R7FA6M4AE3CFP [RENESAS]

Armv8-M architecture with the main extension;
R7FA6M4AE3CFP
型号: R7FA6M4AE3CFP
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Armv8-M architecture with the main extension

文件: 总109页 (文件大小:1314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
R01DS0365EJ0110  
Rev.1.10  
RA6M4 Group  
Renesas Microcontrollers  
Sep 29, 2020  
High-performance 200 MHz Arm Cortex-M33 core, up to 1 MB code flash memory with Dual-bank, background and SWAP  
operation, 8 KB Data flash memory, and 256 KB SRAM with Parity/ECC. High-integration with Ethernet MAC controller, USB  
2.0 Full-Speed, SDHI, Quad and Octa SPI, and advanced analog. Integrated Secure Crypto Engine with cryptography  
accelerators, key management support, tamper detection and power analysis resistance in concert with Arm TrustZone for  
integrated secure element functionality.  
Features  
®
®
DMA Controller (DMAC) × 8  
Power-on reset  
Arm Cortex -M33 Core  
Armv8-M architecture with the main extension  
Maximum operating frequency: 200 MHz  
Arm Memory Protection Unit (Arm MPU)  
Protected Memory System Architecture (PMSAv8)  
Secure MPU (MPU_S): 8 regions  
Non-secure MPU (MPU_NS): 8 regions  
SysTick timer  
Embeds two Systick timers: Secure and Non-secure instance  
Driven by LOCO or system clock  
CoreSight ETM-M33  
Low Voltage Detection (LVD) with voltage settings  
Watchdog Timer (WDT)  
Independent Watchdog Timer (IWDT)  
■ Human Machine Interface (HMI)  
Capacitive Touch Sensing Unit (CTSU)  
■ Multiple Clock Sources  
Main clock oscillator (MOSC) (8 to 24 MHz)  
Sub-clock oscillator (SOSC) (32.768 kHz)  
High-speed on-chip oscillator (HOCO) (16/18/20 MHz)  
Middle-speed on-chip oscillator (MOCO) (8 MHz)  
Low-speed on-chip oscillator (LOCO) (32.768 kHz)  
IWDT-dedicated on-chip oscillator (15 kHz)  
Clock trim function for HOCO/MOCO/LOCO  
PLL/PLL2  
■ Memory  
Up to 1-MB code flash memory  
8-KB data flash memory (100,000 program/erase (P/E) cycles)  
256-KB SRAM  
■ Connectivity  
Clock out support  
Serial Communications Interface (SCI) × 10  
Asynchronous interfaces  
8-bit clock synchronous interface  
Smart card interface  
■ General-Purpose I/O Ports  
5-V tolerance, open drain, input pull-up, switchable driving ability  
Simple IIC  
■ Operating Voltage  
VCC: 2.7 to 3.6 V  
Simple SPI  
Manchester coding (SCI3, SCI4)  
2
I C bus interface (IIC) × 2  
■ Operating Temperature and Packages  
Ta = -40℃ to +105℃  
Serial Peripheral Interface (SPI) × 2  
Quad Serial Peripheral Interface (QSPI)  
Octa Serial Peripheral Interface (OSPI)  
USB 2.0 Full-Speed Module (USBFS)  
Control Area Network module (CAN) × 2  
Ethernet MAC/DMA Controller (ETHERC/EDMAC)  
SD/MMC Host Interface (SDHI)  
144-pin LQFP (20 mm × 20 mm, 0.5 mm pitch)  
100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)  
64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)  
Serial Sound Interface Enhanced (SSIE)  
■ Analog  
12-bit A/D Converter (ADC12) × 2  
12-bit D/A Converter (DAC12) × 2  
Temperature Sensor (TSN)  
■ Timers  
General PWM Timer 32-bit (GPT32) × 4  
General PWM Timer 16-bit (GPT16) × 6  
Low Power Asynchronous General Purpose Timer (AGT) × 6  
■ Security and Encryption  
Secure Crypto Engine 9  
Symmetric algorithms: AES  
Asymmetric algorithms: RSA, ECC, and DSA  
Hash-value generation: SHA224, SHA256, GHASH  
128-bit unique ID  
®
®
Arm TrustZone  
Up to three or six regions for the code flash, depending on the  
bank mode  
Up to two regions for the data flash  
Up to three regions for the SRAM  
Individual secure or non-secure security attribution for each  
peripheral  
Device lifecyle management  
Pin function  
Up to three tamper pins  
Secure pin multiplexing  
■ System and Power Management  
Low power modes  
Battery backup function (VBATT)  
Realtime Clock (RTC) with calendar and VBATT support  
Event Link Controller (ELC)  
Data Transfer Controller (DTC)  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 1 of 109  
RA6M4 Datasheet  
1. Overview  
1.  
Overview  
®
The MCU integrates multiple series of software- and pin-compatible Arm -based 32-bit cores that share a common set of  
Renesas peripherals to facilitate design scalability and efficient platform-based product development.  
®
The MCU in this series incorporates a high-performance Arm Cortex -M33 core running up to 200 MHz with the following  
features:  
Up to 1 MB code flash memory  
256 KB SRAM  
Quad Serial Peripheral Interface (QSPI), Octa Serial Peripheral Interface (OSPI)  
Ethernet MAC Controller (ETHERC), USBFS, SD/MMC Host Interface  
Capacitive Touch Sensing Unit (CTSU)  
Analog peripherals  
Security and safety features  
1.1  
Function Outline  
Table 1.1  
Feature  
Arm core  
Functional description  
Arm Cortex-M33 core  
Maximum operating frequency: up to 200 MHz  
Arm Cortex-M33 core:  
Armv8-M architecture with security extension  
Revision: r0p4-00rel0  
Arm Memory Protection Unit (Arm MPU)  
Protected Memory System Architecture (PMSAv8)  
Secure MPU (MPU_S): 8 regions  
Non-secure MPU (MPU_NS): 8 regions  
SysTick timer  
Embeds two Systick timers: Secure and Non-secure instance  
Driven by SysTick timer clock (SYSTICCLK) or system clock (ICLK)  
CoreSight ETM-M33  
Table 1.2  
Memory  
Feature  
Functional description  
Code flash memory  
Data flash memory  
Option-setting memory  
SRAM  
Maximum 1 MB of code flash memory.  
8 KB of data flash memory.  
The option-setting memory determines the state of the MCU after a reset.  
On-chip high-speed SRAM with either parity bit or Error Correction Code (ECC).  
Table 1.3  
System (1 of 2)  
Functional description  
Operating modes  
Two operating modes:  
Single-chip mode  
SCI/USB boot mode  
Resets  
The MCU provides 14 resets.  
Low Voltage Detection (LVD)  
The Low Voltage Detection (LVD) module monitors the voltage level input to the VCC pin. The  
detection level can be selected by register settings. The LVD module consists of three separate  
voltage level detectors (LVD0, LVD1, LVD2). LVD0, LVD1, and LVD2 measure the voltage level  
input to the VCC pin. LVD registers allow your application to configure detection of VCC changes  
at various voltage thresholds.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 2 of 109  
RA6M4 Datasheet  
1. Overview  
Table 1.3  
System (2 of 2)  
Functional description  
Clocks  
Main clock oscillator (MOSC)  
Sub-clock oscillator (SOSC)  
High-speed on-chip oscillator (HOCO)  
Middle-speed on-chip oscillator (MOCO)  
Low-speed on-chip oscillator (LOCO)  
IWDT-dedicated on-chip oscillator  
PLL/PLL2  
Clock out support  
Clock Frequency Accuracy  
Measurement Circuit (CAC)  
The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be  
measured (measurement target clock) within the time generated by the clock selected as the  
measurement reference (measurement reference clock), and determines the accuracy  
depending on whether the number of pulses is within the allowable range.When measurement is  
complete or the number of pulses within the time generated by the measurement reference clock  
is not within the allowable range, an interrupt request is generated.  
Interrupt Controller Unit (ICU)  
Low power modes  
The Interrupt Controller Unit (ICU) controls which event signals are linked to the Nested Vector  
Interrupt Controller (NVIC), the DMA Controller (DMAC), and the Data Transfer Controller (DTC)  
modules. The ICU also controls non-maskable interrupts.  
Power consumption can be reduced in multiple ways, including setting clock dividers, stopping  
modules, selecting power control mode in normal operation, and transitioning to low power  
modes.  
Battery backup function  
A battery backup function is provided for partial powering by a battery. The battery-powered area  
includes the RTC, SOSC, backup memory, and switch between VCC and VBATT.  
Register write protection  
Memory Protection Unit (MPU)  
The register write protection function protects important registers from being overwritten due to  
software errors. The registers to be protected are set with the Protect Register (PRCR).  
The MCU has one Memory Protection Unit (MPU).  
Table 1.4  
Feature  
Event link  
Functional description  
Event Link Controller (ELC)  
The Event Link Controller (ELC) uses the event requests generated by various peripheral  
modules as source signals to connect them to different modules, allowing direct link between the  
modules without CPU intervention.  
Table 1.5  
Direct memory access  
Feature  
Functional description  
Data Transfer Controller (DTC)  
A Data Transfer Controller (DTC) module is provided for transferring data when activated by an  
interrupt request.  
DMA Controller (DMAC)  
The MCU includes an 8-channel direct memory access controller (DMAC) that can transfer data  
without intervention from the CPU. When a DMA transfer request is generated, the DMAC  
transfers data stored at the transfer source address to the transfer destination address.  
Table 1.6  
Feature  
External bus interface  
Functional description  
External buses  
CS area (ECBIU): Connected to the external devices (external memory interface)  
QSPI area (EQBIU): Connected to the QSPI (external device interface)  
OSPI area (EOBIU): Connected to the OSPI (external device interface)  
Table 1.7  
Feature  
Timers (1 of 2)  
Functional description  
General PWM Timer (GPT)  
The General PWM Timer (GPT) is a 32-bit timer with GPT32 × 4 channels and a 16-bit timer with  
GPT16 × 6 channels. PWM waveforms can be generated by controlling the up-counter, down-  
counter, or the up- and down-counter. In addition, PWM waveforms can be generated for  
controlling brushless DC motors. The GPT can also be used as a general-purpose timer.  
Port Output Enable for GPT (POEG)  
The Port Output Enable (POEG) function can place the General PWM Timer (GPT) output pins  
in the output disable state  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 3 of 109  
RA6M4 Datasheet  
1. Overview  
Table 1.7  
Feature  
Timers (2 of 2)  
Functional description  
Low power Asynchronous General  
Purpose Timer (AGT)  
The low power Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used  
for pulse output, external pulse width or period measurement, and counting external events. This  
timer consists of a reload register and a down counter. The reload register and the down counter  
are allocated to the same address, and can be accessed with the AGT register.  
Realtime Clock (RTC)  
The realtime clock (RTC) has two counting modes, calendar count mode and binary count mode,  
that are used by switching register settings. For calendar count mode, the RTC has a 100-year  
calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count  
mode, the RTC counts seconds and retains the information as a serial value. Binary count mode  
can be used for calendars other than the Gregorian (Western) calendar.  
Watchdog Timer (WDT)  
The Watchdog Timer (WDT) is a 14-bit down counter that can be used to reset the MCU when  
the counter underflows because the system has run out of control and is unable to refresh the  
WDT. In addition, the WDT can be used to generate a non-maskable interrupt or an underflow  
interrupt.  
Independent Watchdog Timer (IWDT)  
The Independent Watchdog Timer (IWDT) consists of a 14-bit down counter that must be  
serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the  
MCU or to generate a non-maskable interrupt or an underflow interrupt. Because the timer  
operates with an independent, dedicated clock source, it is particularly useful in returning the  
MCU to a known state as a fail-safe mechanism when the system runs out of control. The IWDT  
can be triggered automatically by a reset, underflow, refresh error, or a refresh of the count value  
in the registers.  
Table 1.8  
Communication interfaces (1 of 2)  
Feature  
Functional description  
Serial Communications Interface (SCI)  
The Serial Communications Interface (SCI) × 10 channels have asynchronous and synchronous  
serial interfaces:  
Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter  
(ACIA))  
8-bit clock synchronous interface  
Simple IIC (master-only)  
Simple SPI  
Smart card interface  
Manchester interface  
Extended Serial interface  
The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and  
transmission protocol. SCIn (n = 0, 3 to 9) has FIFO buffers to enable continuous and full-duplex  
communication, and the data transfer speed can be configured independently using an on-chip  
baud rate generator.  
2
2
I C bus interface (IIC)  
The I C bus interface (IIC) has 2 channels. The IIC module conforms with and provides a subset  
2
of the NXP I C (Inter-Integrated Circuit) bus interface functions.  
Serial Peripheral Interface (SPI)  
Control Area Network (CAN)  
The Serial Peripheral Interface (SPI) provides high-speed full-duplex synchronous serial  
communications with multiple processors and peripheral devices.  
The Controller Area Network (CAN) module uses a message-based protocol to receive and  
transmit data between multiple slaves and masters in electromagnetically noisy applications. The  
module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32  
mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO  
modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. The CAN  
module requires an additional external CAN transceiver.  
USB 2.0 Full-Speed module (USBFS)  
The USB 2.0 Full-Speed module (USBFS) can operate as a host controller or device controller.  
The module supports full-speed and low-speed (host controller only) transfer as defined in  
Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and  
supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USB has  
buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be assigned  
any endpoint number based on the peripheral devices used for communication or based on your  
system.  
Quad Serial Peripheral Interface (QSPI) The Quad Serial Peripheral Interface (QSPI) is a memory controller for connecting a serial ROM  
(nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM) that has  
an SPI-compatible interface.  
Octa Serial Peripheral Interface (OSPI) The Octa Serial Peripheral Interface (OSPI) module is a memory controller for connecting  
OctaFlash and OctaRAM.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 4 of 109  
RA6M4 Datasheet  
1. Overview  
Table 1.8  
Feature  
Communication interfaces (2 of 2)  
Functional description  
Serial Sound Interface Enhanced (SSIE) The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with  
2
digital audio devices for transmitting I S/Monaural/TDM audio data over a serial bus. The SSIE  
supports an audio clock frequency of up to 50 MHz, and can be operated as a slave or master  
receiver, transmitter, or transceiver to suit various applications. The SSIE includes 32-stage  
FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven data  
reception and transmission.  
SD/MMC Host Interface (SDHI)  
The SDHI and MultiMediaCard (MMC) interface module provides the functionality required to  
connect a variety of external memory cards to the MCU. The SDHI supports both 1- and 4-bit  
buses for connecting memory cards that support SD, SDHC, and SDXC formats. When  
developing host devices that are compliant with the SD Specifications, you must comply with the  
SD Host/Ancillary Product License Agreement (SD HALA). The MMC interface supports 1-bit, 4-  
bit, and 8-bit1-bit, and 4-bit MMC buses that provide eMMC 4.51 (JEDEC Standard JESD 84-  
B451) device access. This interface also provides backward compatibility and supports high-  
speed SDR transfer modes.  
Ethernet MAC (ETHERC)  
One-channel Ethernet MAC Controller (ETHERC) compliant with the Ethernet/IEEE802.3 Media  
Access Control (MAC) layer protocol. An ETHERC channel provides one channel of the MAC  
layer interface, connecting the MCU to the physical layer LSI (PHY-LSI) that allows transmission  
and reception of frames compliant with the Ethernet and IEEE802.3 standards. The ETHERC is  
connected to the Ethernet DMA Controller (EDMAC) so data can be transferred without using  
the CPU.  
Table 1.9  
Analog  
Functional description  
12-bit A/D Converter (ADC12)  
A 12-bit successive approximation A/D converter is provided. Up to 22 analog input channels are  
selectable. Temperature sensor output and internal reference voltage are selectable for  
conversion.  
12-bit D/A Converter (DAC12)  
Temperature Sensor (TSN)  
A 12-bit D/A converter (DAC12) is provided.  
The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for reliable  
operation of the device. The sensor outputs a voltage directly proportional to the die  
temperature, and the relationship between the die temperature and the output voltage is fairly  
linear. The output voltage is provided to the ADC12 for conversion and can be further used by  
the end application.  
Table 1.10  
Feature  
Human machine interfaces  
Functional description  
Capacitive Touch Sensing Unit (CTSU) The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the touch  
sensor. Changes in the electrostatic capacitance are determined by software that enables the  
CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the  
touch sensor is usually enclosed with an electrical conductor so that a finger does not come into  
direct contact with the electrode.  
Table 1.11  
Feature  
Data processing  
Functional description  
Cyclic Redundancy Check (CRC)  
calculator  
The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the  
data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first  
communication. Additionally, various CRC-generation polynomials are available.  
Data Operation Circuit (DOC)  
The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. When a selected  
condition applies, 16-bit data is compared and an interrupt can be generated.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 5 of 109  
RA6M4 Datasheet  
1. Overview  
1.2  
Block Diagram  
Figure 1.1 shows a block diagram of the MCU superset. Some individual devices within the group have a subset of the  
features.  
Memory  
Bus  
External  
CSC  
Arm Cortex-M33  
System  
Clocks  
DSP  
FPU  
1 MB code flash  
POR/LVD  
Reset  
MOSC/SOSC  
(H/M/L) OCO  
PLL/PLL2  
8 KB data flash  
256 KB SRAM  
IDAU  
MPU  
MPU  
Mode control  
1 KB Standby  
SRAM  
NVIC  
Power control  
ICU  
CAC  
DMA  
DTC  
System timer  
Battery backup  
Test and DBG interface  
Register write  
protection  
DMAC × 8  
Timers  
Communication interfaces  
Human machine interfaces  
CTSU  
QSPI  
OSPI  
SCI × 10  
GPT32 x 4  
GPT16 x 6  
ETHERC  
IIC × 2  
SDHI  
AGT × 6  
RTC  
SPI × 2  
CAN × 2  
SSIE  
USBFS  
WDT/IWDT  
Event link  
ELC  
Data processing  
Analog  
TSN  
CRC  
ADC12 × 2  
DOC  
DAC12 × 2  
Security  
SCE9  
Note:  
Figure 1.1  
1.3  
Not available on all parts.  
Block diagram  
Part Numbering  
Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.12 shows a  
list of products.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 6 of 109  
RA6M4 Datasheet  
1. Overview  
# A A  
R 7 F A 6 M 4 A F 3 C F B  
0
Production identification code  
Packaging, Terminal material (Pb-free)  
#AA: Tray/Sn (Tin) only  
#AC: Tray/others  
Package type  
FB: LQFP 144 pins  
FP: LQFP 100 pins  
FM: LQFP 64 pins  
Quality Grade  
Operating temperature  
3: -40°C to 105°C  
Code flash memory size  
D: 512 KB  
E: 768 KB  
F: 1 MB  
Feature set  
Group number  
Series name  
RA family  
Flash memory  
Renesas microcontroller  
Figure 1.2  
Table 1.12  
Part numbering scheme  
Product list  
Data  
flash  
Operating  
temperature  
Product part number  
Package code  
PLQP0144KA-B  
PLQP0100KB-B  
PLQP0064KB-C  
PLQP0144KA-B  
PLQP0100KB-B  
PLQP0064KB-C  
PLQP0144KA-B  
PLQP0100KB-B  
PLQP0064KB-C  
Code flash  
SRAM  
R7FA6M4AF3CFB  
R7FA6M4AF3CFP  
R7FA6M4AF3CFM  
R7FA6M4AE3CFB  
R7FA6M4AE3CFP  
R7FA6M4AE3CFM  
R7FA6M4AD3CFB  
R7FA6M4AD3CFP  
R7FA6M4AD3CFM  
1 MB  
8 KB  
8 KB  
8 KB  
256 KB  
-40 to +105°C  
768 KB  
512 KB  
256 KB  
256 KB  
-40 to +105°C  
-40 to +105°C  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 7 of 109  
RA6M4 Datasheet  
1. Overview  
1.4  
Function Comparison  
Table 1.13  
Function Comparison (1 of 2)  
R7FA6M4AF3CFB  
R7FA6M4AE3CFB  
R7FA6M4AD3CFB  
R7FA6M4AF3CFP  
R7FA6M4AE3CFP  
R7FA6M4AD3CFP  
R7FA6M4AF3CFM  
R7FA6M4AE3CFM  
R7FA6M4AD3CFM  
Parts number  
Pin count  
144  
100  
64  
Package  
LQFP  
Code flash memory  
1 MB  
768 KB  
512 KB  
Data flash memory  
SRAM  
8 KB  
256 KB  
192 KB  
64 KB  
Parity  
ECC  
Standby SRAM  
DMA  
1 KB  
DTC  
Yes  
DMAC  
8
BUS  
External bus  
CPU clock  
CPU clock sources  
CAC  
16-bit bus  
8-bit bus  
200 MHz (max.)  
No  
System  
MOSC, SOSC, HOCO, MOCO, LOCO, PLL  
Yes  
WDT/IWDT  
Backup register  
SCI  
Yes  
128 B  
Communication  
10  
10  
8
IIC  
2
SPI  
2
CAN  
2
USBFS  
QSPI  
Yes  
Yes  
OSPI  
Yes  
Yes  
Yes  
Yes  
4
No  
No  
No  
No  
SSIE  
SDHI/MMC  
ETHERC  
*1  
Timers  
Analog  
GPT32  
*1  
6
6
GPT16  
*1  
AGT  
RTC  
Yes  
ADC12  
Unit 0: 12  
Unit 1: 10  
Unit 0: 11  
Unit 1: 9  
Unit 0: 7  
Unit 1: 4  
DAC12  
TSN  
2
Yes  
12  
HMI  
CTSU  
CRC  
DOC  
ELC  
20  
7
Data processing  
Yes  
Yes  
Yes  
Event control  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 8 of 109  
RA6M4 Datasheet  
1. Overview  
Table 1.13  
Function Comparison (2 of 2)  
R7FA6M4AF3CFB  
R7FA6M4AE3CFB  
R7FA6M4AD3CFB  
R7FA6M4AF3CFP  
R7FA6M4AE3CFP  
R7FA6M4AD3CFP  
R7FA6M4AF3CFM  
R7FA6M4AE3CFM  
R7FA6M4AD3CFM  
Parts number  
Security  
SCE9, TrustZone, and Lifecycle management  
Note 1. Available pins depend on the Pin count, about details see section 1.7. Pin Lists.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 9 of 109  
RA6M4 Datasheet  
1. Overview  
1.5  
Pin Functions  
Table 1.14  
Function  
Pin functions (1 of 6)  
Signal  
I/O  
Description  
Power supply  
VCC  
Input  
Power supply pin. Connect it to the system power supply. Connect  
this pin to VSS by a 0.1-µF capacitor. The capacitor should be  
placed close to the pin.  
VCL/VCL0  
I/O  
Connect this pin to the VSS pin by the smoothing capacitor used to  
stabilize the internal power supply. Place the capacitor close to the  
pin.  
VSS  
Input  
Ground pin. Connect it to the system power supply (0 V).  
Battery Backup power pin  
VBATT  
XTAL  
Input  
Clock  
Output  
Input  
Pins for a crystal resonator. An external clock signal can be input  
through the EXTAL pin.  
EXTAL  
XCIN  
Input  
Input/output pins for the sub-clock oscillator. Connect a crystal  
resonator between XCOUT and XCIN.  
XCOUT  
CLKOUT  
Output  
Output  
Input  
Clock output pin  
Operating mode control  
System control  
MD  
Pin for setting the operating mode. The signal level on this pin must  
not be changed during operation mode transition on release from  
the reset state.  
RES  
Input  
Reset signal input pin. The MCU enters the reset state when this  
signal goes low.  
CAC  
CACREF  
TMS  
Input  
I/O  
Measurement reference clock input pin  
On-chip emulator or boundary scan pins  
On-chip emulator  
TDI  
Input  
Input  
Output  
Output  
Output  
Output  
I/O  
TCK  
TDO  
TCLK  
Output clock for synchronization with the trace data  
Trace data output  
TDATA0 to TDATA3  
SWO  
Serial wire trace output pin  
SWDIO  
SWCLK  
NMI  
Serial wire debug data input/output pin  
Serial wire clock pin  
Input  
Input  
Input  
Input  
Interrupt  
Non-maskable interrupt request pin  
Maskable interrupt request pins  
IRQn  
IRQn-DS  
Maskable interrupt request pins that can also be used in Deep  
Software Standby mode  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 10 of 109  
RA6M4 Datasheet  
1. Overview  
Table 1.14  
Pin functions (2 of 6)  
Function  
Signal  
I/O  
Description  
External bus interface  
RD  
Output  
Strobe signal indicating that reading from the external bus interface  
space is in progress, active-low  
WR  
Output  
Output  
Strobe signal indicating that writing to the external bus interface  
space is in progress, in 1-write strobe mode, active-low  
WRn  
Strobe signals indicating that either group of data bus pins (D07 to  
D00 or D15 to D08) is valid in writing to the external bus interface  
space, in byte strobe mode, active-low  
BCn  
Output  
Strobe signals indicating that either group of data bus pins (D07 to  
D00 or D15 to D08) is valid in access to the external bus interface  
space, in 1-write strobe mode, active-low  
ALE  
Output  
Input  
Address latch signal when address/data multiplexed bus is selected  
WAIT  
Input pin for wait request signals in access to the external space,  
active-low  
CSn  
Output  
Output  
I/O  
Select signals for CS areas, active-low  
Address bus  
A00 to A20  
D00 to D15  
A00/D00 to A15/D15  
Data bus  
I/O  
Address/data multiplexed bus  
External trigger input pins  
GPT  
GTETRGA, GTETRGB,  
GTETRGC, GTETRGD  
Input  
GTIOCnA, GTIOCnB  
GTIU  
I/O  
Input capture, output compare, or PWM output pins  
Hall sensor input pin U  
Input  
GTIV  
Input  
Hall sensor input pin V  
GTIW  
Input  
Hall sensor input pin W  
GTOUUP  
GTOULO  
GTOVUP  
GTOVLO  
GTOWUP  
GTOWLO  
AGTEEn  
AGTIOn  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
3-phase PWM output for BLDC motor control (positive U phase)  
3-phase PWM output for BLDC motor control (negative U phase)  
3-phase PWM output for BLDC motor control (positive V phase)  
3-phase PWM output for BLDC motor control (negative V phase)  
3-phase PWM output for BLDC motor control (positive W phase)  
3-phase PWM output for BLDC motor control (negative W phase)  
External event input enable signals  
AGT  
RTC  
I/O  
External event input and pulse output pins  
Pulse output pins  
AGTOn  
Output  
Output  
Output  
Output  
Input  
AGTOAn  
AGTOBn  
RTCOUT  
RTCICn  
Output compare match A output pins  
Output compare match B output pins  
Output pin for 1-Hz or 64-Hz clock  
Time capture event input pins  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 11 of 109  
RA6M4 Datasheet  
1. Overview  
Table 1.14  
Function  
SCI  
Pin functions (3 of 6)  
Signal  
SCKn  
RXDn  
I/O  
Description  
I/O  
Input/output pins for the clock (clock synchronous mode)  
Input  
Input pins for received data (asynchronous mode/clock synchronous  
mode)  
TXDn  
Output  
I/O  
Output pins for transmitted data (asynchronous mode/clock  
synchronous mode)  
CTSn_RTSn  
Input/output pins for controlling the start of transmission and  
reception (asynchronous mode/clock synchronous mode), active-  
low.  
