UPD46184095BF1-E33-EQ1 [RENESAS]

DDR SRAM;
UPD46184095BF1-E33-EQ1
型号: UPD46184095BF1-E33-EQ1
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

DDR SRAM

时钟 双倍数据速率 静态存储器 内存集成电路
文件: 总34页 (文件大小:595K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
μPD46184095B  
μPD46184185B  
R10DS0115EJ0200  
Rev.2.00  
18M-BIT DDR II SRAM SEPARATE I/O  
2-WORD BURST OPERATION  
Nov 09, 2012  
Description  
The μPD46184095B is a 2,097,152-word by 9-bit and the μPD46184185B is a 1,048,576-word by 18-bit synchronous  
double data rate static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.  
The μPD46184095B and μPD46184185B integrate unique synchronous peripheral circuitry and a burst counter. All input  
registers controlled by an input clock pair (K and K#) are latched on the positive edge of K and K#.  
These products are suitable for application which require synchronous operation, high speed, low voltage, high density and  
wide bit configuration. These products are packaged in 165-pin PLASTIC BGA.  
Features  
1.8 0.1 V power supply  
165-pin PLASTIC BGA (13 x 15)  
HSTL interface  
PLL circuitry for wide output data valid window and future frequency scaling  
Separate independent read and write data ports  
DDR read or write operation initiated each cycle  
Pipelined double data rate operation  
Separate data input/output bus  
Two-tick burst for low DDR transaction size  
Two input clocks (K and K#) for precise DDR timing at clock rising edges only  
Two output clocks (C and C#) for precise flight time and clock skew matching-clock  
and data delivered together to receiving device  
Internally self-timed write control  
Clock-stop capability. Normal operation is restored in 20 μs after clock is resumed.  
User programmable impedance output (35 to 70 Ω)  
Fast clock cycle time : 3.3 ns (300 MHz), 4.0 ns (250 MHz)  
Simple control logic for easy depth expansion  
JTAG 1149.1 compatible test access port  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 1 of 34  
μPD46184095B, μPD46184185B  
Ordering Information  
Core  
Supply  
Voltage  
Operating  
Ambient  
Organization  
Cycle  
time  
Clock  
frequency  
Part No.  
Package  
(word x bit)  
Temperature  
μPD46184095BF1-E33-EQ1-A  
μPD46184095BF1-E40-EQ1-A  
μPD46184185BF1-E33-EQ1-A  
μPD46184185BF1-E40-EQ1-A  
μPD46184095BF1-E33Y-EQ1-A  
μPD46184095BF1-E40Y-EQ1-A  
μPD46184185BF1-E33Y-EQ1-A  
μPD46184185BF1-E40Y-EQ1-A  
μPD46184095BF1-E33-EQ1  
μPD46184095BF1-E40-EQ1  
μPD46184185BF1-E33-EQ1  
μPD46184185BF1-E40-EQ1  
μPD46184095BF1-E33Y-EQ1  
μPD46184095BF1-E40Y-EQ1  
μPD46184185BF1-E33Y-EQ1  
μPD46184185BF1-E40Y-EQ1  
2M x 9  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
3.3ns  
4.0ns  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
300MHz  
250MHz  
1.8 0.1  
1.8 0.1  
1.8 0.1  
1.8 0.1  
TA = 0 to 70°C  
TA = 40 to 85°C  
TA = 0 to 70°C  
165-pin  
PLASTIC  
BGA  
1M x 18  
2M x 9  
(13 x 15)  
Lead-free  
1M x 18  
2M x 9  
165-pin  
PLASTIC  
BGA  
1M x 18  
2M x 9  
(13 x 15)  
Lead  
TA = 40 to 85°C  
1M x 18  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 2 of 34  
μPD46184095B, μPD46184185B  
Pin Arrangement  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[μPD46184095B]  
2M x 9  
1
CQ#  
NC  
2
3
A
4
5
NC  
NC/288M  
A
6
7
NC/144M  
BW0#  
A
8
9
A
10  
11  
CQ  
Q4  
D4  
NC  
Q3  
NC  
NC  
ZQ  
D2  
NC  
Q1  
D1  
NC  
Q0  
TDI  
A
B
C
D
E
F
R, W#  
A
K#  
K
LD#  
A
VSS/72M  
NC  
VSS/36M  
NC  
NC  
NC  
NC  
Q5  
NC  
Q6  
VDDQ  
NC  
NC  
D7  
NC  
NC  
Q8  
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
NC  
VSS  
A
VSS  
NC  
NC  
D5  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
D3  
NC  
NC  
NC  
G
H
J
NC  
D6  
NC  
DLL#  
NC  
VREF  
NC  
VREF  
Q2  
K
L
NC  
NC  
NC  
NC  
Q7  
NC  
M
N
P
R
NC  
NC  
NC  
NC  
D8  
VSS  
VSS  
NC  
NC  
NC  
A
A
C
A
A
D0  
TDO  
TCK  
A
A
C#  
A
A
TMS  
A
: Address inputs  
: Data inputs  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
D0 to D8  
Q0 to Q8  
LD#  
TDI  
: Data outputs  
TCK  
TDO  
VREF  
VDD  
: Synchronous load  
: Read Write input  
R, W#  
BW0#  
K, K#  
C, C#  
: Byte Write data select  
: Input clock  
VDD  
VSS  
NC  
Q
: Power Supply  
: Output clock  
: Ground  
CQ, CQ#  
ZQ  
: Echo clock  
: No connection  
: Output impedance matching  
: PLL disable  
NC/xxM : Expansion address for xxMb  
DLL#  
Remarks 1. ×××# indicates active LOW.  
