 32 states  
Offset error  
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
-
±2.5  
±2.5  
±4.5  
±1.5  
±2.5  
-
LSB  
LSB  
LSB  
LSB  
LSB  
μs  
-
Full-scale error  
Absolute accuracy  
-
-
-
-
DNL differential nonlinearity error  
INL integral nonlinearity error  
-
-
-
-
Normal-precision  
channels  
Conversion time*1  
(Operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.88 (0.667)*2  
Sampling in 40 states  
(AN016 to AN018,  
AN020)  
Offset error  
-
-
-
-
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
±5.5  
±5.5  
±7.5  
±4.5  
±5.5  
LSB  
LSB  
LSB  
LSB  
LSB  
-
-
-
-
-
Full-scale error  
Absolute accuracy  
DNL differential nonlinearity error  
INL integral nonlinearity error  
Note:  
These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during  
A/D conversion, the values might not fall within the indicated ranges.  
The use of ports 0 as digital outputs is not allowed when the 12-bit A/D converter is used.  
The characteristics apply when AVCC0, AVSS0, VREFH0, VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage  
are stable.  
Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test  
conditions.  
Note 2. Values in parentheses indicate the sampling time.  
Note 3. When simultaneously using channel-dedicated sample-and-hold circuits in unit 0 and unit 1, see Table 2.35.  
Table 2.34  
A/D conversion characteristics for unit 1 (1 of 2)  
Conditions: PCLKC = 1 to 60 MHz  
Parameter  
Min  
Typ  
Max  
60  
30  
-
Unit  
MHz  
pF  
Test conditions  
Frequency  
1
-
-
-
-
-
-
Analog input capacitance  
Quantization error  
Resolution  
-
-
±0.5  
LSB  
Bits  
μs  
-
-
-
12  
-
Channel-dedicated Conversion time*1  
sample-and-hold  
circuits in use*3  
(AN100 to AN102)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
1.06  
(0.4 + 0.25)*2  
Sampling of channel-  
dedicated sample-and-hold  
circuits in 24 states  
(operation at  
PCLKC = 60 MHz)  
Sampling in 15 states  
Offset error  
-
-
±1.5  
±1.5  
±3.5  
±3.5  
LSB  
LSB  
AN100 to AN102 = 0.25 V  
Full-scale error  
AN100 to AN102 =  
VREFH - 0.25 V  
Absolute accuracy  
-
-
-
-
±2.5  
±1.0  
±1.5  
-
±5.5  
±2.0  
±3.0  
20  
LSB  
LSB  
LSB  
μs  
-
-
-
-
DNL differential nonlinearity error  
INL integral nonlinearity error  
Holding characteristics of sample-and  
hold circuits  
Dynamic range  
0.25  
-
VREFH - 0.25  
V
-
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 68 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.34  
A/D conversion characteristics for unit 1 (2 of 2)  
Conditions: PCLKC = 1 to 60 MHz  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
Channel-dedicated Conversion time*1  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.48  
-
-
μs  
Sampling in 16 states  
sample-and-hold  
circuits not in use  
(AN100 to AN102)  
(Operation at  
PCLKC = 60 MHz)  
(0.267)*2  
Offset error  
-
-
-
-
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
-
±2.5  
±2.5  
±4.5  
±1.5  
±2.5  
-
LSB  
LSB  
LSB  
LSB  
LSB  
μs  
-
Full-scale error  
Absolute accuracy  
-
-
DNL differential nonlinearity error  
INL integral nonlinearity error  
-
-
High-precision  
channels  
Conversion time*1  
(Operation at  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.48  
(0.267)*2  
Sampling in 16 states  
(AN105, AN106)  
PCLKC = 60 MHz)  
Max. = 400 Ω  
0.40  
(0.183)*2  
-
-
μs  
Sampling in 11 states  
VCC = AVCC0 = 3.0 to 3.6 V  
3.0 V ≤ VREFH ≤ AVCC0  
Offset error  
-
-
-
-
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
-
±2.5  
±2.5  
±4.5  
±1.5  
±2.5  
-
LSB  
LSB  
LSB  
LSB  
LSB  
μs  
-
Full-scale error  
Absolute accuracy  
-
-
DNL differential nonlinearity error  
INL integral nonlinearity error  
-
-
High-precision  
channels  
Conversion time*1  
(Operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.75  
(0.533)*2  
Sampling in 32 states  
(AN107)  
Offset error  
-
-
-
-
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
-
±2.5  
±2.5  
±4.5  
±1.5  
±2.5  
-
LSB  
LSB  
LSB  
LSB  
LSB  
μs  
-
Full-scale error  
Absolute accuracy  
-
-
DNL differential nonlinearity error  
INL integral nonlinearity error  
-
-
Normal-precision  
channels  
Conversion time*1  
(Operation at  
PCLKC = 60 MHz)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
0.88  
(0.667)*2  
Sampling in 40 states  
(AN116, AN117)  
Offset error  
-
-
-
-
-
±1.0  
±1.0  
±2.0  
±0.5  
±1.0  
±5.5  
±5.5  
±7.5  
±4.5  
±5.5  
LSB  
LSB  
LSB  
LSB  
LSB  
-
-
-
-
-
Full-scale error  
Absolute accuracy  
DNL differential nonlinearity error  
