X28C010EM-25 [RENESAS]

IC,EEPROM,128KX8,CMOS,LLCC,32PIN,CERAMIC;
X28C010EM-25
型号: X28C010EM-25
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

IC,EEPROM,128KX8,CMOS,LLCC,32PIN,CERAMIC

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 内存集成电路
文件: 总24页 (文件大小:132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1M  
128K x 8 Bit  
X28C010  
5 Volt, Byte Alterable E2PROM  
FEATURES  
DESCRIPTION  
2
• Access Time: 120ns  
• Simple Byte and Page Write  
—Single 5V Supply  
—No External High Voltages or VPP Control Cir-  
cuits  
—Self-Timed  
• No Erase Before Write  
• No Complex Programming Algorithms  
• No Overerase Problem  
• Low Power CMOS:  
—Active: 50mA  
—Standby: 500µA  
• Software Data Protection  
—Protects Data Against System Level  
Inadvertant Writes  
• High Speed Page Write Capability  
• Highly Reliable Direct Write™ Cell  
—Endurance: 100,000 Write Cycles  
—Data Retention: 100Years  
• Early End of Write Detection  
DATA Polling  
The Xicor X28C010 is a 128K x 8 E PROM, fabricated  
with Xicor's proprietary, high performance, floating gate  
CMOS technology. Like all Xicor programmable non-  
volatile memories the X28C010 is a 5V only device. The  
X28C010 features the JEDEC approved pinout for byte-  
wide memories, compatible with industry standard  
EPROMs.  
The X28C010 supports a 256-byte page write operation,  
effectively providing a 19µs/byte write cycle and enabling  
the entire memory to be typically written in less than 2.5  
seconds. The X28C010 also features DATA Polling and  
Toggle Bit Polling, system software support schemes  
used to indicate the early completion of a write cycle. In  
addition, the X28C010 supports Software Data Protection  
option.  
2
Xicor E PROMs are designed and tested for applications  
requiring extended endurance. Data retention is specified  
to be greater than 100 years.  
Toggle Bit Polling  
PIN CONFIGURATIONS  
EXTENDED LCC  
PLCC  
CERDIP  
FLAT PACK  
SOIC (R)  
LCC  
PGA  
4
3
2
32 31 30  
30  
29  
I/O  
15  
I/O  
17  
I/O  
19  
I/O  
21  
I/O  
22  
1
0
2
3
5
6
4
3
2
32 31  
A
NC  
1
32  
V
A
5
6
7
5
29  
A
14  
7
A
7
CC  
14  
1
A
A
6
7
28  
27  
26  
25  
24  
23  
22  
21  
A
A
8
28  
27  
26  
25  
24  
23  
22  
A
A
6
6
13  
13  
A
2
3
31  
30  
WE  
CE  
24  
A
13  
A
I/O  
V
I/O  
I/O  
A
A
16  
1
0
1
SS  
4
7
5
5
8
14  
16  
18  
20  
23  
A
A
A
A
A
8
9
8
9
NC  
4
9
4
9
15  
X28C010  
(TOP VIEW)  
X28C010  
(TOP VIEW)  
A
A
A
A
11  
A
A
A
10  
OE  
26  
3
11  
3
2
3
A
4
5
29  
28  
A
A
10  
11  
OE  
A
A
10  
11  
OE  
12  
14  
12  
11  
25  
2
2
A
A
A
A
1
10  
1
10  
A
7
13  
A
A
A
A
4
5
X28C010  
(BOTTOM VIEW)  
11  
9
A
12  
13  
CE  
I/O  
A
12  
13  
CE  
0
0
10  
9
7
27  
28  
A
6
6
27  
A
8
I/O  
I/O  
0
I/O  
0
15 1617 18 1920  
7
7
21  
14  
A
A
A
A
13  
A
7
8
26  
25  
A
6
7
8
14 15 1617 18 1920  
5
9
8
6
29  
30  
A
4
A
11  
X28C010  
A
A
NC  
NC  
V
NC  
34  
NC  
32  
A
14  
31  
12  
15  
CC  
A
9
24  
23  
OE  
3
5
4
2
3
36  
TSOP  
A
2
10  
A
10  
A
NC  
NC  
33  
WE  
35  
16  
1
2
3
4
5
6
7
8
40  
39  
A11  
A9  
A8  
A
11  
12  
13  
14  
15  
16  
22  
21  
20  
19  
18  
17  
CE  
1
OE  
A10  
CE  
1
38  
37  
36  
A
0
I/O  
7
I/O  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
NC  
NC  
VSS  
NC  
A13  
A14  
NC  
I/O  
0
6
35  
34  
NC  
NC  
WE  
I/O  
I/O  
5
I/O  
1
33  
32  
31  
9
I/O  
2
4
X28C010  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VCC  
NC  
NC  
30  
29  
28  
V
I/O  
3
SS  
NC  
A16  
A15  
NC  
I/O2  
I/O1  
I/O0  
A0  
A1  
A2  
27  
26  
25  
A12  
A7  
A6  
24  
23  
22  
21  
A5  
A4  
A3  
????-1.0 2/12/99 ??/??/?? EP  
Characteristics subject to change without notice  
1
X28C010  
PIN DESCRIPTIONS  
Addresses (A0–A16)  
PIN NAMES  
Symbol  
Description  
The Address inputs select an 8-bit memory location  
during a read or write operation.  
A –A  
Address Inputs  
0
16  
I/O –I/O  
Data Input/Output  
Write Enable  
Chip Enable  
Output Enable  
+5V  
0
7
Chip Enable (CE)  
WE  
CE  
OE  
The Chip Enable input must be LOW to enable all read/  
write operations. When CE is HIGH, power consumption  
is reduced.  
V
Output Enable (OE)  
CC  
The Output Enable input controls the data output buffers  
and is used to initiate read operations.  
V
Ground  
SS  
NC  
No Connect  
Data In/Data Out (I/O0–I/O7)  