CTSn  
SCLn  
Input  
I/O  
Input for the start of transmission.  
Input/output pins for the IIC clock (simple IIC mode)  
Input/output pins for the IIC data (simple IIC mode)  
Input/output pins for the clock (simple SPI mode)  
Input/output pins for slave transmission of data (simple SPI mode)  
Input/output pins for master transmission of data (simple SPI mode)  
Chip-select input pins (simple SPI mode), active-low  
Input pins for received data (Extended Serial Mode)  
Output pins for transmitted data (Extended Serial Mode)  
SDAn  
SCKn  
MISOn  
MOSIn  
SSn  
I/O  
I/O  
I/O  
I/O  
Input  
Input  
Output  
I/O  
RXDXn  
TXDXn  
SIOXn  
Input/output pins for receivde or tramsmitted data (Extended Serial  
Mode)  
IIC  
SCLn  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Input/output pins for the clock  
SDAn  
Input/output pins for data  
SPI  
RSPCKA, RSPCKB  
MOSIA, MOSIB  
MISOA, MISOB  
SSLA0, SSLB0  
Clock input/output pin  
Input or output pins for data output from the master  
Input or output pins for data output from the slave  
Input or output pin for slave selection  
Output pins for slave selection  
SSLA1 to SSLA3, SSLB1 Output  
to SSLB3  
CAN  
CRXn  
CTXn  
Input  
Receive data  
Transmit data  
Output  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 12 of 109  
RA6M4 Datasheet  
1. Overview  
Table 1.14  
Function  
USBFS  
Pin functions (4 of 6)  
Signal  
I/O  
Description  
Power supply pin  
Ground pin  
VCC_USB  
VSS_USB  
USB_DP  
Input  
Input  
I/O  
D+ pin of the USB on-chip transceiver. Connect this pin to the D+  
pin of the USB bus.  
USB_DM  
I/O  
D- pin of the USB on-chip transceiver. Connect this pin to the D- pin  
of the USB bus.  
USB_VBUS  
Input  
USB cable connection monitor pin. Connect this pin to VBUS of the  
USB bus. The VBUS pin status (connected or disconnected) can be  
detected when the USB module is operating as a function controller.  
USB_EXICEN  
USB_VBUSEN  
Output  
Output  
Input  
Low-power control signal for external power supply (OTG) chip  
VBUS (5 V) supply enable signal for external power supply chip  
USB_OVRCURA,  
USB_OVRCURB  
Connect the external overcurrent detection signals to these pins.  
Connect the VBUS comparator signals to these pins when the OTG  
power supply chip is connected.  
USB_OVRCURA-DS,  
USB_OVRCURB-DS  
Input  
Overcurrent pins for USBFS that can also be used in Deep Software  
Standby mode.  
Connect the external overcurrent detection signals to these pins.  
Connect the VBUS comparator signals to these pins when the OTG  
power supply chip is connected.  
USB_ID  
Input  
Connect the MicroAB connector ID input signal to this pin during  
operation in OTG mode  
QSPI  
OSPI  
QSPCLK  
Output  
Output  
I/O  
QSPI clock output pin  
QSSL  
QSPI slave output pin  
QIO0 to QIO3  
OM_SCLK  
OM_CSn  
Data0 to Data3  
Output  
Output  
I/O  
Clock output (OCTACLK divided by 2)  
Chip select signal for an OctaFlash device, active-low  
Read data strobe/write data mask signal  
Data input/output  
OM_DQS  
OM_SIOn  
OM_RESET  
OM_ECS  
I/O  
Output  
Input  
I/O  
Reset signal for both OctaFlash and OctaRAM devices, active-low  
ECC error detection signal from the external memory, active-low  
SSIE serial bit clock pins  
SSIE  
SSIBCK0  
SSILRCK0/SSIFS0  
SSITXD0  
I/O  
LR clock/frame synchronization pins  
Serial data output pin  
Output  
Input  
I/O  
SSIRXD0  
Serial data input pin  
SSIDATA0  
AUDIO_CLK  
SD0CLK  
Serial data input/output pins  
Input  
Output  
I/O  
External clock pin for audio (input oversampling clock)  
SD clock output pins  
SDHI/MMC  
SD0CMD  
Command output pin and response input signal pins  
SD and MMC data bus pins  
SD0DAT0 to SD0DAT73  
SD0CD  
I/O  
Input  
Input  
SD card detection pins  
SD0WP  
SD write-protect signals  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 13 of 109  
RA6M4 Datasheet  
1. Overview  
Table 1.14  
Function  
ETHERC  
Pin functions (5 of 6)  
Signal  
I/O  
Description  
REF50CK0  
Input  
50-MHz reference clock. This pin inputs reference signal for  
transmission/reception timing in RMII mode.  
RMII0_CRS_DV  
Input  
Indicates carrier detection signals and valid receive data on  
RMII0_RXD1 and RMII0_RXD0 in RMII mode  
.
RMII0_TXDn  
RMII0_RXDn  
RMII0_TXD_EN  
RMII0_RX_ER  
ET0_CRS  
Output  
Input  
2-bit transmit data in RMII mode  
2-bit receive data in RMII mode  
Output  
Input  
Output pin for data transmit enable signal in RMII mode  
Indicates an error occurred during reception of data in RMII mode  
Carrier detection/data reception enable signal  
Indicates valid receive data on ET0_ERXD3 to ET0_ERXD0  
General-purpose external output pin  
Input  
ET0_RX_DV  
ET0_EXOUT  
ET0_LINKSTA  
ET0_ETXDn  
ET0_ERXDn  
ET0_TX_EN  
Input  
Output  
Input  
Input link status from the PHY-LSI  
Output  
Input  
4 bits of MII transmit data  
4 bits of MII receive data  
Output  
Transmit enable signal. Functions as signal indicating that transmit  
data is ready on ET0_ETXD3 to ET0_ETXD0.  
ET0_TX_ER  
ET0_RX_ER  
ET0_TX_CLK  
ET0_RX_CLK  
Output  
Output  
Input  
Transmit error pin. Functions as signal notifying the PHY_LSI of an  
error during transmission.  
Receive error pin. Functions as signal to recognize an error during  
reception.  
Transmit clock pin. This pin inputs reference signal for output timing  
from ET0_TX_EN, ET0_ETXD3 to ET0_ETXD0, and ET0_TX_ER.  
Input  
Receive clock pin. This pin inputs reference signal for input timing to  
ET0_RX_DV, ET0_ERXD3 to ET0_ERXD0, and ET0_RX_ER.  
ET0_COL  
ET0_WOL  
ET0_MDC  
Input  
Input collision detection signal  
Receive Magic packets  
Output  
Output  
Output reference clock signal for information transfer through  
ET0_MDIO  
ET0_MDIO  
AVCC0  
I/O  
Input or output bidirectional signal for exchange of management  
data with PHY-LSI  
Analog power supply  
Input  
Analog voltage supply pin. This is used as the analog power supply  
for the respective modules. Supply this pin with the same voltage as  
the VCC pin.  
AVSS0  
Input  
Analog ground pin. This is used as the analog ground for the  
respective modules. Supply this pin with the same voltage as the  
VSS pin.  
VREFH0  
VREFL0  
VREFH  
Input  
Input  
Input  
Analog reference voltage supply pin for the ADC12 (unit 0). Connect  
this pin to VCC when not using the ADC12 (unit 0).  
Analog reference ground pin for the ADC12. Connect this pin to VSS  
when not using the ADC12 (unit 0).  
Analog reference voltage supply pin for the ADC12 (unit 1) and D/A  
Converter. Connect this pin to VCC when not using the ADC12 (unit  
1) and D/A Converter.  
VREFL  
Input  
Analog reference ground pin for the ADC12 and D/A Converter.  
Connect this pin to VSS when not using the ADC12 (unit 1) and D/A  
Converter.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 14 of 109  
RA6M4 Datasheet  
1. Overview  
Table 1.14  
Function  
ADC12  
Pin functions (6 of 6)  
Signal  
I/O  
Description  
ANmn  
Input  
Input pins for the analog signals to be processed by the A/D  
converter.  
(m: ADC unit number, n: pin number)  
ADTRGm  
Input  
Input pins for the external trigger signals that start the A/D  
conversion, active-low.  
DAC12  
CTSU  
DAn  
Output  
Input  
I/O  
Output pins for the analog signals processed by the D/A converter.  
Capacitive touch detection pins (touch pins)  
TSn  
TSCAP  
Pmn  
Secondary power supply pin for the touch driver  
I/O ports  
I/O  
General-purpose input/output pins  
(m: port number, n: pin number)  
P200  
Input  
General-purpose input pin  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 15 of 109  
RA6M4 Datasheet  
1. Overview  
1.6  
Pin Assignments  
The following figures show the pin assignments from the top view.  
109  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
P800  
P300/TCK/SWCLK  
110  
P801  
P301  
P302  
P303  
VCC  
VSS  
111  
VCC  
112  
VSS  
113  
P500  
114  
P501  
115  
P304  
P305  
P502  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
P503  
P504  
P505  
P306  
P307  
P308  
P309  
P310  
P506  
P507  
VCC  
VSS  
P311  
P312  
P015  
P014  
P200  
P201/MD  
RES  
VREFL  
VREFH  
P208  
P209  
P210  
P211  
P214  
VCC  
AVCC0  
AVSS0  
VREFL0  
VREFH0  
P009  
P008  
VSS  
P007  
P006  
P005  
P004  
P003  
P002  
P001  
P000  
P313  
P202  
P203  
P204  
P205  
P206  
P207  
VSS  
VCC  
P512  
P511  
VCC_USB  
USB_DP  
USB_DM  
VSS_USB  
Figure 1.3  
Pin assignment for LQFP 144-pin  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 16 of 109  
RA6M4 Datasheet  
1. Overview  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
P500  
P501  
P300/TCK/SWCLK  
P301  
P502  
P302  
P503  
P303  
P504  
VCC  
P505  
VSS  
VCC  
P304  
VSS  
P305  
P015  
P306  
P014  
P307  
VREFL  
VREFH  
AVCC0  
AVSS0  
VREFL0  
VREFH0  
P008  
P200  
P201/MD  
RES  
P208  
P209  
P210  
P211  
P007  
P214  
P006  
P205  
P005  
P206  
P004  
P207  
P003  
VCC_USB  
USB_DP  
USB_DM  
VSS_USB  
P002  
P001  
P000  
Figure 1.4  
Pin assignment for LQFP 100-pin  
49  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
P500  
P300/TCK/SWCLK  
P301  
50  
VCC  
51  
VSS  
P302  
52  
P015  
P303  
53  
P014  
P304  
54  
VREFL  
P200  
55  
VREFH  
P201/MD  
RES  
56  
AVCC0  
57  
AVSS0  
P208  
58  
VREFL0  
P205  
59  
VREFH0  
P206  
60  
P004  
P207  
61  
P003  
VCC_USB  
USB_DP  
USB_DM  
VSS_USB  
62  
P002  
63  
P001  
64  
P000  
Figure 1.5  
Pin assignment for LQFP 64-pin  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 17 of 109  
RA6M4 Datasheet  
1. Overview  
1.7  
Pin Lists  
Table 1.15  
Pin list (1 of 4)  
Power, System,  
Clock, Debug,  
CAC  
I/O  
SCI/IIC/SPI/CAN/USBFS/QSPI/OSPI/SSIE/  
ports Ex. Bus Ex. Interrupt SDHI/MMC/EHTERC(MII,RMII)  
GPT/AGT/RTC  
ADC12/DAC12 CTSU  
1
2
3
4
5
1
2
3
4
5
1
P400  
P401  
P402  
P403  
P404  
IRQ0  
SCK4/SCK7/SCL0_A/AUDIO_CLK/ET0_WOL/  
ET0_WOL  
GTIOC6A/AGTIO1  
ADTRG1  
2
IRQ5-DS  
IRQ4-DS  
IRQ14-DS  
IRQ15-DS  
CTS4_RTS4/TXD7/SDA0_A/CTX0/ET0_MDC/  
ET0_MDC  
GTETRGA/GTIOC6B  
3
CACREF  
CTS4/RXD7/CRX0/AUDIO_CLK/ET0_MDIO/  
ET0_MDIO  
AGTIO0/AGTIO1/AGTIO2/  
AGTIO3/RTCIC0  
CTS7_RTS7/SSIBCK0_A/ET0_LINKSTA/  
ET0_LINKSTA  
GTIOC3A/AGTIO0/AGTIO1/  
AGTIO2/AGTIO3/RTCIC1  
CTS7/SSILRCK0_A/ET0_EXOUT/ET0_EXOUT  
GTIOC3B/AGTIO0_G/AGTIO1/  
AGTIO2/AGTIO3/RTCIC2  
6
6
4
P405  
P406  
P700  
P701  
P702  
P703  
P704  
P705  
SSITXD0_A/ET0_TX_EN/RMII0_TXD_EN_B  
SSLA3_C/SSIRXD0_A/ET0_RX_ER/RMII0_TXD1_B  
MISOA_C/ET0_ETXD1/RMII0_TXD0_B  
GTIOC1A  
7
7
GTIOC1B/AGTO5  
GTIOC5A/AGTO4  
GTIOC5B/AGTO3  
GTIOC6A/AGTO2  
GTIOC6B/AGTO1  
AGTO0  
8
8
9
MOSIA_C/ET0_ETXD0/REF50CK0_B  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RSPCKA_C/ET0_ERXD1/RMII0_RXD0_B  
SSLA0_C/ET0_ERXD0/RMII0_RXD1_B  
SSLA1_C/CTX0/ET0_RX_CLK/RMII0_RX_ER_B  
CTS3/SSLA2_C/CRX0/ET0_CRS/RMII0_CRS_DV_B AGTIO0  
VBATT  
VCL0  
XCIN  
XCOUT  
VSS  
XTAL  
9
5
10  
11  
12  
13  
14  
15  
16  
17  
6
7
8
9
P213  
P212  
IRQ2  
IRQ3  
TXD1  
GTETRGC/GTIOC0A/AGTEE2  
ADTRG1  
10 EXTAL  
RXD1  
GTETRGD/GTIOC0B/AGTEE1  
11  
VCC  
P713  
P712  
P711  
P710  
P709  
P708  
P415  
GTIOC2A/AGTOA0  
TS17  
TS16  
TS15  
TS14  
TS13  
TS12  
TS11  
GTIOC2B/AGTOB0  
CTS1_RTS1/ET0_TX_CLK  
SCK1/ET0_TX_ER  
AGTEE0  
IRQ10  
IRQ11  
IRQ8  
TXD1/ET0_ETXD2  
CACREF  
RXD1/SSLB3_B/AUDIO_CLK/ET0_ETXD3  
SSLB2_B/USB_VBUSEN/SD0CD/ET0_TX_EN/  
RMII0_TXD_EN_A  
GTIOC0A/AGTIO4  
29  
30  
31  
32  
33  
18  
19  
20  
21  
22  
12  
13  
P414  
P413  
P412  
P411  
P410  
IRQ9  
CTS0/SSLB1_B/SD0WP/ET0_RX_ER/  
RMII0_TXD1_A  
GTIOC0B/AGTIO5  
TS10  
TS09  
TS08  
TS07  
TS06  
CTS0_RTS0/SSLB0_B/SD0CLK_A/ET0_ETXD1/  
RMII0_TXD0_A  
GTOUUP/AGTEE3  
SCK0/CTS3/RSPCKB_B/SD0CMD_A/ET0_ETXD0/  
REF50CK0_A  
GTOULO/AGTEE1  
IRQ4  
IRQ5  
TXD0/CTS3_RTS3/MOSIB_B/SD0DAT0_A/  
ET0_ERXD1/RMII0_RXD0_A  
GTOVUP/GTIOC9A/AGTOA1  
GTOVLO/GTIOC9B/AGTOB1  
RXD0/SCK3/MISOB_B/SD0DAT1_A/ET0_ERXD0/  
RMII0_RXD1_A  
34  
35  
23  
24  
14  
15  
P409  
P408  
IRQ6  
IRQ7  
TXD3/USB_EXICEN/ET0_RX_CLK/RMII0_RX_ER_A GTOWUP/AGTOA2  
TS05  
TS04  
CTS4/RXD3/SCL0_B/USB_ID/ET0_CRS/  
RMII0_CRS_DV_A  
GTOWLO/GTIOC6B/AGTOB2  
36  
25  
16  
P407  
CTS4_RTS4/SDA0_B/SSLA3_A/USB_VBUS/  
ET0_EXOUT/ET0_EXOUT  
GTIOC6A/AGTIO0/RTCOUT  
ADTRG0  
TS03  
37  
38  
39  
40  
26  
27  
28  
29  
17 VSS_USB  
18 USB_DM  
19 USB_DP  
20 VCC_USB  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 18 of 109  
RA6M4 Datasheet  
1. Overview  
Table 1.15  
Pin list (2 of 4)  
Power, System,  
Clock, Debug,  
CAC  
I/O  
SCI/IIC/SPI/CAN/USBFS/QSPI/OSPI/SSIE/  
ports Ex. Bus Ex. Interrupt SDHI/MMC/EHTERC(MII,RMII)  
GPT/AGT/RTC  
ADC12/DAC12 CTSU  
41  
42  
30  
31  
21  
22  
P207  
P206  
A17  
TXD4/SSLA2_A/QSSL  
TSCAP  
TS02  
WAIT  
IRQ0-DS  
RXD4/CTS9/SDA1_B/SSLA1_A/USB_VBUSEN/  
SSIDATA0_C/SD0DAT2_A/ET0_LINKSTA/  
ET0_LINKSTA  
GTIU  
43  
32  
23 CLKOUT  
P205  
A16  
IRQ1-DS  
TXD4/CTS9_RTS9/SCL1_B/SSLA0_A/  
USB_OVRCURA-DS/SSILRCK0_C/SD0DAT3_A/  
ET0_WOL/ET0_WOL  
GTIV/GTIOC4A/AGTO1  
TS01  
44  
45  
46  
CACREF  
P204  
P203  
P202  
A18  
A19  
SCK4/SCK9/RSPCKA_A/USB_OVRCURB-DS/  
SSIBCK0_C/SD0DAT4_A/ET0_RX_DV  
GTIW/GTIOC4B/AGTIO1  
GTIOC5A/AGTOA3  
GTIOC5B/AGTOB3  
TS00  
TS18  
TS19  
IRQ2-DS  
CTS2_RTS2/TXD9/MOSIA_A/CTX0/SD0DAT5_A/  
ET0_COL  
WR1/BC1 IRQ3-DS  
SCK2/RXD9/MISOA_A/CRX0/SD0DAT6_A/  
ET0_ERXD2  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
P313  
A20  
SD0DAT7_A/ET0_ERXD3  
VSS  
VCC  
TCLK  
TDATA0  
TDATA1  
TDATA2  
P214  
P211  
P210  
P209  
P208  
QSPCLK/SD0CLK_B/ET0_MDC/ET0_MDC  
GTIU/AGTO5  
GTIV/AGTOA5  
GTIW/AGTOB5  
GTOVUP/AGTEE5  
GTOVLO  
CS7  
CS6  
CS5  
CS4  
QIO0/SD0CMD_B/ET0_MDIO/ET0_MDIO  
QIO1/SD0CD/ET0_WOL/ET0_WOL  
QIO2/SD0WP/ET0_EXOUT/ET0_EXOUT  
24 TDATA3  
25 RES  
26 MD  
QIO3/SD0DAT0_B/ET0_LINKSTA/ET0_LINKSTA  
P201  
P200  
P312  
P311  
P310  
P309  
P308  
P307  
P306  
P305  
P304  
27  
28  
29  
30  
31  
NMI  
CS3  
CS2  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
CTS3_RTS3  
AGTOA1  
SCK3  
AGTOB1  
TXD3/QIO3  
AGTEE1  
RXD3/QIO2  
AGTOA4  
CTS6/CTS3/QIO1  
AGTOB4  
CTS6_RTS6/QIO0  
GTOUUP_D/AGTEE4  
GTOULO_D/AGTOA2  
GTOWUP/AGTOB2  
GTOWLO/GTIOC7A/AGTEE2  
SCK6/QSSL  
IRQ8  
IRQ9  
TXD6/QSPCLK  
RXD6  
VSS  
VCC  
P303  
P302  
P301  
P300  
P108  
A8  
CTS9  
GTIOC7B  
A7  
IRQ5  
IRQ6  
TXD2/SSLA3_B  
GTOUUP/GTIOC4A  
GTOULO/GTIOC4B/AGTIO0  
GTOUUP/GTIOC0A  
GTOULO/GTIOC0B/AGTOA3  
GTOVUP/GTIOC1A/AGTOB3  
GTOVLO/GTIOC1B/AGTEE3  
GTIOC3A/AGTOA5  
GTIOC3B/AGTOB5  
GTIOC2A/AGTEE5  
GTIOC2B/AGTIO5  
GTIOC4A  
A6  
RXD2/CTS9_RTS9/SSLA2_B  
32 TCK/SWCLK  
33 TMS/SWDIO  
SSLA1_B  
CTS9_RTS9/SSLA0_B  
34 TDO/SWO/CLKOUT P109  
TXD9/MOSIA_B/CTX1  
35 TDI  
P110  
P111  
P112  
P113  
P114  
P115  
IRQ3  
IRQ4  
CTS2_RTS2/RXD9/MISOA_B/CRX1  
36  
37  
38  
A5  
SCK2/SCK9/RSPCKA_B  
A4  
TXD2/SCK1/SSLA0_B/QSSL/OM_CS1/SSISCK0_B  
A3  
RXD2/SSILRCK0_B  
A2  
CTS9/SSIRXD0_B  
A1  
SSITXD0_B  
VCC  
VSS  
P608  
P609  
P610  
A0/BC0  
CS1  
CS0  
GTIOC4B  
CTX1/OM_ECS  
CTS7/CRX1/OM_CS0  
GTIOC5A/AGTO5  
GTIOC5B/AGTO4  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 19 of 109  
RA6M4 Datasheet  
1. Overview  
Table 1.15  
Pin list (3 of 4)  
Power, System,  
Clock, Debug,  
CAC  
I/O  
SCI/IIC/SPI/CAN/USBFS/QSPI/OSPI/SSIE/  
ports Ex. Bus Ex. Interrupt SDHI/MMC/EHTERC(MII,RMII)  
GPT/AGT/RTC  
ADC12/DAC12 CTSU  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
62  
63  
64  
65  
66  
67  
CACREF/CLKOUT  
P611  
P612  
P613  
P614  
CTS7_RTS7  
AGTO3  
D8  
D9  
D10  
SCK7  
AGTO2  
TXD7  
AGTO1  
RXD7  
AGTO0  
39 VCC  
40 VSS  
41 VCL  
42  
43  
44  
45  
46  
47  
48  
P605  
P604  
P603  
P602  
P601  
P600  
D11  
D12  
D13  
BCLK  
WR/WR0  
RD  
CTS8  
GTIOC8A/AGTO4  
CTS9  
GTIOC8B/AGTEE4  
CTS9_RTS9  
GTIOC7A/AGTIO4  
TXD9/OM_CS1  
GTIOC7B/AGTO3  
RXD9/OM_SIO2  
GTIOC6A/AGTEE3  
CACREF/CLKOUT  
SCK9/OM_SIO4  
GTIOC6B/AGTIO3  
VCC  
VSS  
101 68  
102 69  
103 70  
104 71  
105 72  
106 73  
107 74  
108 75  
P107  
P106  
P105  
P104  
P103  
P102  
P101  
P100  
P800  
P801  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D14  
D15  
CTS8_RTS8/OM_SIO3  
GTIOC8A/AGTOA0  
SCK8/SSLB3_A/OM_SIO0  
GTIOC8B/AGTOB0  
IRQ0  
IRQ1  
TXD8/SSLB2_A/OM_SIO5  
GTETRGA/GTIOC1A/AGTO2  
RXD8/SSLB1_A/QIO2/OM_DQS  
GTETRGB/GTIOC1B/AGTEE2  
CTS0_RTS0/SSLB0_A/CTX0/QIO3/OM_SIO6  
GTOWUP/GTIOC2A/AGTIO2  
SCK0/RSPCKB_A/CRX0/QIO0/OM_SIO1  
GTOWLO/GTIOC2B/AGTO0  
ADTRG0  
IRQ1  
IRQ2  
TXD0/CTS1_RTS1/MOSIB_A/QIO1/OM_SIO7  
GTETRGB/GTIOC5A/AGTEE0  
RXD0/SCK1/MISOB_A/QSPCLK/OM_SCLK  
GTETRGA/GTIOC5B/AGTIO0  
109  
110  
111  
112  
CTS0  
AGTOA4  
CTS8  
AGTOB4  
VCC  
VSS  
113 76  
114 77  
115 78  
116 79  
117 80  
118 81  
49 CACREF  
P500  
P501  
P502  
P503  
P504  
P505  
P506  
P507  
CTS5/USB_VBUSEN/QSPCLK  
GTIU/AGTOA0  
AN116  
AN117  
AN118  
AN119  
AN120  
AN121  
AN122  
IRQ11  
IRQ12  
TXD5/USB_OVRCURA/QSSL  
GTIV/AGTOB0  
CTS6/RXD5/USB_OVRCURB/QIO0  
GTIW/AGTOA2  
CTS6_RTS6/SCK5/USB_EXICEN/QIO1  
GTETRGC/AGTOB2  
ALE  
SCK6/CTS5_RTS5/USB_ID/QIO2  
GTETRGD/AGTOA3  
IRQ14  
IRQ15  
RXD6/QIO3  
AGTOB3  
119  
120  
TXD6  
SCK6/SCK5  
121 82  
122 83  
123 84  
124 85  
125 86  
126 87  
127 88  
128 89  
129 90  
130 91  
50 VCC  
51 VSS  
52  
53  
P015  
P014  
IRQ13  
AN013/DA1  
AN012/DA0  
54 VREFL  
55 VREFH  
56 AVCC0  
57 AVSS0  
58 VREFL0  
59 VREFH0  
131  
P009  
P008  
P007  
P006  
IRQ13-DS  
IRQ12-DS  
AN009  
AN008  
AN007  
AN006  
132 92  
133 93  
134 94  
IRQ11-DS  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 20 of 109  
RA6M4 Datasheet  
1. Overview  
Table 1.15  
Pin list (4 of 4)  
Power, System,  
Clock, Debug,  
CAC  
I/O  
SCI/IIC/SPI/CAN/USBFS/QSPI/OSPI/SSIE/  
ports Ex. Bus Ex. Interrupt SDHI/MMC/EHTERC(MII,RMII)  
GPT/AGT/RTC  
ADC12/DAC12 CTSU  
135 95  
136 96  
137 97  
138 98  
139 99  
60  
61  
62  
63  
P005  
P004  
P003  
P002  
P001  
P000  
IRQ10-DS  
IRQ9-DS  
AN005  
AN004  
AN003  
IRQ8-DS  
IRQ7-DS  
IRQ6-DS  
AN002/AN102  
AN001/AN101  
140 100 64  
AN000/AN100  
141  
142  
143  
144  
VSS  
VCC  
P512  
P511  
IRQ14  
IRQ15  
TXD4/SCL1_A/CTX1  
RXD4/SDA1_A/CRX1  
GTIOC0A  
GTIOC0B  
Note:  
Several pin names have the added suffix of _A, _B, and _C. The suffix can be ignored when assigning functionality.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 21 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
2.  
