X5045S8-T1 [RENESAS]

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8;
X5045S8-T1
型号: X5045S8-T1
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8

光电二极管
文件: 总26页 (文件大小:580K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
X5043, X5045  
®
4K, 512 x 8 Bit  
Data Sheet  
March 16, 2006  
FN8126.2  
CPU Supervisor with 4K SPI EEPROM  
Features  
• Low VCC Detection and Reset Assertion  
- Four standard reset threshold voltages  
4.63V, 4.38V, 2.93V, 2.63V  
- Re-program low VCC reset threshold voltage using  
special programming sequence.  
These devices combine four popular functions, Power-on  
Reset Control, Watchdog Timer, Supply Voltage Supervision,  
and Block Lock Protect Serial EEPROM Memory in one  
package. This combination lowers system cost, reduces  
board space requirements, and increases reliability.  
- Reset signal valid to VCC = 1V  
Applying power to the device activates the power-on reset  
circuit which holds RESET/RESET active for a period of  
time. This allows the power supply and oscillator to stabilize  
before the processor executes code.  
• Selectable Time Out Watchdog Timer  
• Long Battery Life with Low Power Consumption  
- <50µA max standby current, watchdog on  
- <10µA max standby current, watchdog off  
The Watchdog Timer provides an independent protection  
mechanism for microcontrollers. When the microcontroller  
fails to restart a timer within a selectable time out interval,  
the device activates the RESET/RESET signal. The user  
selects the interval from three preset values. Once selected,  
the interval does not change, even after cycling the power.  
• 4Kbits of EEPROM–1M Write Cycle Endurance  
• Save Critical Data with Block LockMemory  
- Protect 1/4, 1/2, all or none of EEPROM array  
• Built-in Inadvertent Write Protection  
- Write enable latch  
- Write protect pin  
The device’s low VCC detection circuitry protects the user’s  
system from low voltage conditions, resetting the system  
when VCC falls below the minimum VCC trip point.  
RESET/RESET is asserted until VCC returns to proper  
operating level and stabilizes. Four industry standard VTRIP  
thresholds are available, however, Intersil’s unique circuits  
allow the threshold to be reprogrammed to meet custom  
requirements or to fine-tune the threshold for applications  
requiring higher precision.  
• SPI Interface - 3.3MHz Clock Rate  
• Minimize Programming Time  
- 16-byte page write mode  
- 5ms write cycle time (typical)  
• Available Packages  
- 8 Ld MSOP, 8 Ld SOIC, 8 Ld PDIP  
- 14 Ld TSSOP  
The memory portion of the device is a CMOS Serial  
EEPROM array with Intersil’s block lock protection. The  
array is internally organized as 512 x 8. The device features  
a Serial Peripheral Interface (SPI) and software protocol  
allowing operation on a simple four-wire bus.  
• Pb-Free Plus Anneal Available (RoHS Compliant)  
Applications  
• Communications Equipment  
- Routers, Hubs, Switches  
- Set Top Boxes  
The device utilizes Intersil’s proprietary Direct Writecell,  
providing a minimum endurance of 100,000 cycles and a  
minimum data retention of 100 years.  
• Industrial Systems  
- Process Control  
- Intelligent Instrumentation  
• Computer Systems  
- Desktop Computers  
- Network Servers  
• Battery Powered Equipment  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2005, 2006. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
X5043, X5045  
Typical Application  
2.7-5.0V  
VCC  
uC  
VCC  
10K  
X5043  
RESET  
CS  
SCK  
SI  
RESET  
SPI  
SO  
WP  
VSS  
VSS  
Block Diagram  
POR and Low  
Voltage Reset  
Generation  
RESET (X5043)  
RESET (X5045)  
VCC  
+
V
-
TRIP  
Reset & Watchdog  
Timebase  
X5043, X5045  
STANDARD VTRIP LEVEL  
SUFFIX  
-4.5A  
-4.5  
Watchdog  
Timer  
Reset  
Watchdog  
Transition  
Detector  
4.63V (+/-2.5%)  
4.38V (+/-2.5%)  
2.93V (+/-2.5%)  
-2.7A  
-2.7  
CS/WDI  
SI  
Status  
Register  
Command  
Decode &  
Control  
2.63V (+/-2.5%)  
SO  
SCK  
WP  
See “Ordering Information” on page 3. for  
more details  
For Custom Settings, call Intersil.  