Data is written to or read from the X28C010 through the  
I/O pins.  
Write Enable (WE)  
The Write Enable input controls the writing of data to the  
X28C010.  
FUNCTIONAL DIAGRAM  
1M-BIT  
X BUFFERS  
LATCHES AND  
DECODER  
2
A –A  
E PROM  
ARRAY  
8
16  
I/O BUFFERS  
AND LATCHES  
Y BUFFERS  
LATCHES AND  
DECODER  
A –A  
0
7
I/O –I/O  
DATA INPUTS/OUTPUTS  
0
7
CE  
OE  
CONTROL  
LOGIC AND  
TIMING  
WE  
V
CC  
V
SS  
2
X28C010  
DEVICE OPERATION  
Read  
Write Operation Status Bits  
The X28C010 provides the user two write operation  
status bits.These can be used to optimize a system write  
cycle time. The status bits are mapped onto the I/O bus  
as shown in Figure 1.  
Read operations are initiated by both OE and CE LOW.  
The read operation is terminated by either CE or OE  
returning HIGH. This two line control architecture  
eliminates bus contention in a system environment. The  
data bus will be in a high impedance state when either  
OE or CE is HIGH.  
Figure 1. Status Bit Assignment  
I/O DP TB  
5
4
3
2
1
0
Write  
Write operations are initiated when both CE and WE are  
LOW and OE is HIGH.The X28C010 supports both a  
CE and WE controlled write cycle. That is, the address is  
latched by the falling edge of either CE or WE, whichever  
occurs last. Similarly, the data is latched internally by the  
rising edge of either CE or WE, whichever occurs first. A  
byte write operation, once initiated, will automatically  
continue to completion, typically within 5ms.  
RESERVED  
TOGGLE BIT  
DATA POLLING  
DATA Polling (I/O7)  
The X28C010 features DATA Polling as a method to  
indicate to the host system that the byte write or page  
write cycle has completed. DATA Polling allows a simple  
bit test operation to determine the status of the X28C010,  
eliminating additional interrupt inputs or external  
hardware. During the internal programming cycle, any  
attempt to read the last byte written will produce the  
complement of that data on I/O7 (i.e., write data = 0xxx  
xxxx, read data = 1xxx xxxx). Once the programming  
cycle is complete, I/O7 will reflect true data. Note: If the  
X28C010 is in the protected state and an illegal write  
operation is attempted DATA Polling will not operate.  
Page Write Operation  
The page write feature of the X28C010 allows the entire  
memory to be written in 5 seconds. Page write allows two  
to two hundred fifty-six bytes of data to be consecutively  
written to the X28C010 prior to the commencement of  
the internal programming cycle. The host can fetch data  
from another device within the system during a page  
write operation (change the source address), but the  
page address (A8 through A16) for each subsequent valid  
write cycle to the part during this operation must be the  
same as the initial page address.  
Toggle Bit (I/O6)  
The X28C010 also provides another method for  
determining when the internal write cycle is complete.  
During the internal programming cycle, I/O6 will toggle  
from HIGH to LOW and LOW to HIGH on subsequent  
attempts to read the device. When the internal cycle is  
complete the toggling will cease and the device will be  
accessible for additional read or write operations.  
The page write mode can be initiated during any write  
operation. Following the initial byte write cycle, the host  
can write an additional one to two hundred fifty six bytes  
in the same manner as the first byte was written. Each  
successive byte load cycle, started by the WE HIGH to  
LOW transition, must begin within 100µs of the falling  
edge of the preceding WE. If a subsequent WE HIGH to  
LOW transition is not detected within 100µs, the internal  
automatic programming cycle will commence. There is  
no page write window limitation. Effectively the page  
write window is infinitely wide, so long as the host  
continues to access the device within the byte load cycle  
time of 100µs.  
3
X28C010  
DATA Polling I/O7  
Figure 2. DATA Polling Bus Sequence  
LAST  
WRITE  
WE  
CE  
OE  
V
IH  
V
HIGH Z  
OH  
I/O  
7
V
OL  
X28C010  
READY  
A –A  
0
14  
An  
An  
An  
An  
An  
An  
An  
Figure 3. DATA Polling Software Flow  
DATA Polling can effectively halve the time for writing to  
the X28C010. The timing diagram in Figure 2 illustrates  
the sequence of events on the bus. The software flow  