Electrical Characteristics  
Supported peripheral functions and pins differ from one product name to another.  
Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:  
VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V  
2.7 ≤ VREFH0/VREFH ≤ AVCC0  
VSS = AVSS0 = VREFL0/VREFL = VSS_USB = 0 V  
T = T  
a
opr  
Figure 2.1 shows the timing conditions.  
For example, P100  
C
VOH = VCC × 0.7, VOL = VCC × 0.3  
VIH = VCC × 0.7, VIL = VCC × 0.3  
Load capacitance C = 30 pF  
Figure 2.1  
Input or output timing measurement conditions  
The recommended measurement conditions for the timing specification of each peripheral provided are for the best  
peripheral operation. Make sure to adjust the driving abilities of each pin to meet your conditions.  
2.1  
Absolute Maximum Ratings  
Table 2.1  
Parameter  
Absolute maximum ratings  
Symbol  
Value  
Unit  
*2  
Power supply voltage  
–0.3 to +4.0  
V
VCC, VCC_USB  
VBATT  
VBATT power supply voltage  
–0.3 to +4.0  
V
V
*1  
V
–0.3 to VCC + 0.3  
Input voltage (except for 5 V-tolerant ports )  
in  
*1  
V
in  
–0.3 to + VCC + 4.0 (max. 5.8)  
V
Input voltage (5 V-tolerant ports )  
Reference power supply voltage  
Analog power supply voltage  
VREFH/VREFH0  
–0.3 to VCC + 0.3  
–0.3 to +4.0  
V
V
*2  
AVCC0  
Analog input voltage  
V
T
–0.3 to AVCC0 + 0.3  
–40 to +105  
V
AN  
*3 *4  
°C  
°C  
Operating temperature  
opr  
stg  
Storage temperature  
T
–55 to +125  
Note 1. Ports P205, P206, P400, P401, P407 to P415, P511, P512, and P708 to P713 are 5 V tolerant.  
Note 2. Connect AVCC0 and VCC_USB to VCC.  
Note 3. See section 2.2.1. Tj/Ta Definition.  
Note 4. Contact a Renesas Electronics sales office for information on derating operation when Ta = +85°C to +105°C. Derating is the  
systematic reduction of load for improved reliability.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 22 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Caution: Permanent damage to the MCU might result if absolute maximum ratings are exceeded.  
Table 2.2  
Parameter  
Recommended operating conditions  
Symbol  
Value  
Min  
2.7  
3.0  
Typ  
Max  
3.6  
3.6  
Unit  
V
Power supply voltages  
VCC  
When USB is not used  
When USB is used  
V
VSS  
0
V
USB power supply voltages  
VCC_USB  
VSS_USB  
VBATT  
VCC  
0
V
V
VBATT power supply voltage  
Analog power supply voltages  
1.8  
3.6  
V
*1  
VCC  
V
AVCC0  
AVSS0  
0
V
Note 1. Connect AVCC0 to VCC. When the A/D converter and the D/A converter are not in use, do not leave the AVCC0, VREFH/VREFH0,  
AVSS0, and VREFL/VREFL0 pins open. Connect the AVCC0 and VREFH/VREFH0 pins to VCC, and the AVSS0 and VREFL/  
VREFL0 pins to VSS, respectively.  
2.2  
DC Characteristics  
2.2.1  
Tj/Ta Definition  
Table 2.3  
DC characteristics  
Conditions: Products with operating temperature (T ) -40 to +105°C  
a
Parameter  
Symbol  
Typ  
Max  
Unit  
Test conditions  
Permissible junction temperature  
T
125  
°C  
High-speed mode  
Low-speed mode  
Subosc-speed mode  
j
Note:  
Make sure that T = T + θja × total power consumption (W), where total power consumption = (VCC - V ) × ΣI + V × ΣI  
+
OL  
j
a
OH  
OH  
OL  
I max × VCC.  
CC  
2.2.2  
I/O V , V  
IH  
IL  
Table 2.4  
Parameter  
I/O VIH, VIL (1 of 2)  
Symbol Min  
Typ Max  
Unit  
Input voltage  
(except for  
Peripheral  
function pin  
EXTAL (external clock input), WAIT, SPI (except  
RSPCK), OSPI (except ECS)  
V
VCC ×  
0.8  
V
IH  
Schmitt trigger  
input pins)  
V
V
VCC × 0.2  
IL  
D00 to D15  
VCC ×  
0.7  
IH  
V
V
V
V
VCC × 0.3  
IL  
IH  
IL  
IH  
ETHERC  
2.3  
VCC × 0.2  
IIC (SMBus)  
2.1  
VCC + 3.6  
(max 5.8)  
V
0.8  
IL  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 23 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.4  
Parameter  
I/O VIH, VIL (2 of 2)  
Symbol Min  
Typ Max  
Unit  
Schmitt trigger  
input voltage  
Peripheral  
function pin  
IIC (except for SMBus)  
V
VCC ×  
0.7  
VCC + 3.6  
V
IH  
(max 5.8)  
VCC × 0.3  
V
IL  
ΔV  
V
VCC ×  
0.05  
T
*1 *5  
VCC ×  
0.8  
VCC + 3.6  
(max 5.8)  
5 V-tolerant ports  
IH  
V
VCC × 0.2  
IL  
ΔV  
VCC ×  
0.05  
T
RTCIC0,  
RTCIC1,  
RTCIC2  
When using the  
Battery Backup  
Function  
When VBATT  
power supply is  
selected  
V
V
0.8  
×
V
+ 0.3  
× 0.2  
IH  
BATT  
BATT  
V
V
IL  
BATT  
ΔV  
V
×
T
BATT  
0.05  
When VCC  
power supply is  
selected  
V
VCC ×  
0.8  
Higher  
voltage  
either  
IH  
VCC + 0.3 V  
or  
V
+ 0.3  
BATT  
V
V
VCC × 0.2  
IL  
ΔV  
VCC ×  
0.05  
T
When not using the Battery Backup  
Function  
V
V
VCC ×  
0.8  
VCC + 0.3  
IH  
VCC × 0.2  
IL  
ΔV  
VCC ×  
0.05  
T
*2  
V
VCC ×  
0.8  
Other input pins  
IH  
V
VCC × 0.2  
IL  
ΔV  
VCC ×  
0.05  
T
*3 *5  
Ports  
V
VCC ×  
0.8  
VCC + 3.6  
(max 5.8)  
V
5 V-tolerant ports  
IH  
V
V
VCC × 0.2  
IL  
*4  
VCC ×  
0.8  
Other input pins  
IH  
V
VCC × 0.2  
IL  
Note 1. RES and peripheral function pins associated with P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713 (total 22  
pins).  
Note 2. All input pins except for the peripheral function pins already described in the table.  
Note 3. P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713 (total 21 pins).  
Note 4. All input pins except for the ports already described in the table.  
Note 5. When VCC is less than 2.7 V, the input voltage of 5 V-tolerant ports should be less than 3.6 V, otherwise breakdown may occur  
because 5 V-tolerant ports are electrically controlled so as not to violate the break down voltage.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 24 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
2.2.3  
I/O I , I  
OH OL  
Table 2.5  
Parameter  
I/O IOH, IOL (1 of 2)  
Symbol  
Min Typ Max Unit  
Permissible output current (average  
value per pin)  
Ports P000 to P009, P014, P015, P201  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
–2.0 mA  
2.0 mA  
–2.0 mA  
2.0 mA  
–4.0 mA  
4.0 mA  
–20 mA  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
*1  
Ports P205, P206, P407 to P415, P708 to  
P713 (total 17 pins)  
Low drive  
*2  
Middle drive  
*3  
High drive  
20  
mA  
*1  
Ports P100 to P107, P208 to P211, P214,  
P600, P601 (total 15 pins)  
–2.0 mA  
2.0 mA  
–4.0 mA  
4.0 mA  
–16 mA  
Low drive  
*2  
Middle drive  
*3  
High drive  
16  
–20 mA  
20 mA  
mA  
High spped high  
drive  
*4  
*5  
*1  
–2.0 mA  
2.0 mA  
–4.0 mA  
4.0 mA  
–16 mA  
Other output pins  
Low drive  
*2  
Middle drive  
*3  
High drive  
16  
mA  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 25 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.5  
Parameter  
I/O IOH, IOL (2 of 2)  
Symbol  
Min Typ Max Unit  
Permissible output current (max value  
per pin)  
Ports P000 to P009, P014, P015, P201  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
–4.0 mA  
4.0 mA  
–4.0 mA  
4.0 mA  
–8.0 mA  
8.0 mA  
–40 mA  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
*1  
Ports P205, P206, P407 to P415, P708 to  
P713 (total 17 pins)  
Low drive  
*2  
Middle drive  
*3  
High drive  
40  
mA  
*1  
Ports P100 to P107, P208 to P211, P214,  
P600, P601 (total 15 pins)  
–4.0 mA  
4.0 mA  
–8.0 mA  
8.0 mA  
–32 mA  
Low drive  
*2  
Middle drive  
*3  
High drive  
32  
–40 mA  
40 mA  
mA  
High spped high  
drive  
*4  
*5  
*1  
–4.0 mA  
4.0 mA  
–8.0 mA  
8.0 mA  
–32 mA  
Other output pins  
Low drive  
*2  
Middle drive  
*3  
High drive  
32  
–80 mA  
80 mA  
mA  
Permissible output current (maxvalue of Maximum of all output pins  
total of all pins)  
ΣI  
ΣI  
OH (max)  
OL (max)  
Note 1. This is the value when low driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving  
ability is retained in Deep Software Standby mode.  
Note 2. This is the value when middle driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving  
ability is retained in Deep Software Standby mode.  
Note 3. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving  
ability is retained in Deep Software Standby mode.  
Note 4. This is the value when high speed high driving ability is selected in the Port Drive Capability in the PmnPFS register. The selected  
driving ability is retained in Deep Software Standby mode.  
Note 5. Except for P200, which is an input port.  
Caution: To protect the reliability of the MCU, the output current values should not exceed the values in this table.  
The average output current indicates the average value of current measured during 100 µs.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 26 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
2.2.4  
I/O V , V , and Other Characteristics  
OH OL  
Table 2.6  
I/O VOH, VOL, and other characteristics  
Parameter  
Symbol Min  
Typ Max Unit Test conditions  
Output voltage  
IIC  
V
OL  
V
OL  
V
OL  
V
OL  
V
OH  
V
OL  
V
OH  
0.4  
0.4  
0.6  
0.4  
V
I
I
I
I
I
I
I
= 3.0 mA  
OL  
OL  
OL  
OL  
OH  
OL  
OH  
= 6.0 mA  
*1  
= 15.0 mA (ICFER.FMPE = 1)  
= 20.0 mA (ICFER.FMPE = 1)  
= –1.0 mA  
IIC  
ETHERC  
VCC – 0.5 —  
0.4  
= 1.0 mA  
Ports P205, P206, P407 to P415,  
P708 to P713 (total of 17 pins)  
VCC – 1.0 —  
= –20 mA  
*2  
VCC = 3.3 V  
V
1.0  
I
OL  
= 20 mA  
OL  
VCC = 3.3 V  
Other output pins  
V
V
VCC – 0.5 —  
I
I
= –1.0 mA  
= 1.0 mA  
OH  
OH  
0.5  
OL  
OL  
Input leakage current  
RES  
|I |  
in  
5.0 µA  
V
V
= 0 V  
= 5.5 V  
in  
in  
Port P200  
1.0  
V
V
= 0 V  
= VCC  
in  
in  
Three-state leakage current 5 V-tolerant ports  
(off state)  
|I  
|
5.0 µA  
1.0  
V
V
= 0 V  
= 5.5 V  
TSI  
in  
in  
Other ports (except for port  
P200)  
V
V
= 0 V  
= VCC  
in  
in  
Input pull-up MOS current  
Input capacitance  
Ports P0 to P8  
I
p
–300  
–10 µA VCC = 2.7 to 3.6 V  
= 0 V  
V
in  
USB_DP, USB_DM, and ports  
P014, P015, P400, P401, P511,  
P512  
C
16  
pF  
Vbias = 0 V  
Vamp = 20 mV  
f = 1 MHz  
in  
Ta = 25°C  
Other input pins  
8
Note 1. SCL0_A, SDA0_A (total 2 pins).  
Note 2. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register.  
The selected driving ability is retained in Deep Software Standby mode.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 27 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
2.2.5  
Operating and Standby Current  
Table 2.7  
Parameter  
Supply  
Operating and standby current (1 of 2)  
Symbol Min Typ Max Unit Test conditions  
*2  
*3  
High-speed  
mode  
20  
30  
115 mA ICLK = 200 MHz  
PCLKA = 100  
Maximum  
I
CC  
*1  
current  
®*5 *6  
CoreMark  
,
MHz  
PCLKB = 50 MHz  
PCLKC = 50 MHz  
Normal mode  
All peripheral clocks enabled,  
while (1) code executing from  
flash  
PCLKD = 100  
MHz  
*4  
FCLK = 50 MHz  
BCLK = 100 MHz  
All peripheral clocks disabled,  
while (1) code executing from  
flash ,  
17  
10  
*5 *6  
*5 *6  
47  
Sleep mode ,  
Increase during Data flash P/E  
6
BGO operation  
Code flash P/E  
8
*5 *9  
1.9  
ICLK = 1 MHz  
Low-speed mode  
*5 *10  
1.7  
ICLK = 32.768  
kHz  
Subosc-speed mode  
Software Standby mode  
SNZCR.RXDREQEN = 1  
SNZCR.RXDREQEN = 0  
34  
1.6  
Deep Software Power supplied to Standby SRAM and USB  
Standby mode resume detecting unit  
16.9 131 µA  
Power not  
Power-on reset circuit low  
power function disabled  
11.8 31  
supplied to  
SRAM or USB  
resume  
Power-on reset circuit low  
power function enabled  
4.8 21  
detecting unit  
Increase when  
the RTC and  
AGT are  
When the low-speed on-chip  
oscillator (LOCO) is in use  
4.0  
1.2  
1.5  
0.9  
1.3  
1.0  
1.7  
When a crystal oscillator for  
low clock loads is in use  
operating  
When a crystal oscillator for  
standard clock loads is in use  
RTC operating while VCC is off (with the  
battery backup function, only the RTC and  
sub-clock oscillator operate)  
When a crystal  
oscillator for low  
clock loads is in use  
V
= 1.8 V,  
BATT  
VCC = 0 V  
V
= 3.3 V,  
BATT  
VCC = 0 V  
V = 1.8 V,  
BATT  
When a crystal  
oscillator for standard  
clock loads is in use  
VCC = 0 V  
V
= 3.3 V,  
BATT  
VCC = 0 V  
*7  
Inrush current on returning from deep  
software standby mode  
I
160  
1.0  
mA  
µC  
Inrush current  
RUSH  
Energy of inrush  
E
RUSH  
*7  
current  
Analog  
power supply  
current  
During 12-bit A/D conversion  
Temperature sensor  
AI  
CC  
0.8 1.1 mA  
0.1 0.2 mA  
0.1 0.2 mA  
0.6 1.1 mA  
0.9 1.6 mA  
During D/A conversion (per unit)  
Without AMP output  
With AMP output  
Waiting for A/D, D/A conversion (all units)  
ADC12, DAC12 in standby modes (all units)  
*8  
2
8
µA  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 28 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.7  
Parameter  
Operating and standby current (2 of 2)  
Symbol Min Typ Max Unit Test conditions  
Reference  
power supply  
current  
During 12-bit A/D conversion (unit 0)  
Waiting for 12-bit A/D conversion (unit 0)  
ADC12 in standby modes (unit 0)  
During 12-bit A/D conversion (unit 1)  
During D/A conversion (per unit)  
AI  
70  
120 µA  
REFH0  
0.07 0.5 µA  
0.07 0.5 µA  
(VREFH0)  
Reference  
power supply  
current  
AI  
70  
120 µA  
REFH  
Without AMP output  
With AMP ouput  
0.1 0.4 mA  
0.1 0.4 mA  
0.07 0.8 µA  
0.07 0.8 µA  
(VREFH)  
Waiting for 12-bit A/D (unit 1), D/A (all units) conversion  
ADC12 unit 1 in standby modes  
USB  
operating  
current  
Low speed  
Full speed  
USB  
USB  
I
I
3.5 6.5 mA VCC_USB  
4.0 10.0 mA VCC_USB  
CCUSBLS  
CCUSBFS  
Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.  
Note 2. Measured with clocks supplied to the peripheral functions. This does not include the BGO operation.  
Note 3. I depends on f (ICLK) as follows.  
CC  
I
I
I
I
Max. = 0.37 × f + 42 (max. operation in high-speed mode)  
Typ. = 0.07 × f + 3.6 (normal operation in high-speed mode, all peripheral clocks disabled)  
Typ. = 0.2 × f + 1.7 (low-speed mode)  
CC  
CC  
CC  
CC  
Max. = 0.03 × f + 42 (sleep mode)  
Note 4. This does not include the BGO operation.  
Note 5. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.  
Note 6. FCLK, BCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (3.125 MHz).  
Note 7. Reference value  
Note 8. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (12-Bit A/D Converter 0 Module Stop bit) and  
MSTPCRD.MSTPD15 (12-bit A/D converter 1 module stop bit) are in the module-stop state.  
Note 9. FCLK, BCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (15.6 kHz).  
Note 10. BCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (512 Hz). FCLK is the same frequency as that of ICLK.  
Table 2.8  
Coremark and normal mode current  
Parameter  
Symbol  
Typ  
99  
Unit  
Test conditions  
*1  
Coremark  
I
µA/MHz  
ICLK = 200MHz  
PCLKA =  
PCLKB =  
PCLKC =  
PCLKD =  
FCLK =  
Supply Current  
CC  
Normal mode  
All peripheral  
clocks disabled,  
cache on, while  
(1) code  
95  
executing from  
BCLK =  
3.125MHz  
*2  
flash  
All peripheral  
clocks disabled,  
cache off, while  
(1) code  
82  
executing from  
*2  
flash  
Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.  
Note 2. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 29 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
100.0  
10.0  
1.0  
0.1  
-40  
-20  
0
20  
40  
Ta (°C)  
60  
80  
100  
Average value of the tested middle samples during product evaluation.  
Average value of the tested upper-limit samples during product evaluation.  
Figure 2.2  
Temperature dependency in Software Standby mode (reference data)  
1000  
100  
10  
1
-40  
-20  
0
20  
40  
Ta (°C)  
60  
80  
100  
Average value of the tested middle samples during product evaluation.  
Average value of the tested upper-limit samples during product evaluation.  
Figure 2.3  
Temperature dependency in Deep Software Standby mode, power supplied to standby SRAM  
and USB resume detecting unit (reference data)  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 30 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
100  
10  
1
-40  
-20  
0
20  
40  
Ta (°C)  
60  
80  
100  
Average value of the tested middle samples during product evaluation.  
Average value of the tested upper-limit samples during product evaluation.  
Figure 2.4  
Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or  
USB resume detecting unit, power-on reset circuit low power function disabled (reference  
data)  
100  
10  
1
-40  
-20  
0
20  
40  
Ta (°C)  
60  
80  
100  
Average value of the tested middle samples during product evaluation.  
Average value of the tested upper-limit samples during product evaluation.  
Figure 2.5  
Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or  
USB resume detecting unit, power-on reset circuit low power function enabled (reference data)  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 31 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
2.2.6  
VCC Rise and Fall Gradient and Ripple Frequency  
Table 2.9  
Rise and fall gradient characteristics  
Test  
Parameter  
Symbol  
Min  
Typ Max Unit  
conditions  
VCC rising gradient  
VCC falling gradient  
Voltage monitor 0 reset disabled at startup  
Voltage monitor 0 reset enabled at startup  
SrVCC  
0.0084  
0.0084  
0.0084  
20  
20  
ms/V  
*1  
SCI/USB boot mode  
*2  
SfVCC  
0.0084  
ms/V  
Note 1. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit.  
Note 2. This applies when VBATT is used.  
Table 2.10  
Rising and falling gradient and ripple frequency characteristics  
The ripple voltage must meet the allowable ripple frequency f  
within the range between the VCC upper limit (3.6 V) and lower limit (2.7  
r(VCC)  
V). When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
Allowable ripple  
frequency  
f
10  
kHz  
Figure 2.6  
r (VCC)  
V
≤ VCC × 0.2  
r (VCC)  
1
MHz  
MHz  
ms/V  
Figure 2.6  
≤ VCC × 0.08  
V
r (VCC)  
10  
Figure 2.6  
≤ VCC × 0.06  
V
r (VCC)  
Allowable voltage  
change rising and  
falling gradient  
dt/dVCC  
1.0  
When VCC change  
exceeds VCC ±10%  
1 / fr(VCC)  
VCC  
Vr(VCC)  
Figure 2.6  
Ripple waveform  
2.2.7  
Thermal Characteristics  
Maximum value of junction temperature (Tj) must not exceed the value of “section 2.2.1. Tj/Ta Definition”.  
Tj is calculated by either of the following equations.  
Tj = Ta + θja × Total power consumption  
Tj = Tt + Ψjt × Total power consumption  
Tj : Junction Temperature (°C)  
Ta : Ambient Temperature (°C)  
Tt : Top Center Case Temperature (°C)  
θja : Thermal Resistance of “Junction”-to-“Ambient” (°C/W)  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 32 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Ψjt : Thermal Resistance of “Junction”-to-“Top Center Case” (°C/W)  
Total power consumption = Voltage × (Leakage current + Dynamic current)  
Leakage current of IO = Σ (I × V ) /Voltage + Σ (|I | × |VCC – V |) /Voltage  
OL  
OL  
OH  
OH  
Dynamic current of IO = Σ IO (C + C ) × IO switching frequency × Voltage  
in  
load  
C : Input capacitance  
in  
C : Output capacitance  
load  
Regarding θja and Ψjt, refer to Table 2.11.  
Table 2.11  
Thermal Resistance  
Package  
*1  
Parameter  
Symbol  
Value  
38.0  
35.0  
33.0  
0.80  
0.76  
0.63  
Unit  
Test conditions  
Thermal Resistance  
64-pin LQFP (PLQP0064KB-C)  
100-pin LQFP (PLQP0100KB-B)  
144-pin LQFP (PLQP0144KA-B)  
64-pin LQFP (PLQP0064KB-C)  
100-pin LQFP (PLQP0100KB-B)  
144-pin LQFP (PLQP0144KA-B)  
θja  
°C/W JESD 51-2 and 51-7  
compliant  
Ψjt  
°C/W JESD 51-2 and 51-7  
compliant  
Note 1. The values are reference values when the 4-layer board is used. Thermal resistance depends on the number of layers or size of the  
board. For details, refer to the JEDEC standards.  
2.2.7.1  
Calculation guide of I max  
CC  
Table 2.12 shows the power consumption of each unit.  