INL integral nonlinearity error  
Note:  
These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during  
A/D conversion, the values might not fall within the indicated ranges.  
The use of ports 0 as digital outputs is not allowed when the 12-bit A/D converter is used.  
The characteristics apply when AVCC0, AVSS0, VREFH0, VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage  
are stable.  
Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test  
conditions.  
Note 2. Values in parentheses indicate the sampling time.  
Note 3. When simultaneously using channel-dedicated sample-and-hold circuits in unit 0 and unit 1, see Table 2.35.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 69 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.35  
A/D conversion characteristics for simultaneous use of channel-dedicated sample-and-hold  
circuits in unit 0 and unit 1  
Conditions: PCLKC = 30/60 MHz  
Parameter  
Min  
Typ  
±1.5  
±2.5  
±4.0  
±1.5  
±2.5  
±4.0  
±1.5  
±1.5  
±3.0  
±1.5  
±1.5  
±3.0  
Max  
±5.0  
Test conditions  
-
-
-
-
-
-
-
-
-
-
-
-
Channel-dedicated sample-and-hold circuits in use Offset error  
with continious sampling function enabled  
(AN000 to AN002)  
PCLKC = 60 MHz  
Sampling in 15 states  
Full-scale error  
±5.0  
Absolute accuracy  
±8.0  
Channel-dedicated sample-and-hold circuits in use Offset error  
with continious sampling function enabled  
(AN100 to AN102)  
±5.0  
Full-scale error  
±5.0  
Absolute accuracy  
±8.0  
Channel-dedicated sample-and-hold circuits in use Offset error  
with continious sampling function enabled  
(AN000 to AN002)  
±3.5  
PCLKC = 30 MHz  
Sampling in 7 states  
Full-scale error  
±3.5  
Absolute accuracy  
+4.5/-6.5  
±3.5  
Channel-dedicated sample-and-hold circuits in use Offset error  
with continious sampling function enabled  
(AN100 to AN102)  
Full-scale error  
±3.5  
Absolute accuracy  
+4.5/-6.5  
Note:  
When simultaneously using channel-dedicated sample-and-hold circuits in unit 0 and unit 1, setting the ADSHMSR.SHMD bit  
to 1 is recommended.  
Table 2.36  
A/D internal reference voltage characteristics  
Parameter  
Min  
1.13  
4.15  
Typ  
Max  
1.23  
-
Unit  
V
Test conditions  
A/D internal reference voltage  
Sampling time  
1.18  
-
-
-
μs  
FFFh  
Full-scale error  
Integral nonlinearity  
error (INL)  
A/D converter  
output code  
Ideal line of actual A/D  
conversion characteristic  
Actual A/D conversion  
characteristic  
Ideal A/D conversion  
characteristic  
Differential nonlinearity error (DNL)  
1-LSB width for ideal A/D  
conversion characteristic  
Differential nonlinearity error (DNL)  
1-LSB width for ideal A/D  
conversion characteristic  
Absolute accuracy  
000h  
Offset error  
0
Analog input voltage  
VREFH0  
(full-scale)  
Figure 2.64  
Illustration of ADC12 characteristic terms  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 70 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Absolute accuracy  
Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the  
actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog  
input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D  
conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference  
voltage VREFH0 is 3.072 V, then the 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the  
analog input voltages. If the analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D  
conversion result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical  
A/D conversion characteristics.  
Integral nonlinearity error (INL)  
Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale  
errors are zeroed, and the actual output code.  
Differential nonlinearity error (DNL)  
Differential nonlinearity error is the difference between the 1-LSB width based on the ideal A/D conversion  
characteristics and the width of the actual output code.  
Offset error  
Offset error is the difference between the transition point of the ideal first output code and the actual first output code.  
Full-scale error  
Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.  
2.6  
DAC12 Characteristics  
Table 2.37  
D/A conversion characteristics  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
Resolution  
-
-
12  
Bits  
-
Without output amplifier  
Absolute accuracy  
INL  
-
-
-
-
-
-
±24  
±8.0  
±2.0  
-
LSB  
LSB  
LSB  
kΩ  
Resistive load 2 MΩ  
±2.0  
±1.0  
8.5  
-
Resistive load 2 MΩ  
DNL  
-
-
Output impedance  
Conversion time  
3.0  
μs  
Resistive load 2 MΩ,  