diagram in Figure 3 illustrates one method of implement-  
ing the routine.  
WRITE DATA  
NO  
WRITES  
COMPLETE?  
YES  
SAVE LAST DATA  
AND ADDRESS  
READ LAST  
ADDRESS  
IO  
7
NO  
COMPARE?  
YES  
X28C010  
READY  
4
X28C010  
The Toggle Bit I/O6  
Figure 4. Toggle Bit Bus Sequence  
LAST  
WRITE  
WE  
CE  
OE  
V
OH  
HIGH Z  
I/O  
6
*
*
V
OL  
X28C010  
READY  
* Beginning and ending state of I/O will vary.  
6
Figure 5. Toggle Bit Software Flow  
The Toggle Bit can eliminate the software housekeeping  
chore of saving and fetching the last address and data  
written to a device in order to implement DATA Polling.  
This can be especially helpful in an array comprised of  
multiple X28C010 memories that is frequently updated.  
Toggle Bit Polling can also provide a method for status  
checking in multiprocessor applications. The timing  
diagram in Figure 4 illustrates the sequence of events on  
the bus. The software flow diagram in Figure 5 illustrates  
a method for polling the Toggle Bit.  
LAST WRITE  
LOAD ACCUM  
FROM ADDR n  
COMPARE  
ACCUM WITH  
ADDR n  
NO  
COMPARE  
OK?  
YES  
READY  
5
X28C010  
HARDWARE DATA PROTECTION  
The X28C010 can be automatically protected during  
power-up and power-down without the need for external  
circuits by employing the software data protection  
feature. The internal software data protection circuit is  
enabled after the first write operation utilizing the  
software algorithm. This circuit is nonvolatile and will  
remain set for the life of the device unless the reset  
command is issued.  
The X28C010 provides three hardware features that  
protect nonvolatile data from inadvertent writes.  
• Noise Protection—A WE pulse less than 10ns will not  
initiate a write cycle.  
• Default VCC Sense—All functions are inhibited when  
VCC is £3.5V.  
• Write inhibit—Holding either OE LOW, WE HIGH, or  
CE HIGH will prevent an inadvertent write cycle during  
power-up and power-down, maintaining data integrity.  
Once the software protection is enabled, the X28C010 is  
also protected from inadvertent and accidental writes in  
the powered-up state. That is, the software algorithm  
must be issued prior to writing additional data to the  
device.  
SOFTWARE DATA PROTECTION  
The X28C010 offers a software controlled data protection  
feature. The X28C010 is shipped from Xicor with the  
software data protection NOT ENABLED: that is the  
device will be in the standard operating mode. In this  
mode data should be protected during power-up/-down  
operations through the use of external circuits. The host  
would then have open read and write access of the  
device once VCC was stable.  
SOFTWARE ALGORITHM  
Selecting the software data protection mode requires the  
host system to precede data write operations by a series  
of three write operations to three specific addresses.  
Refer to Figures 6 and 7 for the sequence.The three byte  
sequence opens the page write window enabling the  
host to write from one to two hundred fifty-six bytes of  
data. Once the page load cycle has been completed, the  
device will automatically be returned to the data  
protected state.  
6
X28C010  
Software Data Protection  
Figure 6. Timing Sequence—Byte or Page Write  
V
(V  
)
CC  
CC  
0V  
DATA  
ADDR  
AA  
5555  
55  
2AAA  
A0  
5555  
t
WRITE  
PROTECTED  
WC  
WRITES  
OK  
CE  
£t  
BYTE  
OR  
PAGE  
BLC MAX  
WE  
Figure 7. Write Sequence for  
Software Data Protection  
Regardless of whether the device has previously been  
protected or not, once the software data protection  
algorithm is used and data has been written, the  
X28C010 will automatically disable further writes unless  
another command is issued to cancel it. If no further  
commands are issued the X28C010 will be write  
protected during power-down and after any subsequent  
power-up. The state of A15 and A16 while executing the  
algorithm is don’t care.  
WRITE DATA AA  
TO ADDRESS  
5555  
WRITE DATA 55  
TO ADDRESS  
2AAA  
Note: Once initiated, the sequence of write operations  
should not be interrupted.  
WRITE DATA A0  
TO ADDRESS  
5555  
WRITE DATA XX  
TO ANY  
ADDRESS  
OPTIONAL  
BYTE/PAGE  
LOAD OPERATION  
WRITE LAST  
BYTE TO  
LASTADDRESS  
AFTER t  
WC  
RE-ENTERS DATA  
PROTECTED STATE  
7
X28C010  