Table 2.12  
Power consumption of each unit (1 of 2)  
*1  
Dynamic current/  
Leakage current  
MCU  
Domain  
Frequency  
[MHz]  
Current  
[uA/MHz]  
Current  
[mA]  
Category  
Item  
*2  
*3  
*3  
*3  
Leakage current  
Analog  
21.22  
25.22  
30.22  
37.42  
LDO and Leak  
Ta = 75 °C  
Ta = 85 °C  
Ta = 95 °C  
*3  
Ta = 105 °C  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 33 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.12  
Power consumption of each unit (2 of 2)  
*1  
Dynamic current/  
Leakage current  
MCU  
Domain  
Frequency  
[MHz]  
Current  
[uA/MHz]  
Current  
[mA]  
Category  
Item  
Dynamic current  
CPU  
Operation with  
Coremark  
200  
86.357  
17.27  
Flash and SRAM  
*4  
*4  
Peripheral Unit  
Timer  
100  
100  
50  
5.300  
3.946  
1.378  
10.095  
0.53  
0.39  
0.07  
0.50  
GPT16 (6ch)  
GPT32 (4ch)  
*4  
POEG (4 Groups)  
*4  
50  
AGT (6ch)  
RTC  
50  
5.239  
0.722  
0.267  
7.651  
8.788  
25.595  
0.26  
0.04  
0.01  
0.77  
0.44  
2.56  
WDT  
50  
IWDT  
50  
Communication  
interfaces  
ETHERC  
USBFS  
100  
50  
*4  
100  
SCI (10ch)  
*4  
50  
3.014  
3.843  
6.770  
0.15  
0.19  
0.68  
IIC (2ch)  
*4  
50  
CAN (2ch)  
*4  
100  
SPI (2ch)  
OSPI  
QSPI  
SSIE  
SDHI  
50  
32.530  
2.587  
3.131  
7.074  
4.697  
1.63  
0.26  
0.16  
0.35  
0.47  
100  
50  
50  
*4  
Analog  
100  
ADC12 (2 Units)  
*4  
100  
3.543  
0.35  
DAC12 (2ch)  
TSN  
50  
50  
0.166  
0.678  
0.01  
0.03  
Human machine  
interfaces  
CTSU  
Event link  
ELC  
50  
1.016  
218.100  
0.521  
0.358  
0.909  
4.045  
3.720  
0.05  
21.81  
0.05  
0.04  
0.05  
0.81  
0.74  
Security  
SCE9  
CRC  
DOC  
CAC  
DMAC  
DTC  
100  
100  
100  
50  
Data processing  
System  
DMA  
200  
200  
Note 1. The values are guaranteed by design.  
Note 2. LDO and Leak are internal voltage regulator’s current and MCU’s leakage current.  
It is selected according to the temperature of Ta.  
Note 3. Δ(Tj-Ta) = 20 °C is considered to measure the current.  
Note 4. To determine the current consumption per channel or unit, divide Current [mA] by the number of channels, groups or units.  
Table 2.13 shows the outline of operation for each unit.  
Table 2.13  
Peripheral  
GPT  
Outline of operation for each unit (1 of 2)  
Outline of operation  
Operating modes is set to saw-wave PWM mode.  
GPT is operating with PCLKD.  
POEG  
Only clear module stop bit.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 34 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.13  
Peripheral  
AGT  
Outline of operation for each unit (2 of 2)  
Outline of operation  
AGT is operating with PCLKB.  
RTC is operating with LOCO.  
WDT is operating with PCLKB.  
IWDT is operating with IWDTCLK.  
RTC  
WDT  
IWDT  
ETHERC  
Operation modes is set to full-duplex mode.  
ETHERC is operating using Reduced Media Independent Interface (RMII).  
USBFS  
Transfer types is set to bulk transfer.  
USBFS is operating using Full-speed transfer (12 Mbps).  
SCI  
IIC  
SCI is transmitting data in clock synchronous mode.  
Communication format is set to I2C-bus format.  
IIC is transmitting data in master mode.  
CAN  
SPI  
CAN is transmitting and receiving data in self-test mode 1.  
SPI mode is set to SPI operation (4-wire method).  
SPI master/slave mode is set to master mode.  
SPI is transmitting 8-bit width data.  
OSPI  
Transfer mode is single continuous write mode.  
OSPI is issuing memory write command to OctaRAM.  
QSPI  
SSIE  
QSPI is issuing Fast Read Quad I/O Instruction.  
Communication mode is set to Master.  
System word length is set to 32 bits.  
Data word length is set to 20 bits.  
SSIE is transmitting data using I2S format.  
SDHI  
Transfer bus mode is set to 4-bit wide bus mode.  
SDHI is issuing CMD24 (single-block write).  
ADC12  
Resolution is set to 12-bit accuracy.  
Data registers is set to A/D-converted value addition mode.  
ADC12 is converting the analog input in continuous scan mode.  
DAC12  
TSN  
DAC12 is outputting the conversion result while updating the value of data register.  
TSN is operating.  
CTSU  
ELC  
CTSU is operating in self-capacitance single scan mode.  
Only clear module stop bit.  
SCE9  
CRC  
DOC  
CAC  
SCE9 is executing built-in self test.  
CRC is generating CRC code using 32-bit CRC32-C polynomial.  
DOC is operating in data addition mode.  
Measurement target clocks is set to PCLKB.  
Measurement reference clocks is set to PCLKB.  
CAC is measuring the clock frequency accuracy.  
DMAC  
DTC  
Bit length of transfer data is set to 32 bits.  
Transfer mode is set to block transfer mode.  
DMAC is transferring data from SRAM0 to SRAM0.  
Bit length of transfer data is set to 32 bits.  
Transfer mode is set to block transfer mode.  
DTC is transferring data from SRAM0 to SRAM0.  
2.2.7.2  
Example of T calculation  
j
Assumption :  
Package 144-pin LQFP : θja = 33.0 °C/W  
Ta = 100 °C  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 35 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
I max = 70 mA  
CC  
VCC = 3.5 V (VCC = AVCC = VCC_USB)  
I = 1 mA, V = VCC – 0.5 V, 12 Outputs  
OH  
OH  
I = 20 mA, V = 1.0 V, 8 Outputs  
OL  
OL  
I = 1 mA, V = 0.5 V, 12 Outputs  
OL  
OL  
C = 8 pF, 32 pins, Input frequency = 10 MHz  
in  
C  
= 30 pF, 32 pins, Output frequency = 10 MHz  
load  
Leakage current of IO = Σ (V × I ) / Voltage + Σ ((VCC - V ) × I ) / Voltage  
OL  
OL  
OH  
OH  
= (20 mA × 1 V) × 8 / 3.5 V + (1 mA × 0.5 V) × 12 / 3.5 V + ((VCC - (VCC - 0.5 V)) × 1 mA) × 12 / 3.5 V  
= 45.7 mA + 1.71 mA + 1.71 mA  
= 49.1 mA  
Dynamic current of IO = Σ IO (C + C  
) × IO switching frequency × Voltage  
in  
load  
= ((8 pF × 32) × 10 MHz + (30 pF × 32) × 10 MHz) × 3.5 V  
= 42.6 mA  
Total power consumption = Voltage × (Leakage current + Dynamic current)  
= (70 mA × 3.5 V) + (49.1 mA + 42.6 mA) × 3.5 V  
= 566 mW (0.566 W)  
Tj = Ta + θja × Total power consumption  
= 100 °C + 33.0 °C/W × 0.566W  
= 118.7 °C  
2.3  
AC Characteristics  
Frequency  
2.3.1  
Table 2.14  
Parameter  
Operation frequency value in high-speed mode  
Symbol Min  
Typ  
Max  
200  
100  
50  
Unit  
Operation frequency  
System clock (ICLK)  
f
MHz  
Peripheral module clock (PCLKA)  
Peripheral module clock (PCLKB)  
Peripheral module clock (PCLKC)  
*2  
*1  
50  
Peripheral module clock (PCLKD)  
Flash interface clock (FCLK)  
100  
50  
External bus clock (BCLK)  
EBCLK pin output  
100  
50  
Note 1. FCLK must run at a frequency of at least 4 MHz when programming or erasing the flash memory.  
Note 2. When the ADC12 is used, the PCLKC frequency must be at least 1 MHz.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 36 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.15  
Operation frequency value in low-speed mode  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Operation frequency  
System clock (ICLK)  
f
1
1
1
1
MHz  
Peripheral module clock (PCLKA)  
Peripheral module clock (PCLKB)  
*2  
*2  
Peripheral module clock (PCLKC)  
Peripheral module clock (PCLKD)  
1
1
*1  
Flash interface clock (FCLK)  
External bus clock (BCLK)  
EBCLK pin output  
1
1
Note 1. Programming or erasing the flash memory is disabled in low-speed mode.  
Note 2. When the ADC12 is used, the PCLKC frequency must be set to at least 1 MHz.  
Table 2.16  
Parameter  
Operation frequency value in Subosc-speed mode  
Symbol Min  
Typ  
Max  
36.1  
36.1  
36.1  
36.1  
Unit  
Operation frequency  
System clock (ICLK)  
f
29.4  
kHz  
Peripheral module clock (PCLKA)  
Peripheral module clock (PCLKB)  
*2  
Peripheral module clock (PCLKC)  
Peripheral module clock (PCLKD)  
36.1  
36.1  
*1  
29.4  
Flash interface clock (FCLK)  
External bus clock (BCLK)  
EBCLK pin output  
36.1  
36.1  
Note 1. Programming or erasing the flash memory is disabled in Subosc-speed mode.  
Note 2. The ADC12 cannot be used.  
2.3.2  
Clock Timing  
Table 2.17  
Clock timing except for sub-clock oscillator (1 of 2)  
Parameter  
Symbol  
Min  
20  
Typ  
Max  
Unit Test conditions  
EBCLK pin output cycle time  
EBCLK pin output high pulse width  
EBCLK pin output low pulse width  
EBCLK pin output rise time  
t
t
t
t
t
t
t
t
t
t
f
t
f
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.7  
Bcyc  
3.3  
3.3  
CH  
CL  
5.0  
5.0  
Cr  
EBCLK pin output fall time  
Cf  
EXTAL external clock input cycle time  
EXTAL external clock input high pulse width  
EXTAL external clock input low pulse width  
EXTAL external clock rise time  
EXTAL external clock fall time  
Main clock oscillator frequency  
41.66  
15.83  
15.83  
Figure 2.8  
EXcyc  
EXH  
EXL  
5.0  
5.0  
24  
EXr  
EXf  
8
MHz —  
MAIN  
MAINOSCWT  
LOCO  
LOCOWT  
*1  
*1  
ms Figure 2.9  
Main clock oscillation stabilization wait time (crystal)  
LOCO clock oscillation frequency  
29.4912 32.768 36.0448 kHz  
60.4 µs  
LOCO clock oscillation stabilization wait time  
Figure 2.10  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 37 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.17  
Clock timing except for sub-clock oscillator (2 of 2)  
Parameter  
Symbol  
Min  
Typ  
15  
8
Max  
Unit Test conditions  
kHz  
MHz —  
µs  
ILOCO clock oscillation frequency  
MOCO clock oscillation frequency  
MOCO clock oscillation stabilization wait time  
f
13.5  
6.8  
16.5  
ILOCO  
F
9.2  
MOCO  
t
15.0  
MOCOWT  
HOCO16  
HOCO18  
HOCO20  
HOCO16  
HOCO18  
HOCO20  
HOCO16  
HOCO18  
HOCO20  
HOCOWT  
HOCO clock oscillator oscillation  
frequency  
Without FLL f  
15.78  
17.75  
19.72  
15.71  
17.68  
19.64  
16  
18  
20  
16  
18  
20  
16.22  
18.25  
20.28  
16.29  
18.32  
20.36  
16.040  
18.045  
20.050  
64.7  
MHz –20 Ta ≤ 105°C  
f
f
f
f
f
–40 ≤ Ta ≤ 20°C  
With FLL  
f
f
f
t
15.960 16  
17.955 18  
19.950 20  
–40 ≤ Ta ≤ 105°C  
Sub-clock frequency accuracy is  
±50 ppm.  
*2  
µs  
HOCO clock oscillation stabilization wait time  
HOCO period jitter  
±85  
ps  
FLL stabilization wait time  
PLL clock frequency  
t
f
f
t
1.8  
200  
240  
174.9  
ms  
FLLWT  
120  
120  
MHz —  
MHz —  
PLL  
PLL2 clock frequency  
PLL2  
PLL/PLL2 clock oscillation stabilization wait time  
PLL/PLL2 period jitter  
µs  
ps  
ps  
Figure 2.11  
PLLWT  
±100  
±300  
PLL/PLL2 long term jitter  
Term: 1µs, 10µs  
Note 1. When setting up the main clock oscillator, ask the oscillator manufacturer for an oscillation evaluation, and use the results as the  
recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the recommended  
value.  
After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm that  
it is 1, and then start using the main clock oscillator.  
Note 2. This is the time from release from reset state until the HOCO oscillation frequency (f  
) reaches the range for guaranteed  
HOCO  
operation.  
Table 2.18  
Parameter  
Clock timing for the sub-clock oscillator  
Symbol  
Min Typ  
Max Unit Test conditions  
Sub-clock frequency  
f
32.768  
kHz  
s
SUB  
*1  
Sub-clock oscillation stabilization wait time  
t
Figure 2.12  
SUBOSCWT  
Note 1. When setting up the sub-clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the  
recommended oscillation stabilization time.  
After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after the  
sub-clock oscillation stabilization time elapses with an adequate margin. A value that is two times the value shown is recommended.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 38 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
tBcyc  
tCH  
tCf  
EBCLK pin output  
tCr  
tCL  
Figure 2.7  
EBCLK output timing  
tXcyc  
tXH  
tXL  
EXTAL external clock input  
VCC × 0.5  
tXr  
tXf  
Figure 2.8  
EXTAL external clock input timing  
MOSCCR.MOSTP  
Main clock oscillator output  
Main clock  
tMAINOSCWT  
Figure 2.9  
Main clock oscillation start timing  
LOCOCR.LCSTP  
On-chip oscillator output  
tLOCOWT  
LOCO clock  
Figure 2.10  
LOCO clock oscillation start timing  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 39 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
PLLCR.PLLSTP  
PLL2CR.PLL2STP  
PLL/PLL2 circuit output  
tPLLWT  
OSCSF.PLLSF  
OSCSF.PLL2SF  
PLL/PLL2 clock  
Figure 2.11  
PLL/PLL2 clock oscillation start timing  
SOSCCR.SOSTP  
Sub-clock oscillator output  
tSUBOSCWT  
Sub-clock  
Figure 2.12  
Sub-clock oscillation start timing  
2.3.3  
Reset Timing  
Table 2.19  
Parameter  
Reset timing  
Symbol Min Typ Max Unit Test conditions  
RES pulse width  
Power-on  
Deep Software Standby mode  
t
t
t
0.7  
0.6  
0.3  
ms Figure 2.13  
ms Figure 2.14  
ms  
RESWP  
RESWD  
RESWS  
Software Standby mode, Subosc-speed  
mode  
All other  
t
t
t
200  
µs  
RESW  
Wait time after RES cancellation  
37.3 41.2 µs  
324 397.7 µs  
Figure 2.13  
RESWT  
RESW2  
Wait time after internal reset cancellation  
(IWDT reset, WDT reset, software reset, SRAM parity error reset, SRAM ECC error  
reset, bus master MPU error reset, TrustZone error reset, Cache parity error reset)  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 40 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
VCC  
RES  
VCCmin  
tRESWP  
Internal reset signal  
(low is valid)  
tRESWT  
Figure 2.13  
RES pin input timing under the condition that VCC exceeds VPOR voltage threshold  
tRESWD, tRESWS, tRESW  
RES  
Internal reset signal  
(low is valid)  
tRESWT  
Figure 2.14  
Reset input timing  
2.3.4  
Wakeup Timing  
Table 2.20  
Parameter  
Timing of recovery from low power modes (1 of 2)  
Symbol  
Min Typ Max Unit Test conditions  
*13  
Recovery time from  
Software Standby  
mode  
Crystal resonator  
connected to main clock  
oscillator  
System clock source is  
main clock oscillator  
2.1  
2.4  
ms Figure 2.15  
The division ratio of all  
oscillators is 1.  
t
SBYMC  
*2  
*1  
*13  
System clock source is  
PLL with main clock  
2.2  
2.6  
ms  
t
SBYPC  
*3  
oscillator  
*13  
*13  
External clock input to  
main clock oscillator  
System clock source is  
main clock oscillator  
45  
125 μs  
t
t
SBYEX  
*4  
System clock source is  
PLL with main clock  
170 255 μs  
SBYPE  
*5  
oscillator  
*6 *11  
*13  
*13  
*13  
0.7  
0.7  
55  
0.8  
0.9  
ms  
ms  
System clock source is sub-clock oscillator  
t
t
t
t
SBYSC  
*7 *11  
System clock source is LOCO  
SBYLO  
*8  
130 µs  
System clock source is HOCO clock oscillator  
SBYHO  
*9  
*13  
175 265 µs  
35 65 µs  
System clock source is PLL with HOCO  
SBYPH  
*10  
*13  
System clock source is MOCO clock oscillator  
t
t
SBYMO  
DSBY  
Recovery time from  
Deep Software  
Standby mode  
DPSBYCR.DEEPCUT[1] = 0 and  
DPSWCR.WTSTS[5:0] = 0x0E  
0.38 0.54 ms Figure 2.16  
0.55 0.73 ms  
DPSBYCR.DEEPCUT[1] = 1 and  
DPSWCR.WTSTS[5:0] = 0x19  
t
t
DSBY  
Wait time after cancellation of Deep Software Standby mode  
56  
57  
t
cyc  
DSBYWT  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 41 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.20  
Parameter  
Timing of recovery from low power modes (2 of 2)  
Symbol  
Min Typ Max Unit Test conditions  
*12  
*12  
Recovery time from  
Software Standby  
mode to Snooze  
mode  
High-speed mode when system clock source is  
HOCO (20 MHz)  
t
μs  
Figure 2.17  
35  
70  
14  
SNZ  
*12  
*12  
High-speed mode when system clock source is  
MOCO (8 MHz)  
t
μs  
11  
SNZ  
Note 1. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be  
determined with the following equation:  
Total recovery time = recovery time for an oscillator as the system clock source + the longest tSBYOSCWT in the active oscillators -  
tSBYOSCWT for the system clock + 2 LOCO cycles (when LOCO is operating) + Subosc is oscillating and MSTPC0 = 0 (CAC  
module stop))  
Note 2. When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05) and the  
greatest value of the internal clock division setting is 1.  
Note 3. When the frequency of PLL is 200 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05) and the greatest  
value of the internal clock division setting is 4.  
Note 4. When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00) and  
the greatest value of the internal clock division setting is 1.  
Note 5. When the frequency of PLL is 200 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00) and the greatest  
value of the internal clock division setting is 4.  
Note 6. The Sub-clock oscillator frequency is 32.768 KHz and the greatest value of the internal clock division setting is 1.  
Note 7. The LOCO frequency is 32.768 KHz and the greatest value of the internal clock division setting is 1.  
Note 8. The HOCO frequency is 20 MHz and the greatest value of the internal clock division setting is 1.  
Note 9. The PLL frequency is 200 MHz and the greatest value of the internal clock division setting is 4.  
Note 10. The MOCO frequency is 8 MHz and the greatest value of the internal clock division setting is 1.  
Note 11. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode.  
Note 12. When the SNZCR.RXDREQEN bit is set to 0, the following time is added as the power supply recovery time: 16 µs (typical), 48 µs  
(maximum).  
Note 13. The recovery time can be calcurated with the equation of tSBYOSCWT + tSBYSEQ. And they can be determined with the fol-lowing  
value and equation. For n, the greatest value is selected from among the internal clock division settings.  
Wakeup time TYP  
tSBYOSCWT  
MAX  
Unit  
tSBYSEQ  
tSBYOSCWT  
tSBYSEQ  
tSBYMC  
(MSTS[7:0]*32 + 3) /  
0.262  
35 + 18 / fICLK + 4n / fMAIN  
(MSTS[7:0]*32 + 14 /  
0.236  
62 + 18 / fICLK + 4n / fMAIN  
µs  
µs  
tSBYPC  
(MSTS[7:0]*32 + 34) /  
0.262  
35 + 18 / fICLK + 4n / fPLL  
(MSTS[7:0]*32 + 45) /  
0.236  
62 + 18 / fICLK + 4n / fPLL  
tSBYEX  
tSBYPE  
tSBYSC  
tSBYLO  
tSBYHO  
tSBYPH  
tSBYMO  
10  
135  
0
35 + 18 / fICLK + 4n / fEXMAIN 62  
62 + 18 / fICLK + 4n / fEXMAIN µs  
35 + 18 / fICLK + 4n / fPLL  
35 + 18 / fICLK + 4n / fSUB  
35 + 18 / fICLK + 4n / fLOCO  
35 + 18 / fICLK + 4n / fHOCO  
35 + 18 / fICLK + 4n / fPLL  
35 + 18 / fICLK + 4n / fMOCO  
192  
62 + 18 / fICLK + 4n / fPLL  
62 + 18 / fICLK + 4n / fSUB  
62 + 18 / fICLK + 4n / fLOCO  
62 + 18 / fICLK + 4n / fHOCO  
62 + 18 / fICLK + 4n / fPLL  
µs  
µs  
µs  
µs  
µs  
0
0
0
20  
140  
0
67  
202  
0
62 + 18 / fICLK + 4n / fMOCO µs  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 42 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Oscillator  
(system clock)  
tSBYOSCWT  
tSBYSEQ  
Oscillator  
(not the system clock)  
ICLK  
IRQ  
Software Standby mode  
tSBYMC, tSBYEX, tSBYPC, tSBYPE,  
tSBYPH, tSBYSC, tSBYHO, tSBYLO  
When stabilization of the system clock oscillator is slower  
Oscillator  
(system clock)  
tSBYSEQ  
tSBYOSCWT  
Oscillator  
(not the system clock)  
tSBYOSCWT  
ICLK  
IRQ  
Software Standby mode  
tSBYMC, tSBYEX, tSBYPC, tSBYPE,  
tSBYPH, tSBYSC, tSBYHO, tSBYLO  
When stabilization of an oscillator other than the system clock is slower  
Figure 2.15  
Software Standby mode cancellation timing  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 43 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Oscillator  
IRQ  
Deep Software Standby  
reset  
(low is valid)  
Internal reset  
(low is valid)  
Deep Software Standby mode  
tDSBY  
tDSBYWT  
Reset exception handling start  
Figure 2.16  
Deep Software Standby mode cancellation timing  
Oscillator  
ICLK (except DTC, SRAM)  
ICLK (to DTC, SRAM)*1 PCLK  
IRQ  
Software Standby mode  
Snooze mode  
tSNZ  
Note 1. When SNZCR.SNZDTCEN bit is set to 1, ICLK is supplied to DTC and SRAM.  
Figure 2.17  
Recovery timing from Software Standby mode to Snooze mode  
2.3.5  
NMI and IRQ Noise Filter  
Table 2.21  
Parameter  
NMI and IRQ noise filter  
Symbol  
Min  
Typ  
Max  
Unit  
Test conditions  
NMI pulse  
width  
t
200  
ns  
NMI digital filter  
disabled  
t
t
× 2 ≤ 200 ns  
× 2 > 200 ns  
NMIW  
Pcyc  
*1  
t
× 2  
Pcyc  
Pcyc  
200  
NMI digital filter  
enabled  
t
t
× 3 ≤ 200 ns  
× 3 > 200 ns  
NMICK  
NMICK  
*2  
t
× 3.5  
NMICK  
IRQ pulse  
width  
t
200  
ns  
IRQ digital filter  
disabled  
t
t
× 2 ≤ 200 ns  
× 2 > 200 ns  
IRQW  
Pcyc  
Pcyc  
*1  
t
× 2  
Pcyc  
200  
IRQ digital filter  
enabled  
t
t
× 3 ≤ 200 ns  
× 3 > 200 ns  
IRQCK  
IRQCK  
*3  
t
× 3.5  
IRQCK  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 44 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Note:  
Note:  
200 ns minimum in Software Standby mode.  
If the clock source is switched, add 4 clock cycles of the switched source.  
Note 1. t  
Note 2. t  
Note 3. t  
indicates the PCLKB cycle.  
Pcyc  
indicates the cycle of the NMI digital filter sampling clock.  
indicates the cycle of the IRQi digital filter sampling clock.  
NMICK  
IRQCK  
NMI  
tNMIW  
Figure 2.18  
NMI interrupt input timing  
IRQ  
tIRQW  
Figure 2.19  
IRQ interrupt input timing  
Bus Timing  
2.3.6  
Table 2.22  
Bus timing  
Condition:  
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF.  
EBCLK: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Others: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol  
Min  
12.5  
0
Max  
12.5  
12.5  
12.5  
12.5  
12.5  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test conditions  
Address delay  
Byte control delay  
CS delay  
t
t
t
t
t
t
t
t
t
t
t
t
Figure 2.22 to Figure  
2.25  
AD  
BCD  
CSD  
ALED  
RSD  
RDS  
RDH  
WRD  
WDD  
WDH  
WTS  
WTH  
ALE delay time  
RD delay  
Read data setup time  
Read data hold time  
WR/WRn delay  
Write data delay  
Write data hold time  
WAIT setup time  
WAIT hold time  
0
12.5  
12.5  
12.5  
0
Figure 2.26  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 45 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Data cycle  
Tend  
Address cycle  
Ta1  
Ta1  
Tan  
TW1  
TW2  
TW3  
TW4  
Tn1  
Tn2  
TW5  
EBCLK  
tAD  
Address bus  
tRDS tRDH  
tAD  
tAD  
Address bus/  
data bus  
tALED  
tALED  
Address latch  
(ALE)  
tRSD  
tRSD  
Data read  
(RD)  
tCSD  
tCSD  
Chip select  
(CSn)  
Figure 2.20  
Address/data multiplexed bus read access timing  
Data cycle  
Address cycle  
Ta1  
Ta1  
Tan  
TW1  
TW2  
TW3  
TW4  
Tend  
Tn1  
Tn2  
Tn3  
TW5  
EBCLK  
tAD  
Address bus  
tAD  
tWDD  
tWDH  
tAD  
Address bus/  
data bus  
tALED  
tALED  
Address latch  
(ALE)  
tWRD  
tWRD  
Data write  
(WRm)  
tCSD  
tCSD  
Chip select  
(CSn)  
Figure 2.21  
Address/data multiplexed bus write access timing  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 46 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
CSRWAIT: 2  
RDON:1  
CSON: 0  
CSROFF: 2  
TW1  
TW2  
Tend  
Tn1  
Tn2  
EBCLK  
Byte strobe mode  
tAD  
tAD  
A20 to A00  
A20 to A01  
BC1, BC0  
1-write strobe mode  
tAD  
tAD  
tBCD  
tBCD  
Common to both byte strobe mode  
and 1-write strobe mode  
tCSD  
tCSD  
CS7 to CS0  
tRSD  
tRSD  
RD (read)  
tRDS  
tRDH  
D15 to D00 (read)  
Figure 2.22  
External bus timing for normal read cycle with bus clock synchronized  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 47 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
CSWWAIT: 2  
WRON: 1  
WDON: 1*1  
CSWOFF: 2  
WDOFF: 1*1  
Tn1  
CSON:0  
TW1  
TW2  
Tend  
Tn2  
EBCLK  
Byte strobe mode  
tAD  
tAD  
A20 to A00  
A20 to A01  
BC1, BC0  
1-write strobe mode  
tAD  
tAD  
tBCD  
tBCD  
Common to both byte strobe mode  
and 1-write strobe mode  
tCSD  
tCSD  
CS7 to CS0  
tWRD  
tWRD  
WR1, WR0, WR (write)  
D15 to D00 (write)  
tWDD  
tWDH  
Note 1. Always specify WDON and WDOFF as at least one EBCLK cycle.  