Capacitive load 20 pF  
Output voltage range  
With output amplifier  
INL  
0
-
VREFH  
V
-
-
±2.0  
±4.0  
LSB  
LSB  
μs  
-
-
-
-
-
-
DNL  
-
±1.0  
±2.0  
Conversion time  
Resistive load  
Capacitive load  
Output voltage range  
-
-
-
-
-
4.0  
5
-
kΩ  
pF  
-
50  
0.2  
VREFH - 0.2  
V
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 71 of 92  
RA6M1 Group  
2. Electrical Characteristics  
2.7  
TSN Characteristics  
Table 2.38  
Parameter  
TSN characteristics  
Symbol  
Min  
Typ  
±1.0  
4.0  
1.24  
-
Max  
Unit  
°C  
Test conditions  
Relative accuracy  
-
-
-
-
-
-
-
-
Temperature slope  
-
-
-
mV/°C  
V
Output voltage (at 25°C)  
Temperature sensor start time  
Sampling time  
-
-
-
tSTART  
-
-
30  
-
μs  
4.15  
-
μs  
2.8  
OSC Stop Detect Characteristics  
Table 2.39  
Oscillation stop detection circuit characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
ms  
Test conditions  
Detection time  
tdr  
-
-
1
Figure 2.65  
Main clock  
tdr  
OSTDSR.OSTDF  
MOCO clock  
ICLK  
Figure 2.65  
Oscillation stop detection timing  
2.9  
POR and LVD Characteristics  
Table 2.40  
Parameter  
Power-on reset circuit and voltage detection circuit characteristics (1 of 2)  
Test  
conditions  
Symbol  
DPSBYCR.DEEPCUT[1:0] = VPOR  
Min  
Typ  
Max  
Unit  
Voltage detection  
level  
Power-on reset  
(POR)  
2.5  
2.6  
2.7  
V
Figure 2.66  
00b or 01b  
DPSBYCR.DEEPCUT[1:0] =  
11b  
1.8  
2.25  
2.7  
Voltage detection circuit (LVD0)  
Voltage detection circuit (LVD1)  
Voltage detection circuit (LVD2)  
Vdet0_1  
Vdet0_2  
Vdet0_3  
Vdet1_1  
Vdet1_2  
Vdet1_3  
Vdet2_1  
Vdet2_2  
Vdet2_3  
2.84  
2.77  
2.70  
2.89  
2.82  
2.75  
2.89  
2.82  
2.75  
2.94  
2.87  
2.80  
2.99  
2.92  
2.85  
2.99  
2.92  
2.85  
3.04  
2.97  
2.90  
3.09  
3.02  
2.95  
3.09  
3.02  
2.95  
Figure 2.67  
Figure 2.68  
Figure 2.69  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 72 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.40  
Power-on reset circuit and voltage detection circuit characteristics (2 of 2)  
Test  
Parameter  
Symbol  
tPOR  
Min  
Typ  
4.5  
Max  
Unit  
conditions  
Internal reset time Power-on reset time  
LVD0 reset time  
-
-
-
-
-
-
ms  
Figure 2.66  
Figure 2.67  
Figure 2.68  
Figure 2.69  
tLVD0  
tLVD1  
tLVD2  
tVOFF  
-
0.51  
0.38  
0.38  
-
LVD1 reset time  
-
LVD2 reset time  
-
Minimum VCC down time*1  
200  
μs  
μs  
Figure 2.66,  
Figure 2.67  
Response delay  
tdet  
-
-
200  
Figure 2.66 to  
Figure 2.69  
LVD operation stabilization time (after LVD is enabled)  
Hysteresis width (LVD1 and LVD2)  
td(E-A)  
VLVH  
-
-
-
10  
-
μs  
Figure 2.68,  
Figure 2.69  
70  
mV  
Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR  
,
Vdet1, and Vdet2 for POR and LVD.  
tVOFF  
VPOR  
VCC  
Internal reset signal  
(active-low)  
tdet  
tPOR  
tdet  
tdet tPOR  
Figure 2.66  
Power-on reset timing  
tVOFF  
VCC  
Vdet0  
Internal reset signal  
(active-low)  
tdet  
tdet  
tLVD0  
Figure 2.67  
Voltage detection circuit timing (Vdet0)  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 73 of 92  
RA6M1 Group  
2. Electrical Characteristics  
tVOFF  
VLVH  
VCC  
Vdet1  
LVCMPCR.LVD1E  
td(E-A)  
LVD1  
Comparator output  
LVD1CR0.CMPE  
LVD1SR.MON  
Internal reset signal  
(active-low)  
When LVD1CR0.RN = 0  
tdet  
tLVD1  
tdet  
When LVD1CR0.RN = 1  
tLVD1  
Figure 2.68  
Voltage detection circuit timing (Vdet1)  
tVOFF  
VLVH  
VCC  
Vdet2  
LVCMPCR.LVD2E  
td(E-A)  
LVD2  
Comparator output  
LVD2CR0.CMPE  
LVD2SR.MON  
Internal reset signal  
(active-low)  
When LVD2CR0.RN = 0  
tdet  
tdet  
tLVD2  
When LVD2CR0.RN = 1  
tLVD2  
Figure 2.69  
Voltage detection circuit timing (Vdet2)  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 74 of 92  
RA6M1 Group  
2. Electrical Characteristics  
2.10 VBATT Characteristics  
Table 2.41  
Battery backup function characteristics  
Conditions: VCC = AVCC0 = VCC_USB = 2.7 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VBATT = 1.8 to 3.6 V  
Parameter  
Symbol  
Min  
2.50  
2.70  
Typ  
2.60  
-
Max  
2.70  
-
Unit  
V
Test conditions  
Voltage level for switching to battery backup  
VDETBATT  
VBATTSW  
Figure 2.70  
Lower-limit VBATT voltage for power supply  
switching caused by VCC voltage drop  
V
VCC-off period for starting power supply switching tVOFFBATT  
200  
-
-
μs  
Note:  
The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum  
value of the voltage level for switching to battery backup (VDETBATT).  
tVOFFBATT  
VDETBATT  
VCC  
VBATT  
VBATTSW  