Resetting Software Data Protection  
Figure 8. Reset Software Data Protection Timing Sequence  
V
CC  
DATA  
AA  
55  
2AAA  
80  
5555  
AA  
5555  
55  
2AAA  
20  
5555  
STANDARD  
OPERATING  
MODE  
³t  
ADDR 5555  
WC  
CE  
WE  
Figure 9. Software Sequence to Deactivate  
Software Data Protection  
In the event the user wants to deactivate the software  
data protection feature for testing or reprogramming in an  
E PROM programmer, the following six step algorithm  
will reset the internal protection circuit. After tWC, the  
X28C010 will be in standard operating mode.  
WRITE DATA AA  
TO ADDRESS  
5555  
2
Note: Once initiated, the sequence of write operations  
should not be interrupted.  
WRITE DATA 55  
TO ADDRESS  
2AAA  
WRITE DATA 80  
TO ADDRESS  
5555  
WRITE DATA AA  
TO ADDRESS  
5555  
WRITE DATA 55  
TO ADDRESS  
2AAA  
WRITE DATA 20  
TO ADDRESS  
5555  
8
X28C010  
SYSTEM CONSIDERATIONS  
the output capacitive loading of the I/Os. Therefore, the  
larger the array sharing a common bus, the larger the  
transient spikes. The voltage peaks associated with the  
current transients can be suppressed by the proper  
selection and placement of decoupling capacitors. As a  
minimum, it is recommended that a 0.1µF high frequency  
ceramic capacitor be used between VCC and VSS at each  
device. Depending on the size of the array, the value of  
the capacitor may have to be larger.  
Because the X28C010 is frequently used in large  
memory arrays it is provided with a two line control  
architecture for both read and write operations. Proper  
usage can provide the lowest possible power dissipation  
and eliminate the possibility of contention where multiple  
I/O pins share the same bus.  
To gain the most benefit it is recommended that CE be  
decoded from the address bus and be used as the  
primary device selection input. Both OE and WE would  
then be common among all devices in the array. For a  
read operation this assures that all deselected devices  
are in their standby mode and that only the selected  
device(s) is outputting data on the bus.  
In addition, it is recommended that a 4.7µF electrolytic  
bulk capacitor be placed between VCC and VSS for each  
eight devices employed in the array.This bulk capacitor is  
employed to overcome the voltage drop caused by the  
inductive effects of the PC board traces.  
Because the X28C010 has two power modes, standby  
and active, proper decoupling of the memory array is of  
prime concern. Enabling CE will cause transient current  
spikes. The magnitude of these spikes is dependent on  
Active Supply Current vs. Ambient Temperature  
ICC (RD) by Temperature over Frequency  
18  
60  
VCC = 5V  
5.0 VCC  
50  
16  
14  
12  
10  
–55°C  
+25°C  
40  
30  
20  
10  
+125°C  
–55  
–10  
+35  
+80  
+125  
0
3
6
9
12  
15  
AMBIENT TEMPERATURE (° C)  
FREQUENCY (MHz)  
Standby Supply Current vs. Ambient Temperature  
0.3  
VCC = 5V  
0.25  
0.2  
0.15  
0.1  
0.05  
–55  
–10  
+35  
+80  
+125  
AMBIENT TEMPERATURE (° C)  
9
X28C010  
ABSOLUTE MAXIMUM RATINGS*  
*COMMENT  
Temperature under Bias  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and the functional operation of  
the device at these or any other conditions above those  
indicated in the operational sections of this specification  
is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device  
reliability.  
X28C010............................................–10°C to +85°C  
X28C010I.........................................–65°C to +135°C  
X28C010M ......................................–65°C to +135°C  
Storage Temperature..............................–65°C to +150°C  
Voltage on any Pin with  
Respect to VSS.......................................... –1V to +7V  
D.C. Output Current ....................................................5mA  
Lead Temperature  
(Soldering, 10 seconds) ................................... 300°C  
RECOMMEND OPERATING CONDITIONS  
Temperature  
Commercial  
Industrial  
Min.  
0°C  
Max.  
+70°C  
+85°C  
+125°C  
Supply Voltage  
Limits  
X28C010  
5V ±10%  
–40°C  
–55°C  
Military  
D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions, unless otherwise specified.)  
Limits  
Symbol  
Parameter  
Min.  
Max.  
Units  
Test Conditions  
CE = OE = VIL, WE = VIH,  
VCC Current (Active)  