Figure 2.23  
External bus timing for normal write cycle with bus clock synchronized  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 48 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
CSRWAIT:2  
RDON:1  
CSON:0  
CSPRWAIT:2  
RDON:1  
CSPRWAIT:2  
RDON:1  
CSPRWAIT:2  
RDON:1  
CSROFF:2  
TW1  
TW2  
Tend  
Tpw1  
Tpw2  
Tend  
Tpw1  
Tpw2  
Tend  
Tpw1  
Tpw2  
Tend  
Tn1  
Tn2  
EBCLK  
Byte strobe mode  
tAD  
tAD  
tAD  
tAD  
tAD  
A20 to A00  
A20 to A01  
BC1, BC0  
1-write strobe mode  
tAD  
tAD  
tAD  
tAD  
tAD  
tBCD  
tBCD  
Common to both byte strobe mode  
and 1-write strobe mode  
tCSD  
tCSD  
CS7 to CS0  
tRSD  
tRSD  
tRSD  
tRSD  
tRSD  
tRSD  
tRSD  
tRSD  
RD (Read)  
tRDS  
tRDH  
tRDS  
tRDH  
tRDS  
tRDH  
tRDS  
tRDH  
D15 to D00 (Read)  
Figure 2.24  
External bus timing for page read cycle with bus clock synchronized  
CSPWWAIT:2  
WRON:1  
CSWWAIT:2  
WRON:1  
WDON:1*1  
CSON:0  
CSPWWAIT:2  
WRON:1  
CSWOFF:2  
WDOFF:1*1  
Tdw1  
WDOFF:1*1  
Tn1  
WDOFF:1*1  
Tdw1  
WDON:1*1  
WDON:1*1  
TW2  
Tend  
Tpw1  
Tpw2  
Tpw1  
Tpw2  
TW1  
Tend  
Tend  
Tn2  
EBCLK  
Byte strobe mode  
tAD  
tAD  
tAD  
tAD  
A20 to A00  
A20 to A01  
BC1, BC0  
1-write strobe mode  
tAD  
tAD  
tAD  
tAD  
tBCD  
tBCD  
Common to both byte strobe mode  
and 1-write strobe mode  
tCSD  
tCSD  
CS7 to CS0  
tWRD  
tWRD  
tWRD  
tWRD  
tWRD  
tWRD  
WR1, WR0, WR (write)  
D15 to D00 (write)  
tWDD  
tWDD  
tWDD  
tWDH  
tWDH  
tWDH  
Note 1. Always specify WDON and WDOFF as at least one EBCLK cycle.  
Figure 2.25  
External bus timing for page write cycle with bus clock synchronized  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 49 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
CSRWAIT:3  
CSWWAIT:3  
TW1  
TW2  
TW3  
(Tend  
)
Tend  
Tn1  
Tn2  
EBCLK  
A20 to A00  
CS7 to CS0  
RD (read)  
WR (write)  
External wait  
tWTS tWTH tWTS tWTH  
WAIT  
Figure 2.26  
External bus timing for external wait control  
2.3.7  
I/O Ports, POEG, GPT, AGT, and ADC12 Trigger Timing  
Table 2.23  
I/O ports, POEG, GPT, AGT, and ADC12 trigger timing (1 of 2)  
GPT32 Conditions:  
High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
AGT Conditions:  
Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
I/O ports  
POEG  
Symbol  
Min  
1.5  
3
Max  
Unit  
Test conditions  
Figure 2.27  
Input data pulse width  
t
t
t
4
t
t
t
PRW  
Pcyc  
POEG input trigger pulse width  
Input capture pulse width  
Figure 2.28  
POEW  
GTICW  
Pcyc  
GPT  
Single edge  
1.5  
2.5  
Figure 2.29  
PDcyc  
Dual edge  
*1  
GTIOCxY output skew  
(x = 0 to 3, Y = A or B)  
Middle drive buffer  
High drive buffer  
Middle drive buffer  
High drive buffer  
Middle drive buffer  
High drive buffer  
ns  
Figure 2.30  
t
GTISK  
4
GTIOCxY output skew  
(x = 4 to 9, Y = A or B)  
4
4
GTIOCxY output skew  
(x = 0 to 9, Y = A or B)  
6
6
OPS output skew  
t
5
ns  
Figure 2.31  
GTOSK  
GTOUUP, GTOULO, GTOVUP,  
GTOVLO, GTOWUP, GTOWLO  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 50 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.23  
I/O ports, POEG, GPT, AGT, and ADC12 trigger timing (2 of 2)  
GPT32 Conditions:  
High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
AGT Conditions:  
Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol  
Min  
Max  
Unit  
Test conditions  
*2  
AGT  
AGTIO, AGTEE input cycle  
100  
ns  
Figure 2.32  
t
t
t
t
ACYC  
AGTIO, AGTEE input high width, low width  
AGTIO, AGTO, AGTOA, AGTOB output cycle  
ADC12 trigger input pulse width  
, t  
40  
ns  
ns  
ACKWH ACKWL  
62.5  
1.5  
ACYC2  
ADC12  
t
Figure 2.33  
TRGW  
Pcyc  
Note:  
t
: PCLKB cycle, t  
: PCLKD cycle.  
Pcyc  
PDcyc  
Note 1. This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not guaranteed.  
Note 2. Constraints on input cycle:  
When not switching the source clock: t  
× 2 < t  
should be satisfied.  
Pcyc  
ACYC  
When switching the source clock: t  
× 6 < t  
should be satisfied.  
Pcyc  
ACYC  
Port  
tPRW  
Figure 2.27  
I/O ports input timing  
POEG input trigger  
tPOEW  
Figure 2.28  
POEG input trigger timing  
Input capture  
tGTICW  
Figure 2.29  
GPT input capture timing  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 51 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
PCLKD  
Output delay  
GPT output  
tGTISK  
Figure 2.30  
GPT output delay skew  
PCLKD  
Output delay  
GPT output  
tGTOSK  
Figure 2.31  
GPT output delay skew for OPS  
tACYC  
tACKWL  
tACKWH  
AGTIO, AGTEE  
(input)  
tACYC2  
AGTIO, AGTO,  
AGTOA, AGTOB  
(output)  
Figure 2.32  
AGT input/output timing  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 52 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
ADTRG0,  
ADTRG1  
tTRGW  
Figure 2.33  
ADC12 trigger input timing  
2.3.8  
CAC Timing  
Table 2.24  
Parameter  
CAC  
CAC timing  
Symbol Min  
4.5 × t  
Typ  
Max  
Unit  
Test conditions  
*1  
*1  
CACREF input pulse  
width  
t
+ 3 × t  
ns  
t
t
≤ t  
> t  
CACREF  
cac  
PBcyc  
PBcyc  
cac  
5 × t  
+ 6.5 × t  
ns  
cac  
PBcyc  
PBcyc  
cac  
Note:  
t
: PCLKB cycle.  
PBcyc  
Note 1. t : CAC count clock source cycle.  
cac  
2.3.9  
SCI Timing  
Table 2.25  
SCI timing (1)  
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol Min  
Max Unit Test conditions  
SCI Input clock cycle  
Asynchronous  
t
4
0.6  
5
t
Figure 2.34  
Scyc  
Pcyc  
Clock synchronous  
6
Input clock pulse width  
Input clock rise time  
Input clock fall time  
Output clock cycle  
t
t
t
t
0.4  
t
SCKW  
SCKr  
SCKf  
Scyc  
Scyc  
ns  
ns  
5
Asynchronous  
6 (other than SCI1,  
SCI2)  
t
Pcyc  
8 (SCI1, SCI2)  
Clock synchronous  
4
0.6  
5
Output clock pulse width  
Output clock rise time  
Output clock fall time  
Transmit data delay  
t
t
t
t
0.4  
t
SCKW  
SCKr  
SCKf  
TXD  
Scyc  
ns  
ns  
ns  
5
Clock synchronous master mode (internal  
clock)  
5
Figure 2.35  
Clock synchronous slave mode (external  
clock)  
t
t
t
t
15  
5
25  
ns  
ns  
ns  
ns  
TXD  
RXS  
RXS  
RXH  
Receive data setup time Clock synchronous master mode (internal  
clock)  
Clock synchronous slave mode (external  
clock)  
Receive data hold time Clock synchronous  
5
Note:  
t
: PCLKA cycle.  
Pcyc  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 53 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
tSCKW  
tSCKr  
tSCKf  
SCKn  
tScyc  
Note:  
n = 0 to 9  
Figure 2.34  
SCK clock input/output timing  
SCKn  
tTXD  
TXDn  
RXDn  
tRXS tRXH  
Note:  
n = 0 to 9  
Figure 2.35  
SCI input/output timing in clock synchronous mode  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 54 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.26  
SCI timing (2)  
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol  
Min  
4
Max  
65536  
65536  
0.6  
0.6  
5
Unit  
Test conditions  
Simple SPI  
SCK clock cycle output (master)  
SCK clock cycle input (slave)  
SCK clock high pulse width  
SCK clock low pulse width  
SCK clock rise and fall time  
Data input setup time  
t
t
Figure 2.36  
SPcyc  
Pcyc  
6
t
t
t
t
0.4  
0.4  
15  
5
t
t
SPCKWH  
SPcyc  
SPCKWL  
SPcyc  
, t  
ns  
ns  
ns  
ns  
SPCKr SPCKf  
master  
slave  
Figure 2.37 to Figure  
2.40  
SU  
Data input hold time  
SS input setup time  
SS input hold time  
Data output delay  
t
t
t
t
5
H
1
t
t
LEAD  
LAG  
OD  
SPcyc  
SPcyc  
1
master  
slave  
-5  
5
ns  
25  
ns  
ns  
Data output hold time  
Data rise and fall time  
SS input rise and fall time  
Slave access time  
t
t
t
t
t
OH  
, t  
Dr Df  
5
ns  
, t  
5
ns  
SSLr SSLf  
3 × t  
3 × t  
+ 25 ns  
+ 25 ns  
Figure 2.40  
SA  
Pcyc  
Slave output release time  
REL  
Pcyc  
Note:  
t
: PCLKA cycle.  
Pcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VOH  
VOH  
VOH  
VOH  
SCKn  
master select  
output  
VOL  
VOL  
tSPCKWL  
VOL  
tSPcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VIH  
VIH  
VIL  
VIH  
VIH  
SCKn  
slave select input  
VIL  
tSPCKWL  
VIL  
tSPcyc  
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC  
Note:  
n = 0 to 9  
Figure 2.36  
SCI simple SPI mode clock timing  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 55 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
SCKn  
CKPOL = 0  
output  
SCKn  
CKPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tDr, tDf  
tOH  
tOD  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
Note:  
n = 0 to 9  
Figure 2.37  
SCI simple SPI mode timing for master when CKPH = 1  
SCKn  
CKPOL = 1  
output  
SCKn  
CKPOL = 0  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
Note:  
n = 0 to 9  
Figure 2.38  
SCI simple SPI mode timing for master when CKPH = 0  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 56 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
tTD  
SSn  
input  
tLEAD  
tLAG  
SCKn  
CKPOL = 0  
input  
SCKn  
CKPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
MSB OUT  
DATA  
LSB OUT  
LSB IN  
MSB IN  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
Note:  
n = 0 to 9  
Figure 2.39  
SCI simple SPI mode timing for slave when CKPH = 1  
tTD  
SSn  
input  
tLEAD  
tLAG  
SCKn  
CKPOL = 1  
input  
SCKn  
CKPOL = 0  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
LSB OUT  
(Last data)  
MSB OUT  
tH  
DATA  
LSB OUT  
MSB OUT  
MSB IN  
tSU  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
LSB IN  
Note:  
n = 0 to 9  
Figure 2.40  
SCI simple SPI mode timing for slave when CKPH = 0  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 57 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.27  
SCI timing (3)  
Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol  
Min  
0
Max  
1000  
300  
Unit  
ns  
Test conditions  
Simple IIC  
(Standard mode)  
SDA input rise time  
t
t
t
t
t
Figure 2.41  
Sr  
SDA input fall time  
ns  
Sf  
SDA input spike pulse removal time  
Data input setup time  
Data input hold time  
4 × t  
ns  
SP  
IICcyc  
250  
0
ns  
SDAS  
ns  
SDAH  
*1  
SCL, SDA capacitive load  
400  
pF  
C
b
Simple IIC  
(Fast mode)  
SDA input rise time  
t
t
t
t
t
0
300  
300  
4 × t  
ns  
ns  
ns  
ns  
ns  
pF  
Figure 2.41  
Sr  
SDA input fall time  
Sf  
SDA input spike pulse removal time  
Data input setup time  
Data input hold time  
SP  
SDAS  
IICcyc  
100  
0
SDAH  
*1  
SCL, SDA capacitive load  
400  
C
b
Note:  
t
: IIC internal reference clock (IICφ) cycle.  
IICcyc  
Note 1. C indicates the total capacity of the bus line.  
b
VIH  
SDAn  
VIL  
tSr  
tSf  
tSP  
SCLn  
P*1  
P*1  
S*1  
Sr*1  
tSDAH  
tSDAS  
Test conditions:  
VIH = VCC × 0.7, VIL = VCC × 0.3  
VOL = 0.6 V, IOL = 6 mA  
Note:  
n = 0 to 9  
Note 1. S, P, and Sr indicate the following conditions:  
S: Start condition  
P: Stop condition  
Sr: Restart condition  
Figure 2.41  
SCI simple IIC mode timing  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 58 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
2.3.10  
SPI Timing  
Table 2.28  
SPI timing  
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
SPI RSPCK clock cycle  
Symbol  
Min  
2
Max  
4096  
4096  
Unit  
Test conditions  
Master  
Slave  
t
t
t
Figure 2.42  
SPcyc  
Pcyc  
4
RSPCK clock high  
pulse width  
Master  
(t  
– t  
– t  
– t  
– t  
) /  
) /  
ns  
SPCKWH  
SPcyc  
SPCKr  
SPCKf  
2 – 3  
Slave  
0.4  
0.6  
t
SPcyc  
RSPCK clock low  
pulse width  
Master  
t
(t  
ns  
SPCKWL  
SPcyc  
SPCKr  
SPCKf  
2 – 3  
0.4  
4
Slave  
0.6  
5
t
SPcyc  
RSPCK clock rise and Master  
fall time  
t
t
t
, t  
ns  
µs  
ns  
SPCKr SPCKf  
Slave  
1
Data input setup time Master  
Slave  
Figure 2.43 to Figure  
2.48  
SU  
HF  
5
Data input hold time  
Master  
0
ns  
(PCLKA  
division ratio  
set to 1/2)  
Master  
t
H
t
Pcyc  
(PCLKA  
division ratio  
set to a value  
other than  
1/2)  
Slave  
t
t
20  
H
*1  
SSL setup time  
SSL hold time  
Master  
N × t  
+
+
ns  
N × t  
- 10  
LEAD  
SPcyc  
SPcyc  
SPcyc  
*1  
100  
Slave  
4 × t  
N × t  
ns  
ns  
Pcyc  
*2  
Master  
t
N × t  
- 10  
LAG  
SPcyc  
*2  
100  
Slave  
4 × t  
ns  
ns  
Pcyc  
Data output delay  
Master  
t
t
t
t
6.3  
6.3  
20  
OD1  
OD2  
OD  
Slave  
0
Data output hold time Master  
Slave  
ns  
OH  
0
Successive  
Master  
t
t
+ 2 × t  
8 × t  
+ 2 ns  
TD  
SPcyc  
Pcyc  
SPcyc  
transmission delay  
× t  
Pcyc  
Slave  
4 × t  
Pcyc  
MOSI and MISO rise Output  
t
t
, t  
5
ns  
µs  
ns  
µs  
ns  
Dr Df  
and fall time  
Input  
1
SSL rise and fall time Output  
Input  
, t  
5
SSLr SSLf  
1
Slave access time  
Slave output release time  
t
t
25  
25  
Figure 2.47 and  
Figure 2.48  
SA  
REL  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 59 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Note:  
Note:  
t
: PCLKA cycle.  
Pcyc  
Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the SPI  
interface, the AC portion of the electrical characteristics is measured for each group.  
Note 1. N is set to an integer from 1 to 8 by the SPCKD register.  
Note 2. N is set to an integer from 1 to 8 by the SSLND register.  
tSPCKr  
tSPCKf  
tSPCKWH  
VOH  
VOH  
VOL  
VOH  
VOH  
RSPCKn  
master select  
output  
VOL  
tSPCKWL  
VOL  
tSPcyc  
tSPCKr  
tSPCKf  
tSPCKWH  
VIH  
VIH  
VIL  
VIH  
VIH  
RSPCKn  
slave select input  
VIL  
tSPCKWL  
VIL  
tSPcyc  
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC  
Note:  
n = A or B  
Figure 2.42  
SPI clock timing  
SPI  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tDr, tDf  
tOH  
tOD2  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
tOD1  
Note:  
n = A or B  
Figure 2.43  
SPI timing for master when CPHA = 0  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 60 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
SPI  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tHF  
tHF  
MISOn  
input  
LSB IN  
MSB IN  
DATA  
MSB IN  
tDr, tDf  
tOH  
tOD2  
MOSIn  
output  
MSB OUT  
DATA  
LSB OUT  
IDLE  
MSB OUT  
tOD1  
Note:  
n = A or B  
Figure 2.44  
SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2  
SPI  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD2  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
Note:  
n = A or B  
Figure 2.45  
SPI timing for master when CPHA = 1  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 61 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
SPI  
tTD  
SSLn0 to  
SSLn3  
output  
tLEAD  
tLAG  
tSSLr, tSSLf  
RSPCKn  
CPOL = 0  
output  
RSPCKn  
CPOL = 1  
output  
tSU  
tHF  
tH  
MISOn  
input  
MSB IN  
DATA  
DATA  
LSB IN  
MSB IN  
tOH  
tOD2  
tDr, tDf  
MOSIn  
output  
MSB OUT  
LSB OUT  
IDLE  
MSB OUT  
Note:  
n = A or B  
Figure 2.46  
RSPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2  
tTD  
SSLn0  
input  
tLEAD  
tLAG  
RSPCKn  
CPOL = 0  
input  
RSPCKn  
CPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
MSB OUT  
DATA  
LSB OUT  
LSB IN  
MSB IN  
MSB OUT  
MSB IN  
tSU  
tH  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
Note:  
n = A or B  
Figure 2.47  
SPI timing for slave when CPHA = 0  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 62 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
tTD  
SSLn0  
input  
tLEAD  
tLAG  
RSPCKn  
CPOL = 0  
input  
RSPCKn  
CPOL = 1  
input  
tSA  
tOH  
tOD  
tREL  
MISOn  
output  
LSB OUT  
(Last data)  
MSB OUT  
tH  
DATA  
LSB OUT  
MSB OUT  
MSB IN  
tSU  
tDr, tDf  
MOSIn  
input  
MSB IN  
DATA  
LSB IN  
Note:  
n = A or B  
Figure 2.48  
2.3.11  
SPI timing for slave when CPHA = 1  
QSPI Timing  
Table 2.29  
QSPI timing  
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol  
Min  
Max  
48  
Unit  
Test conditions  
QSPI  
QSPCK clock cycle  
t
t
2
t
Figure 2.49  
QScyc  
QSWH  
Pcyc  
QSPCK clock high pulse  
width  
t
× 0.4  
× 0.4  
ns  
ns  
QScyc  
QSPCK clock low pulse  
width  
t
t
QSWL  
QScyc  
Data input setup time  
Data input hold time  
QSSL setup time  
t
t
t
10  
0
ns  
ns  
ns  
Figure 2.50  
Su  
IH  
*1  
*2  
(N + 0.5) × t  
+
+
(N + 0.5) × t  
- 5  
LEAD  
Qscyc  
Qscyc  
Qscyc  
*1  
100  
QSSL hold time  
t
(N + 0.5) × t  
ns  
(N + 0.5) × t  
- 5  
LAG  
Qscyc  
*2  
100  
Data output delay  
t
t
t
4
ns  
ns  
OD  
OH  
TD  
Data output hold time  
–3.3  
1
16  
Successive transmission  
delay  
t
QScyc  
Note:  
t
: PCLKA cycle.  
Pcyc  
Note 1. N is set to 0 or 1 in SFMSLD.  
Note 2. N is set to 0 or 1 in SFMSHD.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 63 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
tQSWH  
tQSWL  
QSPCLK output  
tQScyc  
Figure 2.49  
QSPI clock timing  
tTD  
QSSL  
output  
tLEAD  
tLAG  
QSPCLK  
output  
tSU  
tH  
QIO0-3  
input  
MSB IN  
DATA  
LSB IN  
tOH  
tOD  
QIO0-3  
output  
MSB OUT  
DATA  
LSB OUT  
IDLE  
Figure 2.50  
2.3.12  
Transmit and receive timing  
OSPI Timing  
Table 2.30  
OSPI timing (1 of 2)  
(1) Conditions: High speed high drive output is selected in the port drive capability bit in the PmnPFS register for the following pins:  
OM_SCLK, OM_DQS, OM_SIO0-7.  
(2) Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: OM_CS0,  
OM_CS1.  
Parameter  
Symbol  
Min  
Max  
50  
Unit  
MHz  
MHz  
Test conditions  
OM_SCLK  
clock  
frequency  
SPI  
f
f
Figure 2.51  
OCcyc  
OCcyc  
SOPI/DOPI  
100  
OM_SCLK high pulse width  
OM_SCLK low pulse width  
OM_SCLK rise time  
t
t
t
t
t
0.475  
0.475  
0.525  
0.525  
1.8  
t
t
OCwh  
OCwl  
OCr  
OCcyc  
OCcyc  
ns  
ns  
ns  
OM_SCLK fall time  
1.8  
OCf  
OM_CS  
SPI/SOPI  
1.5 × t  
– 10.4  
2.5 × t + 6.9  
OCcyc  
Figure 2.52, Figure  
2.53  
OCLEAD  
OCcyc  
setup time  
(Minimum register settings) (Maximum register settings)  
DOPI  
t
1.25 × t – 7.9 2.25 × t + 4.4  
ns  
Figure 2.54  
OCLEAD  
OCcyc  
OCcyc  
(Minimum register settings) (Maximum register settings)  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 64 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.30  
OSPI timing (2 of 2)  
(1) Conditions: High speed high drive output is selected in the port drive capability bit in the PmnPFS register for the following pins:  
OM_SCLK, OM_DQS, OM_SIO0-7.  
(2) Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: OM_CS0,  
OM_CS1.  
Parameter  
Symbol  
Min  
Max  
Unit  
Test conditions  
OM_CS hold SPI/SOPI  
time  
t
t
t
t
t
t
t
t
t
t
t
t
1 × t  
– 6.9  
4.5 × t + 10.4  
OCcyc  
ns  
Figure 2.52, Figure  
2.53  
OCLAG  
OCLAG  
OCLAG  
OCTD  
OCcyc  
(Minimum register settings) (Maximum register settings)  
DOPI read  
3.25 × t – 4.4 4.25 × t + 7.9  
(Minimum register settings) (Maximum register settings)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.54  
OCcyc  
OCcyc  
DOPI write  
0.75 × t – 4.4 4.25 × t + 7.9  
(Minimum register settings) (Maximum register settings)  
OCcyc  
OCcyc  
Continuous transfer delay  
time  
1 × t – 1 8.5 × t + 1  
Figure 2.52, Figure  
2.53, Figure 2.54  
OCcyc  
OCcyc  
(Minimum register settings) (Maximum register settings)  
Data input  
setup time  
SPI SCLK  
base point  
10.5  
Figure 2.52  
SU  
Data input  
hold time  
0.5  
H
Data input  
setup time  
SOPI/DOPI  
DQS base  
point  
-1.3  
3.25  
Figure 2.53, Figure  
2.54  
SU  
*1  
Data input  
hold time  
H
Skew of Clock to Data  
Strobe  
20  
2.65  
CKDS  
OD  
OH  
BOFF  
Data output SPI/SOPI  
delay time  
Figure 2.52, Figure  
2.53  
Data output  
hold time  
-2.65  
2.1  
Data output SOPI  
buffer off  
Figure 2.53  
time  
*1  
Data output  
delay time  
t
t
t
3.65  
ns  
ns  
ns  
Figure 2.54, Figure  
2.55  
DOPI  
OD  
Data output  
hold time  
1.1  
1.1  
OH  
Data output DOPI  
buffer off  
time  
Figure 2.54  
Figure 2.56  
BOFF  
DQS refresh input setup  
time  
t
t
20  
ns  
ns  
DQSS  
DQSH  
DQS refresh input hold  
time  
0.5 × tOCcyc  
Note:  
t
indicates the OM_SCLK cycle.  