2. Refer to Package Dimensions for the index mark.  
3. 2A, 7A, 10A and 5B are expansion addresses : 10A for 36Mb  
: 10A and 2A for 72Mb  
: 10A, 2A and 7A for 144Mb  
: 10A, 2A, 7A and 5B for 288Mb  
2A and 10A of this product can also be used as NC.  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 3 of 34  
μPD46184095B, μPD46184185B  
Pin Arrangement  
165-pin PLASTIC BGA (13 x 15)  
(Top View)  
[μPD46184185B]  
1M x 18  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ#  
NC  
R, W# BW1#  
K#  
K
LD#  
A
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
VSS/144M NC/36M  
NC/288M  
BW0#  
A
VSS/72M  
NC  
Q9  
NC  
D9  
D10  
Q10  
Q11  
D12  
Q13  
VDDQ  
D14  
Q14  
D15  
D16  
Q16  
Q17  
A
A
NC  
A
NC  
VSS  
A
VSS  
Q7  
NC  
D11  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
D6  
NC  
Q12  
D13  
VREF  
NC  
NC  
G
H
J
NC  
NC  
DLL#  
NC  
VREF  
Q4  
K
L
NC  
NC  
D3  
NC  
Q15  
NC  
NC  
M
N
P
R
NC  
Q1  
NC  
D17  
NC  
VSS  
VSS  
NC  
NC  
A
A
C
A
A
D0  
TDO  
TCK  
A
A
C#  
A
A
TMS  
A
: Address inputs  
: Data inputs  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
D0 to D17  
Q0 to Q17  
LD#  
TDI  
: Data outputs  
TCK  
TDO  
VREF  
VDD  
: Synchronous load  
: Read Write input  
R, W#  
BW0#, BW1#  
K, K#  
: Byte Write data select  
: Input clock  
V
DDQ  
: Power Supply  
C, C#  
: Output clock  
VSS  
NC  
: Ground  
CQ, CQ#  
ZQ  
: Echo clock  
: No connection  
: Output impedance matching  
: PLL disable  
NC/xxM : Expansion address for xxMb  
DLL#  
Remarks 1. ×××# indicates active LOW.  
2. Refer to Package Dimensions for the index mark.  
3. 2A, 3A, 7A and 10A are expansion addresses : 3A for 36Mb  
: 3A and 10A for 72Mb  
: 3A,10A and 2A for 144Mb  
: 3A, 10A, 2A and 7A for 288Mb  
2A and 10A of this product can also be used as NC.  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 4 of 34  
μPD46184095B, μPD46184185B  
Pin Description  
(1/2)  
Symbol  
Type  
Input  
Description  
A
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold  
times around the rising edge of K. All transactions operate on a burst of two words (one  
clock period of bus activity). These inputs are ignored when device is deselected, i.e., NOP  
(LD# = HIGH).  
D0 to Dxx  
Q0 to Qxx  
Input  
Synchronous Data Inputs: Input data must meet setup and hold times around the rising  
edges of K and K# during WRITE operations. See Pin Arrangement for ball site location of  
individual signals.  
X9 device uses D0 to D8.  
X18 device uses D0 to D17.  
Output  
Synchronous Data Outputs: Output data is synchronized to the respective C and C# or to K  
and K# rising edges if C and C# are tied HIGH. Data is output in synchronization with C and  
C# (or K and K#), depending on the LD# and R, W# command. See Pin Arrangement for  
ball site location of individual signals.  
X9 device uses Q0 to Q8.  
x18 device uses Q0 to Q17.  
LD#  
Input  
Input  
Input  
Synchronous Load: This input is brought LOW when a bus cycle sequence is to be defined.  
This definition includes address and read/write direction. All transactions operate on a burst  
of 2 data (one clock period of bus activity).  
R, W#  
BWx#  
Synchronous Read/Write Input: When LD# is LOW, this input designates the access type  
(READ when R, W# is HIGH, WRITE when R, W# is LOW) for the loaded address. R, W#  
must meet the setup and hold times around the rising edge of K.  
Synchronous Byte Writes: When LOW these inputs cause their respective byte to be  
registered and written during WRITE cycles. These signals must meet setup and hold times  
around the rising edges of K and K# for each of the two rising edges comprising the WRITE  
cycle. See Pin Arrangement for signal to data relationships.  
X9 device uses BW0#.  
x18 device uses BW0#, BW1#.  
See Byte Write Operation for relation between BWx# and Dxx.  
K, K#  
C, C#  
Input  
Input  
Input Clock: This input clock pair registers address and control inputs on the rising edge of  
K, and registers data on the rising edge of K and the rising edge of K#. K# is ideally 180  
degrees out of phase with K. All synchronous inputs must meet setup and hold times around  
the clock rising edges.  
Output Clock: This clock pair provides a user controlled means of tuning device output data.  
The rising edge of C# is used as the output timing reference for first output data. The rising  
edge of C is used as the output reference for second output data. Ideally, #C is 180 degrees  
out of phase with C. When use of K and K# as the reference instead of C and C#, then fixed  
C and C# to HIGH. Operation cannot be guaranteed unless C and C# are fixed to HIGH  
(i.e. toggle of C and C#)  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 5 of 34  
μPD46184095B, μPD46184185B  
(2/2)  
Symbol  
Type  
Output  
Description  
CQ, CQ#  
Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to  
the synchronous data outputs and can be used as a data valid indication. These signals run  
freely and do not stop when Q tristates. If C and C# are stopped (if K and K# are stopped in  
the single clock mode), CQ and CQ# will also stop.  
ZQ  
Input  
Input  
Output Impedance Matching Input: This input is used to tune the device outputs to the  
system data bus impedance. Q, CQ and CQ# output impedance are set to 0.2 x RQ, where  
RQ is a resistor from this bump to ground. The output impedance can be minimized by  
directly connect ZQ to VDDQ. This pin cannot be connected directly to GND or left  
unconnected. The output impedance is adjusted every 20 μs upon power-up to account for  
drifts in supply voltage and temperature. After replacement for a resistor, the new output  
impedance is reset by implementing power-on sequence.  
DLL#  
PLL Disable: When debugging the system or board, the operation can be performed at a  
clock frequency slower than TKHKH (MAX.) without the PLL circuit being used, if DLL# =  
LOW. The AC/DC characteristics cannot be guaranteed. For normal operation, DLL# must  
be HIGH and it can be connected to VDDQ through a 10 kΩ or less resistor.  