(TTL Inputs)  
ICC  
50  
mA  
All I/O’s = Open, Address Inputs =  
.4V/2.4V Levels @ f = 5MHz  
CE = VIH, OE = VIL  
VCC Current (Standby)  
(TTL Inputs)  
ISB1  
3
mA  
µA  
All I/O’s = Open, Other Inputs = VIH  
CE = VCC – 0.3V, OE = VIL  
VCC Current (Standby)  
(CMOS Inputs)  
ISB2  
500  
All I/O’s = Open, Other Inputs = VCC  
ILI  
V
IN = VSS to VCC  
Input Leakage Current  
Output Leakage Current  
Input LOW Voltage  
10  
10  
µA  
µA  
V
ILO  
VOUT = VSS to VCC, CE = VIH  
(1)  
VlL  
–1  
2
0.8  
(1)  
V
CC + 1  
VIH  
Input HIGH Voltage  
Output LOW Voltage  
Output HIGH Voltage  
V
VOL  
VOH  
IOL = 2.1mA  
0.4  
V
IOH = –400µA  
2.4  
V
Notes: (1) VIL min. and VIH max. are for reference only and are not tested.  
10  
X28C010  
POWER-UP TIMING  
Symbol  
Parameter  
Max.  
100  
5
Units  
µs  
(2)  
tPUR  
Power-up to Read Operation  
Power-up to Write Operation  
(2)  
tPUW  
ms  
CAPACITANCE TA = +25°C, f = 1MHZ, VCC = 5V  
Symbol  
Parameter  
Max.  
10  
Units  
pF  
Test Conditions  
(2)  
VI/O = 0V  
CI/O  
Input/Output Capacitance  
Input Capacitance  
(2)  
VIN = 0V  
CIN  
10  
pF  
ENDURANCE AND DATA RETENTION  
Parameter  
Endurance  
Min.  
10,000  
100,000  
100  
Max.  
Units  
Cycles Per Byte  
Cycles Per Page  
Years  
Endurance  
Data Retention  
A.C. CONDITIONS OF TEST  
MODE SELECTION  
Input Pulse Levels  
0V to 3V  
10ns  
CE  
L
OE  
L
WE  
Mode  
I/O  
DOUT  
DIN  
Power  
Active  
Active  
Input Rise and  
Fall Times  
H
L
Read  
Write  
L
H
Input and Output  
Timing Levels  
Standby and  
Write Inhibit  
1.5V  
H
X
X
High Z  
Standby  
X
X
L
X
H
Write Inhibit  
Write Inhibit  
X
EQUIVALENT A.C. LOAD CIRCUIT  
SYMBOL TABLE  
5V  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
1.92KW  
OUTPUT  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
1.37KW  
100pF  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
Notes: (2) This parameter is periodically sampled and not 100%  
tested.  
11  
X28C010  
A.C. CHARACTERISTICS (Over the recommended operating conditions, unless otherwise specified.)  
Read Cycle Limits  
X28C010-12 X28C010-15 X28C010-20 X28C010-25  
Symbol  
tRC  
Parameter  
Read Cycle Time  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
120  
150  
200  
250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCE  
Chip Enable Access Time  
Address Access Time  
120  
120  
50  
150  
150  
50  
200  
200  
50  
250  
250  
50  
tAA  
tOE  
Output Enable Access Time  
CE LOW to Active Output  
OE LOW to Active Output  
CE HIGH to High Z Output  
OE HIGH to High Z Output  
(3)  
tLZ  
0
0
0
0
0
0
0
0
(3)  
tOLZ  
(3)  
tHZ  
50  
50  
50  
50  
50  
50  
50  
50  
(3)  
tOHZ  
Output Hold from  
Address Change  
tOH  
0
0
0
0
ns  
Read Cycle  
t
RC  
ADDRESS  
CE  
t
CE  
t
OE  
OE  
V
IH  
WE  
t
t
OLZ  
OHZ  
t
t
t
t
LZ  
OH  
AA  
HZ  
HIGH Z  
DATA I/O  
DATA VALID  
DATA VALID  
Notes: (3) tLZ min.,tHZ, tOLZ min., and tOHZ are periodically sampled and not 100% tested. tHZ max. and tOHZ max. are measured, with CL = 5pF, from the  
point when CE or OE return HIGH (whichever occurs first) to the time when the outputs are no longer driven.  
12  
X28C010  
Write Cycle Limits  
Symbol  
Parameter  
Write Cycle Time  
Address Setup Time  
Min.  
Max.  
Units  
ms  
ns  
(4)  
tWC  
tAS  
10  
0
50  
0
tAH  
Address Hold Time  
Write Setup Time  
Write Hold Time  
CE Pulse Width  
OE HIGH Setup Time  
OE HIGH Hold Time  
WE Pulse Width  
WE HIGH Recovery  
Data Valid  
ns  
tCS  
ns  
tCH  
0
ns  
tCW  
tOES  
tOEH  
tWP  
tWPH  
tDV  
100  
10  
10  
100  
100  
ns  
ns  
ns  
ns  
ns  
1
µs  
tDS  
Data Setup  
50  
0
ns  
tDH  
Data Hold  
ns  
tDW  
tBLC  
Delay to Next Write  
Byte Load Cycle  
10  
0.2  
µs  
100  
µs  
WE Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AS  
AH  
t
t
CS  
CH  
CE  
OE  
t
t
OES  
t
OEH  
t
WP  
WE  
t
WPH  
DV  
DATA IN  
DATA OUT  
DATA VALID  
t
t
DS  
DH  
HIGH Z  
Notes: (4) tWC is the minimum cycle time to be allowed from the system perspective unless polling techniques are used. It is the maximum time the  
device requires to complete internal write operation.  
13  
X28C010  
CE Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AS  
AH  
t
CW  
CE  
t
WPH  
t
OES  
OE  
t
OEH  
t
CS  
t
t
CH  
DH  
WE  
t
DV  
DATA VALID  
DATA IN  
t
DS  
HIGH Z  