Backup power  
area  
VCC supply  
VBATT supply  
VCC supply  
Figure 2.70  
Battery backup function characteristics  
2.11 CTSU Characteristics  
Table 2.42  
Parameter  
CTSU characteristics  
Symbol  
Ctscap  
Cbase  
ΣIoH  
Min  
Typ  
Max  
11  
Unit  
Test conditions  
External capacitance connected to TSCAP pin  
TS pin capacitive load  
9
-
10  
-
nF  
pF  
mA  
-
-
50  
Permissible output high current  
-
-
-40  
When the mutual  
capacitance method  
is applied  
2.12 ACMPHS Characteristics  
Table 2.43  
Parameter  
ACMPHS characteristics  
Symbol  
VREF  
VI  
Min  
Typ  
-
Max  
Unit  
V
Test conditions  
Reference voltage range  
Input voltage range  
Output delay*1  
0
AVCC0  
AVCC0  
100  
-
0
-
V
-
Td  
-
50  
1.18  
ns  
V
VI = VREF ± 100 mV  
-
Internal reference voltage  
Vref  
1.13  
1.23  
Note 1. This value is the internal propagation delay.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 75 of 92  
RA6M1 Group  
2. Electrical Characteristics  
2.13 PGA Characteristics  
Table 2.44  
PGA characteristics in single mode  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
PGAVSS input voltage range  
PGAVSS  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
V
AIN0 (G = 2.000)  
AIN1 (G = 2.500)  
AIN2 (G = 2.667)  
AIN3 (G = 2.857)  
AIN4 (G = 3.077)  
AIN5 (G = 3.333)  
AIN6 (G = 3.636)  
AIN7 (G = 4.000)  
AIN8 (G = 4.444)  
AIN9 (G = 5.000)  
AIN10 (G = 5.714)  
AIN11 (G = 6.667)  
AIN12 (G = 8.000)  
AIN13 (G = 10.000)  
AIN14 (G = 13.333)  
Gerr0 (G = 2.000)  
Gerr1 (G = 2.500)  
Gerr2 (G = 2.667)  
Gerr3 (G = 2.857)  
Gerr4 (G = 3.077)  
Gerr5 (G = 3.333)  
Gerr6 (G = 3.636)  
Gerr7 (G = 4.000)  
Gerr8 (G = 4.444)  
Gerr9 (G = 5.000)  
Gerr10 (G = 5.714)  
Gerr11 (G = 6.667)  
Gerr12 (G = 8.000)  
Gerr13 (G = 10.000)  
Gerr14 (G = 13.333)  
Voff  
0.050 × AVCC0  
0.047 × AVCC0  
0.046 × AVCC0  
0.046 × AVCC0  
0.045 × AVCC0  
0.044 × AVCC0  
0.042 × AVCC0  
0.040 × AVCC0  
0.036 × AVCC0  
0.033 × AVCC0  
0.031 × AVCC0  
0.029 × AVCC0  
0.027 × AVCC0  
0.025 × AVCC0  
0.023 × AVCC0  
-1.0  
0.45 × AVCC0  
V
0.360 × AVCC0  
V
0.337 × AVCC0  
V
0.32 × AVCC0  
V
0.292 × AVCC0  
V
0.265 × AVCC0  
V
0.247 × AVCC0  
V
0.212 × AVCC0  
V
0.191 × AVCC0  
V
0.17 × AVCC0  
V
0.148 × AVCC0  
V
0.127 × AVCC0  
V
0.09 × AVCC0  
V
0.08 × AVCC0  
V
0.06 × AVCC0  
V
Gain error  
1.0  
1.0  
1.0  
1.0  
1.0  
1.5  
1.5  
1.5  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
8
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
mV  
-1.0  
-1.0  
-1.0  
-1.0  
-1.5  
-1.5  
-1.5  
-2.0  
-2.0  
-2.0  
-2.0  
-2.0  
-2.0  
-2.0  
Offset error  
-8  
Table 2.45  
Parameter  
PGA characteristics in differential mode (1 of 2)  
Symbol  
Min  
-0.5  
-0.5  
-0.4  
-0.2  
-0.15  
Typ  
Max  
0.3  
Unit  
V
PGAVSS input voltage range  
PGAVSS  
-
-
-
-
-
Differential input  
voltage range  
G = 1.500  
AIN-PGAVSS  
0.5  
V
G = 2.333  
G = 4.000  
G = 5.667  
0.4  
V
0.2  
V
0.15  
V
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 76 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.45  
PGA characteristics in differential mode (2 of 2)  
Symbol  
Parameter  
Min  
-1.0  
-1.0  
-1.0  
-1.0  
Typ  
Max  
1.0  
1.0  
1.0  
1.0  
Unit  
Gain error  
G = 1.500  
G = 2.333  
G = 4.000  
G = 5.667  
Gerr  
-
-
-
-
%
2.14 Flash Memory Characteristics  
2.14.1  
Code Flash Memory Characteristics  
Table 2.46  
Code flash memory characteristics  
Conditions: Program or erase: FCLK = 4 to 60 MHz  
Read: FCLK ≤ 60 MHz  
FCLK = 4 MHz  
20 MHz ≤ FCLK ≤ 60 MHz  
Test  
Parameter  
Symbol  
tP128  
tP8K  
Min  
Typ  
0.75  
49  
Max  
13.2  
Min  
Typ  
0.34  
22  
Max  
6.0  
80  
Unit  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
Times  
μs  
conditions  
Programming time  
NPEC 100 times  
128-byte  
8-KB  
-
-
-
176  
704  
15.8  
212  
848  
216  
864  
260  
1040  
-
-
32-KB  
128-byte  
8-KB  
tP32K  
tP128  
tP8K  
-
194  
0.91  
60  
-
88  
320  
7.2  
96  
Programming time  
-
-
0.41  
27  
NPEC > 100 times  
-
-
32-KB  
8-KB  
tP32K  
tE8K  
tE32K  
tE8K  
tE32K  
NPEC  
-
234  
78  
-
106  
43  
384  
120  
480  
144  
576  
-
Erasure time  
NPEC 100 times  
-
-
32-KB  
8-KB  
-
283  
94  
-
157  
52  
Erasure time  
NPEC > 100 times  
-
-
32-KB  
-
341  
-
-
189  
-
Reprogramming/erasure cycle*4  
10000*1  
10000*1  
Suspend delay during programming tSPD  
-
-
-
264  
216  
-
-
-
120  
120  
First suspend delay during erasure in tSESD1  
suspend priority mode  
-
-
μs  
Second suspend delay during  
erasure in suspend priority mode  
