UPD44647184AF5-E25-FQ1-A [RENESAS]

IC,SYNC SRAM,QDR,4MX18,CMOS,BGA,165PIN,PLASTIC;
UPD44647184AF5-E25-FQ1-A
型号: UPD44647184AF5-E25-FQ1-A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

IC,SYNC SRAM,QDR,4MX18,CMOS,BGA,165PIN,PLASTIC

时钟 静态存储器 内存集成电路
文件: 总42页 (文件大小:761K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To our customers,  
Old Company Name in Catalogs and Other Documents  
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology  
Corporation, and Renesas Electronics Corporation took over all the business of both  
companies. Therefore, although the old company name remains in this document, it is a valid  
Renesas Electronics document. We appreciate your understanding.  
Renesas Electronics website: http://www.renesas.com  
April 1st, 2010  
Renesas Electronics Corporation  
Issued by: Renesas Electronics Corporation (http://www.renesas.com)  
Send any inquiries to http://www.renesas.com/inquiry.  
Notice  
1.  
2.  
All information included in this document is current as of the date this document is issued. Such information, however, is  
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please  
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to  
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.  
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights  
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights  
of Renesas Electronics or others.  
3.  
4.  
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of  
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,  
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by  
you or third parties arising from the use of these circuits, software, or information.  
5.  
When exporting the products or technology described in this document, you should comply with the applicable export control  
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas  
Electronics products or the technology described in this document for any purpose relating to military applications or use by  
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and  
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited  
under any applicable domestic or foreign laws or regulations.  
6.  
7.  
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics  
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages  
incurred by you resulting from errors in or omissions from the information included herein.  
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and  
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as  
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular  
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior  
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way  
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an  
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written  
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise  
expressly specified in a Renesas Electronics data sheets or data books, etc.  
“Standard”:  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual  
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.  
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-  
crime systems; safety equipment; and medical equipment not specifically designed for life support.  
“Specific”:  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or  
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare  
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8.  
9.  
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,  
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or  
damages arising out of the use of Renesas Electronics products beyond such specified ranges.  
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have  
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,  
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to  
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a  
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire  
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because  
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system  
manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental  
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable  
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS  
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with  
applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas  
Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this  
document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-  
owned subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
DATA SHEET  
MOS INTEGRATED CIRCUIT  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
72M-BIT QDRTM II+ SRAM  
2.0 & 2.5 CLOCK CYCLES READ LATENCY  
4-WORD BURST OPERATION  
Description  
The μPD44647094A-A and μPD44647096A-A are 8,388,608-word by 9-bit, the μPD44647184A-A and μPD44647186A-A  
are 4,194,304-word by 18-bit and the μPD44647364A-A and μPD44647366A-A are 2,097,152-word by 36-bit synchronous  
quad data rate static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.  
The μPD44647xx4A-A is for 2.0 clock cycles and the μPD44647xx6A-A is for 2.5 clock cycles read latency. The  
μPD44647094A-A, μPD44647096A-A, μPD44647184A-A, μPD44647186A-A, μPD44647364A-A and μPD44647366A-  
A integrate unique synchronous peripheral circuitry and a burst counter. All input registers controlled by an input clock  
pair (K and K#) are latched on the positive edge of K and K#.  
These products are suitable for application which require synchronous operation, high speed, low voltage, high density  
and wide bit configuration.  
These products are packaged in 165-pin PLASTIC BGA.  
Features  
1.8 ± 0.1 V power supply  
165-pin PLASTIC BGA (15 x 17)  
HSTL interface  
DLL/PLL circuitry for wide output data valid window and future frequency scaling  
Separate independent read and write data ports with concurrent transactions  
100% bus utilization DDR READ and WRITE operation  
Four-tick burst for reduced address frequency  
Two input clocks (K and K#) for precise DDR timing at clock rising edges only  
Two Echo clocks (CQ and CQ#)  
Data Valid pin (QVLD) supported  
Read latency : 2.0 & 2.5 clock cycles (Not selectable by user)  
Internally self-timed write control  
Clock-stop capability. Normal operation is restored in 20 μs after clock is resumed.  
User programmable impedance output (35 to 70 Ω)  
Fast clock cycle time : 2.5 ns (400 MHz) for 2.0 clock cycles read latency,  
2.0 ns (500 MHz) for 2.5 clock cycles read latency  
Simple control logic for easy depth expansion  
JTAG 1149.1 compatible test access port  
On-Die Termination (ODT) for better signal quality (Selectable ON/OFF by user)  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. M19962EJ2V0DS00 (2nd edition)  
Date Published March 2010  
2009, 2010  
Printed in Japan  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Ordering Information  
2.0 Clock Cycles Read Latency  
Part number  
Cycle  
Time  
ns  
Clock  
Frequency  
MHz  
400  
Organization Core Supply  
I/O  
Package  
(word x bit)  
Voltage  
V
Interface  
μPD44647094AF5-E25-FQ1-A Note  
μPD44647094AF5-E30-FQ1-A  
μPD44647094AF5-E33-FQ1-A  
μPD44647184AF5-E25-FQ1-A Note  
μPD44647184AF5-E30-FQ1-A  
μPD44647184AF5-E33-FQ1-A  
μPD44647364AF5-E25-FQ1-A Note  
μPD44647364AF5-E30-FQ1-A  
μPD44647364AF5-E33-FQ1-A  
2.5  
3.0  
3.3  
2.5  
3.0  
3.3  
2.5  
3.0  
3.3  
8M x 9  
1.8 ± 0.1  
HSTL  
165-pin PLASTIC  
BGA (15 x 17)  
Lead-free  
333  
300  
400  
4M x 18  
2M x 36  
333  
300  
400  
333  
300  
Note Please contact our sales.  
2.5 Clock Cycles Read Latency  
Part number  
Cycle  
Time  
ns  
Clock  
Frequency  
MHz  
500  
Organization Core Supply  
I/O  
Package  
(word x bit)  
Voltage  
V
Interface  
μPD44647096AF5-E20-FQ1-A Note  
μPD44647096AF5-E22-FQ1-A  
μPD44647096AF5-E25-FQ1-A  
μPD44647096AF5-E30-FQ1-A  
μPD44647186AF5-E20-FQ1-A Note  
μPD44647186AF5-E22-FQ1-A  
μPD44647186AF5-E25-FQ1-A  
μPD44647186AF5-E30-FQ1-A  
μPD44647366AF5-E20-FQ1-A Note  
μPD44647366AF5-E22-FQ1-A  
μPD44647366AF5-E25-FQ1-A  
μPD44647366AF5-E30-FQ1-A  
2.0  
2.2  
2.5  
3.0  
2.0  
2.2  
2.5  
3.0  
2.0  
2.2  
2.5  
3.0  
8M x 9  
1.8 ± 0.1  
HSTL  
165-pin PLASTIC  
BGA (15 x 17)  
Lead-free  
450  
400  
333  
500  
4M x 18  
2M x 36  
450  
400  
333  
500  
450  
400  
333  
Note Please contact our sales.  
Data Sheet M19962EJ2V0DS  
2
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Feature Differences between QDR II and QDR II+  
Features  
Frequency (DLL/PLL ON)  
Organization  
QDR II  
200 MHz to 333 MHz  
x9 / x18 / x36  
1.8 ± 0.1 V  
QDR II+  
300 MHz to 500 MHz  
x9 / x18 / x36  
1.8 ± 0.1 V  
Note  
VDD  
VDDQ  
1.8 ± 0.1 V or 1.5 ± 0.1 V  
1.5 clock cycles  
1.0 clock cycle  
Single Ended (K, K#)  
Yes  
1.8 ± 0.1 V or 1.5 ± 0.1 V  
2.0 & 2.5 clock cycles  
1.0 clock cycle  
Single Ended (K, K#)  
No  
Read Latency  
1
2
Write Latency  
Input Clocks (K, K#)  
Output Clocks (C, C#)  
Echo Clock Number (CQ, CQ#)  
Package  
1 Pair  
1 Pair  
3
165-pin PLASTIC BGA (15 x 17)  
Yes  
165-pin PLASTIC BGA (15 x 17)  
Yes  
Individual Byte Write (BWx#)  
QVLD  
No  
Yes  
4
5
ODT  
No  
Yes  
Notes 1. QDR II+ read latency is not user selectable. Offered as two different devices. 2.5 clock cycle is consortium  
standard, and 2.0 clock cycle is vendor option.  
2. QDR II+ write latency is 1.0 clock cycle regardless of read latency.  
3. Echo Clocks are single-ended outputs.  
4. Edge aligned with Echo Clocks  
5. ODT ON/OFF is user selectable.  
3
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Pin Configurations  
165-pin PLASTIC BGA (15 x 17)  
(Top View)  
[μPD44647094A-A], [μPD44647096A-A]  
8M x 9  
1
CQ#  
NC  
2
A
3
A
4
5
NC  
NC/288M  
A
6
K#  
7
8
9
A
10  
A
11  
CQ  
Q4  
D4  
NC  
Q3  
NC  
NC  
ZQ  
D2  
NC  
Q1  
D1  
NC  
Q0  
TDI  
A
B
C
D
E
F
W#  
R#  
NC/144M  
BW0#  
A
NC  
NC  
D5  
NC  
NC  
NC  
Q5  
NC  
Q6  
VDDQ  
NC  
NC  
D7  
NC  
NC  
Q8  
A
A
K
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
NC  
NC  
D3  
NC  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
NC  
D6  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
NC  
NC  
VREF  
Q2  
NC  
NC  
NC  
NC  
D0  
G
H
J
NC  
DLL#  
NC  
VREF  
NC  
NC  
Q7  
NC  
D8  
K
L
NC  
NC  
M
N
P
R
NC  
NC  
VSS  
VSS  
NC  
NC  
TCK  
A
A
QVLD  
ODT  
A
A
TDO  
A
A
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Read input  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
D0 to D8  
Q0 to Q8  
R#  
TDI  
TCK  
TDO  
VREF  
VDD  
W#  
: Write input  
BW0#  
K, K#  
CQ, CQ#  
ZQ  
: Byte Write data select  
: Input clock  
VDDQ  
VSS  
: Power Supply  
: Echo clock  
: Ground  
: Output impedance matching  
: DLL/PLL disable  
: Q Valid output  
NC  
: No connection  
DLL#  
QVLD  
ODT  
NC/xxM  
: Expansion address for xxMb  
: ODT Control Input  
Remarks 1. ×××# indicates active LOW signal.  
2. Refer to Package Drawing for the index mark.  
3. 7A and 5B are expansion addresses: 7A for 144Mb  
: 7A and 5B for 288Mb  
Data Sheet M19962EJ2V0DS  
4
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
165-pin PLASTIC BGA (15 x 17)  
(Top View)  
[μPD44647184A-A], [μPD44647186A-A]  
4M x 18  
1
CQ#  
NC  
2
3
4
5
BW1#  
NC  
A
6
K#  
7
8
9
A
10  
A
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
B
C
D
E
F
A
W#  
R#  
NC/144M  
Q9  
NC/288M  
BW0#  
A
D9  
A
K
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
Q7  
NC  
D6  
NC  
NC  
D10  
Q10  
Q11  
D12  
Q13  
VDDQ  
D14  
Q14  
D15  
D16  
Q16  
Q17  
A
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
NC  
D11  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
Q12  
D13  
VREF  
NC  
NC  
NC  
VREF  
Q4  
D3  
G
H
J
NC  
DLL#  
NC  
K
L
NC  
NC  
NC  
Q15  
NC  
NC  
Q1  
NC  
D0  
M
N
P
R
NC  
NC  
D17  
NC  
VSS  
VSS  
NC  
A
A
QVLD  
ODT  
A
A
TDO  
TCK  
A
A
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Read input  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
D0 to D17  
Q0 to Q17  
R#  
TDI  
TCK  
TDO  
VREF  
VDD  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
W#  
: Write input  
BW0#, BW1#  
K, K#  
: Byte Write data select  
: Input clock  
VDDQ  
VSS  
: Power Supply  
CQ, CQ#  
ZQ  
: Echo clock  
: Ground  
: Output impedance matching  
: DLL/PLL disable  
: Q Valid output  
NC  
: No connection  
DLL#  
NC/xxM  
: Expansion address for xxMb  
QVLD  
ODT  
: ODT Control Input  
Remarks 1. ×××# indicates active LOW signal.  
2. Refer to Package Drawing for the index mark.  
3. 2A and 7A are expansion addresses: 2A for 144Mb  
: 2A and 7A for 288Mb  
5
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
165-pin PLASTIC BGA (15 x 17)  
(Top View)  
[μPD44647364A-A], [μPD44647366A-A]  
2M x 36  
1
2
3
4
5
BW2#  
BW3#  
A
6
K#  
7
BW1#  
BW0#  
A
8
9
10  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
B
C
D
E
F
CQ#  
Q27  
D27  
D28  
Q29  
Q30  
D30  
DLL#  
D31  
Q32  
Q33  
D33  
D34  
Q35  
TDO  
A
W#  
R#  
A
NC/288M  
Q18  
Q28  
D20  
D29  
Q21  
D22  
VREF  
Q31  
D32  
Q24  
Q34  
D26  
D35  
TCK  
NC/144M  
Q17  
Q7  
D18  
D19  
Q19  
Q20  
D21  
Q22  
VDDQ  
D23  
Q23  
D24  
D25  
Q25  
Q26  
A
A
K
A
D17  
D16  
Q16  
Q15  
D14  
Q13  
VDDQ  
D12  
Q12  
D11  
D10  
Q10  
Q9  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
D15  
D6  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
Q14  
D13  
VREF  
Q4  
G
H
J
K
L
D3  
Q11  
Q1  
M
N
P
R
VSS  
VSS  
D9  
A
A
QVLD  
ODT  
A
A
D0  
A
A
A
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Read input  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
D0 to D35  
Q0 to Q35  
R#  
TDI  
TCK  
TDO  
VREF  
VDD  
W#  
: Write input  
BW0# to BW3#  
K, K#  
: Byte Write data select  
: Input clock  
VDDQ  
VSS  
: Power Supply  
CQ, CQ#  
ZQ  
: Echo clock  
: Ground  
: Output impedance matching  
: DLL/PLL disable  
: Q Valid output  
NC  
: No connection  
DLL#  
NC/xxM  
: Expansion address for xxMb  
QVLD  
ODT  
: ODT Control Input  
Remarks 1. ×××# indicates active LOW signal.  
2. Refer to Package Drawing for the index mark.  
3. 2A and 10A are expansion addresses: 10A for 144Mb  
10A and 2A for 288Mb  
Data Sheet M19962EJ2V0DS  
6
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Pin Identification  
Symbol  
Type  
Description  
A
Input  
Input  
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times  
around the rising edge of K. All transactions operate on a burst of four words (two clock periods of bus  
activity). These inputs are ignored when device is deselected, i.e., NOP (R# = W# = HIGH).  
D0 to Dxx  
Q0 to Qxx  
Synchronous Data Inputs: Input data must meet setup and hold times around the rising edges of K  
and K# during WRITE operations. See Pin Configurations for ball site location of individual signals.  
x9 device uses D0 to D8.  
x18 device uses D0 to D17.  
x36 device uses D0 to D35.  
Output  
Synchronous Data Outputs: Output data is synchronized to the respective K and K# rising edges.  
Data is output in synchronization with K and K#, depending on the R# command. See Pin  
Configurations for ball site location of individual signals.  
x9 device uses Q0 to Q8.  
x18 device uses Q0 to Q17.  
x36 device uses Q0 to Q35.  
R#  
Input  
Input  
Input  
Synchronous Read: When LOW this input causes the address inputs to be registered and a READ  
cycle to be initiated. This input must meet setup and hold times around the rising edge of K. If a READ  
command (R# = LOW) is input, an input of R# on the subsequent rising edge of K is ignored.  
W#  
Synchronous Write: When LOW this input causes the address inputs to be registered and a WRITE  
cycle to be initiated. This input must meet setup and hold times around the rising edge of K. If a  
WRITE command (W# = LOW) is input, an input of W# on the subsequent rising edge of K is ignored.  
BWx#  
Synchronous Byte Writes: When LOW these inputs cause their respective byte to be registered and  
written during WRITE cycles. These signals must meet setup and hold times around the rising edges  
of K and K# for each of the two rising edges comprising the WRITE cycle. See Pin Configurations  
for signal to data relationships.  
x9 device uses BW0#.  
x18 device uses BW0#, BW1#.  
x36 device uses BW0# to BW3#.  
See Byte Write Operation for relation between BWx# and Dxx.  
K, K#  
CQ, CQ#  
ZQ  
Input  
Input Clock: This input clock pair registers address and control inputs on the rising edge of K, and  
registers data on the rising edge of K and the rising edge of K#. K# is ideally 180 degrees out of  
phase with K. All synchronous inputs must meet setup and hold times around the clock rising edges.  
Output  
Input  
Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the  
synchronous data outputs and can be used as a data valid indication. These signals run freely and do  
not stop when Q tristates. If K and K# are stopped, CQ and CQ# will also stop.  
Output Impedance Matching Input: This input is used to tune the device outputs to the system data  
bus impedance. Q, CQ, CQ# and QVLD output impedance are set to 0.2 x RQ, where RQ is a resistor  
from this bump to ground. The output impedance can be minimized by directly connect ZQ to VDDQ.  
This pin cannot be connected directly to GND or left unconnected. The output impedance is adjusted  
every 20 μs upon power-up to account for drifts in supply voltage and temperature. After replacement  
for a resistor, the new output impedance is reset by implementing power-on sequence.  
DLL#  
Input  
DLL/PLL Disable: When DLL# is LOW, the operation can be performed at a clock frequency slower  
than TKHKH (MAX.) without the DLL/PLL circuit being used. The AC/DC characteristics cannot be  
guaranteed. For normal operation, DLL# must be HIGH and it can be connected to VDDQ through a 10  
kΩ or less resistor.  
QVLD  
ODT  
Output  
Input  
Q valid Output: The Q Valid indicates valid output data. QVLD is edge aligned with CQ and CQ#.  
ODT Control Input: When the ODT control pin is HIGH, the ODT function is turned on at Dxx and  
BWx# pins. The ODT resistors are set to 0.6 x RQ, where RQ is a resistor from ZQ pin bump to  
ground. When the ODT Control pin is LOW or No Connect, the ODT function is turned off. The ODT  
ON/OFF is set at power-on sequence. The ODT can not change the state after power-on. To enable  
ODT function, ODT pin must be HIGH and it can be connected to VDDQ through a 10 kΩ or less  
resistor.  
TMS  
TDI  
Input  
IEEE 1149.1 Test Inputs: 1.8 V I/O level. These balls may be left Not Connected if the JTAG function  
is not used in the circuit.  
TCK  
Input  
IEEE 1149.1 Clock Input: 1.8 V I/O level. This pin must be tied to VSS if the JTAG function is not used  
in the circuit.  
TDO  
Output  
IEEE 1149.1 Test Output: 1.8 V I/O level.  
When providing any external voltage to TDO signal, it is recommended to pull up to VDD.  
HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers.  
VREF  
VDD  
Supply  
Power Supply: 1.8  
V nominal. See Recommended DC Operating Conditions and DC  
Characteristics for range.  
VDDQ  
Supply  
Power Supply: Isolated Output Buffer Supply. Nominally 1.5 V. 1.8 V is also permissible. See  
Recommended DC Operating Conditions and DC Characteristics for range.  
VSS  
NC  
Supply  
Power Supply: Ground  
No Connect: These signals are not connected internally.  
7
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Block Diagram  
[μPD44647094A-A], [μPD44647096A-A]  
21  
ADDRESS  
R#  
21  
ADDRESS  
REGISTRY  
W#  
& LOGIC  
K
W#  
MUX  
MUX  
BW0#  
9
2
18  
18  
18  
Q0 to Q8  
36  
DATA  
9
221x 36  
MEMORY  
ARRAY  
REGISTRY  
& LOGIC  
D0 to D8  
R#  
18  
K
CQ,  
CQ#  
K
K
QVLD  
K, K#  
K#  
[μPD44647184A-A], [μPD44647186A-A]  
20  
ADDRESS  
R#  
20  
ADDRESS  
REGISTRY  
W#  
& LOGIC  
K
W#  
MUX  
MUX  
BW0#  
36  
36  
36  
18  
BW1#  
Q0 to Q17  
72  
DATA  
18  
2
20x 72  
MEMORY  
D0 to D17  
REGISTRY  
& LOGIC  
ARRAY  
2
36  
K
CQ,  
CQ#  
R#  
K
K
QVLD  
K, K#  
K#  
[μPD44647364A-A], [μPD44647366A-A]  
19  
ADDRESS  
R#  
19  
ADDRESS  
REGISTRY  
W#  
& LOGIC  
K
W#  
MUX  
MUX  
BW0#  
72  
72  
72  
72  
36  
2
BW1#  
BW2#  
BW3#  
Q0 to Q35  
19x 144  
144  
DATA  
REGISTRY  
& LOGIC  
2
MEMORY  
ARRAY  
36  
D0 to D35  
CQ,  
CQ#  
R#  
K
K
K
QVLD  
K, K#  
K#  
Data Sheet M19962EJ2V0DS  
8
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Power-On Sequence in QDR II+ SRAM  
QDR II+ SRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.  
The following timing charts show the recommended power-on sequence.  
The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ  
can be applied simultaneously, as long as VDDQ does not exceed VDD by more than 0.5 V during power-up. The  
following power-down supply voltage removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ  
can be removed simultaneously, as long as VDDQ does not exceed VDD by more than 0.5 V during power-down.  
Power-On Sequence  
Apply power and tie DLL# to HIGH.  
- Apply VDD before VDDQ.  
- Apply VDDQ before VREF or at the same time as VREF.  
Select ODT ON/OFF.  
Provide stable clock for more than 20 μs to lock the DLL/PLL.  
DLL/PLL Constraints  
The DLL/PLL uses K clock as its synchronizing input and the input should have low phase jitter which is specified  
as TKC var. The DLL/PLL can cover 190 MHz as the lowest frequency. If the input clock is unstable and the  
DLL/PLL is enabled, then the DLL/PLL may lock onto an undesired clock frequency.  
ODT initialization  
The ODT ON/OFF is set at power-on sequence. When the ODT Control pin is HIGH before applying stable clock,  
the ODT function is turn on. When the ODT Control pin is LOW or No Connect, the ODT function is off. The ODT  
can not change the state after power-on.  
Power-On Waveforms  
V
DD/VDDQ  
V
DD/VDDQ Stable (< ±0.1 V DC per 50 ns)  
Fix HIGH (or tied to VDDQ)  
DLL#  
ODT  
Fix HIGH or LOW (or No Connect)  
Clock  
20 μs or more  
Stable Clock  
Unstable Clock  
Normal Operation  
Start  
9
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
On-Die Termination (ODT)  
On-Die Termination (ODT) is enabled by setting ODT control pin to HIGH at power-on sequence. The ODT resistors  
(RTT) are set to 0.6 x RQ, where RQ is a resistor from ZQ pin bump to ground. With ODT on, all the Ds and BW#s are  
terminated to VDDQ and VSS with a resistance RTT x 2. The command, address, and clock signals are not terminated.  
Figure below shows the equivalent circuit of a Dxx and BWx# receiver with ODT. ODT at the Ds and BW#s are always  
on.  
When the ODT control pin is LOW or No Connect at power-on sequence, the ODT function is always off.  
When the ODT be changed the state after power-on, the AC/DC characteristics cannot be guaranteed.  
On-Die Termination DC Parameters  
Description  
On-Die termination  
External matching resistor  
Symbol  
RTT  
MIN.  
105  
175  
TYP.  
150  
MAX.  
210  
Units  
Ω
RQ  
250  
350  
Ω
Remark The allowable range of RQ to guarantee impedance matching a tolerance of ± 20 % is between 175 Ω  
and 350 Ω.  
On- Die Termination-Equivalent Circuit  
VDDQ  
SW  
R
TT x 2  
Receiver  
Dxx, BWx#  
R
TT x 2  
SW  
VSS  
QDR Consortium specification for ODT is defined when 6R is HIGH and vendor specification when 6R is LOW or  
Floating. NEC specification is "Disabled" with 6R LOW or Floating as follows.  
ODT-option clarification  
6R input  
ODT function  
Consortium specification  
Termination value  
Consortium specification  
NEC specification  
Active  
NEC specification  
HIGH  
Active  
RTT = 0.6 x RQ  
RTT = 0.6 x RQ  
LOW  
Vendor specification  
Vendor specification  
Disabled  
Vendor specification  
Vendor specification  
Floating  
Disabled  
Note  
In case of nominal value (RQ = 250 Ω), RTT = 150 Ω.  
Data Sheet M19962EJ2V0DS  
10  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Truth Table  
2.0 Clock Cycles Read Latency  
[μPD44647094A-A], [μPD44647184A-A], [μPD44647364A-A]  
Operation  
CLK  
R#  
H
W#  
L
D or Q  
WRITE cycle  
L H  
Data in  
Load address, input write data on two  
consecutive K and K# rising edge  
READ cycle  
Input data  
Input clock  
DA(A+0)  
DA(A+1)  
DA(A+2)  
DA(A+3)  
K(t+1) K#(t+1) K(t+2) K#(t+2) ↑  
L H  
L
X
Data out  
Load address, read data on two  
consecutive K and K# rising edge  
NOP (No operation)  
Output data  
Output clock  
QA(A+0)  
QA(A+1)  
QA(A+2)  
QA(A+3)  
K(t+2) K#(t+2) K(t+3) K#(t+3) ↑  
L H  
H
X
H
X
D = X, Q = High-Z  
Previous state  
Clock stop  
Stopped  
2.5 Clock Cycles Read Latency  
[μPD44647096A-A], [μPD44647186A-A], [μPD44647366A-A]  
Operation  
CLK  
R#  
H
W#  
L
D or Q  
WRITE cycle  
L H  
Data in  
Load address, input write data on two  
consecutive K and K# rising edge  
READ cycle  
Input data  
Input clock  
DA(A+0)  
DA(A+1)  
DA(A+2)  
DA(A+3)  
K(t+1) K#(t+1) K(t+2) K#(t+2) ↑  
L H  
L
X
Data out  
Load address, read data on two  
consecutive K and K# rising edge  
NOP (No operation)  
Output data  
QA(A+0)  
QA(A+1)  
QA(A+2)  
QA(A+3)  
Output clock K#(t+2) K(t+3) K#(t+3) K(t+4) ↑  
L H  
H
X
H
X
D = X, Q = High-Z  
Previous state  
Clock stop  
Stopped  
Remarks  
Remarks listed below are for both products with 2.0 and 2.5 Clock Cycles Read Latency.  
1. H : HIGH, L : LOW, × : don’t care, : rising edge.  
2. Data inputs are registered at K and K# rising edges. Data outputs are delivered at K and K# rising edges.  
3. All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of  
K. All control inputs are registered during the rising edge of K.  
4. This device contains circuitry that ensure the outputs to be in high impedance during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. It is recommended that K = K# when clock is stopped. This is not essential but permits most rapid restart  
by overcoming transmission line charging symmetrically.  
7. If R# was LOW to initiate the previous cycle, this signal becomes a don't care for this WRITE operation  
however it is strongly recommended that this signal is brought HIGH as shown in the truth table.  
8. W# during write cycle and R# during read cycle were HIGH on previous K clock rising edge. Initiating  
consecutive READ or WRITE operations on consecutive K clock rising edges is not permitted. The  
device will ignore the second request.  
11  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Byte Write Operation  
[μPD44647094A-A], [μPD44647096A-A]  
Operation  
Write D0 to D8  
K
L H  
K#  
BW0#  
0
0
1
1
L H  
Write nothing  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# can be altered for any portion of the BURST WRITE  
operation provided that the setup and hold requirements are satisfied.  
[μPD44647184A-A], [μPD44647186A-A]  
Operation  
Write D0 to D17  
K
L H  
K#  
BW0#  
BW1#  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
Write D0 to D8  
Write D9 to D17  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# and BW1# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
[μPD44647364A-A], [μPD44647366A-A]  
Operation  
Write D0 to D35  
K
K#  
BW0#  
BW1#  
BW2#  
BW3#  
L H  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
L H  
L H  
Write D0 to D8  
Write D9 to D17  
Write D18 to D26  
Write D27 to D35  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# to BW3# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
Data Sheet M19962EJ2V0DS  
12  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Bus Cycle State Diagram  
LOAD NEW  
READ ADDRESS;  
R_Count = 0;  
R_Init = 1  
LOAD NEW  
WRITE ADDRESS;  
W_Count = 0  
Always  
W# = LOW & W_Count = 4  
R# = LOW & R_Count = 4  
Always  
WRITE DOUBLE;  
READ DOUBLE;  
W_Count = W_Count+2  
R_Count = R_Count+2  
R# = HIGH  
& R_Count = 4  
W# = LOW  
R_Init = 0  
W_Count = 2  
Always  
R_Count = 2  
Always  
R# = LOW  
W# = HIGH  
& W_Count = 4  
INCREMENT READ  
ADDRESS BY TWO  
R_Init = 0  
INCREMENT WRITE  
ADDRESS BY TWO  
R# = HIGH  
W# = HIGH  
READ PORT NOP  
R_Init = 0  
WRITE PORT NOP  
Power UP  
Supply voltage  
provided  
Supply voltage  
provided  
Remarks 1. The address is concatenated with two additional internal LSBs to facilitate burst operation.  
The address order is always fixed as: xxx...xxx+0, xxx...xxx+1, xxx...xxx+2, xxx...xxx+3.  
Bus cycle is terminated at the end of this sequence (burst count = 4).  
2. Read and write state machines can be active simultaneously.  
Read and write cannot be simultaneously initiated. Read takes precedence.  
3. State machine control timing is controlled by K.  
13  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Electrical Specifications  
Absolute Maximum Ratings  
Parameter  
Symbol  
VDD  
VDDQ  
VIN  
Conditions  
Rating  
–0.5 to +2.5  
Unit  
V
Supply voltage  
Output supply voltage  
Input voltage  
–0.5 to VDD  
V
–0.5 to VDD + 0.5 (2.5 V MAX.)  
–0.5 to VDDQ + 0.5 (2.5 V MAX.)  
0 to 70  
V
Input / Output voltage  
Operating ambient temperature  
Storage temperature  
VI/O  
V
TA  
°C  
°C  
Tstg  
–55 to +125  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions (TA = 0 to 70°C)  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
MIN.  
1.7  
TYP.  
1.8  
MAX.  
1.9  
Unit  
V
Note  
Output supply voltage  
Input HIGH voltage  
Input LOW voltage  
Clock input voltage  
Reference voltage  
VDDQ  
VIH (DC)  
VIL (DC)  
VIN  
1.4  
VDD  
V
1
VREF + 0.1  
–0.3  
VDDQ + 0.3  
VREF – 0.1  
VDDQ + 0.3  
0.95  
V
1, 2  
1, 2  
1, 2  
V
–0.3  
V
VREF  
0.68  
V
Notes 1. During normal operation, VDDQ must not exceed VDD.  
2. Power-up: VIH VDDQ + 0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
Recommended AC Operating Conditions (TA = 0 to 70°C)  
Parameter  
Input HIGH voltage  
Input LOW voltage  
Symbol  
VIH (AC)  
VIL (AC)  
Conditions  
MIN.  
MAX.  
Unit  
Note  
VREF + 0.2  
V
V
1
1
VREF – 0.2  
Note 1. Overshoot: VIH (AC) VDD + 0.7 V (2.5 V MAX.) for t TKHKH/2  
Undershoot: VIL (AC) – 0.5 V for t TKHKH/2  
Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than  
TKHKH (MIN.).  
Data Sheet M19962EJ2V0DS  
14  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
DC Characteristics (TA = 0 to 70°C, VDD = 1.8 ± 0.1 V)  
Parameter  
Symbol  
Test condition  
MIN.  
MAX.  
x18  
+2  
Unit Note  
x9  
x36  
Input leakage current  
ILI  
–2  
–2  
μA  
μA  
4, 5  
4
I/O leakage current  
ILO  
IDD  
+2  
Operating supply current  
(Read cycle / Write cycle)  
VIN VIL or VIN VIH  
-E20 Note1  
-E22 Note1  
-E25  
780  
730  
690  
580  
520  
460  
440  
410  
380  
370  
850 1000  
mA  
II/O = 0 mA  
795  
740  
650  
590  
480  
455  
430  
400  
390  
VDDQ  
925  
850  
720  
650  
530  
500  
470  
440  
430  
Cycle = MAX.  
-E30  
-E33  
Standby supply current  
(NOP)  
ISB1  
VIN VIL or VIN VIH  
II/O = 0 mA  
-E20 Note1  
-E22 Note1  
-E25  
mA  
Cycle = MAX.  
Inputs static  
-E30  
-E33  
Output HIGH voltage  
Output LOW voltage  
VOH(Low) |IOH| 0.1 mA  
VOH Note2  
VDDQ – 0.2  
VDDQ/2–0.12  
VSS  
V
V
6, 7  
6, 7  
6, 7  
6, 7  
VDDQ/2+0.12  
0.2  
VOL(Low) IOL 0.1 mA  
VOL Note3  
VDDQ/2–0.12  
VDDQ/2+0.12  
Notes 1. -E20 and -E22 are valid for 2.5 Clock Cycles Read Latency products.  
2. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) ±15% for values of 175 RQ 350 .  
3. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) ±15% for values of 175 RQ 350 .  
4. Measured with ODT off.  
5. ODT pin is internally tied to VSS, so input leakage current value is ±5 μA.  
6. AC load current is higher than the shown DC values.  
7. HSTL outputs meet JEDEC HSTL Class I standards.  
Capacitance (TA = 25°C, f = 1 MHz)  
Parameter  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
MIN.  
MAX.  
Unit  
pF  
Input capacitance (Address, Control)  
Input / Output capacitance  
(D, Q, CQ, CQ#, QVLD)  
4
5
CI/O  
VI/O = 0 V  
pF  
Clock Input capacitance  
Cclk  
Vclk = 0 V  
4
pF  
Remark These parameters are periodically sampled and not 100% tested.  
15  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Thermal Characteristics  
Parameter  
Thermal resistance  
Symbol  
Substrate  
4-layer  
Airflow  
TYP.  
19.5  
12.0  
18.1  
11.3  
0.01  
0.05  
0.01  
0.04  
2.14  
Unit  
θ ja  
0 m/s  
1 m/s  
0 m/s  
1 m/s  
0 m/s  
1 m/s  
0 m/s  
1 m/s  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
from junction to ambient air  
8-layer  
4-layer  
8-layer  
Thermal characterization parameter  
from junction to the top center  
of the package surface  
Ψ jt  
Thermal resistance  
from junction to case  
θ jc  
Data Sheet M19962EJ2V0DS  
16  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
AC Characteristics (TA = 0 to 70°C, VDD = 1.8 ± 0.1 V)  
AC Test Conditions (VDD = 1.8 ± 0.1 V, VDDQ = 1.4 to VDD)  
Input waveform (Rise / Fall time 0.3 ns)  
1.25 V  
0.75 V  
0.75 V  
Test Points  
0.25 V  
Output waveform  
V
DDQ / 2  
Test Points  
VDDQ / 2  
Output load condition  
Figure 1. External load at test  
V
DDQ / 2  
0.75 V  
50 Ω  
V
REF  
ZO = 50 Ω  
SRAM  
250 Ω  
ZQ  
17  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Read and Write Cycle  
Parameter  
Symbol  
-E20 Note1  
-E22 Note1  
-E25  
-E30  
-E33  
Unit Note  
(333 MHz)  
(500 MHz)  
(450 MHz)  
(400 MHz)  
(300 MHz)  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
Clock  
Average Clock cycle time (K, K#)  
Clock phase jitter (K, K#)  
Clock HIGH time (K, K#)  
Clock LOW time (K, K#)  
Clock HIGH to Clock# HIGH  
(K K#)  
TKHKH  
TKC var  
TKHKL  
TKLKH  
TKHK#H  
ns  
ns  
2
3
2.0  
5.25  
0.15  
2.2  
5.25  
0.15  
2.5  
5.25  
0.20  
3.0  
5.25  
0.20  
3.3  
5.25  
0.20  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
TKHKH  
TKHKH  
ns  
0.85  
0.95  
1.06  
1.28  
1.40  
Clock# HIGH to Clock HIGH  
(K# K)  
TK#HKH  
ns  
0.85  
0.95  
1.06  
1.28  
1.40  
DLL/PLL lock time (K)  
K static to DLL/PLL reset  
TKC lock  
μs  
4
5
20  
30  
20  
30  
20  
30  
20  
30  
20  
30  
TKC reset  
ns  
Output Times  
CQ HIGH to CQ# HIGH  
(CQ CQ#)  
TCQHCQ#H  
TCQ#HCQH  
ns  
ns  
6
6
0.6  
0.6  
0.7  
0.7  
0.81  
0.81  
1.03  
1.03  
1.15  
1.15  
CQ# HIGH to CQ HIGH  
(CQ# CQ)  
K, K# HIGH to output valid  
K, K# HIGH to output hold  
K, K# HIGH to echo clock valid  
K, K# HIGH to echo clock hold  
CQ, CQ# HIGH to output valid  
CQ, CQ# HIGH to output hold  
K HIGH to output High-Z  
K HIGH to output Low-Z  
CQ, CQ# HIGH to QVLD valid  
TKHQV  
TKHQX  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.45  
0.45  
0.15  
0.45  
0.45  
0.45  
0.15  
0.45  
0.45  
0.45  
0.20  
0.45  
0.45  
0.45  
0.20  
0.45  
0.45  
0.45  
0.20  
0.45  
– 0.45  
– 0.45  
– 0.15  
– 0.45  
– 0.45  
– 0.45  
– 0.15  
– 0.45  
– 0.45  
– 0.45  
– 0.20  
– 0.45  
– 0.45  
– 0.45  
– 0.20  
– 0.45  
– 0.45  
– 0.45  
– 0.20  
– 0.45  
TKHCQV  
TKHCQX  
TCQHQV  
TCQHQX  
TKHQZ  
7
7
TKHQX1  
TCQHQVLD  
– 0.15 0.15 – 0.15 0.15 – 0.20 0.20 – 0.20 0.20 – 0.20 0.20  
Setup Times  
Address valid to K rising edge  
Control inputs (R#, W#) valid to  
K rising edge  
TAVKH  
TIVKH  
ns  
ns  
8
8
0.33  
0.33  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
Data inputs and write data select  
inputs (BWx#) valid to  
TDVKH  
ns  
8
0.25  
0.28  
0.28  
0.28  
0.28  
K, K# rising edge  
Hold Times  
K rising edge to address hold  
K rising edge to control inputs  
(R#, W#) hold  
TKHAX  
TKHIX  
ns  
ns  
8
8
0.33  
0.33  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
K, K# rising edge to data inputs  
and write data select inputs  
(BWx#) hold  
TKHDX  
ns  
8
0.25  
0.28  
0.28  
0.28  
0.28  
Notes 1. -E20 and -E22 are valid for 2.5 Clock Cycles Read Latency products.  
2. When debugging the system or board, these products can operate at a clock frequency slower than TKHKH  
(MAX.) without the DLL/PLL circuit being used, if DLL# = LOW. Read latency (RL) is changed to 1.0 clock  
cycle regardless of RL = 2.0 and 2.5 clock cycles products in this operation. The AC/DC characteristics  
cannot be guaranteed, however.  
3. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. TKC var  
(MAX.) indicates a peak-to-peak value.  
Data Sheet M19962EJ2V0DS  
18  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
4. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL/PLL lock retention.  
DLL/PLL lock time begins once VDD and input clock are stable.  
It is recommended that the device is kept NOP (R# = W# = HIGH) during these cycles.  
5. K input is monitored for this operation. See below for the timing.  
K
TKC reset  
or  
K
TKC reset  
6. Guaranteed by design.  
7. Echo clock is very tightly controlled to data valid / data hold. By design, there is a 0.1 ns variation from  
echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.  
8. This is a synchronous device. All addresses, data and control lines must meet the specified setup  
and hold times for all latching clock edges.  
Remarks 1. This parameter is sampled.  
2. Test conditions as specified with the output loading as shown in AC Test Conditions  
unless otherwise noted.  
3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).  
4. VDDQ is 1.5 V DC.  
19  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Read and Write Timing  
2.0 Clock Cycles Read Latency  
[μPD44647094A-A], [μPD44647184A-A], [μPD44647364A-A]  
WRITE  
READ  
NOP  
NOP  
WRITE  
READ  
NOP  
1
2
3
4
5
6
7
8
K
TKHKL TKLKH  
TKHKH  
TKHK#H TK#HKH  
K#  
R#  
TIVKH TKHIX  
TKHIX  
TIVKH  
W#  
A0  
A2  
A1  
A3  
Address  
Data in  
TDVKH TKHDX  
TDVKH TKHDX  
TAVKH  
TKHAX  
D10  
D11  
D12  
D13  
D30  
D31  
D32  
D33  
ODT state  
D, BW#  
ODT-ON  
TCQHQVLD  
TCQHQVLD  
QVLD  
TKHQV  
TKHQX  
TKHQV  
TKHQX  
Read Latency = 2.0 clock cycles  
TKHQX1  
TKHQZ  
Q23  
Data out  
Q20  
Q21  
Q22  
Q00  
Q01  
Q02  
Q03  
TCQHQX  
TCQHQV  
TCQHQX  
TCQHQV  
TKHCQV  
TKHCQX  
CQ  
TCQHCQ#H  
TCQ#HCQH  
TKHCQV  
TKHCQX  
CQ#  
Remarks 1. Q00 refers to output from address A0+0.  
Q01 refers to output from the next internal burst address following A0,i.e.,A0+1.  
2. Outputs are disabled (high impedance) 4.0 clock cycles after the last READ (R# = LOW) is input in the  
sequences of [READ]-[NOP]-[NOP], [READ]-[WRITE]-[NOP] and [READ]-[NOP]-[WRITE].  
3. In this example, if address A2 = A1, data Q20 = D10, Q21 = D11, Q22 = D12 and Q23 = D13.  
Write data is forwarded immediately as read results. This remark applies to whole diagram.  
4. When the ODT control pin is LOW or No Connect, the ODT function is always off.  
Data Sheet M19962EJ2V0DS  
20  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
2.5 Clock Cycles Read Latency  
[μPD44647096A-A], [μPD44647186A-A], [μPD44647366A-A]  
WRITE  
NOP  
READ  
NOP  
WRITE  
READ  
NOP  
1
2
3
4
5
6
7
8
K
TKHKL TKLKH  
TKHKH  
TKHK#H TK#HKH  
K#  
R#  
TIVKH TKHIX  
TKHIX  
TIVKH  
W#  
A0  
A2  
A1  
A3  
Address  
Data in  
TDVKH TKHDX  
TDVKH  
TKHDX  
TAVKH  
TKHAX  
D10  
D11  
D12  
D13  
D30  
D31  
D32  
D33  
ODT state  
D, BW#  
ODT-ON  
TCQHQVLD  
TCQHQVLD  
QVLD  
TKHQV  
TKHQX  
TKHQV  
TKHQX  
Read Latency = 2.5 clock cycles  
TKHQX1  
TKHQZ  
Data out  
Q20  
Q21  
Q22  
Q23  
Q00  
Q01  
Q02  
Q03  
TCQHQX  
TCQHQV  
TCQHQX  
TCQHQV  
TKHCQV  
TKHCQX  
CQ  
TCQHCQ#H  
TCQ#HCQH  
TKHCQV  
TKHCQX  
CQ#  
Remarks 1. Q00 refers to output from address A0+0.  
Q01 refers to output from the next internal burst address following A0,i.e.,A0+1.  
2. Outputs are disabled (high impedance) 4.5 clock cycles after the last READ (R# = LOW) is input in the  
sequences of [READ]-[NOP]-[NOP], [READ]-[WRITE]-[NOP] and [READ]-[NOP]-[WRITE].  
3. In this example, if address A2 = A1, data Q20 = D10, Q21 = D11, Q22 = D12 and Q23 = D13.  
Write data is forwarded immediately as read results. This remark applies to the whole diagram.  
4. When the ODT control pin is LOW or No Connect, the ODT function is always off.  
21  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Application Example  
R =  
R =  
ZQ  
ZQ  
250 Ω  
250 Ω  
CQ#  
CQ#  
CQ  
Q
QVLD  
CQ  
Q
SRAM#1  
SRAM#4  
. . .  
D
A
D
QVLD  
R#  
W# BWx# K/K#  
A
R# W# BWx# K/K#  
V
t
SRAM  
Controller  
R
Data In  
Data Out  
Address  
R#  
W#  
BW#  
QVLD  
V
t
R
SRAM#1 CQ/CQ#  
V
t
R
R
SRAM#4 CQ/CQ#  
V
t
Source CLK/CLK#  
Return CLK/CLK#  
V
t
R
R = 50 Ω V = Vref  
t
Remark AC specifications are defined at the condition of SRAM outputs, CQ, CQ#, QVLD and Q with termination.  
Ds and BW#s have ODT.  
Data Sheet M19962EJ2V0DS  
22  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Test Access Port (TAP) Pins  
Pin name  
TCK  
Pin assignments  
2R  
Description  
Test Clock Input. All input are captured on the rising edge of TCK and all outputs  
propagate from the falling edge of TCK.  
Test Mode Select. This is the command input for the TAP controller state machine.  
TMS  
TDI  
10R  
11R  
Test Data Input. This is the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is determined by the state of the TAP  
controller state machine and the instruction that is currently loaded in the TAP instruction.  
TDO  
1R  
Test Data Output. This is the output side of the serial registers placed between TDI and  
TDO. Output changes in response to the falling edge of TCK.  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held HIGH  
for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.  
JTAG DC Characteristics (TA = 0 to 70°C, VDD = 1.8 ± 0.1 V, unless otherwise noted)  
Parameter  
Symbol  
ILI  
Conditions  
MIN.  
5.0  
5.0  
MAX.  
+5.0  
+5.0  
Unit  
μA  
JTAG Input leakage current  
JTAG I/O leakage current  
0 V VIN VDD  
ILO  
0 V VIN VDDQ,  
μA  
Outputs disabled  
JTAG input HIGH voltage  
JTAG input LOW voltage  
JTAG output HIGH voltage  
VIH  
VIL  
1.3  
0.3  
1.6  
VDD+0.3  
+0.5  
V
V
V
V
V
V
VOH1  
VOH2  
VOL1  
VOL2  
| IOHC | = 100 μA  
| IOHT | = 2 mA  
IOLC = 100 μA  
IOLT = 2 mA  
1.4  
JTAG output LOW voltage  
0.2  
0.4  
23  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
JTAG AC Test Conditions  
Input waveform (Rise / Fall time 1 ns)  
1.8 V  
0.9 V  
0 V  
0.9 V  
Test Points  
Output waveform  
0.9 V  
Test Points  
0.9 V  
Output load  
Figure 2. External load at test  
V
TT = 0.9 V  
50 Ω  
ZO = 50 Ω  
TDO  
20 pF  
Data Sheet M19962EJ2V0DS  
24  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
JTAG AC Characteristics (TA = 0 to 70°C)  
Parameter  
Symbol  
Conditions  
MIN.  
50  
MAX.  
20  
Unit  
Clock  
Clock cycle time  
Clock frequency  
Clock HIGH time  
Clock LOW time  
tTHTH  
fTF  
ns  
MHz  
ns  
tTHTL  
tTLTH  
20  
20  
ns  
Output time  
TCK LOW to TDO unknown  
TCK LOW to TDO valid  
tTLOX  
tTLOV  
0
ns  
ns  
10  
Setup time  
TMS setup time  
TDI valid to TCK HIGH  
Capture setup time  
tMVTH  
tDVTH  
tCS  
5
5
5
ns  
ns  
ns  
Hold time  
TMS hold time  
tTHMX  
tTHDX  
tCH  
5
5
5
ns  
ns  
ns  
TCK HIGH to TDI invalid  
Capture hold time  
JTAG Timing Diagram  
t
THTH  
TCK  
t
MVTH  
t
THTL  
t
TLTH  
TMS  
TDI  
t
THMX  
t
DVTH  
t
THDX  
t
TLOV  
t
TLOX  
TDO  
25  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The instruction register holds the instructions that are executed by the TAP controller when it is  
moved into the run-test/idle or the various data register state. The register can be loaded when it is  
placed between the TDI and TDO pins. The instruction register is automatically preloaded with the  
IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.  
Bypass register  
ID register  
The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial  
test data to be passed through the RAMs TAP to another device in the scan chain with as little delay  
as possible.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when  
the controller is put in capture-DR state with the IDCODE command loaded in the instruction register.  
The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR  
state.  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents of the  
RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and  
TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to  
activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary register  
location. The first column defines the bit’s position in the boundary register. The second column is  
the name of the input or I/O at the bump and the third column is the bump number.  
Scan Register Definition (2)  
Register name  
Bit size  
Unit  
bit  
Instruction register  
Bypass register  
3
1
bit  
ID register  
32  
109  
bit  
Boundary register  
bit  
ID Register Definition  
2.0 Clock Cycles Read Latency  
Part number  
Organization ID [31:28] vendor revision no.  
ID [27:12] part no.  
0000 0000 1001 0101  
0000 0000 1001 0110  
0000 0000 1001 0111  
ID [11:1] vendor ID no. ID [0] fix bit  
μPD44647094A-A  
μPD44647184A-A  
μPD44647364A-A  
8M x 9  
4M x 18  
2M x 36  
XXXX  
XXXX  
XXXX  
00000010000  
00000010000  
00000010000  
1
1
1
2.5 Clock Cycles Read Latency  
Part number  
Organization ID [31:28] vendor revision no.  
ID [27:12] part no.  
0000 0000 1010 0001  
0000 0000 1010 0010  
0000 0000 1010 0011  
ID [11:1] vendor ID no. ID [0] fix bit  
μPD44647096A-A  
μPD44647186A-A  
μPD44647366A-A  
8M x 9  
4M x 18  
2M x 36  
XXXX  
XXXX  
XXXX  
00000010000  
00000010000  
00000010000  
1
1
1
Data Sheet M19962EJ2V0DS  
26  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
SCAN Exit Order  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
x9 x18 x36  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
no.  
x9  
x18 x36  
no.  
no.  
x9  
x18  
x36  
1
2
ODT  
QVLD  
A
6R  
6P  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
NC  
NC  
NC  
NC  
NC  
NC  
Q4  
D4  
NC D15 10D  
NC Q15 9E  
73  
74  
NC  
Q5  
D5  
NC  
NC  
NC Q28  
Q11 Q20  
D11 D20  
2C  
3E  
2D  
2E  
1E  
2F  
3F  
1G  
1F  
3G  
2G  
1H  
1J  
3
6N  
7P  
Q7  
D7  
Q7 10C  
D7 11D  
75  
4
A
76  
NC  
D29  
5
A
7N  
7R  
8R  
8P  
NC D16 9C  
NC Q16 9D  
77  
NC Q29  
6
A
78  
NC Q12 Q21  
7
A
Q8  
D8  
Q8 11B  
D8 11C  
79  
NC  
NC  
NC  
Q6  
D6  
D12 D21  
NC D30  
8
A
80  
9
A
9R  
11P  
10P  
NC  
NC  
NC D17  
9B  
81  
NC Q30  
Q13 Q22  
D13 D22  
DLL#  
10  
11  
12  
13  
Q0  
D0  
NC Q17 10B  
82  
CQ  
A
11A  
83  
NC NC  
NC NC  
D9 10N  
Q9 9P  
A
NC 10A  
84  
A
9A  
8B  
7C  
6C  
8A  
85  
NC  
NC  
NC  
D31  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
NC  
NC  
Q1  
D1  
Q1 10M  
D1 11N  
A
86  
NC Q31  
2J  
A
87  
NC Q14 Q23  
3K  
3J  
NC NC D10 9M  
NC NC Q10 9N  
NC  
R#  
88  
NC  
NC  
NC  
Q7  
D7  
NC  
NC  
D14 D23  
NC D32  
89  
2K  
1K  
2L  
3L  
1M  
1L  
3N  
3M  
1N  
Q1  
Q2  
Q2  
D2 11M  
9L  
NC NC Q11 10L  
11L  
NC  
NC  
NC BW1# 7A  
90  
NC Q32  
Q15 Q24  
D15 D24  
D1  
D2  
BW0#  
K
7B  
6B  
6A  
91  
NC NC D11  
92  
K#  
93  
NC  
D33  
NC  
NC  
Q3  
D3  
Q3 11K  
D3 10K  
NC BW3# 5B  
94  
NC Q33  
NC BW1# BW2# 5A  
95  
NC Q16 Q25  
NC NC D12  
9J  
W#  
A
4A  
5C  
4B  
3A  
2A  
1A  
96  
NC  
NC  
NC  
Q8  
D8  
NC  
NC  
D16 D25  
NC D34  
NC NC Q12 9K  
97  
Q2  
D2  
Q4  
D4  
ZQ  
Q4  
D4  
10J  
11J  
11H  
A
98  
NC Q34 2M  
A
99  
Q17 Q26  
D17 D26  
3P  
2N  
A
NC  
CQ#  
NC  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
NC NC D13 10G  
NC NC Q13 9G  
NC  
D35  
2P  
NC  
NC  
NC  
NC  
Q9 Q18 2B  
D9 D18 3B  
NC Q35  
1P  
NC  
NC  
Q5  
D5  
Q5 11F  
D5 11G  
A
A
A
A
A
A
3R  
NC D27 1C  
NC Q27 1B  
4R  
NC NC D14  
9F  
4P  
NC NC Q14 10F  
NC Q10 Q19 3D  
NC D10 D19 3C  
5P  
Q3  
D3  
Q6  
D6  
Q6 11E  
D6 10E  
5N  
NC  
NC D28 1D  
5R  
Internal  
27  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
JTAG Instructions  
Instructions  
Description  
EXTEST  
The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-  
scan register cells at output pins are used to apply test vectors, while those at input pins capture test  
results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the  
boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST,  
the output drive is turned on and the PRELOAD data is driven onto the output pins.  
IDCODE  
BYPASS  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in  
capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The  
IDCODE instruction is the default instruction loaded in at power up and any time the controller is  
placed in the test-logic-reset state.  
When the BYPASS instruction is loaded in the instruction register, the bypass register is placed  
between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This  
allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.  
SAMPLE / PRELOAD SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE /  
PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-  
DR state loads the data in the RAMs input and Q pins into the boundary scan register. Because the  
RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to  
capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state).  
Although allowing the TAP to sample metastable input will not harm the device, repeatable results  
cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input  
data capture setup plus hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any  
other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving  
the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM Q pins are forced to an  
inactive drive state (high impedance) and the boundary register is connected between TDI and TDO  
when the TAP controller is moved to the shift-DR state.  
JTAG Instruction Coding  
IR2  
0
IR1  
0
IR0  
0
Instruction  
EXTEST  
Note  
0
0
1
IDCODE  
0
1
0
SAMPLE-Z  
1
2
0
1
1
RESERVED  
SAMPLE / PRELOAD  
RESERVED  
RESERVED  
BYPASS  
1
0
0
1
0
1
2
2
1
1
0
1
1
1
Notes 1. TRISTATE all Q pins and CAPTURE the pad values into a SERIAL SCAN LATCH.  
2. Do not use this instruction code because the vendor uses it to evaluate this product.  
Data Sheet M19962EJ2V0DS  
28  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Output Pin States of CQ, CQ#, QVLD and Q  
Instructions  
Control-Register Status  
Output Pin Status  
CQ, CQ#, QVLD  
Q
EXTEST  
0
1
0
1
0
1
0
1
0
1
Update  
Update  
SRAM  
SRAM  
High-Z  
High-Z  
SRAM  
SRAM  
SRAM  
SRAM  
High-Z  
Update  
SRAM  
SRAM  
High-Z  
High-Z  
SRAM  
SRAM  
SRAM  
SRAM  
IDCODE  
SAMPLE-Z  
SAMPLE  
BYPASS  
Remark The output pin statuses during each instruction vary according  
to the Control-Register status (value of Boundary Scan  
Register, bit no. 109).  
Boundary Scan  
Register  
CAPTURE  
Register  
There are three statuses:  
Update : Contents of the “Update Register” are output to  
the output pin (QDR Pad).  
SRAM  
Output  
Update  
Register  
SRAM : Contents of the SRAM internal output “SRAM  
Output” are output to the output pin (QDR Pad).  
High-Z : The output pin (QDR Pad) becomes high  
impedance by controlling of the “High-Z JTAG  
ctrl”.  
Update  
QDR  
Pad  
SRAM  
SRAM  
Output  
Driver  
High-Z  
The Control-Register status is set during Update-DR at the  
EXTEST or SAMPLE instruction.  
High-Z  
JTAG ctrl  
In case checking the QVLD output status in EXTEST mode,  
please make sure stay DLL# pin HIGH.  
29  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Boundary Scan Register Status of Output Pins CQ, CQ#, QVLD and Q  
Instructions  
SRAM Status  
Boundary Scan Register Status  
Note  
CQ, CQ#, QVLD  
Q
Pad  
Pad  
EXTEST  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
Pad  
Pad  
IDCODE  
SAMPLE-Z  
SAMPLE  
BYPASS  
No definition  
Pad  
Pad  
Internal  
Internal  
Pad  
Pad  
Internal  
Pad  
No definition  
Boundary Scan  
Register  
Remark The Boundary Scan Register statuses during execution each  
instruction vary according to the instruction code and SRAM  
operation mode.  
CAPTURE  
Register  
There are two statuses:  
Internal  
SRAM  
Output  
Update  
Register  
Pad  
: Contents of the output pin (QDR Pad) are captured  
in the “CAPTURE Register” in the Boundary Scan  
Register.  
Pad  
Internal : Contents of the SRAM internal output “SRAM  
Output” are captured in the “CAPTURE Register”  
in the Boundary Scan Register.  
QDR  
Pad  
SRAM  
Output  
Driver  
High-Z  
JTAG ctrl  
Data Sheet M19962EJ2V0DS  
30  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
TAP Controller State Diagram  
1
0
Test-Logic-Reset  
0
1
1
1
Run-Test / Idle  
Select-DR-Scan  
0
Select-IR-Scan  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal  
operation of the device, TCK must be tied to VSS to preclude mid level inputs. TDI and TMS may be left open but fix  
them to VDD via a resistor of about 1 kΩ when the TAP controller is not used. TDO should be left unconnected also  
when the TAP controller is not used.  
31  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Run-Test/Idle  
Update-IR  
Exit1-IR  
Shift-IR  
Exit2-IR  
Pause-IR  
Exit1-IR  
Shift-IR  
Capture-IR  
Select-IR-Scan  
Select-DR-Scan  
Run-Test/Idle  
Test-Logic-Reset  
Data Sheet M19962EJ2V0DS  
32  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Test-Logic-Reset  
Select-IR-Scan  
Select-DR-Scan  
Run-Test/Idle  
Update-DR  
Exit1-DR  
Shift-DR  
Exit2-DR  
Pause-DR  
Exit1-DR  
Shift-DR  
Capture-DR  
Select-DR-Scan  
Run-Test/Idle  
33  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Package Drawing  
165-PIN PLASTIC BGA(15x17)  
w
S
B
ZD  
B
E
ZE  
11  
10  
9
8
7
A
6
5
D
4
3
2
1
R P N M L K J H G F E D C B A  
INDEX MARK  
w
S A  
A
(UNIT:mm)  
ITEM DIMENSIONS  
A2  
y1  
S
D
E
15.00 0.10  
17.00 0.10  
0.30  
S
w
A
1.35 0.11  
0.37 0.05  
0.98  
A1  
A2  
e
y
e
x
A1  
A B  
S
1.00  
M
b
S
+0.10  
b
0.50  
0.05  
x
0.10  
y
0.15  
y1  
ZD  
ZE  
0.25  
2.50  
1.50  
P165F5-100-FQ1-1  
NEC Elect ronics Corporation 2009  
Data Sheet M19962EJ2V0DS  
34  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of these products.  
Types of Surface Mount Devices  
μPD44647094AF5-FQ1-A  
μPD44647184AF5-FQ1-A  
μPD44647364AF5-FQ1-A  
μPD44647096AF5-FQ1-A  
μPD44647186AF5-FQ1-A  
μPD44647366AF5-FQ1-A  
: 165-pin PLASTIC BGA (15 x 17), Lead free  
: 165-pin PLASTIC BGA (15 x 17), Lead free  
: 165-pin PLASTIC BGA (15 x 17), Lead free  
: 165-pin PLASTIC BGA (15 x 17), Lead free  
: 165-pin PLASTIC BGA (15 x 17), Lead free  
: 165-pin PLASTIC BGA (15 x 17), Lead free  
Related Document  
Document Name  
Document Number  
μPD44647094A, 44647184A, 44647364A, 44647096A, 44647186A, 44647366A  
Data Sheet (Leaded products)  
M19063  
Quality Grade  
A quality grade of the products is “Standard”.  
Anti-radioactive design is not implemented in the products.  
Semiconductor devices have the possibility of unexpected defects by affection of cosmic ray that reach to the  
ground and so forth.  
35  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
Revision History  
Edition/  
Date  
Page  
Type of  
revision  
Location  
Description  
This  
Previous  
edition  
(Previous edition This edition)  
edition  
2nd edition/ Throughout Throughout Modification  
Mar. 2010  
Preliminary Data Sheet Data Sheet  
Data Sheet M19962EJ2V0DS  
36  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
[MEMO]  
37  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
[MEMO]  
Data Sheet M19962EJ2V0DS  
38  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
NOTES FOR CMOS DEVICES  
1
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
VIH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
5
POWER ON/OFF SEQUENCE  
In the case of a device that uses different power supplies for the internal operation and external  
interface, as a rule, switch on the external power supply after switching on the internal power supply.  
When switching the power supply off, as a rule, switch off the external power supply and then the  
internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal  
elements due to the passage of an abnormal current.  
The correct power on/off sequence must be judged separately for each device and according to related  
specifications governing the device.  
6
INPUT OF SIGNAL DURING POWER OFF STATE  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current  
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and  
the abnormal current that passes in the device at this time may cause degradation of internal elements.  
Input of signals during the power off state must be judged separately for each device and according to  
related specifications governing the device.  
39  
Data Sheet M19962EJ2V0DS  
μPD44647094A-A, 44647184A-A, 44647364A-A, 44647096A-A, 44647186A-A, 44647366A-A  
QDR RAMs and Quad Data Rate RAMs comprise a new series of products developed by Cypress Semiconductor,  
Renesas, IDT, NEC Electronics, and Samsung.  
The information in this document is current as of March, 2010. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets,  
etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or  
types are available in every country. Please check with an NEC Electronics sales representative for  
availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
• Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality and safety of NEC Electronics products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. In addition, NEC  
Electronics products are not taken measures to prevent radioactive rays in the product design. When customers  
use NEC Electronics products with their products, customers shall, on their own responsibility, incorporate  
sufficient safety measures such as redundancy, fire-containment and anti-failure features to their products in  
order to avoid risks of the damages to property (including public or social property) or injury (including death) to  
persons, as the result of defects of NEC Electronics products.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on  
a
customer-designated "quality assurance program" for a specific application. The recommended applications  
of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the  
quality grade of each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E0904E  

相关型号:

UPD44647184AF5-E30-FQ1-A

IC,SYNC SRAM,QDR,4MX18,CMOS,BGA,165PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

UPD44647184AF5-E33-FQ1-A

IC,SYNC SRAM,QDR,4MX18,CMOS,BGA,165PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

UPD44647184F5-E27-FQ1

QDR SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647184F5-E30-FQ1

QDR SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647184F5-E30-FQ1-A

QDR SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647184F5-E33-FQ1

QDR SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647184F5-E33-FQ1-A

QDR SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647186F5-E25-FQ1

4MX18 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647186F5-E25-FQ1-A

QDR SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647186F5-E27-FQ1

QDR SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647186F5-E27-FQ1-A

4MX18 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC

UPD44647186F5-E30-FQ1

QDR SRAM, 4MX18, 0.45ns, CMOS, PBGA165, 15 X 17 MM, PLASTIC, BGA-165

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NEC