DATA OUT  
Page Write Cycle  
(5)  
OE  
CE  
t
t
WP  
BLC  
WE  
t
WPH  
(6)  
ADDRESS *  
I/O  
LASTBYTE  
BYTE n+2  
BYTE 0  
BYTE 1  
BYTE 2  
BYTE n  
BYTE n+1  
t
WC  
*For each successive write within the page write operation, A –A should be the same or  
16  
8
writes to an unknown address could occur.  
Notes: (5) Between successive byte writes within a page write operation, OE can be strobed LOW: e.g. this can be done with CE and WE HIGH to  
fetch data from another memory device within the system for the next write; or with WE HIGH and CE LOW effectively performing a poll-  
ing operation.  
(6) The timings shown above are unique to page write operations. Individual byte load operations within the page write must conform to  
either the CE or WE controlled write cycle timing.  
14  
X28C010  
(7)  
DATA Polling Timing Diagram  
ADDRESS  
CE  
An  
An  
An  
WE  
t
t
OEH  
OES  
OE  
t
DW  
D
=X  
D
=X  
I/O  
D
=X  
OUT  
OUT  
IN  
7
t
WC  
Toggle Bit Timing Diagram  
CE  
WE  
t
OES  
t
OEH  
OE  
t
DW  
HIGH Z  
I/O  
*
6
*
t
WC  
* I/O beginning and ending state will vary.  
6
Notes: (7) Polling operations are by definition read cycles and are therefore subject to read cycle timings.  
15  
X28C010  
PACKAGING INFORMATION  
32-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE D  
1.690 (42.95)  
MAX.  
0.610 (15.49)  
0.500 (12.70)  
PIN 1  
0.005 (0.13) MIN.  
0.100 (2.54) MAX.  
SEATING  
PLANE  
0.232 (5.90) MAX.  
0.060 (1.52)  
0.015 (0.38)  
0.150 (3.81) MIN.  
0.200 (5.08)  
0.125 (3.18)  
0.065 (1.65)  
0.033 (0.84)  
0.023 (0.58)  
0.014 (0.36)  
0.110 (2.79)  
0.090 (2.29)  
TYP.0.055 (1.40)  
TYP.0.018 (0.46)  
TYP. 0.100 (2.54)  
0.620 (15.75)  
0.590 (14.99)  
TYP.0.614 (15.60)  
0°  
0.015 (0.38)  
0.008 (0.20)  
15°  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F09  
16  
X28C010  
PACKAGING INFORMATION  
32-PAD CERAMIC LEADLESS CHIP CARRIER PACKAGE TYPE E  
0.300 (7.62)  
BSC  
0.150 (3.81) BSC  
0.020 (0.51) x 45° REF.  
0.015 (0.38)  
0.003 (0.08)  
0.095 (2.41)  
0.075 (1.91)  
PIN 1  
0.022 (0.56)  
DIA.  
0.006 (0.15)  
0.055 (1.39)  
0.045 (1.14)  
0.200 (5.08)  
BSC  
0.015 (0.38)  
TYP. (4) PLCS.  
MIN.  
0.028 (0.71)  
0.022 (0.56)  
(32) PLCS.  
0.040 (1.02) x 45° REF.  
TYP. (3) PLCS.  
0.050 (1.27) BSC  
0.458 (11.63)  
0.088 (2.24)  
0.050 (1.27)  
0.442 (11.22)  
0.458 (11.63)  
––  
0.120 (3.05)  
0.060 (1.52)  
0.558 (14.17)  
––  
0.560 (14.22)  
0.540 (13.71)  
0.400 (10.16)  
BSC  
PIN 1 INDEX CORNER  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. TOLERANCE: ±1% NLT ±0.005 (0.127)  
3926 FHD F14  
17  
X28C010  
PACKAGING INFORMATION  
32-LEAD CERAMIC FLAT PACK TYPE F  
1.228 (31.19)  
1.000 (25.40)  
PIN 1 INDEX  
0.019 (0.48)  
0.015 (0.38)  
1
32  
0.050 (1.27) BSC  
0.830 (21.08) MAX.  
0.045 (1.14) MAX.  
0.005 (0.13) MIN.  
0.488  
0.120 (3.05)  
0.090 (2.29)  
0.007 (0.18)  
0.004 (0.10)  
0.430 (10.93)  
0.370 (9.40)  
0.270 (6.86)  
0.045 (1.14)  
0.026 (0.66)  
0.347 (8.82)  
0.330 (8.38)  
0.030 (0.76)  
MIN  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F20  
18  
X28C010  
PACKAGING INFORMATION  
32-LEAD PLASTIC LEADED CHIP CARRIER PACKAGE TYPE J  
0.030" TYPICAL  
32 PLACES  
0.050"  
0.420 (10.67)  
TYPICAL  
0.050"  
TYPICAL  
0.510"  
TYPICAL  
0.400"  
0.050 (1.27) TYP.  
0.300"  
REF  
0.410"  
FOOTPRINT  
0.021 (0.53)  
0.013 (0.33)  
TYP.0.017 (0.43)  
SEATING PLANE  
±0.004 LEAD  
CO – PLANARITY  
0.045 (1.14) x 45°  
0.495 (12.57)  
0.015 (0.38)  
0.095 (2.41)  
0.485 (12.32)  
TYP.0.490 (12.45)  
0.060 (1.52)  
0.140 (3.56)  
0.453 (11.51)  
0.100 (2.45)  
TYP.0.136 (3.45)  
0.447 (11.35)  
TYP.0.450 (11.43)  
0.048 (1.22)  
0.042 (1.07)  
0.300 (7.62)  
REF.  
PIN 1  
0.595 (15.11)  
0.585 (14.86)  
TYP.0.590 (14.99)  
0.553 (14.05)  
0.547 (13.89)  
TYP.0.550 (13.97)  
0.400  
REF.  
(10.16)  
3° TYP.  
NOTES:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. DIMENSIONS WITH NO TOLERANCE FOR REFERENCE ONLY  
3926 FHD F13  
19  
X28C010  
PACKAGING INFORMATION  
36-LEAD CERAMIC PIN GRID ARRAY PACKAGE TYPE K  
15  
14  
11  
9
17  
16  
19  
18  
21  
20  
22  
23  
25  
27  
29  
32  
33  
A
0.008 (0.20)  
0.050 (1.27)  
13  
12  
10  
8
24  
26  
A
28  
30  
31  
NOTE: LEADS 5, 14, 23, & 32  
7
TYP.0.100 (2.54)  
ALL LEADS  
6
5
2
3
36  
1
34  
35  