OCcyc  
Note 1. OM_SCLK frequency: 100 MHz  
tOCwh  
tOCwl  
OM_SCLK output  
tOCcyc  
Figure 2.51  
Clock Timing  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 65 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
tOCTD  
OM_CS0  
OM_CS1  
tOCLAG  
tOCLEAD  
OM_SCLK  
tOD  
tOH  
OM_SIO0  
OM_SIO1  
tSU  
tH  
Figure 2.52  
SPI Transfer Format Transmission and Reception Timing  
tOCTD  
OM_CS0  
OM_CS1  
tOCLEAD  
tOCLAG  
OM_SCLK  
tCKDS  
OM_DQS  
tOH  
tBOFF  
tOD  
tSU  
tH  
OM_SIO7 to  
OM_SIO0  
Figure 2.53  
SOPI Transfer Format Transmission and Reception Timing  
tOCTD  
OM_CS0  
OM_CS1  
tOCLEAD  
tOCLAG  
OM_SCLK  
OM_DQS  
tCKDS  
tOD  
tOH  
tBOFF  
tSU  
Dn  
tH  
OM_SIO7 to  
OM_SIO0  
Dn Dn+1 Dn+1  
47:40 39:32 31:24 23:16 15:8 7:0  
A
B
A
B
Figure 2.54  
DOPI Transfer Format Transmission and Reception Timing  
tOCTD  
OM_CS0  
OM_CS1  
tOCLEAD  
tOCLAG  
OM_SCLK  
OM_DQS  
tOD  
tOH  
tOD  
tOH  
tOD  
tOH  
OM_SIO7 to  
OM_SIO0  
Dn  
A
Dn Dn+1 Dn+1  
47:40 39:32 31:24 23:16 15:8 7:0  
B
A
B
Figure 2.55  
DOPI Transfer Format Transmission Timing  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 66 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
OM_CS1  
3 × tOCcyc  
OM_SCLK  
OM_DQS  
tDQSS  
tDQSH  
OM_SIO7 to  
OM_SIO0  
47:40 39:32 31:24 23:16 15:8 7:0  
DQS Refresh input Timing (OctaRAMRead/Write)  
Figure 2.56  
2.3.13  
IIC Timing  
Table 2.31  
IIC timing (1) (1 of 2)  
(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B,  
SCL0_B, SDA1_B, SCL1_B.  
(2) The following pins do not require setting: SCL0_A, SDA0_A, SCL1_A, SDA1_A.  
(3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the  
AC portion of the electrical characteristics is measured for each group.  
Test  
Parameter  
Symbol  
Min  
Max  
Unit conditions  
IIC  
SCL input cycle time  
SCL input high pulse width  
SCL input low pulse width  
SCL, SDA rise time  
t
t
t
t
t
t
6 (12) × t  
+ 1300  
IICcyc  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.57  
SCL  
SCLH  
SCLL  
Sr  
(Standard mode,  
SMBus)  
ICFER.FMPE = 0  
3 (6) × t  
+ 300  
+ 300  
IICcyc  
IICcyc  
3 (6) × t  
0
1000  
300  
1 (4) × t  
SCL, SDA fall time  
Sf  
SCL, SDA input spike pulse  
removal time  
SP  
IICcyc  
SDA input bus free time when  
wakeup function is disabled  
t
t
t
t
t
3 (6) × t  
+ 300  
ns  
ns  
ns  
ns  
ns  
BUF  
BUF  
IICcyc  
SDA input bus free time when  
wakeup function is enabled  
3 (6) × t  
300  
+ 4 × t  
+
IICcyc  
Pcyc  
START condition input hold time  
when wakeup function is disabled  
t
+ 300  
IICcyc  
STAH  
STAH  
STAS  
START condition input hold time  
when wakeup function is enabled  
1 (5) × t  
1000  
+ t  
+ 300  
Pcyc  
IICcyc  
Repeated START condition input  
setup time  
STOP condition input setup time  
Data input setup time  
t
t
t
1000  
ns  
ns  
ns  
pF  
STOS  
SDAS  
SDAH  
t
+ 50  
IICcyc  
Data input hold time  
0
SCL, SDA capacitive load  
C
400  
b
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 67 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.31  
IIC timing (1) (2 of 2)  
(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B,  
SCL0_B, SDA1_B, SCL1_B.  
(2) The following pins do not require setting: SCL0_A, SDA0_A, SCL1_A, SDA1_A.  
(3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the  
AC portion of the electrical characteristics is measured for each group.  
Test  
Parameter  
Symbol  
Min  
Max  
Unit conditions  
IIC  
SCL input cycle time  
t
t
t
t
6 (12) × t  
+ 600  
IICcyc  
ns  
ns  
ns  
ns  
Figure 2.57  
SCL  
SCLH  
SCLL  
Sr  
(Fast mode)  
SCL input high pulse width  
SCL input low pulse width  
SCL, SDA rise time  
3 (6) × t  
3 (6) × t  
+ 300  
+ 300  
IICcyc  
IICcyc  
20 × (external pullup  
voltage/5.5V)  
300  
*1  
SCL, SDA fall time  
t
20 × (external pullup  
voltage/5.5V)  
300  
ns  
Sf  
*1  
SCL, SDA input spike pulse  
removal time  
t
t
t
t
t
t
0
1 (4) × t  
ns  
ns  
ns  
ns  
ns  
ns  
SP  
IICcyc  
SDA input bus free time when  
wakeup function is disabled  
3 (6) × t  
+ 300  
BUF  
BUF  
IICcyc  
SDA input bus free time when  
wakeup function is enabled  
3 (6) × t  
300  
+ 4 × t  
+
IICcyc  
Pcyc  
START condition input hold time  
when wakeup function is disabled  
t
+ 300  
IICcyc  
STAH  
STAH  
STAS  
START condition input hold time  
when wakeup function is enabled  
1 (5) × t  
300  
+ t  
+ 300  
Pcyc  
IICcyc  
Repeated START condition input  
setup time  
STOP condition input setup time  
Data input setup time  
t
t
t
300  
ns  
ns  
ns  
pF  
STOS  
SDAS  
SDAH  
t
+ 50  
IICcyc  
Data input hold time  
0
SCL, SDA capacitive load  
C
400  
b
Note:  
Note:  
Note:  
t
: IIC internal reference clock (IICφ) cycle, t  
: PCLKB cycle.  
Pcyc  
IICcyc  
Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.  
Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the IIC  
interface, the AC portion of the electrical characteristics is measured for each group.  
Note 1. Only supported for SCL0_A, SDA0_A, SCL1_A, and SDA1_A.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 68 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.32  
IIC timing (2)  
Setting of the SCL0_A, SDA0_A pins is not required with the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol Min  
Max  
Unit Test conditions  
IIC  
SCL input cycle time  
t
6 (12) × t  
240  
+
IICcyc  
ns  
Figure 2.57  
SCL  
(Fast-mode+)  
ICFER.FMPE = 1  
SCL input high pulse width  
SCL input low pulse width  
SCL, SDA rise time  
t
t
t
t
3 (6) × t  
3 (6) × t  
+ 120  
+ 120  
ns  
ns  
ns  
ns  
SCLH  
SCLL  
Sr  
IICcyc  
IICcyc  
120  
120  
SCL, SDA fall time  
20 × (external  
pullup voltage/  
5.5V)  
Sf  
SCL, SDA input spike pulse  
removal time  
t
t
t
0
1 (4) × tIICcyc  
ns  
ns  
ns  
SP  
SDA input bus free time when  
wakeup function is disabled  
3 (6) × t  
+ 120  
+ 4 ×  
BUF  
BUF  
IICcyc  
IICcyc  
SDA input bus free time when  
wakeup function is enabled  
3 (6) × t  
t
t
+ 120  
Pcyc  
Start condition input hold time  
when wakeup function is disabled  
t
t
+ 120  
ns  
ns  
STAH  
STAH  
IICcyc  
START condition input hold time  
when wakeup function is enabled  
1 (5) × t  
+
IICcyc  
t
+ 120  
Pcyc  
Restart condition input setup time  
Stop condition input setup time  
Data input setup time  
t
t
t
t
120  
120  
ns  
ns  
ns  
ns  
pF  
STAS  
STOS  
SDAS  
t
+ 30  
IICcyc  
Data input hold time  
0
SDAH  
*1  
SCL, SDA capacitive load  
550  
C
b
Note:  
Note:  
t
: IIC internal reference clock (IICφ) cycle, t  
: PCLKB cycle.  
Pcyc  
IICcyc  
Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.  
Note 1. Cb indicates the total capacity of the bus line.  
VIH  
SDA0 and SDA1  
VIL  
tBUF  
tSCLH  
tSTAS  
tSTOS  
tSTAH  
tSP  
SCL0 and SCL1  
P*1  
P*1  
S*1  
tSf  
Sr*1  
tSCLL  
tSr  
tSDAS  
tSCL  
tSDAH  
Note 1. S, P, and Sr indicate the following conditions:  
S: Start condition  
P: Stop condition  
Sr: Restart condition  
I2C bus interface input/output timing  
Figure 2.57  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 69 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
2.3.14  
SSIE Timing  
Table 2.33  
SSIE timing  
(1) High drive output is selected with the Port Drive Capability bit in the PmnPFS register.  
(2) Use pins that have a letter appended to their names, for instance “_A” or “_B” to indicate group membership. For the SSIE interface, the  
AC portion of the electrical characteristics is measured for each group.  
Target specification  
Parameter  
Symbol  
Min.  
80  
Max.  
Unit  
ns  
Comments  
SSIBCK0  
Cycle  
Master  
Slave  
t
t
t
Figure 2.58  
O
80  
ns  
I
High level/ low Master  
level  
/t  
0.35  
0.35  
t
t
t
t
HC LC  
O
I
Slave  
Rising time/  
falling time  
Master  
Slave  
t
/t  
0.15  
0.15  
/ t  
/ t  
RC FC  
O
O
I
I
SSILRCK0/  
SSIFS0,  
SSITXD0,  
SSIRXD0,  
SSIDATA0  
Input set up  
time  
Master  
Slave  
t
t
t
12  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.60,  
Figure 2.61  
SR  
12  
Input hold time Master  
Slave  
8
HR  
15  
Output delay  
time  
Master  
Slave  
-10  
0
5
DTR  
20  
Figure 2.60,  
Figure 2.61  
*1  
Output delay  
time from  
Slave  
t
20  
ns  
Figure 2.62  
DTRW  
SSILRCK0/  
SSIFS0 change  
GTIOC2A,  
AUDIO_CLK  
Cycle  
t
t
20  
ns  
Figure 2.59  
EXcyc  
High level/ low level  
/t  
0.4  
0.6  
t
EXcyc  
EXL EXH  
Note 1. For slave-mode transmission, SSIE has a path, through which the signal input from the SSILRCK0/SSIFS0 pin is used to generate  
transmit data, and the transmit data is logically output to the SSITXD0 or SSIDATA0 pin.  
tHC  
tRC  
tFC  
tLC  
SSIBCK0  
tO, tI  
Figure 2.58  
SSIE clock input/output timing  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 70 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
tEXcyc  
tEXH  
tEXL  
GTIOC2A,  
AUDIO_CLK  
(input)  
1/2 VCC  
tEXf  
tEXr  
Figure 2.59  
Clock input timing  
SSIBCK0  
(Input or Output)  
SSILRCK0/SSIFS0 (input),  
SSIRXD0,  
SSIDATA0 (input)  
tSR  
tHR  
SSILRCK0/SSIFS0 (output),  
SSITXD0,  
SSIDATA0 (output)  
tDTR  
Figure 2.60  
SSIE data transmit and receive timing when SSICR.BCKP = 0  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 71 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
SSIBCK0  
(Input or Output)  
SSILRCK0/SSIFS0 (input),  
SSIRXD0,  
SSIDATA0 (input)  
tSR  
tHR  
SSILRCK0/SSIFS0 (output),  
SSITXD0,  
SSIDATA0 (output)  
tDTR  
Figure 2.61  
SSIE data transmit and receive timing when SSICR.BCKP = 1  
SSILRCK0/SSIFS0 (input)  
SSITXD0,  
SSIDATA0 (output)  
tDTRW  
MSB bit output delay after SSILRCK0/SSIFS0 change for slave  
transmitter when DEL = 1, SDTA = 0 or DEL = 1, SDTA = 1, SWL[2:0] = DWL[2:0] in SSICR.  
Figure 2.62  
2.3.15  
SSIE data output delay after SSILRCK0/SSIFS0 change  
SD/MMC Host Interface Timing  
Table 2.34  
SD/MMC Host Interface signal timing  
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Clock duty ratio is 50%.  
Parameter  
Symbol  
Min  
20  
Max  
3
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test conditions  
SDCLK clock cycle  
T
T
T
T
T
T
T
T
Figure 2.63  
SDCYC  
SDWH  
SDWL  
SDLH  
SDCLK clock high pulse width  
SDCLK clock low pulse width  
SDCLK clock rise time  
6.5  
6.5  
SDCLK clock fall time  
3
SDHL  
SDCMD/SDDAT output data delay  
SDCMD/SDDAT input data setup  
SDCMD/SDDAT input data hold  
–7  
4
SDODLY  
SDIS  
4.5  
1.5  
SDIH  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 72 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Note:  
Must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership. For the SD/MMC  
Host interface, the AC portion of the electrical characteristics is measured for each group.  
TSDCYC  
TSDWL  
TSDWH  
SDnCLK  
(output)  
TSDLH  
TSDHL  
TSDODLY(max)  
TSDODLY(min)  
SDnCMD/SDnDATm  
(output)  
TSDIS  
TSDIH  
SDnCMD/SDnDATm  
(input)  
n = 0, 1, m = 0 to 7  
Figure 2.63  
2.3.16  
SD/MMC Host Interface signal timing  
ETHERC Timing  
Table 2.35  
ETHERC timing (1 of 2)  
Conditions: ETHERC (RMII): Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins:  
ET0_MDC, ET0_MDIO.  
For other pins, high drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
ETHERC (MII): Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol  
Min  
20  
Max  
Unit  
ns  
Test conditions  
ETHERC  
(RMII)  
REF50CK0 cycle time  
T
Figure 2.64 to  
Figure 2.67  
ck  
REF50CK0 frequency, typical 50 MHz  
REF50CK0 duty  
50 + 100 ppm  
MHz  
%
35  
65  
REF50CK0 rise/fall time  
T
T
T
T
0.5  
2.5  
3.5  
12.0  
ns  
ckr/ckf  
*1  
ns  
RMII_xxxx output delay  
co  
*2  
3
ns  
ns  
ns  
ns  
RMII_xxxx setup time  
su  
*2  
1
RMII_xxxx hold time  
hd  
*1 *2  
T /T  
r
0.5  
1
4
RMII_xxxx , rise/fall time  
f
ET0_WOL output delay  
t
23.5  
Figure 2.68  
WOLd  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 73 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.35  
ETHERC timing (2 of 2)  
Conditions: ETHERC (RMII): Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins:  
ET0_MDC, ET0_MDIO.  
For other pins, high drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
ETHERC (MII): Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol  
Min  
40  
1
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test conditions  
ETHERC (MII) ET0_TX_CLK cycle time  
ET0_TX_EN output delay  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Tcyc  
20  
20  
Figure 2.69  
TENd  
MTDd  
CRSs  
CRSh  
COLs  
COLh  
TRcyc  
RDVs  
RDVh  
MRDs  
MRDh  
RERs  
RESh  
WOLd  
ET0_ETXD0 to ET_ETXD3 output delay  
1
ET0_CRS setup time  
10  
10  
10  
10  
40  
10  
10  
10  
10  
10  
10  
1
ET0_CRS hold time  
ET0_COL setup time  
Figure 2.70  
ET0_COL hold time  
ET0_RX_CLK cycle time  
ET0_RX_DV setup time  
ET0_RX_DV hold time  
Figure 2.71  
ET0_ERXD0 to ET_ERXD3 setup time  
ET0_ERXD0 to ET_ERXD3 hold time  
ET0_RX_ER setup time  
ET0_RX_ER hold time  
Figure 2.72  
Figure 2.73  
ET0_WOL output delay  
23.5  
Note:  
The following pins must use pins that have a letter appended to their name, for instance “_A”, “_B”, to indicate group membership.  
For the ETHERC (RMII) Host interface, the AC portion of the electrical characteristics is measured for each group. REF50CK0_A,  
REF50CK0_B, RMII0_xxxx_A, RMII0_xxxx_B.  
Note 1. RMII_TXD_EN, RMII_TXD1, RMII_TXD0.  
Note 2. RMII_CRS_DV, RMII_RXD1, RMII_RXD0, RMII_RX_ER.  
Tck  
90%  
Tckr  
REF50CK0 50%  
Tckf  
Tco  
10%  
Tsu  
Thd  
Tr  
Tf  
90%  
Change  
in signal  
level  
Change  
in signal  
level  
RMII_xxxx*1 50%  
Change in  
signal level  
Signal  
Signal  
10%  
Note 1. RMII_TXD_EN, RMII_TXD1, RMII_TXD0, RMII_CRS_DV, RMII_RXD1, RMII_RXD0, RMII_RX_ER  
Figure 2.64  
REF50CK0 and RMII signal timing  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 74 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
TCK  
REF50CK0  
TCO  
RMII_TXD_EN  
TCO  
RMII_TXD1,  
RMII_TXD0  
Preamble  
SFD  
DATA  
CRC  
Figure 2.65  
RMII transmission timing  
REF50CK0  
Tsu  
Thd  
RMII_CRS_DV  
Thd  
Tsu  
RMII_RXD1,  
RMII_RXD0  
Preamble  
DATA  
CRC  
SFD  
RMII_RX_ER  
L
Figure 2.66  
RMII reception timing in normal operation  
REF50CK0  
RMII_CRS_DV  
RMII_RXD1,  
RMII_RXD0  
Preamble  
SFD  
DATA  
xxxx  
Thd  
Tsu  
RMII_RX_ER  
Figure 2.67  
RMII reception timing when an error occurs  
REF50CK0  
ET0_WOL  
tWOLd  
Figure 2.68  
WOL output timing for RMII  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 75 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
ET0_TX_CLK  
ET0_TX_EN  
tTENd  
tMTDd  
Preamble  
SFD  
DATA  
CRC  
ET0_ETXD[3:0]  
ET0_TX_ER  
tCRSs  
tCRSh  
ET0_CRS  
ET0_COL  
Figure 2.69  
MII transmission timing in normal operation  
ET0_TX_CLK  
ET0_TX_EN  
Preamble  
JAM  
ET0_ETXD[3:0]  
ET0_TX_ER  
ET0_CRS  
tCOLs  
tCOLh  
ET0_COL  
Figure 2.70  
MII transmission timing when a conflict occurs  
ET0_RX_CLK  
tRDVs  
tRDVh  
ET0_RX_DV  
tMRDh  
tMRDs  
Preamble  
SFD  
DATA  
CRC  
ET0_ERXD[3:0]  
ET0_RX_ER  
Figure 2.71  
MII reception timing in normal operation  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 76 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
ET0_RX_CLK  
ET0_RX_DV  
Preamble  
SFD  
DATA  
xxxx  
ET0_ERXD[3:0]  
tRERh  
tRERs  
ET0_RX_ER  
Figure 2.72  
MII reception timing when an error occurs  
ET0_RX_CLK  
ET0_WOL  
tWOLd  
Figure 2.73  
WOL output timing for MII  
2.4  
USB Characteristics  
USBFS Timing  
2.4.1  
Table 2.36  
USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics)  
Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, USBCLK = 48 MHz  
Parameter  
Symbol  
Min  
2.0  
Typ  
Max  
Unit  
V
Test conditions  
Input  
characteristics  
Input high voltage  
Input low voltage  
V
V
V
V
V
V
V
IH  
0.8  
V
IL  
Differential input sensitivity  
Differential common-mode range  
Output high voltage  
Output low voltage  
Cross-over voltage  
Rise time  
0.2  
0.8  
2.8  
0.0  
1.3  
75  
V
| USB_DP - USB_DM |  
DI  
2.5  
3.6  
0.3  
2.0  
300  
300  
125  
V
CM  
OH  
OL  
CRS  
Output  
characteristics  
V
I
I
= –200 µA  
= 2 mA  
OH  
OL  
V
V
Figure 2.74  
t
t
t
ns  
ns  
%
LR  
LF  
Fall time  
75  
Rise/fall time ratio  
/ t  
80  
t / t  
LR LF  
LR LF  
Pull-up and  
pull-down  
USB_DP and USB_DM pull-down  
resistance in host controller mode  
R
14.25  
24.80 kΩ  
pd  
characteristics  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 77 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
90%  
90%  
VCRS  
USB_DP,  
USB_DM  
10%  
tLR  
10%  
tLF  
Figure 2.74  
USB_DP and USB_DM output timing in low-speed mode  
Observation  
point  
USB_DP  
200 pF to  
600 pF  
3.6 V  
1.5 K  
27   
USB_DM  
200 pF to  
600 pF  
Figure 2.75  
Table 2.37  
Test circuit in low-speed mode  
USBFS full-speed characteristics (USB_DP and USB_DM pin characteristics)  
Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, USBCLK = 48 MHz  
Parameter  
Symbol  
Min  
2.0  
Typ  
Max  
Unit  
V
Test conditions  
Input  
characteristics  
Input high voltage  
Input low voltage  
V
V
V
V
V
V
V
IH  
0.8  
V
IL  
Differential input sensitivity  
Differential common-mode range  
Output high voltage  
Output low voltage  
Cross-over voltage  
Rise time  
0.2  
0.8  
2.8  
0.0  
1.3  
4
V
| USB_DP - USB_DM |  
DI  
2.5  
3.6  
0.3  
2.0  
20  
V
CM  
OH  
OL  
CRS  
Output  
characteristics  
V
I
I
= –200 µA  
= 2 mA  
OH  
OL  
V
V
Figure 2.76  
t
t
t
ns  
ns  
%
LR  
LF  
Fall time  
4
20  
Rise/fall time ratio  
Output resistance  
/ t  
90  
111.11  
44  
t / t  
FR FF  
LR LF  
Z
28  
USBFS: Rs = 27 Ω included  
During idle state  
DRV  
Pull-up and  
pull-down  
characteristics  
DM pull-up resistance in device controller  
mode  
R
0.900  
1.425  
1.575 kΩ  
3.090 kΩ  
pu  
pd  
During transmission and  
reception  
USB_DP and USB_DM pull-down  
resistance in host controller mode  
R
14.25  
24.80 kΩ  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 78 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
90%  
90%  
VCRS  
USB_DP,  
USB_DM  
10%  
tFR  
10%  
tFF  
Figure 2.76  
USB_DP and USB_DM output timing in full-speed mode  
Observation  
point  
USB_DP  
USB_DM  
50 pF  
50 pF  
27  
Figure 2.77  
Table 2.38  
Test circuit in full-speed mode  
USBFS characteristics (USB_DP and USB_DM pin characteristics)  
Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, USBCLK = 48 MHz  
Parameter  
Symbol  
Min  
25  
Typ  
Max  
175  
175  
13  
Unit  
µA  
µA  
µA  
V
Test conditions  
Battery Charging D+ sink current  
Specification  
I
I
I
DP_SINK  
DM_SINK  
DP_SRC  
D- sink current  
25  
DCD source current  
Data detection voltage  
D+ source voltage  
D- source voltage  
7
V
V
V
0.25  
0.5  
0.5  
0.4  
0.7  
0.7  
DAT_REF  
DP_SRC  
DM_SRC  
V
Outout current = 250 µA  
Outout current = 250 µA  
V
2.5  
ADC12 Characteristics  
Table 2.39  
A/D conversion characteristics for unit 0 (1 of 2)  
Conditions: PCLKC = 1 to 50 MHz  
Parameter  
Min  
1
Typ Max Unit Test conditions  
Frequency  
50  
30  
MHz —  
Analog input capacitance  
Quantization error  
Resolution  
pF  
±0.5 —  
12  
LSB  
Bits  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 79 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.39  
A/D conversion characteristics for unit 0 (2 of 2)  
Conditions: PCLKC = 1 to 50 MHz  
Parameter  
Min  
Typ Max Unit Test conditions  
*1  
*2  
*2  
High-precision high-speed  
channels  
(AN000 to AN005)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
μs  
Sampling in 13  
states  
Conversion time  
0.52 (0.26)  
(operation at PCLKC =  
50 MHz)  
Max. = 400 Ω  
μs  
Sampling in 7 states  
VCC = AVCC0 = 3.0  
to 3.6 V  
0.40 (0.14)  
3.0 V ≤ VREFH0 ≤  
AVCC0  
Offset error  
±1.0 ±2.5 LSB  
±1.0 ±2.5 LSB  
±2.0 ±4.5 LSB  
±0.5 ±1.5 LSB  
±1.0 ±2.5 LSB  
Full-scale error  
Absolute accuracy  
DNL differential nonlinearity error  
INL integral nonlinearity error  
*1  
*2  
High-precision normal-speed  
channels  
(AN006 to AN009, AN012,  
AN013)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
μs  
Sampling in 33  
states  
Conversion time  
(Operation at PCLKC =  
50 MHz)  
0.92 (0.66)  
Offset error  
±1.0 ±2.5 LSB  
±1.0 ±2.5 LSB  
±2.0 ±4.5 LSB  
±0.5 ±1.5 LSB  
±1.0 ±2.5 LSB  
Full-scale error  
Absolute accuracy  
DNL differential nonlinearity error  
INL integral nonlinearity error  
Note:  
Note:  
These specification values apply when there is no access to the external memory during A/D conversion. If access occurs during  
A/D conversion, values might not fall within the indicated ranges.  
The use of PORT0 as digital outputs is not allowed when the 12-Bit A/D converter is used.  
The characteristics apply when AVCC0, AVSS0, VREFH0/VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage are  
stable.  