TMS  
TDI  
Input  
Input  
Output  
IEEE 1149.1 Test Inputs: 1.8 V I/O level. These balls may be left Not Connected if the  
JTAG function is not used in the circuit.  
TCK  
TDO  
VREF  
IEEE 1149.1 Clock Input: 1.8 V I/O level. This pin must be tied to VSS if the JTAG function  
is not used in the circuit.  
IEEE 1149.1 Test Output: 1.8 V I/O level.  
When providing any external voltage to TDO signal, it is recommended to pull up to VDD.  
HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the  
input buffers.  
VDD  
Supply  
Supply  
Power Supply: 1.8 V nominal. See Recommended DC Operating Conditions and DC  
Characteristics for range.  
VDDQ  
Power Supply: Isolated Output Buffer Supply. Nominally 1.5 V. 1.8 V is also permissible.  
See Recommended DC Operating Conditions and DC Characteristics for range.  
VSS  
Supply  
Power Supply: Ground  
NC  
No Connect: These signals are not connected internally.  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 6 of 34  
μPD46184095B, μPD46184185B  
Block Diagram  
[μPD46184095B]  
20  
ADDRESS  
LD#  
ADDRESS  
20  
R, W#  
REGISTRY  
& LOGIC  
K
K#  
R, W#  
BW0#  
220 x 18  
DATA  
18  
18  
9
2
18  
9
D0 to D8  
LD#  
Q0 to Q8  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
MUX  
CQ,  
CQ#  
K
K
K
C, C#  
K#  
OR  
K, K#  
[μPD46184185B]  
19  
ADDRESS  
LD#  
ADDRESS  
REGISTRY  
& LOGIC  
19  
R, W#  
K
K#  
R, W#  
BW0#  
BW1#  
219 x 36  
DATA  
36  
36  
18  
36  
18  
Q0 to Q17  
REGISTRY  
& LOGIC  
D0 to D17  
MEMORY  
ARRAY  
MUX  
2
LD#  
CQ,  
CQ#  
K
K
K
C, C#  
OR  
K#  
K, K#  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 7 of 34  
μPD46184095B, μPD46184185B  
Power-On Sequence in DDR II SRAM  
DDR II SRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.  
The following timing charts show the recommended power-on sequence.  
The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDD  
can be applied simultaneously, as long as VDDQ does not exceed VDD by more than 0.5 V during power-up. The  
Q
following power-down supply voltage removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDD  
can be removed simultaneously, as long as VDDQ does not exceed VDD by more than 0.5 V during power-down.  
Q
Power-On Sequence  
Apply power and tie DLL# to HIGH.  
Apply VDDQ before VREF or at the same time as VREF  
.
Provide stable clock for more than 20 μs to lock the PLL.  
Continuous min.4 NOP(LD# = high) cycles are required after PLL lock up is done.  
PLL Constraints  
The PLL uses K clock as its synchronizing input and the input should have low phase jitter which is specified as  
TKC var. The PLL can cover 120 MHz as the lowest frequency. If the input clock is unstable and the PLL is  
enabled, then the PLL may lock onto an undesired clock frequency.  
Power-On Waveforms  
V
DD/VDDQ  
V
DD/VDDQ Stable (< ±0.1 V DC per 50 ns)  
Fix HIGH (or tied to VDDQ)  
DLL#  
Clock  
20 μs or more  
Stable Clock  
Unstable Clock  
Normal Operation  
Start  
4 Times NOP  
LD#  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 8 of 34  
μPD46184095B, μPD46184185B  
Truth Table  
Operation  
WRITE cycle  
LD# R, W# CLK  
D or Q  
Data in  
L
L
L H  
Load address, input write data on  
consecutive K and K# rising edge  
READ cycle  
Input data  
Input clock  
Data out  
D(A+0)  
D(A+1)  
K(t+1) ↑  
K#(t+1) ↑  
L
H
L H  
Load address, read data on  
consecutive C and C# rising edge  
NOP (No operation)  
Output data  
Output clock  
Q(A+0)  
Q(A+1)  
C#(t+1) ↑  
C(t+2) ↑  
H
×
×
L H  
D = ×, Q = High-Z  
Previous state  
Clock stop  
×
Stopped  
Remarks 1. H : HIGH, L : LOW, × : don’t care, : rising edge.  
2. Data inputs are registered at K and K# rising edges. Data outputs are delivered at C and C# rising edges  
except if C and C# are HIGH then Data outputs are delivered at K and K# rising edges.  
3. All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of  
K. All control inputs are registered during the rising edge of K.  
4. This device contains circuitry that ensure the outputs to be in high impedance during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. It is recommended that K = K# = C = C# when clock is stopped. This is not essential but permits most  
rapid restart by overcoming transmission line charging symmetrically.  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 9 of 34  
μPD46184095B, μPD46184185B  
Byte Write Operation  
[μPD46184095B]  
Operation  
K
K#  
L H  
BW0#  
Write D0 to D8  
L H  
0
0
1
1
L H  
Write nothing  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# can be altered for any portion of the BURST WRITE  
operation provided that the setup and hold requirements are satisfied.  
[μPD46184185B]  
Operation  
K
L H  
L H  
L H  
L H  
K#  
L H  
L H  
L H  
BW0#  
BW1#  
Write D0 to D17  
Write D0 to D8  
Write D9 to D17  
Write nothing  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# and BW1# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 10 of 34  
μPD46184095B, μPD46184185B  
Bus Cycle State Diagram  
LOAD NEW  
ADDRESS  
Count = 0  
Load, Count = 2  
WRITE DOUBLE  
Load, Count = 2  
READ DOUBLE  
Write  
Read  
Count = Count + 2  
Count = Count + 2  
Load  
NOP,  
NOP,  
Count = 2  
Count = 2  
NOP  
NOP  
Supply voltage provided  
Power UP  
Remark State machine control timing sequence is controlled by K.  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 11 of 34  
μPD46184095B, μPD46184185B  
Electrical Characteristics  
Absolute Maximum Ratings  
Parameter  
Supply voltage  
Symbol  
Conditions  
Rating  
0.5 to +2.5  
Unit  
V
VDD  
Output supply voltage  
Input voltage  
VDD  
Q
0.5 to VDD  
V
VIN  
VI/O  
TA  
0.5 to VDD+0.5 (2.5 V MAX.)  