TYP.0.180 (.010)  
(4.57 ± .25)  
4 CORNERS  
4
TYP.0.180 (.010)  
(4.57 ± .25)  
4 CORNERS  
0.120 (3.05)  
0.100 (2.54)  
0.072 (1.83)  
0.062 (1.57)  
PIN 1 INDEX  
0.770 (19.56)  
0.750 (19.05)  
SQ  
0.020 (0.51)  
0.016 (0.41)  
A
A
0.185 (4.70)  
0.175 (4.45)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F21  
20  
X28C010  
PACKAGING INFORMATION  
32-LEAD CERAMIC SMALL OUTLINE GULL WING PACKAGE TYPE R  
0.060 NOM.  
SEE DETAIL “A”  
FOR LEAD  
INFORMATION  
0.020 MIN.  
0.165 TYP
0.035 TYP  
0.340  
±0.007  
0.015 R TYP.  
0.015 R  
TY. P  
.
0.035 MIN.  
DETAIL “A”  
0.050"  
TYPICAL  
0.0192  
0.0138  
0.050"  
TYPICAL  
0.560"  
TYPICAL  
0.840  
MAX.  
0.750  
±0.005  
0.030" TYPICAL  
32 PLACES  
0.050  
FOOTPRINT  
0.440 MAX.  
0.560 NOM.  
NOTES:  
1. ALL DIMENSIONS IN INCHES  
2. FORMED LEAD SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHIN 0.004 INCHES  
3926 FHD F27  
21  
X28C010  
PACKAGING INFORMATION  
32-PAD STRETCHED CERAMIC LEADLESS CHIP CARRIER PACKAGE TYPE N  
0.300 BSC  
0.035 x 45° REF.  
DETAIL A  
0.005/0.015  
0.006/0.022  
0.085 ± 0.010  
DETAIL A  
PIN 1  
0.025 ± 0.003  
0.400 BSC  
0.050 ± 0.005  
0.020 (1.02) x 45° REF.  
TYP. (3) PLCS.  
0.050 BSC  
0.450 ± 0.008  
0.458 MAX.  
0.060/0.120  
0.700 ± 0.010  
0.708 MAX.  
PIN #1 INDEX CORNER  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. TOLERANCE: ±1% NLT±0.005 (0.127)  
3926 FHD F35  
22  
X28C010  
PACKAGING INFORMATION  
40-LEAD THIN SMALL OUTLINE PACKAGE (TSOP) TYPE T  
0.493 (12.522)  
0.483 (12.268)  
0.045 (1.143)  
0.035 (0.889)  
(0.038)  
0.965  
PIN #1 IDENT.  
O 0.040 (1.016) 0.005 (0.127) DP.  
X
0.048 (1.219)  
0.0197 (0.500)  
O 0.030 (0.762) 0.003 (0.076) DP.  
1
0.396 (10.058)  
0.392 (9.957)  
0.007 (0.178)  
15° TYP.  
SEATING  
PLANE  
0.010 (0.254)  
0.006 (0.152)  
A
0.0025 (0.065)  
0.040 (1.016)  
SEATING  
PLANE  
DETAIL A  
0.032 (0.813) TYP.  
0.017 (0.432)  
0.557 (14.148)  
0.547 (13.894)  
0.006 (0.152)  
TYP.  
4° TYP.  
0.017 (0.432)  
0.020 (0.508) TYP.  
14.80 ± 0.05  
(0.583 ± 0.002)  
0.30 ± 0.05  
(0.012 ± 0.002)  
SOLDER PADS  
TYPICAL  
40 PLACES  
15 EQ.SPC.@ 0.50 ± 0.04  
0.0197 ± 0.016 = 9.50± 0.06  
(0.374± 0.0024) OVERALL  
TOL. NON-CUMULATIVE  
0.17 (0.007)  
0.03 (0.001)  
0.50 ± 0.04  
(0.0197 ± 0.0016)  
1.30 ± 0.05  
(0.051 ± 0.002)  
FOOTPRINT  
NOTE: 1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES IN PARENTHESES).  
23  
X28C010  
ORDERING INFORMATION  
X
X28C010  
X
-X  
AccessTime  
–12 = 120ns  
–15 = 150ns  
–20 = 200ns  
–25 = 250ns  
Device  
Temperature Range  
Blank = Commercial = 0°C to 70°C  
I = Industrial = –40°C to +85°C  
M = Military = –55°C to +125°C  
MB = MIL-STD-883  
Package  
D = 32-Lead Cerdip  
E = 32-Pad LCC  
F = 32-Lead Flat Pack  
J = 32-Lead PLCC  
K = 36-Lead Pin Grid Array  
R = 32-Lead Ceramic SOIC (Gull Wing)  
N = 32-Lead Extended LCC  
T = 40-Lead TSOP  
LIMITED WARRANTY  
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc.  
makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the  
described devices from patent infringement. Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the  
right to discontinue production and change specifications and prices at any time and without notice.  
Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents,  
licenses are implied.  
U.S. PATENTS  
Xicor products are covered by one or more of the following U.S. Patents: 4,263,664; 4,274,012; 4,300,212; 4,314,265; 4,326,134; 4,393,481;  
4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846; 4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829, 482; 4,874, 967;  
4,883, 976. Foreign patents and additional patents pending.  
LIFE RELATED POLICY  
In situations where semiconductor component failure may endanger life, system designers using this product should design the system with  
appropriate error detection and correction, redundancy and back-up features to prevent such an occurence.  
Xicor’s products are not authorized for use in critical components in life support devices or systems.  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain  
life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably  
expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the  
failure of the life support device or system, or to affect its safety or effectiveness.  
24  