When both unit0 and unit1 are used, do not select the following analog input combinations at the same time except the interleave  
function. If selected, values might not fall within the indicated ranges.  
AN100 and AN000 or AN001 or AN002  
AN101 and AN000 or AN001 or AN002 or AN003  
AN102 and AN000 or AN001 or AN002 or AN003 or AN004  
Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test  
conditions.  
Note 2. Values in parentheses indicate the sampling time.  
Table 2.40  
A/D conversion characteristics for unit 1 (1 of 2)  
Conditions: PCLKC = 1 to 50 MHz  
Parameter  
Min  
1
Typ Max Unit Test conditions  
Frequency  
50  
30  
MHz —  
Analog input capacitance  
Quantization error  
Resolution  
pF  
±0.5 —  
12  
LSB  
Bits  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 80 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.40  
A/D conversion characteristics for unit 1 (2 of 2)  
Conditions: PCLKC = 1 to 50 MHz  
Parameter  
Min  
Typ Max Unit Test conditions  
*1  
*2  
*2  
High-precision high-speed  
channels  
(AN100 to AN102)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
μs  
Sampling in 13  
states  
Conversion time  
0.52 (0.26)  
(Operation at PCLKC =  
50 MHz)  
Max. = 400 Ω  
μs  
Sampling in 7 states  
VCC = AVCC0 = 3.0  
to 3.6 V  
0.40 (0.14)  
3.0 V ≤ VREFH ≤  
AVCC0  
Offset error  
±1.0 ±2.5 LSB  
±1.0 ±2.5 LSB  
±2.0 ±4.5 LSB  
±0.5 ±1.5 LSB  
±1.0 ±2.5 LSB  
Full-scale error  
Absolute accuracy  
DNL differential nonlinearity error  
INL integral nonlinearity error  
*1  
*2  
Normal-precision normal-  
speed channels  
(AN116 to AN122)  
Permissible signal  
source impedance  
Max. = 1 kΩ  
μs  
Sampling in 33  
states  
Conversion time  
(Operation at PCLKC =  
50 MHz)  
0.92 (0.66)  
Offset error  
±1.0 ±5.5 LSB  
±1.0 ±5.5 LSB  
±2.0 ±7.5 LSB  
±0.5 ±4.5 LSB  
±1.0 ±5.5 LSB  
Full-scale error  
Absolute accuracy  
DNL differential nonlinearity error  
INL integral nonlinearity error  
Note:  
Note:  
These specification values apply when there is no access to the external memory during A/D conversion. If access occurs during  
A/D conversion, values might not fall within the indicated ranges.  
The use of PORT0 as digital outputs is not allowed when the 12-Bit A/D converter is used.  
The characteristics apply when AVCC0, AVSS0, VREFH0/VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage are  
stable.  
When both unit0 and unit1 are used, do not select the following analog input combinations at the same time except the interleave  
function. If selected, values might not fall within the indicated ranges.  
AN100 and AN000 or AN001 or AN002  
AN101 and AN000 or AN001 or AN002 or AN003  
AN102 and AN000 or AN001 or AN002 or AN003 or AN004  
Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test  
conditions.  
Note 2. Values in parentheses indicate the sampling time.  
Table 2.41  
A/D conversion characteristics for interleaving (1 of 2)  
Conditions: PCLKC = 1 to 50 MHz  
Parameter  
Min Typ Max Unit Test conditions  
Frequency  
1
50  
30  
MHz —  
Analog input capacitance  
Quantization error  
Resolution  
pF  
±0.5 —  
12  
LSB  
Bits  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 81 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.41  
A/D conversion characteristics for interleaving (2 of 2)  
Conditions: PCLKC = 1 to 50 MHz  
Parameter  
Min Typ Max Unit Test conditions  
*1  
High-precision high-speed channels  
(AN000 & AN100, AN001 & AN101, AN002  
& AN102))  
Max. = 400 Ω 0.22 —  
µs  
Sampling in 9 states  
VCC = AVCC0 = 3.0 to  
3.6 V  
Conversion time  
(operation at PCLKC = 50  
MHz)  
3.0 V ≤ VREFH0 ≤  
AVCC0  
Offset error  
±1.0 ±2.5 LSB  
±1.0 ±2.5 LSB  
±2.0 ±4.5 LSB  
±0.5 ±4.5 LSB  
±1.0 ±4.5 LSB  
Full-scale error  
Absolute accuracy  
DNL differential nonlinearity error  
INL integral nonlinearity error  
Note:  
These specification values apply when there is no access to the external memory during A/D conversion. If access occurs during  
A/D conversion, values might not fall within the indicated ranges.  
The use of PORT0 as digital outputs is not allowed when the 12-Bit A/D converter is used.  
The characteristics apply when AVCC0, AVSS0, VREFH0/VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage are  
stable.  
Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test  
conditions.  
Table 2.42  
A/D internal reference voltage characteristics  
Parameter  
Min  
1.13  
4.15  
Typ  
1.18  
Max  
1.23  
Unit  
V
Test conditions  
A/D internal reference voltage  
Sampling time  
µs  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 82 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
0xFFF  
Full-scale error  
Integral nonlinearity  
error (INL)  
A/D converter  
output code  
Ideal line of actual A/D  
conversion characteristic  
Actual A/D conversion  
characteristic  
Ideal A/D conversion  
characteristic  
Differential nonlinearity error (DNL)  
1-LSB width for ideal A/D  
conversion characteristic  
Differential nonlinearity error (DNL)  
1-LSB width for ideal A/D  
conversion characteristic  
Absolute accuracy  
Offset error  
0x000  
0
Analog input voltage  
VREFH0  
(full-scale)  
Figure 2.78  
Illustration of ADC12 characteristic terms  
Absolute accuracy  
Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the  
actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog  
input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D  
conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and the reference  
voltage VREFH0 = 3.072 V, then the 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the  
analog input voltages. If the analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D  
conversion result is in the range of 0x003 to 0x00D, though an output code of 0x008 can be expected from the theoretical  
A/D conversion characteristics.  
Integral nonlinearity error (INL)  
Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors  
are zeroed, and the actual output code.  
Differential nonlinearity error (DNL)  
Differential nonlinearity error is the difference between the 1-LSB width based on the ideal A/D conversion characteristics  
and the width of the actual output code.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 83 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Offset error  
Offset error is the difference between the transition point of the ideal first output code and the actual first output code.  
Full-scale error  
Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.  
2.6  
DAC12 Characteristics  
Table 2.43  
D/A conversion characteristics  
Parameter  
Min  
Typ  
Max  
Unit  
Test conditions  
Resolution  
12  
Bits  
Without output amplifier  
Absolute accuracy  
INL  
0
±24  
±8.0  
±2.0  
LSB  
LSB  
LSB  
kΩ  
Resistive load 2 MΩ  
±2.0  
±1.0  
8.5  
Resistive load 2 MΩ  
DNL  
Output impedance  
Conversion time  
Output voltage range  
With output amplifier  
INL  
3
µs  
Resistive load 2 MΩ, Capacitive load 20 pF  
VREFH  
V
5
±2.0  
±1.0  
±4.0  
LSB  
LSB  
µs  
DNL  
±2.0  
Conversion time  
Resistive load  
Capacitive load  
Output voltage range  
4.0  
kΩ  
pF  
0.2  
50  
VREFH – 0.2  
V
2.7  
TSN Characteristics  
Table 2.44  
TSN characteristics  
Parameter  
Symbol  
Min  
Typ  
± 1.0  
4.0  
Max  
Unit  
°C  
Test conditions  
Relative accuracy  
Temperature slope  
Output voltage (at 25 °C)  
Temperature sensor start time  
Sampling time  
30  
mV/°C  
V
1.24  
t
µs  
START  
4.15  
µs  
2.8  
OSC Stop Detect Characteristics  
Table 2.45  
Parameter  
Oscillation stop detection circuit characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
ms  
Test conditions  
Detection time  
t
1
Figure 2.79  
dr  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 84 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Main clock  
tdr  
OSTDSR.OSTDF  
MOCO clock  
ICLK  
Figure 2.79  
Oscillation stop detection timing  
2.9  
POR and LVD Characteristics  
Table 2.46  
Power-on reset circuit and voltage detection circuit characteristics (1)  
Un  
Parameter  
Symbol Min  
Typ  
2.6  
Max it  
Test conditions  
Voltage detection Power-on reset  
level  
DPSBYCR.DEEPCUT[1:0] = 00b or  
01b.  
V
2.5  
2.7  
V
Figure 2.80  
POR  
(POR)  
DPSBYCR.DEEPCUT[1:0] = 11b.  
1.8  
2.25 2.7  
Voltage detection circuit (LVD0)  
Voltage detection circuit (LVD1)  
Voltage detection circuit (LVD2)  
V
V
V
V
V
V
V
V
V
2.84 2.94 3.04  
2.77 2.87 2.97  
2.70 2.80 2.90  
2.89 2.99 3.09  
2.82 2.92 3.02  
2.75 2.85 2.95  
2.89 2.99 3.09  
2.82 2.92 3.02  
2.75 2.85 2.95  
Figure 2.81  
Figure 2.82  
Figure 2.83  
det0_1  
det0_2  
det0_3  
det1_1  
det1_2  
det1_3  
det2_1  
det2_2  
det2_3  
POR  
Internal reset time Power-on reset time  
LVD0 reset time  
t
t
t
t
t
4.5  
ms Figure 2.80  
Figure 2.81  
0.51  
0.38  
0.38  
LVD0  
LVD1 reset time  
Figure 2.82  
LVD1  
LVD2 reset time  
Figure 2.83  
LVD2  
*1  
200  
µs Figure 2.80,  
Figure 2.81  
Minimum VCC down time  
VOFF  
Response delay  
t
t
200  
µs Figure 2.81 to  
Figure 2.83  
det  
LVD operation stabilization time (after LVD is enabled)  
Hysteresis width (LVD1 and LVD2)  
10  
µs Figure 2.82,  
d(E-A)  
Figure 2.83  
V
70  
m
LVH  
V
Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V  
, V  
POR  
,
det0  
V
, and V  
det1  
for POR and LVD.  
det2  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 85 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
tVOFF  
VPOR  
VCC  
Internal reset signal  
(active-low)  
tdet  
tPOR  
tdet  
tdet tPOR  
Figure 2.80  
Power-on reset timing  
tVOFF  
VLVH  
VCC  
Vdet0  
Internal reset signal  
(active-low)  
tdet  
tdet  
tLVD0  
Figure 2.81  
Voltage detection circuit timing (Vdet0)  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 86 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
tVOFF  
VLVH  
VCC  
Vdet1  
LVCMPCR.LVD1E  
Td(E-A)  
LVD1  
Comparator output  
LVD1CR0.CMPE  
LVD1SR.MON  
Internal reset signal  
(active-low)  
When LVD1CR0.RN = 0  
tdet  
tLVD1  
tdet  
When LVD1CR0.RN = 1  
tLVD1  
Figure 2.82  
Voltage detection circuit timing (Vdet1)  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 87 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
tVOFF  
VLVH  
VCC  
Vdet2  
LVCMPCR.LVD2E  
Td(E-A)  
LVD2  
Comparator output  
LVD2CR0.CMPE  
LVD2SR.MON  
Internal reset signal  
(active-low)  
When LVD2CR0.RN = 0  
tdet  
tdet  
tLVD2  
When LVD2CR0.RN = 1  
tLVD2  
Figure 2.83  
2.10  
Voltage detection circuit timing (Vdet2)  
VBATT Characteristics  
Table 2.47  
Battery backup function characteristics  
Conditions: VCC = AVCC0 = VCC_USB = 2.7 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VBATT = 1.8 to 3.6 V  
Parameter  
Symbol  
Min  
2.50  
2.70  
Typ  
2.60  
Max  
2.70  
Unit  
V
Test conditions  
Voltage level for switching to battery backup  
V
Figure 2.84  
DETBATT  
BATTSW  
Lower-limit VBATT voltage for power supply  
switching caused by VCC voltage drop  
V
V
VCC-off period for starting power supply  
switching  
t
200  
µs  
VOFFBATT  
VBATT low voltage detection level  
Minimum VBATT down time  
Response delay  
V
1.8  
200  
1.9  
2.0  
V
Figure 2.85  
battldet  
BATTOFF  
BATTdet  
d(E-A)  
t
t
t
µs  
µs  
µs  
200  
20  
VBATT monitor operation stabilization time  
(after VBATTMNSELR.VBATTMNSEL is  
changed to 1)  
VBATT current increase (when  
VBATTMNSELR.VBATTMNSEL is 1 compared  
to the case that VBATTMNSELR.VBATTMNSEL  
is 0)  
I
140  
350  
nA  
VBATTSEL  
Note:  
The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage  
level for switching to battery backup (V  
).  
DETBATT  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 88 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
tVOFFBATT  
VDETBATT  
VCC  
VBATT  
VBATTSW  
Backup power  
area  
VCC supply  
VBATT supply  
VCC supply  
Figure 2.84  
Battery backup function characteristics  
tBATTOFF  
Vbattldet  
VBATT  
td(E-A)  
VBATTMON  
tBATTdet  
tBATTdet  
VBATTMNSEL  
Figure 2.85  
Battery backup function characteristics  
2.11  
CTSU Characteristics  
Table 2.48  
CTSU characteristics  
Parameter  
Symbol  
Min  
9
Typ  
10  
Max  
11  
Unit  
nF  
Test conditions  
External capacitance connected to TSCAP pin  
TS pin capacitive load  
C
C
tscap  
base  
IoH  
50  
pF  
Permissible output high current  
Σ
-40  
mA  
When the mutual capacitance  
method is applied  
2.12  
Flash Memory Characteristics  
2.12.1  
Code Flash Memory Characteristics  
Table 2.49  
Code flash memory characteristics (1 of 2)  
Conditions: Program or erase: FCLK = 4 to 50 MHz  
Read: FCLK ≤ 50 MHz  
FCLK = 4 MHz  
20 MHz ≤ FCLK ≤ 50 MHz  
Test  
conditions  
*6  
*6  
Parameter  
Symbol Min  
Typ  
Max Min  
Typ  
0.34  
22  
Max  
6.0  
80  
Unit  
ms  
Programming time  
≤ 100 times  
128-byte  
8-KB  
t
t
t
0.75 13.2  
P128  
N
PEC  
49  
176  
704  
ms  
P8K  
32-KB  
194  
88  
320  
ms  
P32K  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 89 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.49  
Code flash memory characteristics (2 of 2)  
Conditions: Program or erase: FCLK = 4 to 50 MHz  
Read: FCLK ≤ 50 MHz  
FCLK = 4 MHz  
20 MHz ≤ FCLK ≤ 50 MHz  
Test  
conditions  
*6  
*6  
Parameter  
Symbol Min  
Typ  
Max Min  
Typ  
Max  
7.2  
96  
Unit  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
Times  
µs  
Programming time  
> 100 times  
128-byte  
8-KB  
t
t
t
t
t
t
t
0.91 15.8  
0.41  
27  
P128  
N
PEC  
60  
212  
848  
216  
864  
260  
P8K  
32-KB  
8-KB  
234  
78  
106  
43  
384  
120  
480  
144  
576  
P32K  
E8K  
Erasure time  
≤ 100 times  
N
PEC  
32-KB  
8-KB  
283  
94  
157  
52  
E32K  
E8K  
Erasure time  
> 100 times  
N
PEC  
32-KB  
341  
1040 —  
189  
E32K  
*4  
*1  
*1  
N
Reprogramming/erasure cycle  
10000  
10000  
PEC  
Suspend delay during programming  
Programming resume time  
t
t
t
264  
110  
216  
120  
50  
SPD  
µs  
PRT  
First suspend delay during erasure in suspend  
priority mode  
120  
µs  
SESD1  
Second suspend delay during erasure in suspend  
priority mode  
t
t
t
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
ms  
ms  
ms  
SESD2  
SEED  
Suspend delay during erasure in erasure priority  
mode  
First erasing resume time during erasure in suspend  
REST1  
*5  
priority mode  
Second erasing resume time during erasure in  
suspend priority mode  
t
t
144  
144  
80  
80  
µs  
µs  
REST2  
REET  
Erasing resume time during erasure in erasure  
priority mode  
Forced stop command  
t
t
32  
20  
µs  
FD  
*2  
*2 *3  
*2 *3  
*2 *3  
*2 *3  
Years  
Data hold time  
10  
10  
DRP  
Ta = +85°C  
30  
30  
Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to  
the minimum value.  
Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.  
Note 3. This result is obtained from reliability testing.  
Note 4. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 10,000),  
erasing can be performed n times for each block. For example, when 128-byte programming is performed 64 times for different  
addresses in 8-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming  
the same address several times as one erasure is not enabled. Overwriting is prohibited.  
Note 5. Time for resumption includes time for reapplying the erasing pulse (up to one full pulse) that was cut off at the time of suspension.  
Note 6. The reference value at VCC = 3.3V and room temperature.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 90 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
• Suspension during programming  
FACI command  
Program  
Ready  
Suspend  
Resume  
tSPD  
FSTATR.FRDY  
Not Ready  
Ready  
tPRT  
Programming pulse  
Programming  
Programming  
• Suspension during erasure in suspend priority mode  
FACI command  
Erase  
Suspend  
Suspend  
Resume  
Resume  
tSESD1  
tSESD2  
FSTATR.FRDY  
Erasure pulse  
Not Ready  
Ready  
Not Ready  
Ready  
Not Ready  
Erasing  
Ready  
tREST1  
tREST2  
Erasing  
Erasing  
• Suspension during erasure in erasure priority mode  
FACI command  
FSTATR.FRDY  
Erasure pulse  
Erase  
Suspend  
Not Ready  
Erasing  
Resume  
tSEED  
Not Ready  
Ready  
Ready  
tREET  
Erasing  
• Forced Stop  
Forced Stop  
FACI command  
tFD  
FSTATR.FRDY  
Not Ready  
Ready  
Figure 2.86  
Suspension and forced stop timing for flash memory programming and erasure  
2.12.2  
Data Flash Memory Characteristics  
Table 2.50  
Data flash memory characteristics (1 of 2)  
Conditions: Program or erase: FCLK = 4 to 50 MHz  
Read: FCLK ≤ 50 MHz  
FCLK = 4 MHz  
20 MHz ≤ FCLK ≤ 50 MHz  
Test  
*6  
*6  
Parameter  
Symbol Min  
Typ  
Max Min  
Typ  
0.16  
0.17  
0.19  
1.7  
2.6  
4.9  
Max Unit conditions  
Programming time  
Erasure time  
4-byte  
t
t
t
t
t
t
t
0.36 3.8  
0.38 4.0  
0.42 4.5  
1.7  
1.8  
2.0  
10  
15  
28  
30  
ms  
DP4  
8-byte  
DP8  
16-byte  
64-byte  
128-byte  
256-byte  
4-byte  
DP16  
DE64  
DE128  
DE256  
DBC4  
3.1  
4.7  
8.9  
18  
27  
50  
84  
ms  
Blank check time  
µs  
µs  
*1  
*2  
*2  
N
Reprogramming/erasure cycle  
125000  
125000  
DPEC  
DSPD  
Suspend delay during  
programming  
4-byte  
8-byte  
16-byte  
t
264  
264  
264  
110  
216  
216  
216  
120  
120  
120  
50  
Programming resume time  
First suspend delay during  
t
t
µs  
µs  
DPRT  
64-byte  
120  
120  
120  
DSESD1  
erasure in suspend priority mode  
128-byte  
256-byte  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 91 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.50  
Data flash memory characteristics (2 of 2)  
Conditions: Program or erase: FCLK = 4 to 50 MHz  
Read: FCLK ≤ 50 MHz  
FCLK = 4 MHz  
20 MHz ≤ FCLK ≤ 50 MHz  
Test  
*6  
*6  
Parameter  
Symbol Min  
Typ  
Max Min  
Typ  
Max Unit conditions  
Second suspend delay during  
64-byte  
t
300  
390  
570  
300  
390  
570  
300  
300  
390  
570  
300  
390  
570  
300  
µs  
DSESD2  
erasure in suspend priority mode  
128-byte  
256-byte  
64-byte  
Suspend delay during erasing in  
erasure priority mode  
t
µs  
DSEED  
128-byte  
256-byte  
First erasing resume time during erasure in suspend  
t
t
µs  
µs  
DREST1  
DREST2  
*5  
priority mode  
Second erasing resume time during erasure in  
suspend priority modeFirst erasing resume time  
during erasure in suspend priority mode  
126  
126  
70  
70  
Erasing resume time during erasure in erasure  
priority mode  
t
µs  
DREET  
Forced stop command  
t
t
10  
30  
32  
10  
30  
20  
µs  
FD  
*3  
*3 *4  
*3 *4  
*3 *4  
*3 *4  
Year  
Data hold time  
DRP  
Ta = +85°C  
Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 125,000),  
erasing can be performed n times for each block. For example, when 4-byte programming is performed 16 times for different  
addresses in 64-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,  
programming the same address several times as one erasure is not enabled. Overwriting is prohibited.  
Note 2. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to  
the minimum value.  
Note 3. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.  
Note 4. This result is obtained from reliability testing.  
Note 5. Time for resumption includes time for reapplying the erasing pulse (up to one full pulse) that was cut off at the time of suspension.  
Note 6. The reference value at VCC = 3.3 V and room temperature.  
2.12.3  
Option Setting Memory Characteristics  
Table 2.51  
Option setting memory characteristics  
Conditions: Program: FCLK = 4 to 50 MHz  
Read: FCLK ≤ 50 MHz  
FCLK = 4 MHz  
20 MHz ≤ FCLK ≤ 50 MHz  
*4  
*4  
Parameter  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test conditions  
Programming time  
t
83  
309  
45  
162  
ms  
OP  
N
OPC  
≤ 100 times  
Programming time  
> 100 times  
t
100  
371  
55  
195  
ms  
OP  
N
OPC  
*1  
*1  
Reprogramming cycle  
N
t
Times  
Years  
20000  
20000  
OPC  
*2  
*2 *3  
*2 *3  
Data hold time  
10  
30  
10  
30  
DRP  
*2 *3  
*2 *3  
Ta = +85°C  
Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to  
the minimum value.  
Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.  
Note 3. This result is obtained from reliability testing.  
Note 4. The reference value at VCC = 3.3 V and room temperature.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 92 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
2.13  
Boundary Scan  
Table 2.52  
Parameter  
Boundary scan characteristics  
Symbol  
Min  
100  
45  
45  
Typ  
Max  
5
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test conditions  
TCK clock cycle time  
TCK clock high pulse width  
TCK clock low pulse width  
TCK clock rise time  
TCK clock fall time  
TMS setup time  
t
t
t
t
t
t
t
t
t
t
Figure 2.87  
TCKcyc  
TCKH  
TCKL  
TCKr  
5
TCKf  
20  
20  
20  
20  
40  
Figure 2.88  
TMSS  
TMSH  
TDIS  
TMS hold time  
TDI setup time  
TDI hold time  
TDIH  
TDO data delay  
TDOD  
*1  
T
t
Figure 2.89  
Boundary scan circuit startup time  
BSSTUP  
RESWP  
Note 1. Boundary scan does not function until the power-on reset becomes negative.  
tTCKcyc  
tTCKH  
tTCKf  
TCK  
tTCKr  
tTCKL  
Figure 2.87  
Boundary scan TCK timing  
TCK  
TMS  
TDI  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOD  
TDO  
Figure 2.88  
Boundary scan input/output timing  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 93 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
VCC  
RES  
tBSSTUP  
(= tRESWP)  
Boundary scan  
execute  
Figure 2.89  
Boundary scan circuit startup timing  
Joint European Test Action Group (JTAG)  
JTAG  
2.14  
Table 2.53  
Parameter  
Symbol  
Min  
40  
15  
15  
8
Typ  
Max  
5
Unit  
Test conditions  
TCK clock cycle time  
TCK clock high pulse width  
TCK clock low pulse width  
TCK clock rise time  
TCK clock fall time  
TMS setup time  
t
t
t
t
t
t
t
t
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 2.90  
TCKcyc  
TCKH  
TCKL  
TCKr  
5
TCKf  
20  
Figure 2.91  
TMSS  
TMSH  
TDIS  
TMS hold time  
8
TDI setup time  
8
TDI hold time  
8
TDIH  
TDO data delay time  
TDOD  
tTCKcyc  
tTCKH  
TCK  
tTCKf  
tTCKr  
tTCKL  
Figure 2.90  
JTAG TCK timing  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 94 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
TCK  
tTMSS  
tTMSH  
TMS  
tTDIS  
tTDIH  
TDI  
tTDOD  
TDO  
Figure 2.91  
JTAG input/output timing  
2.15  
Serial Wire Debug (SWD)  
Table 2.54  
Parameter  
SWD  
Symbol  
Min  
40  
15  
15  
8
Typ  
Max  
5
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test conditions  
SWCLK clock cycle time  
SWCLK clock high pulse width  
SWCLK clock low pulse width  
SWCLK clock rise time  
SWCLK clock fall time  
SWDIO setup time  
t
t
t
t
t
t
t
t
Figure 2.92  
SWCKcyc  
SWCKH  
SWCKL  
SWCKr  
SWCKf  
SWDS  
5
28  
Figure 2.93  
SWDIO hold time  
8
SWDH  
SWDIO data delay time  
2
SWDD  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 95 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
tSWCKcyc  
tSWCKH  
SWCLK  
tSWCKL  
Figure 2.92  
SWD SWCLK timing  
SWCLK  
tSWDS  
tSWDH  
SWDIO  
(Input)  
tSWDD  
tSWDD  
tSWDD  
SWDIO  
(Output)  
SWDIO  
(Output)  
SWDIO  
(Output)  
Figure 2.93  
SWD input/output timing  
2.16  
Embedded Trace Macro Interface (ETM)  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 96 of 109  
RA6M4 Datasheet  
2. Electrical Characteristics  
Table 2.55  
ETM  
Conditions: High speed high drive output is selected in the Port Drive Capability bit in the PmnPFS register.  
