UPD16908K9-5B4-A [RENESAS]

SPECIALTY ANALOG CIRCUIT, PQCC56, 8 X 8 MM, PLASTIC, WQFN-56;
UPD16908K9-5B4-A
型号: UPD16908K9-5B4-A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

SPECIALTY ANALOG CIRCUIT, PQCC56, 8 X 8 MM, PLASTIC, WQFN-56

ISM频段
文件: 总38页 (文件大小:493K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To our customers,  
Old Company Name in Catalogs and Other Documents  
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology  
Corporation, and Renesas Electronics Corporation took over all the business of both  
companies. Therefore, although the old company name remains in this document, it is a valid  
Renesas Electronics document. We appreciate your understanding.  
Renesas Electronics website: http://www.renesas.com  
April 1st, 2010  
Renesas Electronics Corporation  
Issued by: Renesas Electronics Corporation (http://www.renesas.com)  
Send any inquiries to http://www.renesas.com/inquiry.  
Notice  
1.  
2.  
All information included in this document is current as of the date this document is issued. Such information, however, is  
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please  
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to  
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.  
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights  
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights  
of Renesas Electronics or others.  
3.  
4.  
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of  
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,  
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by  
you or third parties arising from the use of these circuits, software, or information.  
5.  
When exporting the products or technology described in this document, you should comply with the applicable export control  
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas  
Electronics products or the technology described in this document for any purpose relating to military applications or use by  
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and  
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited  
under any applicable domestic or foreign laws or regulations.  
6.  
7.  
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics  
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages  
incurred by you resulting from errors in or omissions from the information included herein.  
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and  
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as  
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular  
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior  
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way  
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an  
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written  
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise  
expressly specified in a Renesas Electronics data sheets or data books, etc.  
“Standard”:  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual  
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.  
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-  
crime systems; safety equipment; and medical equipment not specifically designed for life support.  
“Specific”:  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or  
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare  
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8.  
9.  
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,  
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or  
damages arising out of the use of Renesas Electronics products beyond such specified ranges.  
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have  
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,  
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to  
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a  
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire  
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because  
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system  
manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental  
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable  
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS  
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with  
applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas  
Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this  
document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-  
owned subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µ PD16908  
DC-DC CONVERTER IC FOR ORGANIC EL DISPLAYS  
DESCRIPTION  
The µ PD16908 is composed of a 4ch step-up circuit (chopper method), a 2ch polarity-inverted circuit (chopper  
method) and a 3ch series regulator, and is ideal for the power supply for organic EL displays.  
FEATURES  
Output voltage setting function via serial interface  
On-chip soft start circuit  
Low current consumption achieved by full CMOS  
On-chip timer latch short-circuit protection circuit  
Adjustable oscillation frequency (200 to 800 kHz)  
MOS FET directly driven by push-pull-configured output stage  
Mounted on 56-pin plastic WQFN (8 x 8)  
ORDERING INFORMATION  
Part Number  
Package  
µ PD16908K9-5B4-A  
56-pin plastic WQFN (8 x 8)  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. S17102EJ2V0DS00 (2nd edition)  
Date Published October 2004 NS CP (K)  
Printed in Japan  
The mark  
shows major revised points.  
2004  
µ PD16908  
1. BLOCK DIAGRAM  
C
SS1  
C
SS2  
C
SS3  
C
SS4  
C
SS5  
C
SS6  
R
T
C
T
C
DLY  
V
REF  
24  
28  
32  
37  
17  
21  
39  
38  
41  
40  
34  
V
DD  
Reference  
voltage  
2.0 V  
Triangular  
wave  
oscillator  
Timer latch  
short-circuit  
protection  
circuit  
Soft start circuit  
11 NPVDD  
7
PVDD  
Undervoltage  
lockout circuit  
22  
FB1  
E/A1  
+
23  
I1  
I
+
10 OUT1  
PWM  
compa-  
rator 1  
9
PGND1  
26  
27  
FB2  
E/A2  
+
I
I2  
+
8
OUT2  
PWM  
compa-  
rator 2  
30  
31  
FB3  
E/A3  
+
I
I3  
+
6
5
OUT3  
PWM  
PGND2  
compa-  
rator 3  
35  
36  
FB4  
E/A4  
+
I
I4  
+
4
OUT4  
PWM  
compa-  
rator 4  
13  
PGND3  
15  
16  
FB5  
E/A5  
+
I
I5  
+
12  
14  
OUT5  
OUT6  
PWM  
compa-  
rator 5  
19  
20  
FB6  
E/A6  
+
I
I6  
+
25  
29  
33  
N.C.  
N.C.  
N.C.  
PWM  
comparator 6  
2
1
BVDD  
OUT7  
LVDD 43  
+
45  
46  
44  
51  
47  
48  
49  
50  
42  
18  
SDA  
SCL  
E/A7  
56  
55  
I
I7  
CS  
OUT8  
Control logic  
block  
and  
serial interface  
block  
+
DCON  
SHDNB  
TEST3  
TEST1  
TEST2  
AGND2  
E/A8  
54  
53  
II8  
OUT9  
+
E/A9  
52  
3
II9  
PGND4  
AGND1  
2
Data Sheet S17102EJ2V0DS  
µ PD16908  
2. PIN CONFIGURATION (Top View)  
42 41 40 39 38 37 36 35 34 33 32 31 30 29  
LVDD  
CS  
43  
44  
45  
46  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
C
SS2  
I
I2  
SDA  
SCL  
FB2  
N.C.  
SHDNB 47  
TEST3 48  
TEST1 49  
TEST2 50  
DCON 51  
CSS1  
I
I1  
FB1  
CSS6  
I
I6  
I
I9  
52  
OUT9 53  
54  
OUT8 55  
56  
FB6  
18 AGND1  
II8  
17  
16  
15  
CSS5  
I
I5  
II7  
FB5  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
3
Data Sheet S17102EJ2V0DS  
µ PD16908  
3. PIN FUNCTIONS  
(1/2)  
Pin No. Symbol  
Pin Name  
I/O  
Output  