0.5 to VDDQ+0.5 (2.5 V MAX.)  
0 to 70  
V
Input / Output voltage  
Operating ambient temperature  
V
(E** series)  
°C  
°C  
°C  
(E**Y series)  
40 to 85  
Storage temperature  
Tstg  
55 to +125  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions (TA = 0 to 70°C, TA = 40 to 85°C)  
Parameter  
Supply voltage  
Symbol Conditions  
MIN.  
1.7  
TYP.  
MAX.  
1.9  
Unit Note  
VDD  
1.8  
V
Output supply voltage  
Input HIGH voltage  
Input LOW voltage  
Clock input voltage  
Reference voltage  
VDD  
Q
1.4  
VDD  
V
V
V
V
V
1
VIH (DC)  
VIL (DC)  
VIN  
VREF +0.1  
0.3  
VDDQ+0.3  
VREF 0.1  
VDDQ+0.3  
0.95  
1, 2  
1, 2  
1, 2  
0.3  
VREF  
0.68  
Notes 1. During normal operation, VDDQ must not exceed VDD  
.
2. Power-up: VIH VDDQ + 0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
Recommended AC Operating Conditions (TA = 0 to 70°C, TA = 40 to 85°C)  
Parameter  
Input HIGH voltage  
Input LOW voltage  
Symbol Conditions  
MIN.  
MAX.  
Unit Note  
VIH (AC)  
VIL (AC)  
VREF +0.2  
V
V
1
1
VREF 0.2  
Note 1. Overshoot: VIH (AC) VDD + 0.7 V (2.5 V MAX.) for t TKHKH/2  
Undershoot: VIL (AC) 0.5 V for t TKHKH/2  
Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than  
TKHKH (MIN.).  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 12 of 34  
μPD46184095B, μPD46184185B  
DC Characteristics 1 (TA = 0 to 70°C, VDD = 1.8 0.1 V)  
Parameter  
Symbol  
Test condition  
MIN.  
MAX.  
Unit Note  
x9  
x18  
Input leakage current  
I/O leakage current  
ILI  
2  
2  
+2  
+2  
μA  
μA  
ILO  
IDD  
Operating supply current  
(Read cycle / Write cycle)  
VIN VIL or VIN VIH,  
II/O = 0 mA,  
-E33  
-E40  
-E33  
-E40  
500  
450  
390  
380  
530  
480  
400  
380  
mA  
Cycle = MAX.  
Standby supply current  
(NOP)  
ISB1  
VIN VIL or VIN VIH,  
II/O = 0 mA,  
mA  
Cycle = MAX.  
Inputs static  
Output HIGH voltage  
Output LOW voltage  
VOH(Low) |IOH| 0.1 mA  
VOH  
VOL(Low) IOL 0.1 mA  
VOL  
VDDQ0.2  
VDDQ/20.12  
VSS  
VDD  
Q
V
V
V
V
3, 4  
3, 4  
3, 4  
3, 4  
Note1  
VDDQ/2+0.12  
0.2  
Note2  
VDDQ/20.12  
VDDQ/2+0.12  
Notes 1. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) 15% for values of 175 Ω ≤ RQ 350 Ω.  
2. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) 15% for values of 175 Ω ≤ RQ 350 Ω.  
3. AC load current is higher than the shown DC values.  
4. HSTL outputs meet JEDEC HSTL Class I standards.  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 13 of 34  
μPD46184095B, μPD46184185B  
DC Characteristics 2 (TA = 40 to 85°C, VDD = 1.8 0.1 V)  
Parameter  
Symbol  
Test condition  
MIN.  
MAX.  
Unit Note  
x9  
x18  
Input leakage current  
I/O leakage current  
ILI  
2  
2  
+2  
+2  
μA  
μA  
ILO  
IDD  
Operating supply current  
(Read cycle / Write cycle)  
VIN VIL or VIN VIH, -E33Y  
650  
600  
510  
490  
680  
630  
530  
500  
mA  
II/O = 0 mA,  
Cycle = MAX.  
-E40Y  
Standby supply current  
(NOP)  
ISB1  
VIN VIL or VIN VIH, -E33Y  
mA  
II/O = 0 mA,  
Cycle = MAX.  
Inputs static  
-E40Y  
Output HIGH voltage  
Output LOW voltage  
VOH(Low) |IOH| 0.1 mA  
VOH  
VOL(Low) IOL 0.1 mA  
VOL  
VDDQ0.2  
VDDQ/20.12  
VSS  
VDD  
Q
V
V
V
V
3, 4  
3, 4  
3, 4  
3, 4  
Note1  
VDDQ/2+0.12  
0.2  
Note2  
VDDQ/20.12  
VDDQ/2+0.12  
Notes 1. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) 15% for values of 175 Ω ≤ RQ 350 Ω.  
2. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) 15% for values of 175 Ω ≤ RQ 350 Ω.  
3. AC load current is higher than the shown DC values.  
4. HSTL outputs meet JEDEC HSTL Class I standards.  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 14 of 34  
μPD46184095B, μPD46184185B  
Capacitance (TA = 25°C, f = 1 MHz)  
Parameter  
Symbol  
Test conditions  
MIN.  
MAX.  
Unit  
Input capacitance  
CIN  
VIN = 0 V  
5
pF  
(Address, Control)  
Input / Output capacitance  
(D, Q, CQ, CQ#)  
CI/O  
Cclk  
VI/O = 0 V  
Vclk = 0 V  
7
6
pF  
pF  
Clock Input capacitance  
Remark These parameters are periodically sampled and not 100% tested.  
Thermal Characteristics  
Parameter  
Thermal resistance  
Symbol  
Substrate  
4-layer  
Airflow  
TYP.  