tSESD2  
-
-
-
-
1.7  
1.7  
-
-
-
-
1.7  
1.7  
ms  
ms  
Suspend delay during erasure in  
erasure priority mode  
tSEED  
Forced stop command  
Data hold time*2  
tFD  
-
-
-
-
32  
-
-
-
-
-
20  
-
μs  
3
3
tDRP  
10*2,  
30*2,  
*
10*2,  
30*2,  
*
Years  
3
3
*
-
*
-
Ta = +85°C  
Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1  
to the minimum value.  
Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.  
Note 3. This result is obtained from reliability testing.  
Note 4. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 10000),  
erasing can be performed n times for each block. For example, when 128-byte programming is performed 64 times for different  
addresses in 8-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,  
programming the same address several times as one erasure is not enabled. Overwriting is prohibited.  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 77 of 92  
RA6M1 Group  
2. Electrical Characteristics  
• Suspension during programming  
FCU command  
Program  
Ready  
Suspend  
tSPD  
FSTATR0.FRDY  
Not Ready  
Ready  
Programming pulse  
Programming  
• Suspension during erasure in suspend priority mode  
FCU command  
Erase  
Suspend  
Suspend  
Not Ready  
Erasing  
Resume  
tSESD1  
tSESD2  
FSTATR0.FRDY  
Erasure pulse  
Ready  
Ready  
Not Ready  
Erasing  
• Suspension during erasure in erasure priority mode  
FCU command  
FSTATR0.FRDY  
Erasure pulse  
Erase  
Suspend  
Not Ready  
Erasing  
tSEED  
Ready  
Ready  
• Forced Stop  
Forced Stop  
Not Ready  
FACI command  
tFD  
FSTATR.FRDY  
Ready  
Figure 2.71  
Suspension and forced stop timing for flash memory programming and erasure  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 78 of 92  
RA6M1 Group  
2.14.2  
2. Electrical Characteristics  
Data Flash Memory Characteristics  
Table 2.47  
Data flash memory characteristics  
Conditions: Program or erase: FCLK = 4 to 60 MHz  
Read: FCLK ≤ 60 MHz  
FCLK = 4 MHz  
20 MHz ≤ FCLK ≤ 60 MHz  
Test  
Parameter  
Symbol  
tDP4  
Min  
Typ  
Max  
Min  
Typ  
Max  
1.7  
1.8  
2.0  
10  
Unit conditions  
Programming time  
4-byte  
-
0.36  
3.8  
4.0  
4.5  
18  
-
0.16  
ms  
8-byte  
tDP8  
-
0.38  
-
0.17  
16-byte  
64-byte  
128-byte  
256-byte  
4-byte  
tDP16  
-
0.42  
-
0.19  
Erasure time  
tDE64  
-
3.1  
-
1.7  
ms  
tDE128  
tDE256  
tDBC4  
NDPEC  
tDSPD  
-
4.7  
27  
-
2.6  
15  
-
8.9  
-
50  
-
4.9  
-
28  
Blank check time  
-
84  
-
30  
μs  
-
Reprogramming/erasure cycle*1  
125000*2  
-
-
125000*2  
-
-
Suspend delay during 4-byte  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
264  
264  
264  
216  
216  
216  
300  
390  
570  
300  
390  
570  
32  
-
-
120  
120  
120  
120  
120  
120  
300  
390  
570  
300  
390  
570  
20  
μs  
programming  
8-byte  
-
-
-
16-byte  
-
-
-
First suspend delay  
during erasure in  
suspend priority mode  
64-byte  
tDSESD1  
tDSESD2  
tDSEED  
-
-
-
μs  
μs  
μs  
128-byte  
256-byte  
64-byte  
-
-
-
-
-
-
Second suspend  
delay during erasure  
in suspend priority  
mode  
-
-
-
128-byte  
256-byte  
-
-
-
-
-
-
Suspend delay during 64-byte  
-
-
-
erasing in erasure  
priority mode  
128-byte  
-
-
-
256-byte  
Forced stop command  
Data hold time*3  
-
-
-
tFD  
-
-
-
μs  
tDRP  
10*3, 4  
*
-
-
10*3,*4  
-
-
Year  
30*3, 4  
*
-
-
30*3, 4  
*
-
-
Ta = +85°C  
Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 125000),  
erasing can be performed n times for each block. For example, when 4-byte programming is performed 16 times for different  
addresses in 64-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,  
programming the same address several times as one erasure is not enabled. Overwriting is prohibited.  
Note 2. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1  
to the minimum value.  
Note 3. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.  
Note 4. This result is obtained from reliability testing.  
2.15 Boundary Scan  
Table 2.48  
Boundary scan characteristics (1 of 2)  
Test  
Parameter  
Symbol  
tTCKcyc  
tTCKH  
tTCKL  
Min  
100  
45  
45  
-
Typ  
Max  
Unit  
ns  
conditions  
TCK clock cycle time  
TCK clock high pulse width  
TCK clock low pulse width  
TCK clock rise time  
TCK clock fall time  
-
-
-
-
-
-
Figure 2.72  
-
ns  
-
ns  
tTCKr  
5
5
ns  
tTCKf  
-
ns  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 79 of 92  
RA6M1 Group  
2. Electrical Characteristics  
Table 2.48  
Boundary scan characteristics (2 of 2)  
Test  
Parameter  
Symbol  
tTMSS  
Min  
20  