Description  
1
2
3
4
5
6
7
OUT7  
BVDD  
Output 7  
Output of ch7 series regulator (E/A)  
Buffer regulator power supply  
Power ground  
Output 4  
Power supply  
Ground  
Power supply for series regulator (ch7 to ch9)  
Power ground  
PGND4  
OUT4  
PGND2  
OUT3  
PVDD  
Output  
Output for driving Power MOS FET of ch4  
Power ground  
Power ground  
Output 3  
Ground  
Output  
Output for driving Power MOS FET of ch3  
Power supply for output buffer stage of ch1 to ch4  
Power supply for output buffer  
stage  
Power supply  
8
9
OUT2  
Output 2  
Output  
Ground  
Output for driving Power MOS FET of ch2  
Power ground  
PGND1  
OUT1  
Power ground  
Output 1  
10  
11  
Output  
Output for driving Power MOS FET of ch1  
Power supply for output buffer stage of ch5 and ch6  
NPVDD  
Power supply for output buffer  
stage  
Power supply  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
OUT5  
PGND3  
OUT6  
FB5  
II5  
Output 5  
Output  
Ground  
Output  
Output  
Input  
Output for driving Power MOS FET of ch5  
Power ground  
Power ground  
Output 6  
Output for driving Power MOS FET of ch6  
Feedback of ch5 E/A  
Feedback  
Inversion input  
Soft start capacitance 5  
Analog ground  
Feedback  
Inversion input of ch5 E/A  
CSS5  
AGND1  
FB6  
II6  
Output  
Ground  
Output  
Input  
Capacitance connection pin for ch5 soft start  
Analog ground  
Feedback of ch6 E/A  
Inversion input  
Soft start capacitance 6  
Feedback  
Inversion input of ch6 E/A  
CSS6  
FB1  
II1  
Output  
Output  
Input  
Capacitance connection pin for ch6 soft start  
Feedback of ch1 E/A  
Inversion input  
Soft start capacitance 1  
Inversion input of ch1 E/A  
CSS1  
N.C.  
FB2  
II2  
Output  
Capacitance connection pin for ch1 soft start  
Leave open, or short to GND or LVDD  
Feedback of ch2 E/A  
Feedback  
Output  
Input  
Inversion input  
Soft start capacitance 2  
Inversion input of ch2 E/A  
CSS2  
N.C.  
FB3  
II3  
Output  
Capacitance connection pin for ch2 soft start  
Leave open, or short to GND or LVDD  
Feedback of ch3 E/A  
Feedback  
Output  
Input  
Inversion input  
Soft start capacitance 3  
Inversion input of ch3 E/A  
CSS3  
N.C.  
VDD  
Output  
Capacitance connection pin for ch3 soft start  
Leave open, or short to GND or LVDD  
Power supply for DC-DC converter  
Feedback of ch4 E/A  
Power supply  
Feedback  
Power supply  
Output  
Input  
FB4  
II4  
Inversion input  
Soft start capacitance 4  
Inversion input of ch4 E/A  
CSS4  
Output  
Capacitance connection pin for ch4 soft start  
4
Data Sheet S17102EJ2V0DS  
µ PD16908  
(2/2)  
Pin No. Symbol  
Pin Name  
I/O  
Description  
38  
39  
40  
41  
CT  
Timing capacitor  
Timing resistance  
Reference voltage  
Short-circuit protection  
circuit delay capacitance  
Analog ground  
Power supply for control  
logic  
Output  
Output  
Output  
Output  
Capacitor connection for triangular wave generation  
Resistance connection for triangular wave generation  
Power supply for reference voltage  
RT  
VREF  
CDLY  
Capacitor connection for timer latch  
42  
43  
AGND2  
Ground  
Analog ground  
LVDD  
Power supply  
Power supply for control logic  
44  
45  
46  
47  
48  
49  
50  
51  
CS  
Chip select  
Input  
input  
input  
input  
Input  
Input  
Input  
Input  
Chip select  
SDA  
Serial data input  
Serial clock input  
Shut-down input  
Test 3  
Serial data input for controlling each output  
Serial clock input for controlling each output  
Shut down the IC  
SCL  
SHDNB  
TEST3  
TEST1  
TEST2  
DCON  
Short to LVDD  
Test 1  
Short to GND  
Test 2  
Short to GND  
Output turn-on control  
Output of the channel selected by serial data is switched  
ON.  
52  
53  
54  
55  
56  
II9  
Inversion input  
Output 9  
Input  
Output  
Input  
Inversion input of ch9 E/A  
Output of ch9 series regulator (E/A)  
Inversion input of ch8 E/A  
Output of ch8 series regulator (E/A)  
Inversion input of ch7 E/A  
OUT9  
II8  
Inversion input  
Output 8  
OUT8  
II7  
Output  
Input  
Inversion input  
5
Data Sheet S17102EJ2V0DS  
µ PD16908  
4. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (Unless otherwise specified, TA = 25°C)  
Parameter  
Power supply voltage  
Symbol  
Condition  
Rating  
Unit  
V
VDD  
0.5 to +6  
0.5 to +6  
Power supply voltage for output buffer  
stage 1  
PVDD  
(ch1 to ch4)  
V
Power supply voltage for output buffer  
stage 2  
NPVDD  
(ch5 and ch6)  
0.5 to +6  
V
Buffer regulator power supply voltage  
Control logic power supply voltage  
Analog input pin voltage  
Control logic input voltage  
Output current (DC) 1-6  
Output current (pulse) 1-6  
Output current (DC) 7-9  
Total power dissipation  
BVDD  
LVDD  
0.5 to +6  
0.5 to +6  
0.5 to +6  
V
V
V
VAIN  
FB, II  
VCLIN  
SHDNB, DCON, SDA, SCL, CS  
OUT1 to OUT6  
0.5 to LVDD + 0.5  
V
IO(DC)1-6  
IO(pulse)1-6  
IO(DC)7-9  
PT  
20  
200  
20  
mA  
mA  
mA  
W
OUT1 to OUT6  
OUT7 to OUT9  
Glass epoxy board of 100 mm x 100 mm  
x 1 mm with copper foil area of 15%  
0.8  
Operating ambient temperature  
Operating junction temperature  
Storage temperature  
TA  
30 to +75  
30 to +125  
55 to +125  
°C  
°C  
°C  
TJ  
Tstg  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
6
Data Sheet S17102EJ2V0DS  
µ PD16908  
Recommended Operating Conditions (Unless otherwise specified, TA = 25°C)  
Parameter  
Power supply voltage  
Symbol  
VDD  
Condition  
MIN.  
2.7  
TYP.  
3.3  
MAX.  
Unit  
V
5.5  
5.5  
Power supply voltage for output buffer  
stage 1  
PVDD  
(ch1 to ch4)  
2.7  
3.3  
V
Power supply voltage for output buffer  
stage 2  
NPVDD  
(ch5 and ch6)  
2.7  
3.3  
5.5  
V
Buffer regulator power supply voltage  
Control logic power supply voltage  
Control logic input voltage  
Operating frequency  
Timing capacitance  
BVDD  
LVDD  
VCLIN  
fOSC  
3.0  
2.7  
2.7  
200  
60  
3.3  
3.3  
3.3  
700  
5.5  
3.6  
3.6  
800  
240  
22  
V
V
SHDNB, DCON, SDA, SCL, CS  
V
kHz  
pF  
kΩ  
µs  
ns  
ns  
ns  
ns  
µs  
µs  
CCT  
Capacitance connected to CT  
Resistance connected to RT  
Timing resistance  
RRT  
5.1  
Serial clock period  
tprd  
10  
SCL waiting time  
t(SCL-CS)  
t(CS-SCL)  
tsetup  
thold  
500  
50  
50  
50  
2
CS waiting time  
SDA set-up time  
SDA hold time  
SCL high-pulse time  
SCL low-pulse time  
tpw  
tnw  
2
50%  
50%  
CS  
SDA  
SCL  
D
1
D
2
D
3
D
4
D
8
50%  
50%  
50%  
50%  
50%  
50%  
t
(SCL-CS)  
t
setup  
t
hold  
t
pw  
t
nw  
t
(CS-SCL)  
t
prd  
7
Data Sheet S17102EJ2V0DS  
µ PD16908  
Electrical Characteristics (Unless otherwise specified, VDD = NPVDD = PVDD = LVDD = BVDD = 3.3 V, fOSC = 700 kHz,  
TA = 25°C)  
(1/2)  
Overall  
Parameter  
Symbol  
Condition  
MIN.  
TYP.  
5
MAX.  
8
Unit  
Shut-down current  
IDD(SHD)  
SHDNB = L,  
µA  
VDD + NPVDD + PVDD + BVDD + LVDD  
DCON = L, SHDNB = H,  
VDD + NPVDD + PVDD + BVDD + LVDD  
VDD  
Standby current  
IDD(SB)  
2.04  
3.75  
mA  
Circuit operation current 1  
Circuit operation current 2  
Circuit operation current 3  
Circuit operation current 4  
Circuit operation current 5  
IDD  
2.04  
3.0  
3.75  
5.7  
1.8  
345  
45  
mA  
mA  
mA  
µA  
PIDD  
NPIDD  
BIDD  
LIDD  
PVDD, CL = 150 pF, FB = VDD  
NPVDD, CL = 150 pF, FB = AGND  