Unit  
θ ja  
0 m/s  
1 m/s  
0 m/s  
1 m/s  
0 m/s  
1 m/s  
0 m/s  
1 m/s  
16.5  
13.2  
15.5  
12.6  
0.07  
0.13  
0.06  
0.12  
3.86  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
from junction to ambient air  
8-layer  
4-layer  
8-layer  
Thermal characterization parameter  
from junction to the top center  
of the package surface  
Ψ jt  
θ jc  
Thermal resistance  
from junction to case  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 15 of 34  
μPD46184095B, μPD46184185B  
AC Characteristics (TA = 0 to 70°C, TA = 40 to 85°C, VDD = 1.8 0.1 V)  
AC Test Conditions (VDD = 1.8 0.1 V, VDDQ = 1.4 V to VDD)  
Input waveform (Rise / Fall time 0.3 ns)  
1.25 V  
0.75 V  
0.75 V  
Test Points  
0.25 V  
Output waveform  
V
DDQ / 2  
Test Points  
VDDQ / 2  
Output load condition  
Figure 1. External load at test  
V
DDQ / 2  
0.75 V  
50 Ω  
V
REF  
ZO = 50 Ω  
SRAM  
250 Ω  
ZQ  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 16 of 34  
μPD46184095B, μPD46184185B  
Read and Write Cycle  
Parameter  
Symbol  
-E33,-E33Y  
(300 MHz)  
-E40,-E40Y  
(250 MHz)  
Unit  
Note  
MIN.  
MAX.  
MIN.  
MAX.  
Clock  
Average Clock cycle time  
(K, K#, C, C#)  
TKHKH  
3.3  
8.4  
0.2  
4.0  
8.4  
0.2  
ns  
1
2
Clock phase jitter (K, K#, C, C#)  
Clock HIGH time (K, K#, C, C#)  
Clock LOW time (K, K#, C, C#)  
Clock HIGH to Clock# HIGH  
(K K#, C C#)  
TKC var  
TKHKL  
TKLKH  
ns  
ns  
ns  
ns  
1.32  
1.32  
1.49  
1.6  
1.6  
1.8  
TKHK#H  
Clock# HIGH to Clock HIGH  
(K# K, C# C)  
Clock to data clock  
TK#HKH  
TKHCH  
1.49  
0
1.8  
0
ns  
ns  
1.45  
1.8  
(K C, K# C#)  
PLL lock time (K, C)  
TKC lock  
20  
30  
20  
30  
μs  
ns  
3
4
K static to PLL reset  
TKC reset  
Output Times  
CQ HIGH to CQ# HIGH  
(CQ CQ#)  
CQ# HIGH to CQ HIGH  
TCQHCQ#H  
TCQ#HCQH  
1.24  
1.24  
1.55  
1.55  
ns  
ns  
5
5
(CQ# CQ)  
C, C# HIGH to output valid  
C, C# HIGH to output hold  
C, C# HIGH to echo clock valid  
C, C# HIGH to echo clock hold  
CQ, CQ# HIGH to output valid  
CQ, CQ# HIGH to output hold  
C HIGH to output High-Z  
C HIGH to output Low-Z  
TCHQV  
TCHQX  
0.45  
0.45  
0.27  
0.45  
0.45  
0.45  
0.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.45  
0.45  
0.27  
0.45  
0.45  
0.45  
0.3  
TCHCQV  
TCHCQX  
TCQHQV  
TCQHQX  
TCHQZ  
6
6
0.45  
TCHQX1  
0.45  
Setup Times  
Address valid to K rising edge  
Synchronous load input (LD#),  
read write input (R, W#) valid to  
K rising edge  
TAVKH  
TIVKH  
0.4  
0.4  
0.5  
0.5  
ns  
ns  
7
7
Data inputs and write data  
select inputs (BWx#) valid to  
K, K# rising edge  
TDVKH  
0.3  
0.35  
ns  
7
Hold Times  
K rising edge to address hold  
K rising edge to  
TKHAX  
TKHIX  
0.4  
0.4  
0.5  
0.5  
ns  
ns  
7
7
synchronous load input (LD#),  
read write input (R, W#) hold  
K, K# rising edge to data inputs  
and write data select inputs  
(BWx#) hold  
TKHDX  
0.3  
0.35  
ns  
7
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 17 of 34  
μPD46184095B, μPD46184185B  
Notes 1. When debugging the system or board, these products can operate at a clock frequency slower than TKHKH  
(MAX.) without the PLL circuit being used, if DLL# = LOW. Read latency (RL) is changed to 1.0 clock  
cycle in this operation. The AC/DC characteristics cannot be guaranteed, however.  
2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. TKC var  
(MAX.) indicates a peak-to-peak value.  
3.  
VDD slew rate must be less than 0.1 V DC per 50 ns for PLL lock retention.  
PLL lock time begins once VDD and input clock are stable.  
It is recommended that the device is kept NOP (LD# = HIGH) during these cycles.  
4. K input is monitored for this operation. See below for the timing.  
K
TKC reset  
or  
K
TKC reset  
5. Guaranteed by design.  
6. Echo clock is very tightly controlled to data valid / data hold. By design, there is a 0.1 ns variation from  
echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.  
7. This is a synchronous device. All addresses, data and control lines must meet the specified setup and hold  
times for all latching clock edges.  
Remarks 1. This parameter is sampled.  
2. Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise  
noted.  
3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).  
4. If C, C# are tied HIGH, K, K# become the references for C, C# timing parameters.  
5. VDDQ is 1.5 V DC.  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 18 of 34  
μPD46184095B, μPD46184185B  
Read and Write Timing  
NOP  
WRITE  
(burst of 2)  
WRITE  
(burst of 2)  
READ  
(burst of 2)  
READ  
(burst of 2)  
READ  
(burst of 2)  
NOP  
1
2
3
4
5
6
7
8
K
TKHKL TKLKH  
TKHKH  
TKHK#H  
TK#HKH  
K#  
LD#  
TKHIX  
TIVKH  
R, W#  
A0  
A2  
A4  
TDVKH TKHDX  
A1  
A3  
Address  
Data in  
TDVKH TKHDX  
TKHAX  
TAVKH  
D20  
D21  
D30  
D31  
Data out  
Q00  
Q01  
Q10  
Q11  
Q40  
Q41  
Qx2  
TCHQX1  
TCHQZ  
TCQHQV  
TCQHQX  
TCHQX  
TCHQX  
TCHQV TCHQV  
CQ  
TCHCQX  
TCQHCQ#H TCQ#HCQH  
TCHCQV  
CQ#  
TCHCQX  
TCHCQV  
TKHCH  
C
TKHKL TKLKH  
TKHKH  
TKHK#H TK#HKH  
TKHCH  
C#  
Remarks 1. Q01 refers to output from address A0+0.  
Q02 refers to output from the next internal burst address following A0, i.e., A0+1.  
2. Outputs are disabled (high impedance) 2.5 clock cycles after the last READ (LD# = LOW, R, W# =  
HIGH) is input in the sequences of [READ]-[NOP] and [READ]-[WRITE].  
3. In this example, if address A4 = A3, data Q41 = D31 and Q42 = D32.  
Write data is forwarded immediately as read results.  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 19 of 34  
μPD46184095B, μPD46184185B  
Application Example  
R =  
250 Ω  
R =  
250 Ω  
ZQ  
CQ#  
CQ  
Q
ZQ  
CQ#  
CQ  
Q
. . .  
SRAM#1  
SRAM#4  
D
A
D
A
LD# R, W# BWx# C/C# K/K#  
LD# R, W# BWx# C/C# K/K#  
V
t
SRAM  
Controller  
R
Data In  
Vt  
Data Out  
Address  
LD#  
R
Vt  
R
R, W#  
BW#  
SRAM#1 CQ/CQ#  
Vt  
R
R
SRAM#4 CQ/CQ#  
Vt  
Source CLK/CLK#  
Return CLK/CLK#  
Vt  
R
R = 50 Ω  
Vt = Vref  
Remark AC Characteristics are defined at the condition of SRAM outputs, CQ, CQ# and Q with termination.  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 20 of 34  
μPD46184095B, μPD46184185B  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Test Access Port (TAP) Pins  
Pin name  
TCK  
Pin assignments  
Description  
2R  
Test Clock Input. All input are captured on the rising edge of TCK and all  
outputs propagate from the falling edge of TCK.  
TMS  
TDI  
10R  
11R  
Test Mode Select. This is the command input for the TAP controller state  
machine.  
Test Data Input. This is the input side of the serial registers placed between  
TDI and TDO. The register placed between TDI and TDO is determined by the  
state of the TAP controller state machine and the instruction that is currently  
loaded in the TAP instruction.  
TDO  
1R  
Test Data Output. This is the output side of the serial registers placed between  
TDI and TDO. Output changes in response to the falling edge of TCK.  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held HIGH  
for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.  
JTAG DC Characteristics (TA = 0 to 70°C, VDD = 1.8 0.1 V, unless otherwise noted)  
Parameter  
Symbol  
Conditions  
MIN.  
5.0  
5.0  
MAX.  
+5.0  
+5.0  
Unit  
μA  
JTAG Input leakage current  
JTAG I/O leakage current  
ILI  
0 V VIN VDD  
0 V VIN VDDQ,  
Outputs disabled  
ILO  
μA  
JTAG input HIGH voltage  
JTAG input LOW voltage  
JTAG output HIGH voltage  
VIH  
VIL  
1.3  
0.3  
1.6  
VDD+0.3  
+0.5  
V
V
V
V
V
V
VOH1  
VOH2  
VOL1  
VOL2  
| IOHC | = 100 μA  
| IOHT | = 2 mA  
1.4  
JTAG output LOW voltage  
I
OLC = 100 μA  
0.2  
0.4  
IOLT = 2 mA  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 21 of 34  
μPD46184095B, μPD46184185B  
JTAG AC Test Conditions  
Input waveform (Rise / Fall time 1 ns)  
1.8 V  
0.9 V  
0 V  
0.9 V  
Test Points  
Output waveform  
0.9 V  
Test Points  
0.9 V  
Output load  
Figure 2. External load at test  
V
TT = 0.9 V  
50 Ω  
ZO = 50 Ω  
TDO  
20 pF  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 22 of 34  
μPD46184095B, μPD46184185B  
JTAG AC Characteristics (TA = 0 to 70°C)  
Parameter  
Symbol  
Conditions  
MIN.  
MAX.  
Unit  
Clock  
Clock cycle time  
Clock frequency  
Clock HIGH time  
Clock LOW time  
tTHTH  
fTF  
tTHTL  
tTLTH  
50  
ns  
MHz  
ns  
20  
20  
20  
ns  
Output time  
TCK LOW to TDO unknown  
TCK LOW to TDO valid  
tTLOX  
tTLOV  
0
ns  
ns  
10  
Setup time  
TMS setup time  
TDI valid to TCK HIGH  
Capture setup time  
tMVTH  
tDVTH  
tCS  
5
5
5
ns  
ns  
ns  
Hold time  
TMS hold time  
tTHMX  
tTHDX  
tCH  
5
5
5
ns  
ns  
ns  
TCK HIGH to TDI invalid  
Capture hold time  
JTAG Timing Diagram  
t
THTH  
TCK  
t
MVTH  
t
THTL  
t
TLTH  
TMS  
TDI  
t
THMX  
t
DVTH  
t
THDX  
t
TLOV  
t
TLOX  
TDO  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 23 of 34  
μPD46184095B, μPD46184185B  
Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The instruction register holds the instructions that are executed by the TAP controller  
when it is moved into the run-test/idle or the various data register state. The register can  
be loaded when it is placed between the TDI and TDO pins. The instruction register is  
automatically preloaded with the IDCODE instruction at power-up whenever the controller  
is placed in test-logic-reset state.  
Bypass register  
ID register  
The bypass register is a single bit register that can be placed between TDI and TDO. It  
allows serial test data to be passed through the RAMs TAP to another device in the scan  
chain with as little delay as possible.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit  
code when the controller is put in capture-DR state with the IDCODE command loaded in  
the instruction register. The register is then placed between the TDI and TDO pins when  
the controller is moved into shift-DR state.  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents  
of the RAMs I/O ring when the controller is in capture-DR state and then is placed  
between the TDI and TDO pins when the controller is moved to shift-DR state. Several  
TAP instructions can be used to activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary  
register location. The first column defines the bit’s position in the boundary register. The  
second column is the name of the input or I/O at the bump and the third column is the  
bump number.  
Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
Bit size  
Unit  
bit  
3
1
bit  
32  
107  
bit  
Boundary register  
bit  
ID Register Definition  
ID [31:28] vendor  
revision no.  
ID [11:1] vendor  
ID no.  
Part number  
Organization  
ID [27:12] part no.  
ID [0] fix bit  
μPD46184095B  
μPD46184185B  
2M x 9  
1M x 18  
XXXX  
XXXX  
0000 0000 0101 0101  
0000 0000 0001 1001  
00000010000  
00000010000  
1
1
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 24 of 34  
μPD46184095B, μPD46184185B  
SCAN Exit Order  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
no.  
x9  
x18  
no.  
x9  
x18  
no.  
x9  
x18  
1
C#  
C
6R  
6P  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
NC  
NC  
10D  
9E  
73  
74  
NC  
2C  
3E  
2D  
2E  
1E  
2F  
3F  
1G  
1F  
3G  
2G  
1J  
2
Q5  
D5  
Q11  
D11  
3
A
6N  
NC  
NC  
Q7  
D7  
10C  
11D  
9C  
75  
4
A
7P  
76  
NC  
NC  
5
A
7N  
NC  
NC  
77  
6
A
7R  
9D  
78  
NC  
NC  
Q12  
D12  
7
A
8R  
Q4  
D4  
Q8  
D8  
11B  
11C  
9B  
79  
8
A
8P  
80  
NC  
NC  
9
A
9R  
NC  
NC  
CQ  
81  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Q0  
D0  
NC  
NC  
11P  
10P  
10N  
9P  
10B  
11A  
Internal  
9A  
82  
Q6  
D6  
Q13  
D13  
83  
84  
NC  
NC  
A
85  
2J  
NC  
NC  
Q1  
D1  
10M  
11N  
9M  
A
8B  
86  
NC  
NC  
Q14  
D14  
3K  
3J  
A
7C  
87  
NC  
NC  
A
6C  
88  
NC  
NC  
2K  
1K  
2L  
9N  
LD#  
NC  
BW0#  
K
8A  
89  
Q1  
D1  
Q2  
D2  
11L  
11M  
9L  
7A  
90  
Q7  
D7  
Q15  
D15  
7B  
91  
3L  
NC  
NC  
6B  
92  
NC  
NC  
1M  
1L  
10L  
11K  
10K  
9J  
K#  
NC  
6A  
93  
NC  
NC  
Q3  
D3  
5B  
94  
NC  
NC  
Q16  
D16  
3N  
3M  
1N  
2M  
3P  
2N  
2P  
1P  
3R  
4R  
4P  
5P  
5N  
5R  
NC  
BW1#  
R, W#  
5A  
95  
NC  
NC  
4A  
96  
NC  
NC  
9K  
A
A
5C  
97  
Q2  
D2  
Q4  
D4  
10J  
11J  
11H  
10G  
9G  
4B  
98  
Q8  
D8  
Q17  
D17  
A
NC  
3A  
99  
ZQ  
NC  
NC  
DLL#  
CQ#  
1H  
100  
101  
102  
103  
104  
105  
106  
107  
NC  
NC  
A
1A  
NC  
NC  
Q9  
D9  
2B  
NC  
NC  
Q5  
D5  
11F  
11G  
9F  
3B  
A
NC  
NC  
1C  
A
NC  
NC  
1B  
A
10F  
11E  
10E  
NC  
NC  
Q10  
D10  
3D  
A
Q3  
D3  
Q6  
D6  
3C  
A
NC  
1D  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 25 of 34  
μPD46184095B, μPD46184185B  
JTAG Instructions  
Instructions  
Description  
EXTEST  
The EXTEST instruction allows circuitry external to the component package to be tested.  
Boundary-scan register cells at output pins are used to apply test vectors, while those at  
input pins capture test results. Typically, the first test vector to be applied using the  
EXTEST instruction will be shifted into the boundary scan register using the PRELOAD  
instruction. Thus, during the update-IR state of EXTEST, the output drive is turned on and  
the PRELOAD data is driven onto the output pins.  
IDCODE  
BYPASS  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the  
controller is in capture-DR mode and places the ID register between the TDI and TDO pins  
in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up  
and any time the controller is placed in the test-logic-reset state.  
When the BYPASS instruction is loaded in the instruction register, the bypass register is  
placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-  
DR state. This allows the board level scan path to be shortened to facilitate testing of other  
devices in the scan path.  
SAMPLE / PRELOAD SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the  
SAMPLE / PRELOAD instruction is loaded in the instruction register, moving the TAP  
controller into the capture-DR state loads the data in the RAMs input and Q pins into the  
boundary scan register. Because the RAM clock(s) are independent from the TAP clock  
(TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input  
buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample  
metastable input will not harm the device, repeatable results cannot be expected. RAM  
input signals must be stabilized for long enough to meet the TAPs input data capture setup  
plus hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any other  
TAP operation except capturing the I/O ring contents into the boundary scan register.  
Moving the controller to shift-DR state then places the boundary scan register between the  
TDI and TDO pins.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM Q pins are forced  
to an inactive drive state (high impedance) and the boundary register is connected between  
TDI and TDO when the TAP controller is moved to the shift-DR state.  
JTAG Instruction Coding  
IR2  
0
IR1  
0
IR0  
0
Instruction  
EXTEST  
Note  
0
0
1
IDCODE  
0
1
0
SAMPLE-Z  
1
2
0
1
1
RESERVED  
SAMPLE / PRELOAD  
RESERVED  
RESERVED  
BYPASS  
1
0
0
1
0
1
2
2
1
1
0
1
1
1
Notes 1. TRISTATE all Q pins and CAPTURE the pad values into a SERIAL SCAN LATCH.  