Typ  
Max  
Unit  
conditions  
TMS setup time  
TMS hold time  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
-
Figure 2.73  
tTMSH  
tTDIS  
20  
-
TDI setup time  
20  
-
TDI hold time  
tTDIH  
20  
-
TDO data delay  
Boundary scan circuit startup time*1  
tTDOD  
TBSSTUP  
-
40  
-
tRESWP  
Figure 2.74  
Note 1. Boundary scan does not function until the power-on reset becomes negative.  
tTCKcyc  
tTCKH  
tTCKf  
TCK  
tTCKr  
tTCKL  
Figure 2.72  
Boundary scan TCK timing  
TCK  
TMS  
TDI  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOD  
TDO  
Figure 2.73  
Boundary scan input/output timing  
VCC  
RES  
tBSSTUP  
(= tRESWP)  
Boundary scan  
execute  
Figure 2.74  
Boundary scan circuit startup timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 80 of 92  
RA6M1 Group  
2. Electrical Characteristics  
2.16 Joint Test Action Group (JTAG)  
Table 2.49  
Parameter  
JTAG  
Test  
conditions  
Symbol  
tTCKcyc  
tTCKH  
tTCKL  
tTCKr  
Min  
40  
15  
15  
-
Typ  
Max  
Unit  
TCK clock cycle time  
TCK clock high pulse width  
TCK clock low pulse width  
TCK clock rise time  
TCK clock fall time  
TMS setup time  
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.72  
-
-
5
5
-
tTCKf  
-
tTMSS  
tTMSH  
tTDIS  
8
Figure 2.73  
TMS hold time  
8
-
TDI setup time  
8
-
TDI hold time  
tTDIH  
8
-
TDO data delay time  
tTDOD  
-
20  
tTCKcyc  
tTCKH  
TCK  
tTCKf  
tTCKr  
tTCKL  
Figure 2.75  
JTAG TCK timing  
TCK  
tTMSS  
tTMSH  
TMS  
tTDIS  
tTDIH  
TDI  
tTDOD  
TDO  
Figure 2.76  
JTAG input/output timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 81 of 92  
RA6M1 Group  
2. Electrical Characteristics  
2.17 Serial Wire Debug (SWD)  
Table 2.50  
Parameter  
SWD  
Test  
conditions  
Symbol  
tSWCKcyc  
tSWCKH  
tSWCKL  
tSWCKr  
tSWCKf  
tSWDS  
Min  
40  
15  
15  
-
Typ  
Max  
Unit  
SWCLK clock cycle time  
SWCLK clock high pulse width  
SWCLK clock low pulse width  
SWCLK clock rise time  
SWCLK clock fall time  
SWDIO setup time  
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.77  
-
-
5
5
-
-
8
Figure 2.78  
SWDIO hold time  
tSWDH  
8
-
SWDIO data delay time  
tSWDD  
2
28  
tSWCKcyc  
tSWCKH  
SWCLK  
tSWCKL  
Figure 2.77  
SWD SWCLK timing  
SWCLK  
tSWDS  
tSWDH  
SWDIO  
(input)  
tSWDD  
SWDIO  
(output)  
tSWDD  
SWDIO  
(output)  
tSWDD  
SWDIO  
(output)  
Figure 2.78  
SWD input/output timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 82 of 92  
RA6M1 Group  
2. Electrical Characteristics  
2.18 Embedded Trace Macro Interface (ETM)  
Table 2.51  
ETM  
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Test  
Parameter  
Symbol  
tTCLKcyc  
tTCLKH  
tTCLKL  
tTCLKr  
Min  
33.3  
13.6  
13.6  
-
Typ  
Max  
Unit  
conditions  
TCLK clock cycle time  
TCLK clock high pulse width  
TCLK clock low pulse width  
TCLK clock rise time  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.79  
-
-
3
3
-
TCLK clock fall time  
tTCLKf  
-
TDATA[3:0] output setup time  
TDATA[3:0] output hold time  
tTRDS  
3.5  
2.5  
Figure 2.80  
tTRDH  
-
tTCLKcyc  
tTCLKH  
TCLK  
tTCLKf  
tTCLKr  
tTCLKL  
Figure 2.79  
ETM TCLK timing  
TCLK  
tTRDS  
tTRDH  
tTRDS  
tTRDH  
TDATA[3:0]  
Figure 2.80  
ETM output timing  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 83 of 92  
RA6M1 Group  
Appendix 1. Package Dimensions  
Appendix 1.Package Dimensions  
Information on the latest version of the package dimensions or mountings is shown in “Packages” on the Renesas  
Electronics Corporation website.  
JEITA Package Code  
P-TFLGA100-7x7-0.65  
RENESAS Code  
PTLG0100JA-A  
Previous Code  
100F0G  
MASS[Typ.]  
0.1g  
φ b1  
φ×  
M
S
AB  
φ b  
D
φ×  
M
S
AB  
w
S A  
ZD  
e
A
A
K
J
H
G
F
B
E
D
C
B
A
Dimension in Millimeters  
Reference  
Symbol  
Min Nom Max  
7.0  
7.0  
1
2
3
4
5
6
7
8
9
10  
y
S
× 4  
D
E
v
v
Index mark  
Index mark  
S
(Laser mark)  
0.15  
w
A
e
0.20  
1.05  
0.65  
0.31 0.35 0.39  
b
b1 0.385 0.435 0.485  
x
0.08  
0.10  
y
ZD  
ZE  
0.575  
0.575  
Figure 1.1  
100-pin LGA  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 84 of 92  
RA6M1 Group  
Appendix 1. Package Dimensions  
JEITA Package Code  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
0.6  
P-LFQFP100-14x14-0.50  
PLQP0100KB-B  
HD  
Unit: mm  
*1  
D
75  
51  
76  
50  
100  
26  
1
25  
NOTE 4  
NOTE)  
Index area  
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
NOTE 3  
F
S
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
y
S
*3  
b
p
e
M
D
E
A2  
HD  
HE  
A
A1  
bp  
c
13.9  
13.9  