BVDD, no-load, II = BVDD  
LVDD  
0.96  
180  
24  
µA  
Triangular Wave Oscillator Block  
Condition  
Parameter  
Symbol  
MIN.  
TYP.  
MAX.  
+10  
Unit  
%
Oscillation frequency setting  
accuracy  
fOSC  
CCT = 150 pF, RRT = 11 kΩ  
10  
Triangular wave low-level  
voltage  
VTH(L)  
VTH(H)  
1.1  
1.8  
V
V
Triangular wave high-level  
voltage  
Reference Voltage Block  
Condition  
Parameter  
Reference voltage  
Symbol  
VREF  
MIN.  
1.97  
TYP.  
2.0  
1
MAX.  
2.03  
2
Unit  
V
IREF = 1 mA  
Maximum output current  
IREF  
mA  
PWM Comparator Block  
Condition  
Parameter  
Maximum duty 1-4  
Maximum duty 5-6  
Symbol  
DMAX.1-4  
DMAX.5-6  
MIN.  
TYP.  
85  
MAX.  
Unit  
%
ch1 to ch4  
ch5 and ch6  
85  
%
Undervoltage Lockout Circuit Block  
Condition  
Parameter  
Symbol  
MIN.  
1.01  
TYP.  
1.45  
MAX.  
1.89  
Unit  
V
Operation start voltage at  
power application  
VDD(L-H)  
Operation stop voltage  
Hysteresis width  
VDD(H-L)  
VH  
0.89  
5
1.27  
60  
1.65  
V
mV  
Short-circuit Protection Circuit Block  
Parameter  
Symbol  
VTH(FB)1-4  
VTH(FB)5-6  
VTH(DLY)  
IDLY  
Condition  
FB (ch1 to ch4)  
FB (ch5 and ch6)  
CDLY  
MIN.  
1.9  
TYP.  
2
MAX.  
2.1  
Unit  
V
FB detection voltage 1-4  
FB detection voltage 5-6  
DLY detection voltage  
Short-circuit source current  
0.76  
0.76  
1
0.8  
0.8  
2
0.84  
0.84  
4
V
V
µA  
8
Data Sheet S17102EJ2V0DS  
µ PD16908  
(2/2)  
Soft Start Block  
Parameter  
CSS detection voltage 1-4  
CSS detection voltage 5-6  
Charge current  
Symbol  
VTH(CSS)1-4  
VTH(CSS)5-6  
ICSS  
Condition  
MIN.  
1.47  
0.79  
1
TYP.  
1.55  
1.35  
2
MAX.  
Unit  
V
CSS1 to CSS4  
CSS5 and CSS6  
1.63  
1.59  
4
V
µA  
Output Block (ch1 to ch6)  
Condition  
Parameter  
Symbol  
Ronp  
MIN.  
TYP.  
10  
MAX.  
15  
Unit  
Output turn-on resistance-p  
Output turn-off resistance-n  
IO = 15 mA  
IO = 15 mA  
Ronn  
10  
15  
E/A Block (ch1 to ch4)  
Parameter  
Symbol  
Condition  
MIN.  
TYP.  
MAX.  
0.694  
Unit  
V
E/A1 input threshold voltage  
VITH1  
ch1OUT control bit is fixed to default setting  
(D [0:5] = 000000), offset is not included.  
ch2OUT control bit is fixed to default setting  
(D [0:5] = 000000), offset is included.  
ch3OUT control bit is fixed to default setting  
(D [0:5] = 000000), offset is not included.  
Offset is not included.  
0.666  
0.680  
0.680  
0.700  
0.720  
0.694  
E/A2 input threshold voltage  
E/A3 input threshold voltage  
VITH2  
VITH3  
V
V
0.666  
0.680  
1.000  
E/A4 input threshold voltage  
E/A1 input offset voltage  
E/A3 input offset voltage  
E/A4 input offset voltage  
VITH4  
0.980  
1.020  
40  
V
VIOFF1  
VIOFF3  
VIOFF4  
VREF = 2 V  
0
0
0
mV  
mV  
mV  
40  
40  
E/A Block (ch5 and ch6)  
Condition  
Parameter  
Symbol  
VITH5  
MIN.  
TYP.  
MAX.  
Unit  
V
E/A5 input threshold voltage  
E/A6 input threshold voltage  
E/A5 input offset voltage  
E/A6 input offset voltage  
Offset is not included.  
0.980  
0.980  
1.000  
1.000  
1.020  
1.020  
VITH6  
V
mV  
0
0
40  
40  
VIOFF5  
VIOFF6  
VREF = 2 V  
mV  
E/A Block (ch7 to ch9)  
Condition  
Parameter  
Symbol  
VITH7  
MIN.  
0.980  
0.980  
0.980  
10  
TYP.  
1.000  
1.000  
1.000  
MAX.  
1.020  
1.020  
1.020  
30  
Unit  
V
E/A7 input threshold voltage  
E/A8 input threshold voltage  
E/A9 input threshold voltage  
E/A7 input offset voltage  
E/A8 input offset voltage  
E/A9 input offset voltage  
I/O differential voltage  
Offset is not included.  
VITH8  
V
VITH9  
V
VIOFF7  
VIOFF8  
VIOFF9  
VDIFF  
VREF = 2 V  
mV  
mV  
mV  
V
10  
30  
10  
30  
BVDD OUT7 to OUT9, IO = 10 mA  
1
Control Logic Block and Serial Interface Block  
Condition  
Parameter  
Symbol  
MIN.  
TYP.  
MAX.  
Unit  
V
High-level input voltage  
VIH(L)  
SHDNB, DCON, SDA, SCL, CS  
LVDD  
x 0.8  
Low-level input voltage  
Input leak current  
VIL(L)  
IL  
SHDNB, DCON, SDA, SCL, CS  
LVDD  
x 0.2  
1
V
V
SHDNB, DCON, SDA, SCL, CS,  
VIN = AGND to LVDD  
9
Data Sheet S17102EJ2V0DS  
µ PD16908  
5. TIMING CHART  
LVDD  
V
DD  
PVDD  
Power supply  
NPVDD  
BVDD  
SHDNB  
DCON  
CS  
Input signal  
SCL  
SDA  
V
REF  
C
T
OUT1 to OUT4  
OUT5, OUT6  
OUT7 to OUT9  
Output signal  
10  
Data Sheet S17102EJ2V0DS  
µ PD16908  
6. I/O PIN EQUIVALENT CIRCUIT (Protection Circuit)  
Pin No.  
Symbol  
Internal Circuit  
Configuration  
Analog output  
Power supply  
Ground  
Specified Protection  
Power Supply Connection (refer to Figure 61)  
Element  
VDD Side  
GND Side  
AGND, PGND  
AGND, PGND  
PGND  
1
OUT7  
BVDD  
PGND4  
OUT4  
PGND2  
OUT3  
PVDD  
OUT2  
PGND1  
OUT1  
NPVDD  
OUT5  
PGND3  
OUT6  
FB5  
Output protection 1  
Power supply protection  
Power supply protection  
Output protection 1  
Power supply protection  
Output protection 1  
Power supply protection  
Output protection 1  
Power supply protection  
Output protection 1  
Power supply protection  
Output protection 1  
Power supply protection  
Output protection 1  
Output protection 1  
Input protection 1  
Output protection 1  
Power supply protection  
Output protection 1  
Input protection 1  
Output protection 1  
Output protection 1  
Input protection 1  
Output protection 2  
BVDD  
2
BVDD  
3
VDD, PVDD, NPVDD, LVDD  
4
Logic output  
Ground  
PVDD  
AGND, PGND  
PGND  
5
VDD, PVDD, NPVDD, LVDD  
6
Logic output  
Power supply  
Logic output  
Ground  
PVDD  
AGND, PGND  
AGND, PGND  
AGND, PGND  
AGND, PGND  
AGND, PGND  
AGND, PGND  
AGND, PGND  
PGND  
7
PVDD  
8
PVDD  
9
VDD, PVDD, NPVDD, LVDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Logic output  
Power supply  
Logic output  
Ground  
PVDD  
NPVDD  
NPVDD  
VDD, PVDD, NPVDD, LVDD  
Logic output  
Analog output  
Gate input  
NPVDD  
AGND, PGND  
AGND  
VDD  
II5  
VDD  
AGND  
CSS5  
AGND1  
FB6  
Analog output  
Ground  
VDD  
AGND  
VDD, PVDD, NPVDD, LVDD  
AGND  
Analog output  
Gate input  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
AGND  
II6  
AGND  
CSS6  
FB1  
Analog output  
Analog output  
Gate input  
AGND  
AGND  
II1  
AGND  
CSS1  
N.C.  
FB2  
Analog output  
AGND  
Analog output  
Gate input  
Output protection 1  
Input protection 1  
Output protection 2  
VDD  
VDD  
VDD  
AGND  
II2  
AGND  
CSS2  
N.C.  
FB3  
Analog output  
AGND  
Analog output  
Gate input  
Output protection 1  
Input protection 1  
Output protection 2  
VDD  
VDD  
VDD  
AGND  
II3  
AGND  
CSS3  
N.C.  
VDD  
Analog output  
AGND  
Power supply  
Analog output  
Gate input  
Power supply protection  
Output protection 1  
Input protection 1  
Output protection 2  
Output protection 2  
Output protection 2  
Output protection 2  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
AGND, PGND  
AGND  
FB4  
II4  
AGND  
CSS4  
CT  
Analog output  
Analog output  
Analog output  
Analog output  
AGND  
AGND  
RT  
AGND  
VREF  
AGND  
11  
Data Sheet S17102EJ2V0DS  
µ PD16908  
2/2)  
Pin No.  
Symbol  
Internal Circuit  
Configuration  
Analog output  
Ground  
Specified Protection  
Element  
Power Supply Connection (refer to Figure 61)  
VDD Side  
GND Side  
AGND  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
CDLY  
Output protection 2  
Power supply protection  
Power supply protection  
Input protection 1  
Input protection 1  
Input protection 1  
Input protection 1  
Input protection 1  
Input protection 1  
Input protection 1  
Input protection 1  
Input protection 1  
Output protection 1  
Input protection 1  
Output protection 1  
Input protection 1  
VDD  
AGND2  
LVDD  
CS  
VDD, PVDD, NPVDD, LVDD  
AGND  
Power supply  
Gate input  
Gate input  
Gate input  
Gate input  
Gate input  
Gate input  
Gate input  
Gate input  
Gate input  
Analog output  
Gate input  
Analog output  
Gate input  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
AGND, PGND  
AGND  
SDA  
AGND  
SCL  
AGND  
SHDNB  
TEST3  
TEST1  
TEST2  
DCON  
II9  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
OUT9  
II8  
AGND, PGND  
AGND  
OUT8  
II7  
AGND, PGND  
AGND  
Figure 61.  
Input Protection 1  
DD side  
V
GND side  
Output Protection 1  
Output Protection 2  
Power Supply Protection  
DD side  
V
DD side  
V
DD side  
V
GND side  
GND side  
GND side  
12  
Data Sheet S17102EJ2V0DS  
µ PD16908  
7. CONTROL LOGIC BLOCK  
7.1 SHDNB Pin (Pin No. 47)  
The internal circuits (E/A, PWM comparator, triangular wave oscillator) are stopped by the SHDNB pin and the serial  
interface registers are reset. The capacitor connected between the CSS1 to CSS6 pins also discharges.  
SHDNB  
State of IC  
Serial Interface  
L
Shut down (OUT1 to OUT4 = fixed to GND, OUT5 and OUT6 = fixed to  
Input disable  
VDD, and OUT7 to OUT9 = fixed to GND)  
ON  
H
Input enable  
7.2 DCON Pin (Pin No. 51)  
The outputs are switched OFF by the DCON pin while the internal circuits are operating (serial interface input  
possible). The capacitor connected between the CSS1 to CSS6 pins also discharges.  
DCON  
State of IC  
Serial Interface  
L
Standby (All channel output turns off, and the internal circuits operate.)  
(OUT1 to OUT4 = fixed to GND, OUT5 and OUT6 = fixed to VDD, and  
OUT7 to OUT9 = fixed to GND)  
Input enable  
H
The channel specified by ON/OFF control bit of the serial interface turns  
on.  
13  
Data Sheet S17102EJ2V0DS  
µ PD16908  
8. SERIAL INTERFACE BLOCK  
8.1 Control Data (Default = All “0”)  
Data is the turn of D11, D10, D9, ⋅⋅⋅, and D0, and please input it.  
First  
Last  
LSB  
MSB  
D
11  
D
10  
D
9
D
8
D7  
D6  
D
5
D
4
D
3
D
2
D
1
D0  
Output voltage control bit  
Output Voltage  
D5  
D
4
D
3
D
2
D
1
D
0
0
0
0
0
0
0
0
0
0
0
0
1
Refer to  
8.2 Details of Output  
Voltage Control Bits.  
1
1
1
1
1
1
1
1
1
1
0
1
Unused  
Output voltage control bit  
Input Data  
Output  
D11  
D
10  
D
9
Unused  
0
0
0
1
0
1
0
1
0
1
ch1 output voltage  
ch2 output voltage  
ch3 output voltage  
Unused  
ch1OUT  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
ch2OUT  
ch3OUT  
ON/OFF control 1  
ON/OFF control 2  
Unused  
ch1OUT to ch6OUT  
ch7OUT to ch9OUT  
14  
Data Sheet S17102EJ2V0DS  
µ PD16908  
8.2 Details of Output Voltage Control Bits  
Input data configuration of input address control bit  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
1
Unused  
ch1 output voltage  
Table 81. ch1 Output Voltage (ch1OUT) Control Bit  
D
5
D
4
D
3
D
2
D
1
D
0
E/A1 Threshold Voltage TYP.  
V
ITH1 [V]  
0.68  
0.69  
0.70  
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.80  
0.81  
0.82  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.90  
0.91  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.99  
1.00  
1.01  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.30  
1.31  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Caution The output voltage value becomes ch1OUT VITH1 x ( (R11 + R12) /R12).  
15  
Data Sheet S17102EJ2V0DS  
µ PD16908  
Input data configuration of input address control bit  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
Unused  
ch2 output voltage  
Table 82. ch2 Output Voltage (ch2OUT) Control Bit  
D
5
D
4
D
3
D
2
D
1
D
0
E/A2 Threshold VoltageTYP.  
ITH2  
V
[V]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.68  
0.69  
0.70  
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.80  
0.81  
0.82  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.90  
0.91  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.99  
1.00  
1.01  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.30  
1.31  
Caution The output voltage value becomes ch2OUT VITH2 x ( (R21 + R22) /R22).  
16  
Data Sheet S17102EJ2V0DS  
µ PD16908  
Input data configuration of input address control bit  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
1
Unused  
ch3 output voltage  
Table 83. ch3 Output Voltage (ch3OUT) Control Bit  
D
5
D
4
D
3
D
2
D
1
D
0
E/A3 Threshold Voltage TYP.  
ITH3  
V
[V]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.68  
0.69  
0.70  
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.80  
0.81  
0.82  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.90  
0.91  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.99  
1.00  
1.01  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.30  
1.31  
Caution The output voltage value becomes ch3OUT VITH3 x ( (R31 + R32) /R32).  
17  
Data Sheet S17102EJ2V0DS  
µ PD16908  
Input data configuration of input address control bit  
D11  
1
D10  
0
D9  
1
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Unused  
Unused  
ON/OFF control 1  
ON/OFF control 2  
1
1
0
ON/OFF control bit 1  
D5  
D4  
D3  
D2  
D1  
D0  
Input Data  
Output of ch6  
Output of ch5  
Output of ch4  
Output of ch3  
Output of ch2  
Output of ch1  
0
1
ON  
OFF (E/A and PWM operation stop)  
ON/OFF control bit 2  
D5  
D4  
D3  
D2  
D1  
Output of ch8  
ON  
D0  
Input Data  
Unused  
Unused  
Unused  
Output of ch9  
Output of ch7  
0
1
OFF (E/A and PWM operation stop)  
18  
Data Sheet S17102EJ2V0DS  
µ PD16908  
8.3 Serial Correspondence Timing  
MSB  
LSB  
D
11  
D
10  
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
SDA  
SCL  
CS  
Read at the rising  
High-level load  
The 12-bit serial data inputted by the SDA pin is loaded to the shift register at the rising edge of the signal inputted to  
the SCL pin. The loaded data is loaded to the shift register at the rising edge of the signal inputted to the CS pin.  
Be sure to fix the signal input to the SCL pin to low level at the rising and falling edges of the signal input to the CS  
pin.  
If the data which is loaded to shift register while the CS pin is low level is less than 12 bits, the loaded data is  
cancelled. If the loaded data is more than 12 bits, the 12-bit data is valid in the last of the loaded data.  
19  
Data Sheet S17102EJ2V0DS  
µ PD16908  
9. TYPICAL CHARACTERISTICS (Unless Otherwise Specified, VDD = NPVDD = PVDD = LVDD =  
BVDD = 3.3 V, fOSC = 700 kHz, TA = 25°C, Reference Value)  
VREF vs. VDD  
VREF vs. TA  
2.1  
2.05  
2
2.1  
2.05  
2
1.95  
1.9  
1.95  
1.9  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
-40  
-20  
0
20  
40  
60  
80  
VDD - V  
TA - °C  
fOSC vs. VDD  
fOSC vs. TA  
1000  
900  
800  
700  
600  
500  
1000  
900  
800  
700  
600  
500  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
-40  
-20  
0
20  
40  
60  
80  
VDD - V  
TA - °C  
fOSC vs. RRT  
10000  
1000  
100  
10  
CCT = 68 pF  
150 pF  
220 pF  
330 pF  
1
1
10  
100  