Parameter  
Symbol  
Min  
20  
9
Typ  
Max  
1
Unit  
ns  
Test conditions  
TCLK clock cycle time  
TCLK clock high pulse width  
TCLK clock low pulse width  
TCLK clock rise time  
t
t
t
t
t
t
t
Figure 2.94  
TCLKcyc  
TCLKH  
TCLKL  
TCLKr  
TCLKf  
TRDS  
ns  
9
ns  
2.5  
1.5  
ns  
TCLK clock fall time  
1
ns  
TDATA[3:0] output setup time  
TDATA[3:0] output hold time  
ns  
Figure 2.95  
ns  
TRDH  
tTCLKcyc  
tTCLKH  
TCLK  
tTCLKf  
tTCLKr  
tTCLKL  
Figure 2.94  
ETM TCLK timing  
TCLK  
tTRDS  
tTRDH  
tTRDS  
tTRDH  
TDATA[3:0]  
Figure 2.95  
ETM output timing  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 97 of 109  
RA6M4 Datasheet  
Appendix 1. Port States in Each Processing Mode  
Appendix 1.  
Port States in Each Processing Mode  
After Deep Software Standby  
mode is canceled (return to  
startup mode)  
Software Standby mode  
Deep Software  
Standby mode  
Function  
Mode  
Pin function  
MD  
Reset  
Pull-up  
Pull-up  
output  
Hi-Z  
OPE=0  
Keep-O  
Keep-O  
Keep-O  
OPE=1  
IOKEEP = 0  
Hi-Z  
IOKEEP = 1*1  
Keep  
Keep  
Keep  
Keep  
Keep  
JTAG  
TCK/TMS/TDI  
TDO  
Hi-Z  
Keep  
TDO output  
Hi-Z  
Keep  
Keep-O*2  
Keep-O*2  
Keep-O*2  
Keep-O*2  
Keep-O*2  
Keep-O*2  
Keep-O*2  
Keep-O*2  
IRQ  
IRQx  
Keep  
Keep*3  
Keep  
IRQx-DS  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Keep  
Keep  
Keep  
Keep  
Keep  
Keep  
Keep  
AGT  
AGTIOn  
Keep*3  
Keep  
AGTIOn (n=1,3)  
RXD0  
SCI  
IIC  
SCLn/SDAn  
USB_OVRCURx  
Keep  
Keep  
USBFS  
Keep*3  
USB_OVRCURx-DS/  
USB_VBUS  
Keep-O*4  
Keep-O*2  
Keep*3  
USB_DP/USB_DM  
RTCICx  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Keep  
Keep  
Keep*3  
Keep  
Keep  
Keep  
Keep  
Keep  
Keep  
Keep  
RTC  
RTCOUT  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
[RTCOUT selected] RTCOUT output  
[CLKOUT selected] CLKOUT output  
[DAn output (DAOE = 1)] D/A output retained  
[EBCLK output] H  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Keep  
Keep  
Keep  
Keep  
Keep  
Keep  
Keep  
CLKOUT  
DAC  
CLKOUT  
DAn  
External  
bus  
(CS area)  
EBCLK  
Dx  
[Dx output] Hi-Z  
Ax  
[Ax output] Hi-Z  
[Ax output] Keep-O  
BCx/CSx/RD/WRx  
[BCx/CSx/RD/WRx  
output] Hi-Z  
[BCx/CSx/RD/WRx  
output] H  
ALE  
Hi-Z  
Hi-Z  
[ALE output] Hi-Z  
Keep-O  
[ALE output] L  
Keep  
Keep  
Hi-Z  
Hi-Z  
Keep  
Keep  
Others  
Note:  
H: High-level  
L: Low-level  
Hi-Z: High-impedance  
Keep-O: Output pins retain their previous values. Input pins go to high-impedance.  
Keep: Pin states are retained during periods in Software Standby mode.  
Note 1. Retains the I/O port state until the DPSBYCR.IOKEEP bit is cleared to 0.  
Note 2. Input is enabled if the pin is specified as the Software Standby canceling source while it is used as an external interrupt pin.  
Note 3. Input is enabled if the pin is specified as the Deep Software Standby canceling source.  
Note 4. Input is enabled while the pin is used as an input pin.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 98 of 109  
RA6M4 Datasheet  
Appendix 2. Package Dimensions  
Appendix 2.  
Package Dimensions  
Information on the latest version of the package dimensions or mountings is displayed in “Packages” on the Renesas  
Electronics Corporation website.  
JEITA Package Code  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
1.2  
P-LFQFP144-20x20-0.50  
PLQP0144KA-B  
HD  
D
Unit: mm  
*1  
108  
73  
109  
72  
144  
37  
NOTE 4  
1
36  
NOTE)  
Index area  
NOTE 3  
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
F
S
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
*3  
b
e
p
M
y
S
D
E
19.9  
19.9  
20.0 20.1  
20.0 20.1  
A2  
HD  
HE  
A
1.4  
21.8  
21.8  
22.0 22.2  
22.0 22.2  
1.7  
A1  
bp  
c
0.05  
0.17  
0.09  
0  
0.15  
0.20 0.27  
3.5  
0.5  
0.20  
8  
Lp  
L1  
e
x
0.08  
0.08  
0.75  
Detail F  
y
Lp  
L1  
0.45  
0.6  
1.0  
© 2016 Renesas Electronics Corporation. All rights reserved.  
Figure 2.1  
LQFP 144-pin  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 99 of 109  
RA6M4 Datasheet  
Appendix 2. Package Dimensions  
JEITA Package Code  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
0.6  
P-LFQFP100-14x14-0.50  
PLQP0100KB-B  
HD  
Unit: mm  
*1  
D
75  
51  
76  
50  
100  
26  
1
25  
NOTE 4  
NOTE)  
Index area  
NOTE 3  
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
F
S
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
y
S
*3  
b
p
e
M
D
E
13.9  
13.9  
14.0 14.1  
14.0 14.1  
A2  
HD  
HE  
A
1.4  
15.8  
15.8  
16.0 16.2  
16.0 16.2  
1.7  
A1  
bp  
c
0.05  
0.15  
0.09  
0  
0.15  
0.20 0.27  
3.5  
0.5  
0.20  
8  
Lp  
L1  
e
Detail F  
x
0.08  
0.08  
0.75  
y
Lp  
L1  
0.45  
0.6  
1.0  
© 2015 Renesas Electronics Corporation. All rights reserved.  
Figure 2.2  
LQFP 100-pin  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 100 of 109  
RA6M4 Datasheet  
Appendix 2. Package Dimensions  
JEITA Package Code  
P-LFQFP64-10x10-0.50  
RENESAS Code  
Previous Code  
MASS (Typ) [g]  
0.3  
PLQP0064KB-C  
Unit: mm  
HD  
*1  
D
48  
33  
49  
32  
64  
17  
1
16  
NOTE 4  
Index area  
NOTE 3  
NOTE)  
F
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.  
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.  
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE  
LOCATED WITHIN THE HATCHED AREA.  
S
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.  
y
S
*3  
Dimensions in millimeters  
Min Nom Max  
Reference  
Symbol  
b
p
e
M
D
E
9.9  
9.9  
10.0 10.1  
10.0 10.1  
A2  
HD  
HE  
A
1.4  
11.8  
11.8  
12.0 12.2  
12.0 12.2  
1.7  
A1  
bp  
c
0.05  
0.15  
0.09  
0  
0.15  
0.20 0.27  
3.5  
0.5  
0.20  
8  
Lp  
L1  
e
Detail F  
x
0.08  
0.08  
0.75  
y
Lp  
L1  
0.45  
0.6  
1.0  
© 2015 Renesas Electronics Corporation. All rights reserved.  
Figure 2.3  
LQFP 64-pin  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 101 of 109  
RA6M4 Datasheet  
Appendix 3. I/O Registers  
Appendix 3.  
I/O Registers  
This appendix describes I/O register address and access cycles by function.  
3.1  
Peripheral Base Addresses  
This section provides the base addresses for peripherals described in this manual. Table 3.1 shows the name, description,  
and the base address of each peripheral.  
Table 3.1  
Name  
RMPU  
TZF  
Peripheral base address (1 of 3)  
Description  
Base address  
0x4000_0000  
0x4000_0E00  
0x4000_2000  
0x4000_3000  
0x4000_5000  
0x4000_5040  
0x4000_5080  
0x4000_50C0  
0x4000_5100  
0x4000_5140  
0x4000_5180  
0x4000_51C0  
0x4000_5200  
0x4000_5400  
0x4000_6000  
0x4000_7000  
0x4000_8000  
0x400_1B000  
0x400_1C100  
0x4001_E000  
0x4008_0000  
0x4008_0020  
0x4008_0040  
0x4008_0060  
0x4008_0080  
0x4008_00A0  
0x4008_00C0  
0x4008_00E0  
0x4008_0100  
0x4008_0800  
0x4008_2000  
0x4008_3000  
0x4008_3200  
0x4008_3400  
0x4008_3600  
Renesas Memory Protection Unit  
TrustZone Filter  
SRAM  
BUS  
SRAM Control  
BUS Control  
DMAC0  
DMAC1  
DMAC2  
DMAC3  
DMAC4  
DMAC5  
DMAC6  
DMAC7  
DMA  
Direct memory access controller 0  
Direct memory access controller 1  
Direct memory access controller 2  
Direct memory access controller 3  
Direct memory access controller 4  
Direct memory access controller 5  
Direct memory access controller 6  
Direct memory access controller 7  
DMAC Module Activation  
Data Transfer Controller  
Interrupt Controller  
DTC  
ICU  
CACHE  
CPSCU  
DBG  
CACHE  
CPU System Security Control Unit  
Debug Function  
FCACHE  
SYSC  
PORT0  
PORT1  
PORT2  
PORT3  
PORT4  
PORT5  
PORT6  
PORT7  
PORT8  
PFS  
Flash Cache  
System Control  
Port 0 Control Registers  
Port 1 Control Registers  
Port 2 Control Registers  
Port 3 Control Registers  
Port 4 Control Registers  
Port 5 Control Registers  
Port 6 Control Registers  
Port 7 Control Registers  
Port 8 Control Registers  
Pmn Pin Function Control Register  
Event Link Controller  
ELC  
RTC  
Realtime Clock  
IWDT  
Independent Watchdog Timer  
Watchdog Timer  
WDT  
CAC  
Clock Frequency Accuracy Measurement Circuit  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 102 of 109  
RA6M4 Datasheet  
Appendix 3. I/O Registers  
Table 3.1  
Name  
MSTP  
POEG  
USBFS  
SDHI0  
SSIE0  
IIC0  
Peripheral base address (2 of 3)  
Description  
Base address  
Module Stop Control A, B, C, D  
Port Output Enable Module for GPT  
USB 2.0 FS Module  
0x4008_4000  
0x4008_A000  
0x4009_0000  
0x4009_2000  
0x4009_D000  
0x4009_F000  
0x4009_F014  
0x4009_F100  
0x400A_6000  
0x400A_8000  
0x400A_9000  
0x400D_0000  
0x400E_0000  
0x400E_8000  
0x400E_8100  
0x400E_8200  
0x400E_8300  
0x400E_8400  
0x400E_8500  
0x400F_3000  
0x4010_8000  
0x4010_9000  
0x4011_4000  
0x4011_4100  
0x4011_8000  
0x4011_8100  
0x4011_8200  
0x4011_8300  
0x4011_8400  
0x4011_8500  
0x4011_8600  
0x4011_8700  
0x4011_8800  
0x4011_8900  
0x4011_A000  
0x4011_A100  
0x4016_1000  
0x4016_9000  
0x4016_9100  
0x4016_9200  
0x4016_9300  
SD Host Interface 0  
Serial Sound Interface Enhanced (SSIE)  
Inter-Integrated Circuit 0  
IIC0WU  
IIC1  
Inter-Integrated Circuit 0 Wake-up Unit  
Inter-Integrated Circuit 1  
OSPI  
Octa Serial Peripheral Interface  
CAN0 Module  
CAN0  
CAN1  
CTSU  
PSCU  
AGT0  
AGT1  
AGT2  
AGT3  
AGT4  
AGT5  
TSN  
CAN1 Module  
Capacitive Touch Sensing Unit  
Peripheral Security Control Unit  
Low Power Asynchronous General purpose Timer 0  
Low Power Asynchronous General purpose Timer 1  
Low Power Asynchronous General purpose Timer 2  
Low Power Asynchronous General purpose Timer 3  
Low Power Asynchronous General purpose Timer 4  
Low Power Asynchronous General purpose Timer 5  
Temperature Sensor  
CRC  
CRC Calculator  
DOC  
Data Operation Circuit  
EDMAC0  
ETHERC0  
SCI0  
DMA Controller for the Ethernet Controller Channel 0  
Ethernet Controller Channel 0  
Serial Communication Interface 0  
Serial Communication Interface 1  
Serial Communication Interface 2  
Serial Communication Interface 3  
Serial Communication Interface 4  
Serial Communication Interface 5  
Serial Communication Interface 6  
Serial Communication Interface 7  
Serial Communication Interface 8  
Serial Communication Interface 9  
Serial Peripheral Interface 0  
SCI1  
SCI2  
SCI3  
SCI4  
SCI5  
SCI6  
SCI7  
SCI8  
SCI9  
SPI0  
SPI1  
Serial Peripheral Interface 1  
SCE9  
GPT320  
GPT321  
GPT322  
GPT323  
Secure Cryptographic Engine  
General PWM 32-Bit Timer 0  
General PWM 32-Bit Timer 1  
General PWM 32-Bit Timer 2  
General PWM 32-Bit Timer 3  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 103 of 109  
RA6M4 Datasheet  
Appendix 3. I/O Registers  
Table 3.1  
Name  
Peripheral base address (3 of 3)  
Description  
Base address  
GPT164  
GPT165  
GPT166  
GPT167  
GPT168  
GPT169  
GPT_OPS  
ADC120  
ADC121  
DAC12  
FLAD  
General PWM 16-Bit Timer 4  
General PWM 16-Bit Timer 5  
General PWM 16-Bit Timer 6  
General PWM 16-Bit Timer 7  
General PWM 16-Bit Timer 8  
General PWM 16-Bit Timer 9  
Output Phase Switching Controller  
12bit A/D Converter 0  
0x4016_9400  
0x4016_9500  
0x4016_9600  
0x4016_9700  
0x4016_9800  
0x4016_9900  
0x4016_9A00  
0x4017_0000  
0x4017_0200  
0x4017_1000  
0x407F_C000  
0x407F_E000  
0x6400_0000  
12bit A/D Converter 1  
12-bit D/A converter  
Data Flash  
FACI  
Flash Application Command Interface  
Quad-SPI  
QSPI  
Note:  
Name = Peripheral name  
Description = Peripheral functionality  
Base address = Lowest reserved address or address used by the peripheral  
3.2  
Access Cycles  
This section provides access cycle information for the I/O registers described in this manual.  
Registers are grouped by associated module.  
The number of access cycles indicates the number of cycles based on the specified reference clock.  
In the internal I/O area, reserved addresses that are not allocated to registers must not be accessed, otherwise operations  
cannot be guaranteed.  
The number of I/O access cycles depends on bus cycles of the internal peripheral bus, divided clock synchronization  
cycles, and wait cycles of each module. Divided clock synchronization cycles differ depending on the frequency ratio  
between ICLK and PCLK.  
When the frequency of ICLK is equal to that of PCLK, the number of divided clock synchronization cycles is always  
constant.  
When the frequency of ICLK is greater than that of PCLK, at least 1 PCLK cycle is added to the number of divided  
clock synchronization cycles.  
The number of write access cycles indicates the number of cycles obtained by non-bufferable write access.  
Note:  
This applies to the number of cycles when access from the CPU does not conflict with the instruction fetching to the  
external memory or bus access from other bus masters such as DTC or DMAC.  
Table 3.2  
Access cycles (1 of 4)  
Number of access cycles  
Address  
From  
ICLK = PCLK  
ICLK > PCLK*1  
Cycle  
Unit  
Peripherals  
To  
Read  
Write  
Read  
Write  
Related function  
RMPU, TZF,  
SRAM, BUS,  
DMACn, DMA,  
DTC, ICU  
0x4000_0000  
0x4000_6FFF  
4
3
4
3
ICLK  
Renesas Memory  
Protection Unit,  
TrustZone Filter,  
SRAM Control, BUS  
Control, Direct  
memory access  
controller n, DMAC  
Module Activation,  
DTC Control Register,  
Interrupt Controller  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 104 of 109  
RA6M4 Datasheet  
Appendix 3. I/O Registers  
Table 3.2  
Access cycles (2 of 4)  
Number of access cycles  
ICLK = PCLK  
Address  
ICLK > PCLK*1  
Cycle  
Peripherals  
From  
To  
Read  
Write  
Read  
Write  
Unit  
ICLK  
ICLK  
Related function  
CACHE  
0x4000_7000  
0x4000_8000  
0x4000_7FFF  
0x4001_CFFF  
3
4
5
3
3
4
5
3
CACHE  
CPSCU, DBG,  
FCACHE  
CPU System Security  
Control Unit, Debug  
Function, Flash Cache  
SYSC  
0x4001_E000  
0x4001_E400  
0x4008_0000  
0x4001_E3FF  
0x4001_E5FF  
0x4008_0FFF  
5
9
5
4
8
4
5
4
ICLK  
System Control  
SYSC  
5 to 8  
2 to 5  
5 to 8  
2 to 4  
PCLKB System Control  
PORTn, PFS  
PCLKB Port n Control  
Registers, Pmn Pin  
Function Control  
Register  
ELC, RTC, IWDT, 0x4008_2000  
WDT, CAC  
0x4008_3FFF  
5
4
3 to 5  
2 to 4  
PCLKB Event Link Controller,  
Realtime Clock,  
Independent  
Watchdog Timer,  
Watchdog Timer,  
Clock Frequency  
Accuracy  
Measurement Circuit  
MSTP  
POEG  
0x4008_4000  
0x4008_A000  
0x4008_4FFF  
0x4008_AFFF  
5
5
4
4
2 to 5  
3 to 5  
2 to 4  
2 to 4  
PCLKB Module Stop Control  
PCLKB Port Output Enable  
Module for GPT  
USBFS  
USBFS  
0x4009_0000  
0x4009_4000  
0x4009_2000  
0x4009_3FFF  
0x4009_4FFF  
0x4009_FFFF  
6
4
5
5
3
4
3 to 6  
1 to 4  
2 to 5  
3 to 5  
1 to 3  
2 to 4  
PCLKB USB 2.0 FS Module  
PCLKB USB 2.0 FS Module  
SDHI0, SSIE0,  
IICn, IIC0WU  
PCLKB SD Host Interface 0,  
Serial Sound Interface  
Enhanced, Inter-  
Integrated Circuit n,  
Inter-Integrated Circuit  
0 Wake-up Unit  
OSPI  
0x400A_6000  
0x400A_6FFF  
15  
17  
12 to 15  
15 to 17  
PCLKB Octa Serial Peripheral  
Interface  
CANn  
CTSU  
0x400A_8000  
0x400D_0000  
0x400A_9FFF  
0x400D_FFFF  
5
4
4
3
2 to 5  
1 to 4  
2 to 4  
1 to 3  
PCLKB CANn Module  
PCLKB Capacitive Touch  
Sensing Unit  
PSCU  
AGTn  
0x400E_0000  
0x400E_8000  
0x400E_0FFF  
0x400E_8FFF  
5
7
4
4
2 to 5  
5 to 7  
2 to 4  
2 to 4  
PCLKB Peripheral Security  
Control Unit  
PCLKB Low Power  
Asynchronous  
General purpose  
Timer n  
TSN  
0x400F_3000  
0x4010_8000  
0x400F_3FFF  
0x4010_9FFF  
5
5
4
4
2 to 5  
2 to 5  
2 to 4  
2 to 4  
PCLKB Temperature Sensor  
CRC, DOC  
PCLKA CRC Calculator, Data  
Operation Circuit  
EDMAC0  
0x4011_4000  
0x4011_40FF  
6
5
3 to 6  
3 to 5  
PCLKA DMA Controller for the  
Ethernet Controller  
Channel 0  
ETHERC0  
SCIn  
0x4011_4100  
0x4011_8000  
0x4011_A000  
0x4016_1000  
0x4011_4FFF  
0x4011_8FFF  
0x4011_AFFF  
0x4016_1FFF  
15  
14  
12 to 15  
2 to 5*2  
12 to 14  
2 to 4*2  
PCLKA Ethernet Controller  
Channel 0  
5*2  
4*2  
PCLKA Serial Communication  
Interface n  
5*3  
6
4*3  
4
2 to 5*3  
3 to 6  
2 to 4*3  
2 to 4  
SPIn  
PCLKA Serial Peripheral  
Interface n  
SCE9  
PCLKA Secure Cryptographic  
Engine  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 105 of 109  
RA6M4 Datasheet  
Appendix 3. I/O Registers  
Table 3.2  
Access cycles (3 of 4)  
Number of access cycles  
ICLK = PCLK  
Address  
From  
ICLK > PCLK*1  
Read  
Cycle  
Unit  
Peripherals  
To  
Read  
Write  
Write  
Related function  
GPT32n, GPT16n, 0x4016_9000  
GPT_OPS  
0x4016_9FFF  
7
4
4 to 7  
2 to 4  
PCLKA General PWM 32-Bit  
Timer n, General  
PWM 16-Bit Timer n,  
Output Phase  
Switching Controller  
ADC12n, DAC12  
0x4017_0000  
0x4017_2FFF  
5
5
4
2 to 5  
2 to 5  
2 to 4  
PCLKA 12bit A/D Converter n,  
12-bit D/A converter  
14 to *4  
6 to *4  
14 to *4  
5 to *4  
QSPI  
QSPI  
QSPI  
QSPI  
0x6400_0000  
0x6400_0010  
0x6400_0014  
0x6400_0804  
0x6400_000F  
0x6400_0013  
0x6400_0037  
0x6400_0807  
PCLKA Quad-SPI  
PCLKA Quad-SPI  
PCLKA Quad-SPI  
PCLKA Quad-SPI  
25 to *4  
5
25 to *4  
2 to 5  
14 to *4  
3
14 to *4  
1 to 3  
4
1 to 4  
Table 3.2  
Access cycles (4 of 4)  
Number of access cycles  
ICLK = FCLK  
Address  
ICLK > FCLK*1  
Read  
Cycle  
Unit  
Peripherals  
From  
To  
Read  
Write  
Write  
Related function  
FLAD, FACI  
0x407F_C000  
0x407F_EFFF  
5
4
2 to 5  
2 to 4  
FCLK  
Data Flash, Flash  
Application Command  
Interface  
Note 1. If the number of PCLK or FCLK cycles is non-integer (for example 1.5), the minimum value is without the decimal point, and the  
maximum value is rounded up to the decimal point. For example, 1.5 to 2. 5 is 1 to 3.  
Note 2. When accessing a 16-bit register (FTDRHL, FRDRHL, FCR, FDR, LSR, and CDR), access is 2 cycles more than the value shown in  
Table 3.2. When accessing an 8-bit register (including FTDRH, FTDRL, FRDRH, and FRDRL), the access cycles are as shown in  
Table 3.2.  
Note 3. When accessing the 32-bit register (SPDR), access is 2 cycles more than the value in Table 3.2. When accessing an 8-bit or 16-bit  
register (SPDR_HA), the access cycles are as shown in Table 3.2.  
Note 4. The access cycles depend on the QSPI bus cycles.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 106 of 109  
RA6M4 Datasheet  
Revision History  
Revision History  
Revision 1.00 — April 09, 2020  
First edition, issued  
Revision 1.10 — September 29, 2020  
1. Overview:  
Added note to Figure 1.1 Block diagram.  
2. Electrical Characteristics:  
Added description that Supported peripheral functions and pins differ from one product name to another.  
Appendix:  
Removed NOTE about USB host operation in Appendix 1.  
Added Access cycles for FLAD and FACI to Tables 3.2 in Appendix 3.  
Removed NOTE2 about BWAIT in Table 3.2, and along with that,changed the NOTE number in this table in Appendix 3.  
R01DS0365EJ0110 Rev.1.10  
Sep 29, 2020  
Page 107 of 109  
General Precautions in the Handling of Microprocessing Unit and Microcontroller  
Unit Products  
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the  
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.  
1. Precaution against Electrostatic Discharge (ESD)  
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps  
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be  
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.  
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and  
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor  
devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.  
2. Processing at power-on  
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of  
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset  
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins  
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the  
level at which resetting is specified.  
3. Input of signal during power-off state  
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O  
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal  
elements. Follow the guideline for input signal during power-off state as described in your product documentation.  
4. Handling of unused pins  
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are  
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of  
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal  
become possible.  
5. Clock signals  
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program  
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator  
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal  
produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.  
6. Voltage application waveform at input pin  
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL  
(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the  
input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).  
7. Prohibition of access to reserved addresses  
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these  
addresses as the correct operation of the LSI is not guaranteed.  
8. Differences between products  
Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.  
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms  
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,  
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-  
evaluation test for the given product.  
Notice  
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products  
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your  
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of  
these circuits, software, or information.  
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or  
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this  
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.  
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or  
others.  
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any  
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.  
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for  
each Renesas Electronics product depends on the product's quality grade, as indicated below.  
"Standard":  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home  
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.  
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key  
financial terminal systems; safety control equipment; etc.  
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas  
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to  
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;  
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims  
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is  
inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.  
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for  
Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by  
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas  
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such  
specified ranges.  
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific  
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability  
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products  
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,  
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety  
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging  
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are  
responsible for evaluating the safety of the final products or systems manufactured by you.  
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas  
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of  
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these  
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance  
with applicable laws and regulations.  
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is  
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations  
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.  
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or  
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.  
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas  
Electronics products.  
(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled  
subsidiaries.  
(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.  
(Rev.4.0-1 November 2017)  
Corporate Headquarters  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
Contact Information  
For further information on a product, technology, the most up-to-date  
version of a document, or your nearest sales office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas Electronics  
Corporation. All trademarks and registered trademarks are the property  
of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY