UPD44164362F5-E33-EQ1 [RENESAS]

DDR SRAM, 512KX36, 0.29ns, CMOS, PBGA165, 13 X 15 MM, PLASTIC, FBGA-165;
UPD44164362F5-E33-EQ1
型号: UPD44164362F5-E33-EQ1
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

DDR SRAM, 512KX36, 0.29ns, CMOS, PBGA165, 13 X 15 MM, PLASTIC, FBGA-165

双倍数据速率 静态存储器
文件: 总32页 (文件大小:211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD44164082, 44164182, 44164362  
18M-BIT DDRII SRAM  
2-WORD BURST OPERATION  
Description  
The µPD44164082 is a 2,097,152-word by 8-bit, the µPD44164182 is a 1,048,576-word by 18-bit and the µPD44164362  
is a 524,288-word by 36-bit synchronous double data rate static RAM fabricated with advanced CMOS technology using  
full CMOS six-transistor memory cell.  

The µPD44164082, µPD44164182 and µPD44164362 integrates unique synchronous peripheral circuitry and a burst  
counter. All input registers controlled by an input clock pair (K and /K) and are latched on the positive edge of K and /K.  
These products are suitable for applications which require synchronous operation, high speed, low voltage, high density  
and wide bit configuration.  
These products are packaged in 165-pin PLASTIC FBGA.  
Features  
1.8 ± 0.1 V power supply and HSTL I/O  
DLL circuitry for wide output data valid window and future frequency scaling  
Pipelined double data rate operation  
Common data input/output bus  
Two-tick burst for low DDR transaction size  
Two input clocks (K and /K) for precise DDR timing at clock rising edges only  
Two output clocks (C and /C) for precise flight time  
and clock skew matching-clock and data delivered together to receiving device  
Internally self-timed write control  
Clock-stop capability with µs restart  
User programmable impedence output  
Fast clock cycle time : 3.0 ns (333 MHz), 3.3 ns (300 MHz), 4.0 ns (250 MHz), 5.0 ns (200 MHz), 6.0 ns (167 MHz)  
Simple control logic for easy depth expansion  
JTAG boundary scan  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. M15821EJ2V0DS00 (2nd edition)  
Date Published April 2002 NS CP(K)  
Printed in Japan  
The mark  shows major revised points.  
2001  
©
µPD44164082, 44164182, 44164362  

Ordering Information  
Part number  
Cycle  
Clock  
Organization Core Supply  
I/O  
Package  
Time Frequency (word x bit)  
Voltage  
V
Interface  
ns  
MHz  
333  
300  
250  
200  
167  
333  
300  
250  
200  
167  
333  
300  
250  
200  
167  
µPD44164082F5-E30-EQ1  
µPD44164082F5-E33-EQ1  
µPD44164082F5-E40-EQ1  
µPD44164082F5-E50-EQ1  
µPD44164082F5-E60-EQ1  
µPD44164182F5-E30-EQ1  
µPD44164182F5-E33-EQ1  
µPD44164182F5-E40-EQ1  
µPD44164182F5-E50-EQ1  
µPD44164182F5-E60-EQ1  
µPD44164362F5-E30-EQ1  
µPD44164362F5-E33-EQ1  
µPD44164362F5-E40-EQ1  
µPD44164362F5-E50-EQ1  
µPD44164362F5-E60-EQ1  
3.0  
3.3  
4.0  
5.0  
6.0  
3.0  
3.3  
4.0  
5.0  
6.0  
3.0  
3.3  
4.0  
5.0  
6.0  
2 M x 8-bit  
1 M x 18-bit  
512 K x 36-bit  
1.8 ± 0.1  
HSTL  
165-pin PLASTIC  
FBGA (13 x 15)  
Preliminary Data Sheet M15821EJ2V0DS  
2
µPD44164082, 44164182, 44164362  
Pin Configurations (Marking Side)  
/××× indicates active low signal.  

165-pin PLASTIC FBGA (13 x 15)  
(Top View)  
[µPD44164082F5-EQ1]  
1
2
3
A
4
5
/NW1  
NC  
A
6
7
NC  
/NW0  
A
8
9
A
10  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
DQ1  
NC  
NC  
NC  
NC  
NC  
TMS  
11  
CQ  
DQ3  
NC  
NC  
DQ2  
NC  
NC  
ZQ  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
NC  
NC  
DQ6  
NC  
NC  
NC  
TCK  
R, /W  
A
/K  
/LD  
A
NC  
NC  
NC  
DQ4  
NC  
DQ5  
VDDQ  
NC  
NC  
NC  
NC  
NC  
DQ7  
A
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
VSS  
A
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
G
H
J
NC  
NC  
DQ0  
NC  
NC  
NC  
TDI  
K
L
M
N
P
R
VSS  
VSS  
A
A
C
A
A
A
A
/C  
A
A
A
: Address inputs  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: Echo clock  
DQ0 to DQ7  
/LD  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Nybble Write data select  
: Input clock  
TDI  
TCK  
TDO  
CQ, /CQ  
VREF  
VDD  
R, /W  
/NW0, /NW1  
K, /K  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
C, /C  
: Output clock  
ZQ  
: Output impedance matching  
: DLL disable  
VDDQ  
VSS  
/DLL  
NC  
: No connection  
Remark Refer to Package Drawing for the index mark.  
Preliminary Data Sheet M15821EJ2V0DS  
3
µPD44164082, 44164182, 44164362  

165-pin PLASTIC FBGA (13 x 15)  
(Top View)  
[µPD44164182F5-EQ1]  
1
2
VSS  
3
4
5
/BW1  
NC  
A
6
7
NC  
/BW0  
A
8
9
A
10  
VSS  
NC  
11  
CQ  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
A
R, /W  
A
/K  
/LD  
A
DQ9  
NC  
NC  
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
DQ8  
NC  
NC  
VSS  
A0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
DQ7  
NC  
NC  
DQ10  
DQ11  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
DQ6  
DQ5  
NC  
DQ12  
NC  
NC  
G
H
J
DQ13  
VDDQ  
NC  
NC  
VREF  
NC  
VREF  
DQ4  
NC  
ZQ  
NC  
K
L
NC  
DQ14  
NC  
DQ3  
DQ2  
NC  
DQ15  
NC  
NC  
M
N
P
R
NC  
DQ1  
NC  
NC  
DQ16  
DQ17  
A
VSS  
VSS  
NC  
NC  
A
A
C
A
A
NC  
DQ0  
TDI  
TCK  
A
A
/C  
A
A
TMS  
A0, A  
: Address inputs  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: Echo clock  
DQ0 to DQ17  
/LD  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
TDI  
TCK  
TDO  
CQ, /CQ  
VREF  
VDD  
R, /W  
/BW0, /BW1  
K, /K  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
C, /C  
: Output clock  
ZQ  
: Output impedance matching  
: DLL disable  
VDDQ  
VSS  
/DLL  
NC  
: No connection  
Remark Refer to Package Drawing for the index mark.  
Preliminary Data Sheet M15821EJ2V0DS  
4
µPD44164082, 44164182, 44164362  

165-pin PLASTIC FBGA (13 x 15)  
(Top View)  
[µPD44164362F5-EQ1]  
1
2
3
4
5
/BW2  
/BW3  
A
6
7
/BW1  
/BW0  
A
8
9
A
10  
VSS  
11  
CQ  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
VSS  
NC  
R, /W  
A
/K  
/LD  
A
DQ27  
NC  
DQ18  
DQ28  
DQ19  
DQ20  
DQ21  
DQ22  
VDDQ  
DQ32  
DQ23  
DQ24  
DQ34  
DQ25  
DQ26  
A
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
DQ8  
DQ7  
DQ16  
DQ6  
DQ5  
DQ14  
ZQ  
VSS  
A0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
DQ17  
NC  
DQ29  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
DQ15  
NC  
DQ30  
DQ31  
VREF  
NC  
G
H
J
NC  
VREF  
DQ13  
DQ12  
NC  
DQ4  
DQ3  
DQ2  
DQ1  
DQ10  
DQ0  
TDI  
K
L
NC  
DQ33  
NC  
M
N
P
R
DQ11  
NC  
DQ35  
NC  
VSS  
VSS  
A
A
C
A
A
DQ9  
TMS  
TCK  
A
A
/C  
A
A
A0, A  
: Address inputs  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: Echo clock  
DQ0 to DQ35  
/LD  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
TDI  
TCK  
TDO  
CQ, /CQ  
VREF  
VDD  
R, /W  
/BW0 to /BW3  
K, /K  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
C, /C  
: Output clock  
ZQ  
: Output impedance matching  
: DLL disable  
VDDQ  
VSS  
/DLL  
NC  
: No connection  
Remark Refer to Package Drawing for the index mark.  
Preliminary Data Sheet M15821EJ2V0DS  
5
µPD44164082, 44164182, 44164362  
Pin Identification  
Symbol  
Description  
A0  
A
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the  
rising edge of K. Balls 9A, 3A, 10A, and 2A are reserved for the next higher-order address inputs on future  
devices. All transactions operate on a burst of two words (one clock period of bus activity). A0 is used as the  
lowest order address bit permitting a random starting address within the burst operation. These inputs are  
ignored when device is deselected.  

/LD  
Synchronous Load: This input is brought LOW when a bus cycle sequence is to be defined. This definition  
includes address and read/write direction. All transactions operate on a burst of 2 data (one clock periods of  
bus activity).  
R, /W  
Synchronous Read/Write Input: When /LD is LOW, this input designates the access type (READ when /R, W is  
HIGH, WRITE when /R, W is LOW) for the loaded address. /R, W must meet the setup and hold times around  
the rising edge of K.  
/NWx  
/BWx  
Synchronous Byte Writes (Nybble Writes on x8): When LOW these inputs cause their respective byte or nybble  
to be registered and written during WRITE cycles. These signals must meet setup and hold times around the  
rising edges of K and /K for each of the two rising edges comprising the WRITE cycle. See Pin Configurations  
for signal to data relationships.  
K, /K  
C, /C  
Input Clock: This input clock pair registers address and control inputs on the rising edge of K, and registers data  
on the rising edge of K and the rising edge of /K. /K is ideally 180 degrees out of phase with K. All synchronous  
inputs must meet setup and hold times around the clock rising edges.  
Output Clock: This clock pair provides a user controlled means of tuning device output data. The rising edge of  
C is used as the output timing reference for first output data. The rising edge of /C is used as the output  
reference for second output data. Ideally, /C is 180 degrees out of phase with C. C and /C may be tied HIGH to  
force the use of K and /K as the output reference clocks instead of having to provide C and /C clocks. If tied  
HIGH, C and /C must remain HIGH and not be toggled during device operation.  
/DLL  
ZQ  
DLL Disable: When LOW, this input causes the DLL to be bypassed for stable low frequency operation.  
Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus  
impedance. DQ and CQ output impedance are set to 0.2 x RQ, where RQ is a resistor from this bump to  
ground. Alternately, this pin can be connected directly to VDDQ, which enables the minimum impedance mode.  
This pin cannot be connected directly to GND or left unconnected.  

TMS  
TDI  
IEEE 1149.1 Test Inputs: 1.8V I/O levels. These balls may be left Not Connected if the JTAG function is not  
used in the circuit.  
TCK  
IEEE 1149.1 Clock Input: 1.8V I/O levels. This pin must be tied to VSS if the JTAG function is not used in the  
circuit.  
VREF  
HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers.  
DQ0 to DQxx Synchronous Data IOs: Input data must meet setup and hold times around the rising edges of K and /K. Output  
data is synchronized to the respective C and /C data clocks or to K and /K if C and /C are tied to HIGH.  
x8 device uses DQ0-DQ7. Remaining signals are NC.  
x18 device uses DQ0-DQ17. Remaining signals are NC.  
x36 device uses DQ0-DQ35. Remaining signals are NC.  
NC signals are read in the JTAG scan chain as the logic level applied to the ball site.  
CQ, /CQ  
Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous  
data outputs and can be used as a data valid indication. These signals run freely and do not stop when Q  
tristates.  
TDO  
VDD  
IEEE 1149.1 Test Output: 1.8V I/O level.  
Power Supply: 1.8V nominal. See DC Characteristics and Operating Conditions for range.  
VDDQ  
Power Supply: Isolated Output Buffer Supply. Nominally 1.5V. 1.8V is also permissible. See DC Characteristics  
and Operating Conditions for range.  
VSS  
NC  
Power Supply: Ground  
No Connect: These signals are internally connected and appear in the JTAG scan chain as the logic level  
applied to the ball sites. These signals may be connected to ground to improve package heat dissipation.  
Preliminary Data Sheet M15821EJ2V0DS  
6
µPD44164082, 44164182, 44164362  

Block Diagram  
CLK  
Burst  
Logic  
A0'  
A0  
D0  
Q0  
R
Address  
Register  
Address  
/LD  
/W  
E
Compare  
/C  
C
A0''  
A0'''  
Output control  
Logic  
Write address  
Register  
K
E
E
A0'  
Input  
Register  
/A0'  
A0'  
ZQ  
0
2 :1  
MUX  
Memory  
Array  
CLK  
/A0'  
C
1
A0'  
Output Buffer  
E
DQ  
0
1
/K  
Input  
Register  
E
A0'''  
Output Enable  
Register  
C
R, /W  
R, /W  
Register  
E
Burst Sequence  

Linear Burst Sequence Table  
[µPD44164182, µPD44164362]  
A0  
0
A0  
1
External Address  
1st Internal Burst Address  
1
0
Preliminary Data Sheet M15821EJ2V0DS  
7
µPD44164082, 44164182, 44164362  
Truth Table  
Operation  
/LD R, /W  
CLK  
DQ  
WRITE cycle  
L
L
L H  
Data in  
Load address, input write data on two  
consecutive K and /K rising edge  
READ cycle  
Input data  
Input clock  
D(A1)  
D(A2)  
K(t+1) ↑  
/K(t+1) ↑  
L
H
L H  
Data out  
Load address, read data on two  
consecutive C and /C rising edge  
NOP (No operation)  
Output data  
Output clock  
Q(A1)  
Q(A2)  
/C(t+1) ↑  
C(t+2) ↑  
H
X
X
X
L H  
Hi-Z  
Previous state  
STANDBY(Clock stopped)  
Stopped  
Remarks 1. H : High level, L : Low level, × : don’t care, : rising edge.  
2. Data inputs are registered at K and /K rising edges. Data outputs are delivered at C and /C rising edges  
except if C and /C are HIGH then Data outputs are delivered at K and /K rising edges.  
3. All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of  
K. All control inputs are registered during the rising edge of K.  
4. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. A1 refers to the address input during a WRITE or READ cycle. A2 refers to the next internal burst  
address in accordance with the linear burst sequence.  
7. It is recommended that K = /K = C = /C when clock is stopped. This is not essential but permits most  
rapid restart by overcoming transmission line charging symmetrically.  
Preliminary Data Sheet M15821EJ2V0DS  
8
µPD44164082, 44164182, 44164362  
Byte Write Operation  
[µPD44164082]  
Operation  
Write D0-7  
K
L H  
/K  
/NW0  
/NW1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
Write D0-3  
Write D4-7  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
Remark H : High level, L : Low level, : rising edge.  
[µPD44164182]  
Operation  
Write D0-17  
K
L H  
/K  
/BW0  
/BW1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
Write D0-8  
L H  
L H  
Write D9-17  
Write nothing  
L H  
L H  
L H  
L H  
Remark H : High level, L : Low level, : rising edge.  
[µPD44164362]  
Operation  
Write D0-35  
K
L H  
/K  
/BW0  
/BW1  
/BW2  
/BW3  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
L H  
Write D0-8  
L H  
L H  
Write D9-17  
Write D18-26  
Write D27-35  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
Remark H : High level, L : Low level, : rising edge.  
Preliminary Data Sheet M15821EJ2V0DS  
9
µPD44164082, 44164182, 44164362  
Bus Cycle State Diagram  
LOAD NEW  
ADDRESS  
Count = 0  
Load, Count = 2  
Load, Count = 2  
READ DOUBLE  
Write  
Read  
WRITE DOUBLE  
Count = Count + 2  
COUNT = Count + 2  
Load  
NOP,  
NOP,  
Count = 2  
Count = 2  
NOP  
NOP  
Supply voltage provided  
Power UP  
Remarks 1. A0 is internally advanced in accordance with the burst order table.  
Bus cycle is terminated after burst count = 2.  
2. State machine control timing sequence is controlled by K.  
Preliminary Data Sheet M15821EJ2V0DS  
10  
µPD44164082, 44164182, 44164362  
Electrical Specifications  
Absolute Maximum Ratings  
Parameter  
Unit  
Symbol Conditions  
MIN.  
–0.5  
–0.5  
–0.5  
–0.5  
TYP.  
MAX.  
V
V
Supply voltage  
VDD  
VDDQ  
VIN  
+2.9  
Output supply voltage  
Input voltage  
VDD  
VDD + 0.5 (2.9 V MAX.)  
VDDQ + 0.5 (2.9 V MAX.)  
+125  
V
V
Input / Output voltage  
Junction temperature  
Storage temperature  
VI/O  
Tj  
°C  
°C  
Tstg  
–55  
+125  
Caution  
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions (Tj = 20 to 110 °C)  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
MIN.  
1.7  
TYP.  
MAX.  
1.9  
Unit  
V
Note  
Output supply voltage  
High level input voltage  
Low level input voltage  
Clock input voltage  
VDDQ  
VIH  
1.4  
VDD  
V
VREF + 0.1  
–0.3  
VDDQ + 0.3  
VREF – 0.1  
VDDQ + 0.3  
0.95  
V
1
1
1
VIL  
V
VIN  
–0.3  
V
Reference voltage  
VREF  
0.68  
V
Note1 Overshoot: VIH (AC) VDD + 0.7 V for t TKHKH/2  
Undershoot: VIL (AC) – 0.5V for t TKHKH/2  
Power-up: VIH VDDQ + 0.3V and VDD 1.7V and VDDQ 1.4V for t 200 ms  
During normal operation, VDDQ must not exceed VDD.  
Control input signals may not have pulse widths less than TKHKL (MIN) or operate at cycle rates  
less than TKHKH (MIN).  
Capacitance (TA = 25 °C, f = 1MHz)  
Parameter  
Input capacitance  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
MIN.  
TYP.  
MAX.  
Unit  
pF  
4
6
5
5
7
6
Input / Output capacitance  
Clock Input capacitance  
CI/O  
VI/O = 0 V  
Vclk = 0 V  
pF  
Cclk  
pF  
Remark These parameters are periodically sampled and not 100% tested.  
Preliminary Data Sheet M15821EJ2V0DS  
11  
µPD44164082, 44164182, 44164362  
DC Characteristics (Tj = 20 to 110°C, VDD = 1.8 ± 0.1 V)  
Parameter  
Symbol  
Test condition  
MIN.  
TYP.  
MAX.  
Unit  
Note  
x8, x18 x36  
Input leakage current  
I/O leakage current  
Operating supply current  
(Read Write cycle)  
ILI  
–2  
–2  
+2  
+2  
µA  
µA  
ILO  
IDD  
VIN VIL or VIN VIH, –E30  
525  
475  
400  
330  
280  
255  
235  
200  
170  
150  
710  
640  
545  
445  
380  
265  
240  
210  
180  
160  
mA  
II/O = 0 mA  
–E33  
–E40  
–E50  
–E60  
Cycle = MAX.  
Standby supply current  
(NOP)  
ISB1  
VIN VIL or VIN VIH, –E30  
mA  
II/O = 0 mA  
–E33  
–E40  
–E50  
–E60  
Cycle = MAX.  
High level output voltage  
Low level output voltage  
VOH(Low) |IOH| 0.1 mA  
Note1  
VDDQ – 0.2  
VDDQ/2–0.08  
VSS  
VDDQ  
V
V
V
V
3, 4  
3, 4  
3, 4  
3, 4  
VOH  
VDDQ/2+0.08  
0.2  
VOL(Low) IOL 0.1 mA  
Note2  
VOL  
VDDQ/2–0.08  
VDDQ/2+0.08  
Notes 1. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) for values of 175 Ω ≤ RQ 350 .  
2. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) for values of 175 Ω ≤ RQ 350 .  
3. AC load current is higher than the shown DC values. AC I/O curves are available upon request.  
4. HSTL outputs meet JEDEC HSTL Class I and Class II standards.  
Preliminary Data Sheet M15821EJ2V0DS  
12  
µPD44164082, 44164182, 44164362  
AC Characteristics (Tj = 20 °C to 110 °C, VDD = 1.8 ± 0.1 V)  
AC Test Conditions  
Input waveform (Rise / Fall time 0.3 ns)  
1.25 V  
0.75 V  
0.75 V  
Test Points  
0.25 V  
Output waveform  
V
DDQ / 2  
Test Points  
VDDQ / 2  
Output load condition  
Figure 1. External load at test  
V
DDQ / 2  
0.75 V  
50 Ω  
V
REF  
ZO = 50 Ω  
SRAM  
250 Ω  
ZQ  
Remark CL includes capacitances of the probe and jig, and stray capacitances.  
Preliminary Data Sheet M15821EJ2V0DS  
13  
µPD44164082, 44164182, 44164362  
Read and Write Cycle  
-E30  
(333 MHz) (300 MHz) (250 MHz)  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
-E33  
-E40  
-E50  
-E60  
Parameter  
Symbol  
Unit Note  
(200 MHz) (167 MHz)  
Clock  


Average Clock cycle time (K, /K, C, /C) TKHKH  
ns  
ns  
1
2
3.0  
3.6  
0.2  
3.3  
4.0  
0.2  
4.0  
5.0  
0.2  
5.0  
6.0  
0.2  
6.0  
7.5  
0.2  
Clock phase jitter (K, /K, C, /C)  
Clock HIGH time (K, /K, C, /C)  
Clock LOW time (K, /K, C, /C)  
Clock to /clock (K/K., C/C.)  
Clock to /clock (/KK., /CC.)  
Clock to data clock (KC., /K/C.)  
DLL lock time (K, C)  
TKC var  
TKHKL  
ns  
1.20  
1.20  
1.35  
1.35  
0
1.32  
1.32  
1.49  
1.49  
0
1.6  
1.6  
1.8  
1.8  
0
2.0  
2.0  
2.2  
2.2  
0
2.4  
2.4  
2.7  
2.7  
0
TKLKH  
ns  
TKH /KH  
T /KHKH  
TKHCH  
ns  


ns  
ns  
1.30  
1.45  
1.8  
2.3  
2.8  

TKC lock  
TKC reset  
Cycle  
ns  
3
1,024  
30  
1,024  
30  
1,024  
30  
1,024  
30  
1,024  
30  
K static to DLL reset  
Output Times  
C, /C HIGH to output valid  
C, /C HIGH to output hold  
C, /C HIGH to echo clock valid  
C, /C HIGH to echo clock hold  
CQ, /CQ HIGH to output valid  
CQ, /CQ HIGH to output hold  
C HIGH to output High-Z  
C HIGH to output Low-Z  
TCHQV  
TCHQX  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
– 0.27  
0.27  
– 0.29  
0.29  
– 0.35  
0.35  
– 0.38  
0.38  
– 0.40  
0.40  
TCHCQV  
TCHCQX  
TCQHQV  
TCQHQX  
TCHQZ  
0.25  
0.27  
0.33  
0.36  
0.38  
– 0.25  
– 0.27  
– 0.33  
– 0.36  
– 0.38  


4
4
0.27  
0.29  
0.35  
0.38  
0.40  
– 0.27  
– 0.29  
– 0.35  
– 0.38  
– 0.40  
0.27  
0.29  
0.35  
0.38  
0.40  
TCHQX1  
– 0.27  
– 0.29  
– 0.35  
– 0.38  
– 0.40  
Setup Times  
Address valid to K rising edge  
Control inputs valid to K rising edge  
Data-in valid to K, /K rising edge  
TAVKH  
TIVKH  
TDVKH  
ns  
ns  
ns  
5
5
5
0.4  
0.4  
0.3  
0.4  
0.4  
0.5  
0.5  
0.4  
0.6  
0.6  
0.5  
0.7  
0.7  
0.6  



0.33  
Hold Times  
K rising edge to address hold  
K rising edge to control inputs hold  
K, /K rising edge to data-in hold  
TKHAX  
TKHIX  
TKHDX  
ns  
ns  
ns  
5
5
5
0.4  
0.4  
0.3  
0.4  
0.4  
0.5  
0.5  
0.4  
0.6  
0.6  
0.5  
0.7  
0.7  
0.6  



0.33  
Notes 1. The device will operate at clock frequencies slower than TKHKH(MAX.).  



2. Clock phase jitter is the variance from clock rising edge to the next expected colck rising edge.  
3. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention.  
DLL lock time begins once VDD and input clock are stable.  
It is recommended that the device is kept inactive during these cycles.  


4. Echo clock is very tightly controlled to data valid / data hold. By design, there is a ± 0.1 ns variation from  
echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.  
5. This is a synchronous device. All addresses, data and control lines must meet the specified setup  
and hold times for all latching clock edges.  
Remarks 1. This parameter is sampled.  
2. Test conditions as specified with the output loading as shown in AC Test Conditions  
unless otherwise noted.  
3. Control input signals may not be operated with pulse widths less than TKHKL (MIN).  
4. If C, /C are tied HIGH, K, /K become the references for C, /C timing parameters.  
5. VDDQ is 1.5 VDC.  

Preliminary Data Sheet M15821EJ2V0DS  
14  
µPD44164082, 44164182, 44164362  

Read and Write Timing  
READ  
NOP  
READ  
NOP  
NOP  
WRITE  
WRITE  
READ  
(burst of 2)  
(burst of 2)  
(burst of 2) (burst of 2)  
(burst of 2)  
1
2
3
4
5
6
7
8
9
10  
TKHKH  
K
TKHKL TKLKH  
TKLKH  
TKH/KH  
T/KHKH  
/K  
/LD  
TIVKH  
TKHIX  
R, /W  
TAVKH  
TKHAX  
Address  
DQ  
A0  
A1  
A2  
A3  
A4  
TKHDX  
TKHDX  
TDVKH  
TDVKH  
D21  
D22  
D23  
D24  
Q01 Q02 Q11  
TCHQX  
Q12  
Qx2  
Q41 Q42  
TCQHQX  
TCQHQV  
TCHQX1  
TCHQV  
TCHQZ  
TCHQX  
TKHCH  
TKHCH  
TCHQV  
CQ  
TCHCQX  
TCHCQV  
/CQ  
C
TCHCQX  
TCHCQV  
TKHKL TKLKH TKHKH TKH/KH T/KHKH  
/C  
Remarks 1. Q01 refers to output from address A0.  
Q02 refers to output from the next internal burst address following A0, etc.  
2. Outputs are disable (High-Z) one clock cycle after a NOP.  
3. The second NOP cycle is not necessary for correct device operation;  
however, at high clock frequencies it may be required to prevent bus contention.  
Preliminary Data Sheet M15821EJ2V0DS  
15  
µPD44164082, 44164182, 44164362  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Test Access Port (TAP) Pins  
Pin name  
TCK  
Pin assignments  
2R  
Description  
Test Clock Input. All input are captured on the rising edge of TCK and all outputs  
propagate from the falling edge of TCK.  
Test Mode Select. This is the command input for the TAP controller state machine.  
TMS  
TDI  
10R  
11R  
Test Data Input. This is the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is deter-mined by the state of the TAP  
controller state machine and the instruction that is currently loaded in the TAP instruction.  
TDO  
1R  
Test Data Output. Output changes in response to the falling edge of TCK. This is the  
output side of the serial registers placed between TDI and TDO.  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high  
for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.  
JTAG DC Characteristics (20 °C Tj 110 °C, 1.7 V VDD 1.9 V, unless otherwise noted)  
Parameter  
Symbol  
ILI  
Conditions  
0 V VIN VDD  
MIN.  
–5.0  
–5.0  
TYP.  
MAX.  
+5.0  
+5.0  
Unit  
µA  
Note  
JTAG Input leakage current  
JTAG I/O leakage current  
ILO  
0 V VIN VDDQ,  
µA  
Outputs disabled  
JTAG input high voltage  
JTAG input low voltage  
JTAG output high voltage  
VIH  
VIL  
1.3  
–0.3  
1.6  
1.4  
VDD+0.3  
V
V
V
V
V
V
+0.5  
VOH1  
VOH2  
VOL1  
VOL2  
| IOHC | = 100 µA  
| IOHT | = 2 mA  
IOLC = 100 µA  
IOLT = 2 mA  
JTAG output low voltage  
0.2  
0.4  
Preliminary Data Sheet M15821EJ2V0DS  
16  
µPD44164082, 44164182, 44164362  
JTAG AC Test Conditions  
Input waveform (Rise / Fall time 1 ns)  
1.8 V  
0.9 V  
0 V  
0.9 V  
Test Points  
Output waveform  
0.9 V  
Test Points  
0.9 V  
Output load  
Figure 2. External load at test  
V
TT = 0.9 V  
50 Ω  
ZO = 50 Ω  
TDO  
20 pF  
Preliminary Data Sheet M15821EJ2V0DS  
17  
µPD44164082, 44164182, 44164362  
JTAG AC Characteristics (Tj = 5 to 110 °C)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Note  
Clock  
Clock cycle time  
Clock frequency  
Clock high time  
Clock low time  
tTHTH  
fTF  
tTHTL  
tTLTH  
100  
10  
ns  
MHz  
ns  
40  
40  
ns  
Output time  
TCK low to TDO unknown  
TCK low to TDO valid  
TDI valid to TCK high  
TCK high to TDI invalid  
tTLOX  
tTLOV  
tDVTH  
tTHDX  
0
20  
ns  
ns  
ns  
ns  
10  
10  
Setup time  
TMS setup time  
Capture setup time  
tMVTH  
tCS  
10  
10  
ns  
ns  
Hold time  
TDI hold time  
Capture hold time  
tTHMX  
tCH  
10  
10  
ns  
ns  
JTAG Timing Diagram  
Preliminary Data Sheet M15821EJ2V0DS  
18  
µPD44164082, 44164182, 44164362  
Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The instruction register holds the instructions that are executed by the TAP controller when it is  
moved into the run-test/idle or the various data register state. The register can be loaded when it is  
placed between the TDI and TDO pins. The instruction register is automatically preloaded with the  
IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.  
Bypass register  
ID register  
The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial  
test data to be passed through the RAMs TAP to another device in the scan chain with as little delay  
as possible.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when  
the controller is put in capture-DR state with the IDCODE command loaded in the instruction register.  
The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR  
state.  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents of the  
RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and  
TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to  
activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary register  
location. The first column defines the bit’s position in the boundary register. The shift register bit  
nearest TDO (i.e., first to be shifted out) is defined as bit 1. The second column is the name of the  
input or I/O at the bump and the third column is the bump number.  
Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
Bit size  
Unit  
bit  
3
1
bit  
32  
107  
bit  
Boundary register  
bit  
ID Register Definition  
Part number Organization ID [31:28] vendor revision no.  
ID [27:12] part no.  
0000 0000 0001 0010  
0000 0000 0001 0011  
0000 0000 0001 0100  
ID [11:1] vendor ID no.  
00000010000  
ID [0] fix bit  
µPD44164082  
µPD44164182  
µPD44164362  
2M x 8  
1M x 18  
XXXX  
XXXX  
XXXX  
1
1
1
00000010000  
512K x 36  
00000010000  
Preliminary Data Sheet M15821EJ2V0DS  
19  
µPD44164082, 44164182, 44164362  

SCAN Exit Order  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
no.  
x8  
x18 x36  
no.  
x8  
x18  
x36  
no.  
x8  
x18  
NC  
x36  
NC  
1
2
/C  
C
A
A
A
A
A
A
A
6R  
6P  
6N  
7P  
7N  
7R  
8R  
8P  
9R  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
NC  
NC  
NC  
NC  
NC  
NC  
10D  
9E  
73  
74  
NC  
2C  
3E  
2D  
2E  
1E  
2F  
3F  
1G  
1F  
DQ4 DQ11 DQ20  
3
NC DQ7 DQ17 10C  
75  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ29  
NC  
4
NC  
NC  
NC  
NC DQ16 11D  
76  
5
NC  
NC  
NC  
NC  
9C  
9D  
77  
NC  
6
78  
DQ12 DQ30  
7
DQ3 DQ8 DQ8 11B  
79  
NC  
NC  
NC  
DQ21  
NC  
8
NC  
NC  
NC  
NC DQ7 11C  
80  
9
NC  
NC  
CQ  
VSS  
A
NC  
NC  
9B  
10B  
11A  
10A  
9A  
81  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
NC DQ0 DQ0 11P  
82  
DQ5 DQ13 DQ22 3G  
NC  
NC  
NC  
NC DQ9 10P  
83  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ31 2G  
NC  
NC  
NC  
NC  
10N  
9P  
84  
NC  
NC  
1J  
2J  
85  
NC DQ1 DQ11 10M  
A
8B  
86  
DQ14 DQ23  
3K  
3J  
NC  
NC  
NC  
NC DQ10 11N  
A
7C  
87  
NC  
NC  
NC  
DQ32  
NC  
NC  
NC  
NC  
NC  
9M  
9N  
A
A0  
/LD  
A0  
6C  
88  
2K  
1K  
2L  
3L  
1M  
1L  
3N  
8A  
89  
NC  
18 DQ0 DQ2 DQ2 11L  
NC  
NC /BW1 7A  
90  
DQ6 DQ15 DQ33  
19  
20  
21  
22  
23  
24  
25  
NC  
NC  
NC  
NC DQ1 11M  
55 /NW0 /BW0 /BW0 7B  
91  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ24  
NC  
NC  
NC  
NC  
NC  
9L  
56  
57  
58  
K
6B  
6A  
92  
10L  
/K  
93  
NC  
NC DQ3 DQ3 11K  
NC  
NC /BW3 5B  
94  
DQ16 DQ25  
NC  
NC  
NC  
NC DQ12 10K  
59 /NW1 /BW1 /BW2 5A  
95  
NC  
NC  
NC  
DQ34 3M  
NC  
NC  
NC  
NC  
9J  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
R, /W  
A
4A  
5C  
4B  
3A  
2A  
1A  
96  
NC  
NC  
1N  
2M  
3P  
2N  
2P  
1P  
3R  
4R  
4P  
5P  
5N  
5R  
9K  
97  
26 DQ1 DQ4 DQ13 10J  
A
98  
DQ7 DQ17 DQ26  
27  
28  
29  
30  
31  
32  
33  
34  
NC  
NC DQ4 11J  
A
A
NC  
99  
NC  
NC  
NC  
NC  
NC  
NC  
A
DQ35  
NC  
ZQ  
NC  
NC  
11H  
10G  
9G  
VSS  
/CQ  
100  
101  
102  
103  
104  
105  
106  
107  
NC  
NC  
NC  
NC  
NC  
NC DQ9 DQ27 2B  
NC DQ5 DQ5 11F  
NC  
NC  
NC  
NC DQ18 3B  
A
NC  
NC  
NC  
NC DQ14 11G  
NC  
NC  
NC  
NC  
1C  
1B  
A
NC  
NC  
NC  
NC  
9F  
A
10F  
NC DQ10 DQ19 3D  
A
35 DQ2 DQ6 DQ6 11E  
36 NC NC DQ15 10E  
NC  
NC  
NC DQ28 3C  
NC NC 1D  
A
Preliminary Data Sheet M15821EJ2V0DS  
20  
µPD44164082, 44164182, 44164362  
JTAG Instructions  
Instructions  
EXTEST  
Description  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction  
register, whatever length it may be in the device, is loaded with all logic 0s. EXTEST is not implemented  
in this device. Therefore this device is not 1149.1 compliant. Nevertheless, this RAMs TAP does  
respond to an all zeros instruction, as follows. With the EXTEST (000) instruction loaded in the  
instruction register the RAM responds just as it does in response to the SAMPLE instruction, except the  
RAM output are forced to Hi-Z any time the instruction is loaded.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in  
capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The  
IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed  
in the test-logic-reset state.  
BYPASS  
SAMPLE  
The BYPASS instruction is loaded in the instruction register when the bypass register is placed between  
TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the  
board level scan path to be shortened to facilitate testing of other devices in the scan path.  
SAMPLE is a Standard 1149.1 mandatory public instruction. When the SAMPLE instruction is loaded in  
the instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs  
input and I/O buffers into the boundary scan register. Because the RAM clock(s) are independent from  
the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input  
buffers are in transition (i.e., in a metastable state). Although allowing the TAP to SAMPLE metastable  
input will not harm the device, repeatable results cannot be expected. RAM input signals must be  
stabilized for long enough to meet the TAPs input data capture setup plus hold time (tCS plus tCH). The  
RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring  
contents into the boundary scan register. Moving the controller to shift-DR state then places the  
boundary scan register between the TDI and TDO pins. This functionality is not Standard 1149.1  
compliant.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive  
drive state (Hi-Z) and the boundary register is connected between TDI and TDO when the TAP controller  
is moved to the shift-DR state.  
JTAG Instruction Coding  
IR2  
0
IR1  
0
IR0  
0
Instruction  
EXTEST  
Note  
1
0
0
1
IDCODE  
0
1
0
SAMPLE-Z  
RESERVED  
SAMPLE  
1
0
1
1
1
0
0
1
0
1
RESERVED  
RESERVED  
BYPASS  
1
1
0
1
1
1
Note 1. TRISTATE all data drivers and CAPTURE the pad values into a SERIAL SCAN LATCH.  
Preliminary Data Sheet M15821EJ2V0DS  
21  
µPD44164082, 44164182, 44164362  
TAP Controller State Diagram  
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal  
operation of the device, TCK must be tied to VSS to preclude mid level inputs.  
TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1, and  
may be left unconnected. But they may also be tied to VDD through a 1k resistor.  
TDO should be left unconnected.  
Preliminary Data Sheet M15821EJ2V0DS  
22  
Test Logic Operation (Instruction Scan)  
TCK  
TMS  
Controller  
state  
µ
µ
TDI  
Instruction  
Register state  
IDCODE  
New Instruction  
Output from Instruction Register  
Output from Instruction Register  
Output Inactive  
TDO  
Test Logic Operation (Data Scan)  
TCK  
TMS  
Controller  
state  
µ
µ
TDI  
Instruction  
Register state  
Instruction  
IDCODE  
Output from Instruction Register  
Output from Instruction Register  
Output Inactive  
TDO  
µPD44164082, 44164182, 44164362  

Package Drawing  
165-PIN PLASTIC FBGA (13x15)  
E
w S B  
ZD  
ZE  
B
11  
10  
9
8
7
A
6
5
D
4
3
2
1
R P N M L K J H G F E D C B A  
w S A  
INDEX MARK  
y1 S  
A2  
h
A
S
ITEM MILLIMETERS  
A1  
e
y
D
E
13.00  
15.00  
1.50  
0.50  
1.00  
0.60  
1.40  
0.40  
1.00  
0.45  
0.08  
0.08  
0.15  
0.20  
S
ZD  
ZE  
e
φ M  
x
φ
b
S A B  
h
A
A1  
A2  
b
y
x
w
y1  
This package drawing is a preliminary version. It may be changed in the future.  
Preliminary Data Sheet M15821EJ2V0DS  
25  
µPD44164082, 44164182, 44164362  
Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of these products.  

Types of Surface Mount Devices  
µPD44164082F5-EQ1: 165-pin PLASTIC FBGA (13 x 15)  
µPD44164182F5-EQ1: 165-pin PLASTIC FBGA (13 x 15)  
µPD44164362F5-EQ1: 165-pin PLASTIC FBGA (13 x 15)  
Preliminary Data Sheet M15821EJ2V0DS  
26  
µPD44164082, 44164182, 44164362  
Revision History  
Edition/  
Page  
Previous  
edition  
2nd edition/ Throughout Throughout Modification Pin Configurations, Pin Identification,  
Type of  
Location  
Description  
Date  
This  
edition  
revision  
(Previous edition This edition)  
Address inputs: Ax A  
April 2002  
Scan Exit Order  
p.1  
p.1  
Modification Function Name  
18M-BIT CMOS SYNCHRONOUS  
FAST SRAM DOUBLE DATA RATE  
18M-BIT DDRII SRAM  
µPD44164362  
Addition  
Description  
p.2  
p.2  
Modification Ordering Information  
Deletion  
Package code: Fx-EQx F5-EQ1  
Remark  
p.3-5  
p.6  
p. 3-5  
p.6  
Modification Pin Configurations  
Modification Pin Identification  
Modification Block Diagram  
Package code: Fx F5-EQ1  
ZQ: VDD VDDQ  
p.7  
p.7  
/K K  
Linear Burst Sequence Table  
Internal Burst Address  
1st Internal Burst Address  
Item of Ax  
Deletion  
p.14  
p.14  
Modification TKC var (MAX.)  
-E30: 0.08 0.2, -E33: 0.08 0.2,  
-E40: 0.10 0.2, -E50: 0.13 0.2,  
-E60: 0.15 0.2  
TKH /KH (MAX.)  
-E30: 1.65 → −, -E33: 1.82 → −,  
-E40: 2.2 → −, -E50: 2.75 → −,  
-E60: 3.3 → −  
Addition  
Modification TAVKH, TIVKH, TKHAX, TKHIX (MIN.) -E40: 0.4 0.5  
TDVKH, TKHDX (MIN.) -E30: 0.4 0.3, -E33: 0.4 0.33,  
T /KHKH  
-E50: 0.6 0.5, -E60: 0.7 0.6  
Note 1, 2, 4  
Addition  
Modification  
Modification  
Addition  
Note 1 5, Note 2 3  
Note 3  
Remark 5  
p.15  
p.20  
p.25  
p.26  
p.15  
p.20  
p.25  
p.26  
Addition  
Read and Write Timing  
T /KHKH  
Modification Scan Exit Order  
Addition Package Drawing  
Modification Types of Surface Mount Devices  
Bit no. 48, 64: NC VSS  
Package drawing (Preliminary version)  
Package code: Fx F5-EQ1  
Preliminary Data Sheet M15821EJ2V0DS  
27  
µPD44164082, 44164182, 44164362  
[MEMO]  
Preliminary Data Sheet M15821EJ2V0DS  
28  
µPD44164082, 44164182, 44164362  
[MEMO]  
Preliminary Data Sheet M15821EJ2V0DS  
29  
µPD44164082, 44164182, 44164362  
[MEMO]  
Preliminary Data Sheet M15821EJ2V0DS  
30  
µPD44164082, 44164182, 44164362  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
Preliminary Data Sheet M15821EJ2V0DS  
31  
µPD44164082, 44164182, 44164362  
The information in this document is current as of April, 2002. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data  
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products  
and/or types are available in every country. Please check with an NEC sales representative for  
availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4  

相关型号:

UPD44164362F5-E50-EQ1

18M-BIT DDRII SRAM 2-WORD BURST OPERATION
NEC

UPD44164362F5-E60-EQ1

18M-BIT DDRII SRAM 2-WORD BURST OPERATION
NEC

UPD44164364AF5-E33-EQ2

DDR SRAM, 512KX36, 0.45ns, CMOS, PBGA165, 13 X 15 MM, PLASTIC, BGA-165
NEC

UPD44164364AF5-E33-EQ2-A

DDR SRAM, 512KX36, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
NEC

UPD44164364AF5-E40-EQ2

DDR SRAM, 512KX36, 0.45ns, CMOS, PBGA165, 13 X 15 MM, PLASTIC, BGA-165
NEC

UPD44164364AF5-E40-EQ2-A

DDR SRAM, 512KX36, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
NEC

UPD44164364AF5-E50-EQ2-A

512KX36 DDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
RENESAS

UPD44164364F5-E30-EQ1

IC,SYNC SRAM,DDR,512KX36,CMOS,BGA,165PIN,PLASTIC
RENESAS

UPD44164364F5-E33-EQ1

IC,SYNC SRAM,DDR,512KX36,CMOS,BGA,165PIN,PLASTIC
RENESAS

UPD44164364F5-E50-EQ1

18M-BIT DDRII SRAM 4-WORD BURST OPERATION
NEC

UPD44164364F5-E60-EQ1

18M-BIT DDRII SRAM 4-WORD BURST OPERATION
NEC

UPD44164365AF5-E33-EQ2

DDR SRAM, 512KX36, 0.45ns, CMOS, PBGA165, 13 X 15 MM, PLASTIC, BGA-165
NEC