1000  
RRT - kΩ  
20  
Data Sheet S17102EJ2V0DS  
µ PD16908  
DMAX.1-4 vs. VDD  
DMAX.1-4 vs. TA  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
2.5  
3
3.5  
3.5  
3.5  
4
4.5  
5
5.5  
5.5  
5.5  
6
-40  
-20  
0
20  
40  
60  
80  
VDD - V  
TA - °C  
DMAX.5-6 vs. VDD  
DMAX.5-6 vs. TA  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
2.5  
3
4
4.5  
5
6
-40  
-20  
0
20  
40  
60  
80  
VDD - V  
TA - °C  
IDLY vs. VDD  
IDLY vs. TA  
8
6
4
2
0
8
6
4
2
0
µ
µ
2.5  
3
4
4.5  
5
6
-40  
-20  
0
20  
40  
60  
80  
VDD - V  
TA - °C  
21  
Data Sheet S17102EJ2V0DS  
µ PD16908  
ICSS vs. VDD  
ICSS vs. TA  
8
6
4
2
0
8
6
4
2
0
µ
µ
2.5  
3
3.5  
4
4.5  
5
5.5  
6
-40  
-20  
0
20  
40  
60  
80  
VDD - V  
TA - °C  
22  
Data Sheet S17102EJ2V0DS  
µ PD16908  
10. OPERATION EXPLANATION OF EACH BLOCK  
10.1 Reference Voltage Circuit Block  
The reference voltage circuit block outputs reference voltage (2.0 V TYP.) by which temperature compensation is  
carried out by supplying voltage by the VDD (No. 34) pin. The reference voltage is used as the reference voltage of  
each internal circuit, and can be extracted to outside by the VREF (No. 40) pin to 1 mA TYP..  
10.2 Triangular Wave Oscillator Block  
The triangular wave oscillator block performs self-excited oscillation using the timing capacitance and timing resistor  
externally attached to the CT (No. 38) pin and RT (No. 39) pin, respectively, and outputs a symmetric triangular wave  
with an amplitude of 1.1 to 1.8 V TYP. to the CT (No. 38) pin.  
This triangular wave is supplied to the inversion input pin of the PWM comparator.  
10.3 E/A Block  
The input threshold voltage of E/A is the voltage set by the output voltage control bit of the serial interface for E/A1 to  
E/A3 (default = all zero; 0.68 V TYP.), and 1.0 V TYP. for E/A4 to E/A9.  
Note that E/A7 to E/A9 operate as a series regulator.  
10.4 PWM Comparator Block  
The PWM comparator compares the triangular wave signal and E/A output signal (or maximum duty) and controls  
the output ON duty.  
10.5 Output Circuit Block  
The output circuit block of ch1 to ch6 is of push-pull configuration and can directly drive a Power MOS FET. The  
output current capacity is 200 mA MAX. for pulse output and 20 mA MAX. for DC output.  
The output current capacity of the output circuit block of ch7 to ch9 is 20 mA MAX. for DC output  
10.6 Undervoltage Lockout Circuit Block  
The undervoltage lockout circuit block shuts down the IC if the power supply voltage is insufficient at power  
application or shut down in order to prevent malfunction of the IC.  
23  
Data Sheet S17102EJ2V0DS  
µ PD16908  
10.7 Soft Start Block of the Step-up DC-DC Converter Output (ch1 to ch4)  
ch1 is soft-started by a capacitor connected to the CSS1 (No. 24) pin. Also, ch2 to ch4 are respectively soft-started by  
a capacitor connected to the CSS2 (No. 28) pin, CSS3 (No. 32) pin, and CSS4 (No. 37) pin.  
Soft start is executed by charging the capacitor connected to each CSS pin and gradually increasing the voltage at the  
CSS pin. On starting the IC, the voltage at each CSS pin is connected to the non-inverted input of E/A. Soft start is  
executed by increasing the non-inverted input voltage of E/A from 0 V and gradually prolonging the output ON duty.  
(Figure 101 and 102)  
Figure 101.  
Threshold voltage of E/A1 to E/A4  
1.8 V  
DTC  
DTC  
FB1 to FB4  
C
T
(VDD) V  
FB1 to FB4  
1.1 V  
0 V  
ON  
V
TH(CSS)1-4 = 1.55 V  
CSS1 to CSS4  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OUT1 to OUT4  
Setting voltage  
V
OUT  
(Outputs of ch1 to ch4)  
Power ON  
Figure 102.  
38  
C
T
V
OUT  
Triangular wave  
oscillator  
(Outputs of ch1 to ch4)  
Undervoltage  
lockout circuit  
FB1 to FB4  
E/A1 to E/A4  
PWM1 to PWM4  
II1 to II4  
OUT1 to OUT4  
+
+
+
ch1 to ch3: 0.68 V  
ch4: 1 V  
DTC  
C
DLY  
41  
Timer latch short-circuit  
protection circuit  
ICSS  
Soft start circuit  
C
SS1 to CSS4  
24  
Data Sheet S17102EJ2V0DS  
µ PD16908  
10.8 Soft Start Block of the Polarity-inverted DC-DC Converter Output (ch5 and ch6)  
ch5 is soft-started by a capacitor connected to the CSS5 (No. 17) pin. Also, ch6 is soft-started by a capacitor  
connected to the CSS6 (No. 21) pin.  
Soft start is executed by charging the capacitor connected to each CSS pin and gradually increasing the voltage at the  
CSS pin. The CSS pin voltage is connected to the PWM non-inverted input (DTC) via a 200 kresistor. At startup,  
raising the PWM non-inverted input (DTC) voltage from about 0.4 gradually lengthens the output ON duty, causing a  
soft start (Figure 103 and 104).  
Note that if the DTC voltage and FB voltage are switched while the output ON duty is still small (less than 50%)  
following a soft start, inrush current may occur at the point of switching. In this case, suppress the inrush current by  
either raising the operating frequency or increasing the inductance of the coil used by the DC-DC converter.  
Figure 103.  
1.8 V  
1.75 V  
FB5, FB6  
DTC  
(VDD) V  
C
T
DTC  
FB5, FB6  
1.1 V  
About 0.4 V  
0 V  
V
TH(CSS)5-6 = 1.35 V TYP.  
C
SS5, CSS6  
0 V  
ON  
ON  
ON ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OUT5, OUT6  
VOUT  
(Outputs of ch5 and ch6)  
Setting voltage  
Power ON  
Figure 104.  
SW switches from D to E when the FB voltage  
becomes higher than point A.  
38  
CT  
Triangular wave  
oscillator  
V
REF  
Undervoltage  
lockout circuit  
FB5, FB6  
E/A5, E/A6  
I
I5, II6  
PWM5, PWM6  
OUT5, OUT6  
E
+
+
SW  
DTC  
D
1 V  
V
OUT  
C
DLY  
41  
Timer latch short-circuit  
protection circuit  
(Outputs of ch5 and ch6)  
Soft start circuit  
DTC  
B
200 kΩ  
ICSS  
A
C
C
SS5, CSS6  
SW  
1.75 V  
1.15 V  
1.15 V  
About 0.4 V  
(VDD) V  
About 1.35 V  
1.75 V  
About 0.4 V  
SS5, CSS6  
SW switches from B to C as soon as  
voltage of A becomes 1.75 V.  
C
0 V  
25  
Data Sheet S17102EJ2V0DS  
µ PD16908  
10.9 Short-circuit Protection Circuit Block (Timer latch type)  
If the voltage of ch1 to ch4, which are the step-up DC-DC converter outputs, drops, the voltage of the inversion input  
pin of the E/A, which is feeding back the output, also drops, and the E/A output (FB) is stepped up. If the voltage of  
this E/A output (FB) reaches or exceeds the FB detection voltage of the short-circuit protection circuit (VTH(FB)1-4 = 2.0  
V TYP.), the timer circuit starts operating and the capacitor connected to the CDLY (No. 41) pin starts charging. When  
the voltage of the capacitor connected the CDLY (No. 41) pin reaches the CDLY protection voltage (VTH(DLY) = 0.8 V  
TYP.), all the outputs of the IC are latched to OFF (Figure 105 and 106).  
If the voltage of ch5 and ch6, which are the polarity-inverted DC-DC converter outputs, is stepped up, the voltage of  
the inversion input pin of the E/A, which is feeding back the output, is also stepped up, and the E/A output (FB) is  
stepped down. If the voltage of this E/A output (FB) falls below the FB detection voltage of the short-circuit protection  
circuit (VTH(FB)5-6 = 0.8 V TYP.), the timer circuit starts operating and the capacitor connected to the CDLY (No. 41) pin  
starts charging. When the voltage of the capacitor connected to the CDLY (No. 41) pin reaches the CDLY detection  