2. Do not use this instruction code because the vendor uses it to evaluate this product.  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 26 of 34  
μPD46184095B, μPD46184185B  
Output Pin States of CQ, CQ# and Q  
Instructions  
Control-Register Status  
Output Pin Status  
CQ,CQ#  
Update  
Update  
SRAM  
SRAM  
High-Z  
High-Z  
SRAM  
SRAM  
SRAM  
SRAM  
Q
EXTEST  
0
1
0
1
0
1
0
1
0
1
High-Z  
Update  
SRAM  
SRAM  
High-Z  
High-Z  
SRAM  
SRAM  
SRAM  
SRAM  
IDCODE  
SAMPLE-Z  
SAMPLE  
BYPASS  
Remark The output pin statuses during each instruction vary according  
to the Control-Register status (value of Boundary Scan  
Register, bit no. 48).  
Boundary Scan  
Register  
CAPTURE  
Register  
There are three statuses:  
Update : Contents of the “Update Register” are output to the  
output pin (DDR Pad).  
SRAM  
Output  
Update  
Register  
SRAM : Contents of the SRAM internal output “SRAM  
Output” are output to the output pin (DDR Pad).  
High-Z :The output pin (DDR Pad) becomes high  
impedance by controlling of the “High-Z JTAG  
ctrl”.  
Update  
DDR  
Pad  
SRAM  
SRAM  
Output  
Driver  
High-Z  
The Control-Register status is set during Update-DR at the  
EXTEST or SAMPLE instruction.  
High-Z  
JTAG ctrl  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 27 of 34  
μPD46184095B, μPD46184185B  
Boundary Scan Register Status of Output Pins CQ, CQ# and Q  
Instructions  
SRAM Status  
Boundary Scan Register Status  
Note  
CQ,CQ#  
Q
Pad  
Pad  
EXTEST  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
Pad  
Pad  
IDCODE  
SAMPLE-Z  
SAMPLE  
BYPASS  
No definition  
Pad  
Pad  
Internal  
Internal  
Pad  
Pad  
Internal  
Pad  
No definition  
Remark The Boundary Scan Register statuses during execution each  
instruction vary according to the instruction code and SRAM  
operation mode.  
Boundary Scan  
Register  
CAPTURE  
Register  
There are two statuses:  
Internal  
Pad  
: Contents of the output pin (DDR Pad) are captured  
in the “CAPTURE Register” in the Boundary Scan  
Register.  
SRAM  
Output  
Update  
Register  
Pad  
Internal : Contents of the SRAM internal output “SRAM  
Output” are captured in the “CAPTURE Register”  
in the Boundary Scan Register.  
DDR  
Pad  
SRAM  
Output  
Driver  
High-Z  
JTAG ctrl  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 28 of 34  
μPD46184095B, μPD46184185B  
TAP Controller State Diagram  
1
Test-Logic-Reset  
0
1
1
1
0
Run-Test / Idle  
Select-DR-Scan  
0
Select-IR-Scan  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with  
normal operation of the device, TCK must be tied to VSS to preclude mid level inputs. TDI and TMS may be left open  
but fix them to VDD via a resistor of about 1 kΩ when the TAP controller is not used. TDO should be left unconnected  
also when the TAP controller is not used.  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 29 of 34  
μPD46184095B, μPD46184185B  
Run-Test/Idle  
Update-IR  
Exit1-IR  
Shift-IR  
Exit2-IR  
Pause-IR  
Exit1-IR  
Shift-IR  
Capture-IR  
Select-IR-Scan  
Select-DR-Scan  
Run-Test/Idle  
Test-Logic-Reset  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 30 of 34  
μPD46184095B, μPD46184185B  
Test-Logic-Reset  
Select-IR-Scan  
Select-DR-Scan  
Run-Test/Idle  
Update-DR  
Exit1-DR  
Shift-DR  
Exit2-DR  
Pause-DR  
Exit1-DR  
Shift-DR  
Capture-DR  
Select-DR-Scan  
Run-Test/Idle  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 31 of 34  
μPD46184095B, μPD46184185B  
Package Dimensions  
165-PIN PLASTIC BGA(13x15)  
w
S
B
ZD  
B
E
ZE  
11  
10  
9
8
7
A
6
5
D
4
3
2
1
R P N M L K J H G F E D C B A  
w
S A  
INDEX MARK  
A
(UNIT:mm)  
ITEM DIMENSIONS  
A2  
y1  
S
D
E
13.00±0.10  
15.00±0.10  
0.30  
S
w
A
1.35±0.11  
0.37±0.05  
0.98  
A1  
A2  
e
y
e
x
A1  
S
S
1.00  
M
b
A B  
+0.10  
0.05  
b
0.50  
x
0.10  
0.15  
y
y1  
ZD  
ZE  
0.25  
1.50  
0.50  
T165F1-100-EQ1  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 32 of 34  
μPD46184095B, μPD46184185B  
Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of these products.  
Types of Surface Mount Devices  
μPD46184095BF1-EQ1  
μPD46184185BF1-EQ1  
:
:
165-pin PLASTIC BGA (13 x 15)  
165-pin PLASTIC BGA (13 x 15)  
Quality Grade  
• A quality grade of the products is “Standard”.  
• Anti-radioactive design is not implemented in the products.  
• Semiconductor devices have the possibility of unexpected defects by affection of cosmic ray that reach to  
the ground and so forth.  
R10DS0115EJ0200 Rev.2.00  
Nov 09, 2012  
Page 33 of 34  
Revision History  
μPD46184095B, μPD46184185B  
Description  
Summary  
Rev.  
Date  
Page  
-
Rev.1.00  
Rev.2.00  
’12.06.01  
’12.11.09  
New Data Sheet  
Addition : -E33,-E33Y series, Lead series  
Deletion : -E50,-E50Y series  
ALL  
All trademarks and registered trademarks are the property of their respective owners.  
C - 34  

相关型号:

UPD46184095BF1-E40-EQ1-A

UPD46184095BF1-E40-EQ1-A
RENESAS

UPD46184182BF1-E40-EQ1

QDRII/DDRII/ QDRII+/DDRII+ SRAM, LBGA, /Tray
RENESAS