14.0 14.1  
14.0 14.1  
1.4  

15.8  
15.8  

16.0 16.2  
16.0 16.2  


1.7  
0.15  
0.05  
0.15  
0.09  
0q  
0.20 0.27  

3.5q  
0.5  

0.20  
8q  

Lp  
L1  
T
e
x
y
Lp  
L1  

Detail F  

0.08  
0.08  
0.75  



0.45  

0.6  
1.0  
© 2015 Renesas Electronics Corporation. All rights reserved.  
Figure 1.2  
100-pin LQFP  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 85 of 92  
RA6M1 Group  
Appendix 1. Package Dimensions  
JEITA Package Code  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
0.3  
P-LFQFP64-10x10-0.50  
PLQP0064KB-C  
Unit: mm  
HD  
*1  
D
48  
33  
49  
32  
64  
17  
1
16  
NOTE 4  
Index area  
NOTE 3  
NOTE)  
F
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
S
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
y
S
*3  
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
b
p
e
M
D
E
A2  
HD  
HE  
A
A1  
bp  
c
9.9  
9.9  

10.0 10.1  
10.0 10.1  
1.4  

11.8  
11.8  

12.0 12.2  
12.0 12.2  


1.7  
0.15  
0.05  
0.15  
0.09  
0q  
0.20 0.27  

3.5q  
0.5  

0.20  
8q  

Lp  
L1  
T
e
x
y
Lp  
L1  

Detail F  

0.08  
0.08  
0.75  



0.45  

0.6  
1.0  
© 2015 Renesas Electronics Corporation. All rights reserved.  
Figure 1.3  
64-pin LQFP  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 86 of 92  
RA6M1 Group  
Appendix 1. Package Dimensions  
JEITA Package code  
RENESAS code  
Previous code  
MASS(TYP.)[g]  
P-HWQFN64-8x8-0.40  
PWQN0064LA-A  
P64K8-40-9B5-3  
0.16  
D
33  
48  
32  
49  
DETAIL OF A PART  
E
A
A1  
c2  
64  
17  
16  
1
INDEX AREA  
A
S
y
S
Dimension in Millimeters  
Referance  
Symbol  
Nom  
8.00  
8.00  
Max  
8.05  
8.05  
0.80  
Min  
7.95  
7.95  
D
E
D2  
A
EXPOSED DIE PAD  
Lp  
A
16  
1
A1  
b
0.00  
0.17  
0.23  
0.20  
0.40  
0.40  
64  
17  
e
0.30  
0.15  
0.50  
0.05  
0.05  
Lp  
x
B
E2  
y
ZD  
ZE  
c2  
1.00  
1.00  
0.20  
6.50  
6.50  
ZE  
32  
49  
0.25  
48  
33  
D2  
E2  
ZD  
e
M
b
x
S A B  
2013 Renesas Electronics Corporation. All rights reserved.  
Figure 1.4  
64-pin QFN  
R01DS0356EJ0100 Rev.1.00  
Oct 8, 2019  
Page 87 of 92  
Revision History  
RA6M1 Group Datasheet  
Rev.  
1.00  
Date  
Summary  
Oct 8, 2019  
First release  
Proprietary Notice  
All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in  
this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and  
trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no  
part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated,  
transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior  
written consent from Renesas.  
®
®
Arm and Cortex are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited.  
®
CoreMark is a registered trademark of the Embedded Microprocessor Benchmark Consortium.  
Magic Packet™ is a trademark of Advanced Micro Devices, Inc.  
®
SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States  
and Japan.  
Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective  
holders.  
Colophon  
RA6M1 Group Datasheet  
Publication Date:  
Published by:  
Rev.1.00  
Oct 8, 2019  
Renesas Electronics Corporation  
Address List  
General Precautions  
1. Precaution against Electrostatic Discharge (ESD)  
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately  
degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and  
quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used.  
This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be  
stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit  
boards with mounted semiconductor devices.  
2. Processing at power-on  
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are  
indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished  
product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time  
when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset  
by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches  
the level at which resetting is specified.  
3. Input of signal during power-off state  
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results  
from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in  
the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-  
off state as described in your product documentation.  
4. Handling of unused pins  
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins  
of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state,  
extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally,  
and malfunctions occur due to the false recognition of the pin state as an input signal become possible.  
5. Clock signals  
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the  
clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated  
with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full  
stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or  
by an external oscillator while program execution is in progress, wait until the target clock signal is stable.  
6. Voltage application waveform at input pin  
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device  
stays in the area between V (Max.) and V (Min.) due to noise, for example, the device may malfunction. Take care to  
IL  
IH  
prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the  
input level passes through the area between V (Max.) and V (Min.).  
IL  
IH  
7. Prohibition of access to reserved addresses  
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of  
functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.  
8. Differences between products  
Before changing from one product to another, for example to a product with a different part number, confirm that the  
change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the  
same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and  
other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins,  
immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a  
system-evaluation test for the given product.  
Notice  
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for  
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by  
you or third parties arising from the use of these circuits, software, or information.  
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or  
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application  
examples.  
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.  
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by  
you or third parties arising from such alteration, modification, copying or reverse engineering.  
5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the  
product’s quality grade, as indicated below.  
"Standard":  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic  
equipment; industrial robots; etc.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.  
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are  
not intended or authorized for use in products or systems that may pose  
a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause  
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all  
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or  
other Renesas Electronics document.  
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the  
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation  
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified  
ranges.  
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a  
certain rate and malfunctions under certain use conditions. Unless designated as  
a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas  
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury  
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to  
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult  
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.  
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and  
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics  
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable  
laws and regulations.  
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws  
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or  
transactions.  
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third  
party in advance of the contents and conditions set forth in this document.  
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
(Rev.4.0-1 November 2017)  
SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/" for the latest and detailed information.  
Renesas Electronics Corporation  
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan  
Renesas Electronics America Inc.  
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.  
Tel: +1-408-432-8888, Fax: +1-408-434-5351  
Renesas Electronics Canada Limited  
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3  
Tel: +1-905-237-2004  
Renesas Electronics Europe GmbH  
Arcadiastrasse 10, 40472 Düsseldorf, Germany  
Tel: +49-211-6503-0, Fax: +49-211-6503-1327  
Renesas Electronics (China) Co., Ltd.  
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China  
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679  
Renesas Electronics (Shanghai) Co., Ltd.  
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China  
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999  
Renesas Electronics Hong Kong Limited  
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong  
Tel: +852-2265-6688, Fax: +852 2886-9022  
Renesas Electronics Taiwan Co., Ltd.  
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan  
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670  
Renesas Electronics Singapore Pte. Ltd.  
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949  
Tel: +65-6213-0200, Fax: +65-6213-0300  
Renesas Electronics Malaysia Sdn.Bhd.  
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia  
Tel: +60-3-5022-1288, Fax: +60-3-5022-1290  
Renesas Electronics India Pvt. Ltd.  
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India  
Tel: +91-80-67208700  
Renesas Electronics Korea Co., Ltd.  
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea  
Tel: +82-2-558-3737, Fax: +82-2-558-5338  
© 2019 Renesas Electronics Corporation. All rights reserved.  
Colophon 8.0  
Back cover  
RA6M1 Group  
R01DS0356EJ0100  

相关型号:

R7FA6M1AD3CNB

Armv7E-M architecture with DSP instruction set Maximum operating frequency: 120 MHz
RENESAS

R7FA6M3AF2CBG

Leading performance 120-MHz Arm Cortex-M4 core, up to 2-MB code flash memory
RENESAS

R7FA6M3AF2CLK

Leading performance 120-MHz Arm Cortex-M4 core, up to 2-MB code flash memory
RENESAS

R7FA6M3AF3CFB

Leading performance 120-MHz Arm Cortex-M4 core, up to 2-MB code flash memory
RENESAS

R7FA6M3AF3CFC

Leading performance 120-MHz Arm Cortex-M4 core, up to 2-MB code flash memory
RENESAS

R7FA6M3AF3CFP

Leading performance 120-MHz Arm Cortex-M4 core, up to 2-MB code flash memory
RENESAS

R7FA6M3AH2CBG

Leading performance 120-MHz Arm Cortex-M4 core, up to 2-MB code flash memory
RENESAS

R7FA6M3AH2CLK

Leading performance 120-MHz Arm Cortex-M4 core, up to 2-MB code flash memory
RENESAS

R7FA6M3AH3CFB

Leading performance 120-MHz Arm Cortex-M4 core, up to 2-MB code flash memory
RENESAS

R7FA6M3AH3CFC

Leading performance 120-MHz Arm Cortex-M4 core, up to 2-MB code flash memory
RENESAS

R7FA6M3AH3CFP

Leading performance 120-MHz Arm Cortex-M4 core, up to 2-MB code flash memory
RENESAS

R7FA6M4AD3CFB

Armv8-M architecture with the main extension
RENESAS