voltage (VTH(DLY) = 0.8 V TYP.), all the outputs of the IC are latched to OFF (Figure 105 and 107).  
As long as the E/A output (FB) of any of ch1 to ch6 is at least the FB detection voltage of the short-circuit protection  
circuit, the capacitor connected to the CDLY (No. 41) pin continues to charge. (Figure 108)  
To reset the latch circuit when the short-circuit protection circuit is activated, decrease the supply voltage (VDD) to the  
operation stop voltage level (VDD(H-L) = 1.39 V TYP.), or set the SHDNB (No. 47) pin or DCON (No. 51) pin to low level.  
Figure 105.  
41  
(Output of ch1)  
(Output of ch2)  
(Output of ch3)  
(Output of ch4)  
C
DLY  
22  
23  
ch1SCP  
FB1  
E/A1  
E/A2  
E/A3  
E/A4  
E/A5  
E/A6  
comparator  
+
I
I1  
+
I
DLY  
26  
27  
ch2SCP  
comparator  
FB2  
The capacitor connected to  
SS6 is discharged.  
+
I
I2  
C
SS1 to C  
+
Comparator  
+
Latch circuit  
SCP signal  
30  
31  
ch3SCP  
comparator  
FB3  
All the outputs of ch1  
to ch6 makes it stop.  
+
0.8 V  
I
I3  
+
35  
36  
ch4SCP  
comparator  
FB4  
+
I
I4  
+
The capacitor connected to CDLY starts charging  
when the FET switches from ON to OFF,  
and the comparator outputs the SCP signal  
when CDLY reaches 0.8 V.  
2.0 V  
V
REF  
15  
16  
ch5SCP  
comparator  
FB5  
A channel that is switched OFF by the serial  
interface is not involved in the timer latch function.  
I
I5  
+
+
(Output of ch5)  
V
REF  
19  
20  
ch6SCP  
comparator  
FB6  
I
I6  
+
+
(Output of ch6)  
0.8 V  
26  
Data Sheet S17102EJ2V0DS  
µ PD16908  
Figure 106.  
FB1 to FB4  
1.8 V  
2 V  
DTC  
FB1 to FB4  
C
T
1.1 V  
Stop of operation  
OUT1 to OUT4  
V
OUT  
The outputs of ch1 to ch4  
are switched OFF.  
(Outputs of ch1 to ch4)  
The short-circuit protection circuit  
latches the outputs at 0.8 V and  
the outpus are switched OFF.  
The outputs of ch1 to ch4  
are load-short-circuited.  
CDLY  
0.8 V  
The short-circuit protection circuit causes the capacitor  
to start charging when FB1 to FB4 = 2.0 V or higher.  
Figure 107.  
1.8 V  
FB5, FB6  
DTC  
C
T
0.8 V  
1.1 V  
FB5, FB6  
Stop of operation  
OUT5, OUT6  
ON  
The outputs of ch5 and ch6  
are switched OFF.  
V
OUT  
(Outputs of ch5 and ch6)  
The short-circuit protection circuit  
latches the outputs at 0.8 V and  
the outpus are switched OFF.  
The outputs of ch5 and ch6  
are load-short-circuited.  
0.8 V  
C
DLY  
The short-circuit protection circuit causes the capacitor  
to start charging when FB5 and FB6 = 0.8 V or less.  
Figure 108.  
FB1 to FB4  
2 V  
CT  
FB5, FB6  
FB1 to FB4  
0.8 V  
The short-circuit protection circuit  
latches the outputs at 0.8 V and  
the outpus are switched OFF.  
FB5, FB6  
0.8 V  
C
DLY  
As long as one of ch1 to ch6 is at  
least the FB ditection voltage,  
the capacitor connected to CDLY  
If all the outputs of ch1 to ch6 fall  
below the FB ditection voltage,  
even momentarily, charge of the  
capacitor connected to CDLY is reset.  
contunues to charge.  
27  
Data Sheet S17102EJ2V0DS  
µ PD16908  
11. NOTES ON USE  
11.1 Method of Setting Output Voltage  
The method of setting the output voltage of ch1 to ch4 is shown in Figure 111, the method of setting the output  
voltage of ch5 and ch6 is shown in Figure 112, and the method of setting the output voltage of ch5 to ch7 is shown  
in Figure 113.  
The output voltage can be calculated by using the expression in the figure.  
Figure 111. The Method of Setting the Output Voltage of the Step-up Circuit of ch1 to ch4  
VOUT = (1 + R1/R2) x VITH  
VOUT  
(Outputs of ch1 to ch4)  
E/A1 to E/A4  
R1  
R2  
I
I1 to II4  
+
V
ITH  
FB1 to FB4  
Caution VITH of ch1 to ch3 depends on the serial interface.  
VITH of ch4 is 1.0 V TYP..  
Figure 112. The Method of Setting the Output Voltage of the Polarity-inverted Circuit of ch5 and ch6  
VOUT = (1 + R1/R2) x 1.0 R2/R1 x VREF  
V
REF  
(Reference voltage/40-pin)  
E/A5, E/A6  
R1  
R2  
II5, II6  
+
1.0 V TYP.  
FB5, FB6  
VOUT  
(Outputs of ch5 and ch6)  
Figure 113. The Method of Setting the Output Voltage of ch7 to ch9  
VOUT = (1 + R1/R2) x 1.0  
R1  
II7 to II9  
R2  
+
OUT7 to OUT9  
1.0 V TYP.  
28  
Data Sheet S17102EJ2V0DS  
µ PD16908  
11.2 Method of Handling Pins of Unused Channels  
Figure 114 to 118 show how to handle the pins when not using ch1 to ch3, ch5 and ch6, ch7 to ch9, and the serial  
interface, respectively.  
Figure 114. Handling of Pins When Not Using ch1 to ch3  
34  
V
DD  
Soft start circuit  
C
SS1 to CSS3  
FB1 to FB3  
Undervoltage  
lockout circuit  
E/A1 to E/A3  
I
I1 to II3  
PWM1 to PWM3  
+
+
OUT1 to OUT3  
Timer latch short-circuit  
protection circuit  
Triangular wave  
oscillator  
Figure 115. Handling of Pins When Not Using ch4  
34  
V
DD  
37  
Soft start circuit  
C
SS4  
FB4  
Undervoltage  
lockout circuit  
35  
36  
E/A4  
II4  
PWM4  
+
+
4
OUT4  
Timer latch short-circuit  
protection circuit  
Triangular wave  
oscillator  
Figure 116. Handling of Pins When Not Using ch5 and ch6  
34  
V
DD  
Soft start circuit  
C
SS5, CSS6  
FB5, FB6  
Undervoltage  
lockout circuit  
E/A5, E/A6  
I
I5, II6  
PWM5, PWM6  
+
+
OUT5, OUT6  
Timer latch short-circuit  
protection circuit  
Triangular wave  
oscillator  
29  
Data Sheet S17102EJ2V0DS  
µ PD16908  
Figure 117. Handling of Pins When Not Using ch7 to ch9  
E/A7 to E/A9  
OUT7 to OUT9  
+
I
I7 to II9  
Figure 118. Handling of Pins When Not Using the Serial Interface  
43  
LVDD  
SC  
44  
SDA  
SCL  
Serial  
interface block  
45  
46  
11.3 Method of Setting Oscillation Frequency  
The oscillation frequency can be arbitrarily set by the timing resistor (RRT) connected to the RT (No. 39) pin, and the  
timing capacitance (CCT) value connected to the CT (No. 38) pin.  
Expression <1> shows an approximate expression of the oscillation frequency (fOSC). However, because this is an  
approximate expression, be sure to check the frequency on the actual device, especially when using a high frequency.  
fOSC [Hz] = 1.43/ (RRT [] x CCT [F]) ⋅⋅⋅⋅⋅⋅ <1>  
11.4 Method of Setting Soft-start Time  
Expression <2> shows an approximate expression of the soft-start charge time of ch1 to ch4, tSS1 to tSS4.  
tSS1 to tSS4 [s] = 0.775 x CSS [µF] ⋅⋅⋅⋅⋅⋅ <2>  
Expression <3> shows an approximate expression of the soft-start charge time of ch5 and ch6, tSS5 and tSS6.  
tSS5 and tSS6 [s] = 0.675 x CSS [µF] ⋅⋅⋅⋅⋅⋅ <3>  
Note, however, that the startup characteristics of each channel differ depending on the load conditions of that  
channel, as mentioned in 10.7 Soft Start Block of the Step-up DC-DC Converter Output (ch1 to ch4) (Figure  
101), and 10.8 Soft Start Block of the Polarity-inverted DC-DC Converter Output (ch5 and ch6) (Figure  
103),so tSS does not equal the rise time of the output voltage of each channel. Therefore, be sure to check the soft-  
start time on the actual device.  
30  
Data Sheet S17102EJ2V0DS  
µ PD16908  
11.5 Method of Calculating Delay Time of Short-circuit Protection Circuit  
Expression <4> shows an approximate expression of the short-circuit protection circuit delay time, tDLY.  
tDLY [s] = 0.4 x CDLY [µF] ⋅⋅⋅⋅⋅⋅ <4>  
11.6 Method of Handling Pins When Short-circuit Protection Circuit is Unused  
When the short-circuit protection circuit is unused, connected the CDLY (No. 41) pin to the AGND (No. 18 and 42) pin.  
11.7 Method of Preventing Malfunction of Short-circuit Protection Circuit  
If noise is superimposed on the CDLY (No. 41) pin, the internal latch circuit may malfunction, causing the outputs to  
stop operating.  
To prevent this kind of malfunction, reduce the wiring impedance between the CDLY (No. 41) pin and the AGND (No.  
18 and 42) pins, and take measures so that noise is not superimposed on the CDLY (No. 41) pin.  
Note that if the soft-start time is longer than the short-circuit protection circuit may operate before the output of the  
channel rises. Therefore, be sure to determine the short-circuit protection circuit delay time on the actual device.  
11.8 Notes on Actual Pattern Wiring  
When actually wiring the pattern, separate the ground of the control lines from the ground of the power lines, so that  
there is as little common impedance by using a bypass capacitor (etc.), so that noise is not superimposed on the VDD  
(No. 34) pin or the VREF (No. 40) pin.  
11.9 Notes on Pin Connections  
If there is more than one pin of any pin type, ensure that all the pins are connected. Also, always apply the same  
potential to the power supply pins VDD (No. 34) pin, PVDD (No. 7) pin, and NPVDD (No. 11) pin.  
31  
Data Sheet S17102EJ2V0DS  
µ PD16908  
12. EXAMPLE OF APPLICATION CIRCUIT  
µ
µ
µ
0.047 F  
0.047  
F
0.047  
F
150 pF  
µ
µ
µ
µ
µ
F
0.047  
F
0.047  
F
0.047  
F
11 kΩ  
0.1  
41  
F
0.1  
40  
2.7 to 5.5 V  
24  
28  
32  
37  
17  
21  
39  
38  
C
SS1  
C
SS2  
C
SS3  
C
SS4  
C
SS5  
C
SS6  
R
T
C
T
C
DLY  
V
REF  
34  
DD  
+
22  
Battery  
2.7 to 5.5 V  
V
NPV  
µ
µ
µ
0.1  
0.1  
0.1  
F
F
F
Triangular  
wave  
oscillator  
Reference  
voltage  
2.0 V  
µ
µ
µ
Timer latch  
short-circuit  
protection  
circuit  
F
F
F
DD11  
Soft start circuit  
+
22  
PVDD  
7
+
22  
FB1  
Undervoltage  
lockout circuit  
22  
µ
10  
H
ch1OUT  
620 kΩ  
100 kΩ  
ch1OUT  
OUT1  
10  
+
10  
+
23  
9 V/100 mA  
2200 pF  
+
I
I1  
µ
µ
µ
µ
F
F
F
F
51 kΩ  
9
PGND1  
FB2  
26  
27  
µ
10  
H
ch2OUT  
100 kΩ  
510 kΩ  
ch2OUT  
8 V/100 mA  
OUT2  
+
+
10  
2200 pF  
+
I
I2  
8
47 kΩ  
FB3  
30  
31  
µ
10  
H
ch3OUT  
100 kΩ  
750 kΩ  
ch3OUT  
7.5 V/100 mA  
OUT3  
+
+
10  
2200 pF  
+
I
I3  
6
5
75 kΩ  
PGND2  
FB4  
35  
36  
µ
10 H  
ch4OUT  
100 kΩ  
300 kΩ  
ch4OUT  
5 V/100 mA  
OUT4  
+
+
10  
2200 pF  
+
I
I4  
4
75 kΩ  
13  
FB5  
PGND3  
V
REF  
15  
16  
100 kΩ  
150 kΩ  
750 kΩ  
OUT5  
12  
+
2200 pF  
+
I
I5  
ch5OUT  
4 V/150 mA  
ch5OUT  
µ
µ
10  
+
F
F
FB6  
µ
10  
H
V
REF  
19  
20  
100 kΩ  
150 kΩ  
750 kΩ  
+
OUT6  
14  
2200 pF  
N.C.  
+
I
I6  
ch6OUT  
4 V/150 mA  
25  
29  
33  
ch6OUT  
10  
+
µ
10  
H
N.C.  
2
1
N.C.  
BVDD  
3.3 V  
OUT7  
220 kΩ  
DD 43  
+
LV  
ch7OUT  
2.0 V/1 mA  
+
TEST3  
µ
10  
F
F
F
3.3 V  
48  
II7  
56  
55  
220 kΩ  
SDA 45  
OUT8  
240 kΩ  
SCL 46  
CS 44  
Control logic  
block  
and  
serial interface  
block  
ch8OUT  
1.8 V/1 mA  
+
C
P
U
+
µ
10  
II8  
54  
53  
300 kΩ  
DCON 51  
OUT9  
180 kΩ  
47  
SHDNB  
ch9OUT  
1.5 V/1 mA  
+
+
µ
49  
50  
42  
18  
10  
TEST1  
II9  
TEST2  
AGND2  
AGND1  
52  
3
360 kΩ  
PGND4  
Caution The constants shown in this figure are for reference only and do not guarantee the characteristics.  
Set the constants and use appropriate components in accordance with the actual operating  
conditions.  
32  
Data Sheet S17102EJ2V0DS  
µ PD16908  
13. PACKAGE DRAWING  
56-PIN PLASTIC WQFN (8x8)  
HD  
D
D /2  
HD /2  
4C0.5  
42  
43  
29  
28  
A2  
E /2  
A1  
C
HE E  
DETAIL OF P PART  
HE /2  
15  
14  
56  
1
x4  
A
c1  
c2  
f
S A B  
ZE  
ZD  
y1  
S
b1  
b
S
(UNIT:mm)  
ITEM DIMENSIONS  
y
D
E
7.75  
TERMINAL SECTION  
P
S
x4  
7.75  
0.20  
8.00  
8.00  
0.20  
B
f
t
S A B  
HD  
HE  
t
+0.08  
–0.04  
A
0.67  
A
+0.02  
A1  
0.03  
0.64  
–0.025  
A2  
b
0.23 0.05  
0.20 0.03  
0.17  
b1  
c
c1  
c2  
e
0.140.16  
0.140.20  
0.50  
0.08MIN.  
e
Lp  
0.40 0.10  
0.05  
Lp  
x
M
0.08MIN.  
NOTES  
b
x
S A B  
1 "t" AND "f" EXCLUDES MOLD FLASH  
0.08  
y
2 ALTHOUGH THERE ARE 4 TERMINALS IN THE CORNER PART  
OF A PACKAGE, THESE TERMINALS ARE NOT DESIGNED FOR  
INTERCONNECTION, BUT FOR MANUFACTURING PROCESS OF  
THE PACKAGE, THEREFOR DO NOT INTEND TO SOLDER THESE  
4 TERMINALS, SOLDERABLITY OF THE 4 TERMINALS ARE NOT  
GUARANTEED.  
0.10  
y1  
ZD  
ZE  
0.625  
0.625  
P56K9-50-9B4  
33  
Data Sheet S17102EJ2V0DS  
µ PD16908  
14. RECOMMENDED SOLDERING CONDITIONS  
The µ PD168103 should be soldered and mounted under the following recommended conditions.  
For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales  
representative.  
For technical information, see the following website.  
Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)  
Type of Surface Mount Device  
µ PD16908K9-9B4-A: 56-pin plastic WQFN (8 x 8)  
Process  
Conditions  
Symbol  
Infrared reflow  
Package peak temperature: 260°C, Time: 60 seconds MAX. (at 220°C or higher),  
Count: Three times or less, Exposure limit: 3 days Note (after that, prebake at 125°C  
for 10 hours), Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.  
<Precaution>  
IR60-103-3  
Products other than in heat-resistant trays (such as those packaged in a magazine,  
taping, or non-thermal-resistant tray) cannot be baked in their package.  
Note After opening the dry pack, store it a 25°C or less and 65% RH or less for the allowable storage period.  
Caution Do not use different soldering methods together (except for partial heating).  
34  
Data Sheet S17102EJ2V0DS  
µ PD16908  
NOTES FOR CMOS DEVICES  
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
1
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
V
IH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
5
POWER ON/OFF SEQUENCE  
In the case of a device that uses different power supplies for the internal operation and external  
interface, as a rule, switch on the external power supply after switching on the internal power supply.  
When switching the power supply off, as a rule, switch off the external power supply and then the  
internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal  
elements due to the passage of an abnormal current.  
The correct power on/off sequence must be judged separately for each device and according to related  
specifications governing the device.  
6
INPUT OF SIGNAL DURING POWER OFF STATE  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current  
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and  
the abnormal current that passes in the device at this time may cause degradation of internal elements.  
Input of signals during the power off state must be judged separately for each device and according to  
related specifications governing the device.  
35  
Data Sheet S17102EJ2V0DS  
µ PD16908  
The information in this document is current as of October, 2004. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data  
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not  
all products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD16F15AGC-8BT