相关型号:

X28C010EM-25T1

EEPROM, 128KX8, 250ns, Parallel, CMOS, CQCC32, CERAMIC, LCC-32
RENESAS

X28C010EMB-12

5 Volt, Byte Alterable E2PROM
XICOR

X28C010EMB-12T1

EEPROM, 128KX8, 120ns, Parallel, CMOS, CQCC32, CERAMIC, LCC-32
XICOR

X28C010EMB-15

5 Volt, Byte Alterable E2PROM
XICOR

X28C010EMB-15T1

EEPROM, 128KX8, 150ns, Parallel, CMOS, CQCC32, CERAMIC, LCC-32
RENESAS

X28C010EMB-20

5 Volt, Byte Alterable E2PROM
XICOR

X28C010EMB-20T1

128KX8 EEPROM 5V, 200ns, CQCC32, CERAMIC, LCC-32
RENESAS

X28C010EMB-25

5 Volt, Byte Alterable E2PROM
XICOR

X28C010EMB-25T1

EEPROM, 128KX8, 250ns, Parallel, CMOS, CQCC32, CERAMIC, LCC-32
RENESAS

X28C010F-12

5 Volt, Byte Alterable E2PROM
XICOR

X28C010F-12T1

EEPROM, 128KX8, 120ns, Parallel, CMOS, CDFP32, CERAMIC, FP-32
RENESAS

X28C010F-15

5 Volt, Byte Alterable E2PROM
XICOR