MICROCONTROLLER, PQFP80, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, QFP-80
RENESAS

UPD16F15GC-8BT

MICROCONTROLLER, PQFP80, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, QFP-80
RENESAS

UPD17001GH-ZZZ

Microcontroller, 4-Bit, MROM, 4.5MHz, CMOS, PQFP48, PLASTIC, QFP-48
NEC

UPD17002

UPD170XX Series Common items | User's Manual[05/1998]
ETC

UPD17002CU

Microcontroller, 4-Bit, MROM, 8MHz, CMOS, PDIP48, 0.600 INCH, SHRINK, PLASTIC, DIP-48
NEC

UPD17002CU-ZZZ

Microcontroller, 4-Bit, MROM, 8MHz, CMOS, PDIP48, PLASTIC, SDIP-48
NEC

UPD17005

DIGITAL TUNING SYSTEM HARDWARE BUILT-IN 4-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD17005GF

DIGITAL TUNING SYSTEM HARDWARE BUILT-IN 4-BIT SINGLE-CHIP MICROCONTROLLER
NEC

UPD17005GF-3B9

Microcontroller, 4-Bit, MROM, 4.5MHz, CMOS, PQFP80, 14 X 20 MM, PLASTIC, QFP-80
NEC

UPD17005GF-XXX-3B9

4-Bit Microcontroller
ETC

UPD17005GF-ZZZ

暂无描述
NEC

UPD17006

Microcontroller
ETC