EEPROM  
Array  
4Kbits  
Logic  
Protect Logic  
FN8126.2  
March 16, 2006  
2
X5043, X5045  
Ordering Information  
PART NUMBER  
PART NUMBER  
RESET  
TEMP  
RANGE  
(°C)  
RESET  
PART  
PART  
VCC  
VTRIP  
(ACTIVE LOW)  
MARKING  
(ACTIVE HIGH)  
MARKING  
RANGE  
RANGE  
PACKAGE  
8 Ld PDIP  
X5043P-4.5A  
X5043P AL  
X5045P-4.5A  
X5045P AL  
4.5-5.5V  
4.5-4.75  
0 to 70  
0 to 70  
X5043PZ-4.5A (Note) X5043P Z AL X5045PZ-4.5A (Note) X5045P Z AL  
X5043PI-4.5A X5043P AM X5045PI-4.5A X5045P AM  
X5043PIZ-4.5A (Note) X5043P Z AM X5045PIZ-4.5A (Note) X5045P Z AM  
8 Ld PDIP (Pb-free)  
8 Ld PDIP  
-40 to 85  
-40 to 85  
0 to 70  
8 Ld PDIP (Pb-free)  
8 Ld SOIC  
X5043S8-4.5A  
X5043 AL  
X5045S8-4.5A  
X5045 AL  
X5043S8Z-4.5A (Note) X5043 Z AL X5045S8Z-4.5A  
(Note)  
X5045 Z AL  
0 to 70  
8 Ld SOIC (Pb-free)  
X5043S8I-4.5A*  
X5043 AM  
X5045S8I-4.5A*  
X5045 AM  
-40 to 85  
-40 to 85  
8 Ld SOIC  
X5043S8IZ-4.5A*  
(Note)  
X5043 Z AM X5045S8IZ-4.5A*  
(Note)  
X5045 Z AM  
8 Ld SOIC (Pb-free)  
X5043M8-4.5A  
AEM  
DBS  
X5045M8-4.5A  
AEV  
DCB  
0 to 70  
0 to 70  
8 Ld MSOP  
X5043M8Z-4.5A  
(Note)  
X5045M8Z-4.5A  
(Note)  
8 Ld MSOP (Pb-free)  
X5043M8I-4.5A  
AEN  
DBM  
X5045M8I-4.5A  
AEW  
DBX  
-40 to 85  
-40 to 85  
8 Ld MSOP  
X5043M8IZ-4.5A  
(Note)  
X5045M8IZ-4.5A  
(Note)  
8 Ld MSOP (Pb-free)  
X5043V14I-4.5A  
X5043V AM X5045V14I-4.5A  
X5045V AM  
-40 to 85  
-40 to 85  
14 Ld TSSOP  
X5043V14IZ-4.5A  
(Note)  
X5043V Z AM X5045V14IZ-4.5A  
(Note)  
X5045V Z AM  
14 Ld TSSOP  
(Pb-free)  
X5043P  
X5043P  
X5043P Z  
X5043P I  
X5043P Z I  
X5043  
X5045P  
X5045P  
X5045P Z  
X5045P I  
X5045P Z I  
X5045  
4.25-4.5  
0 to 70  
0 to 70  
8 Ld PDIP  
X5043PZ (Note)  
X5043PI  
X5045PZ (Note)  
X5045PI  
8 Ld PDIP (Pb-free)  
8 Ld PDIP  
-40 to 85  
-40 to 85  
0 to 70  
X5043PIZ (Note)  
X5043S8*  
X5045PIZ (Note)  
X5045S8*  
8 Ld PDIP (Pb-free)  
8 Ld SOIC  
X5043S8Z* (Note)  
X5043S8I*  
X5043 Z  
X5043 I  
X5043 Z I  
AEO  
X5045S8Z* (Note)  
X5045S8I*  
X5045 Z  
X5045 I  
X5045 Z I  
AEX  
0 to 70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC  
-40 to 85  
-40 to 85  
0 to 70  
X5043S8IZ* (Note)  
X5043M8  
X5045S8IZ* (Note)  
X5045M8  
8 Ld SOIC (Pb-free)  
8 Ld MSOP  
X5043M8Z (Note)  
X5043M8I  
DBN  
X5045M8Z (Note)  
X5045M8I  
DBY  
0 to 70  
8 Ld MSOP (Pb-free)  
8 Ld MSOP  
AEP  
AEY  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
X5043M8IZ (Note)  
X5043V14I  
DBJ  
X5045M8IZ (Note)  
X5045V14I  
DBT  
8 Ld MSOP (Pb-free)  
14 Ld TSSOP  
X5043V I  
X5043V Z I  
X5045V I  
X5045V Z I  
X5043V14IZ (Note)  
X5045V14IZ (Note)  
14 Ld TSSOP  
(Pb-free)  
FN8126.2  
3
March 16, 2006  
X5043, X5045  
Ordering Information (Continued)  
PART NUMBER  
RESET  
PART NUMBER  
TEMP  
RANGE  
(°C)  
PART  
RESET  
PART  
VCC  
VTRIP  
(ACTIVE LOW)  
MARKING  
(ACTIVE HIGH)  
MARKING  
RANGE  
RANGE  
PACKAGE  
8 Ld PDIP  
X5043P-2.7A  
X5043P AN X5045P-2.7A  
X5045P AN  
2.7-5.5V  
2.85-3.0  
0 to 70  
0 to 70  
X5043PZ-2.7A (Note) X5043P Z AN X5045PZ-2.7A (Note) X5045P Z AN  
X5043PI-2.7A X5043P AP X5045PI-2.7A X5045P AP  
X5043PIZ-2.7A (Note) X5043P Z AP X5045PIZ-2.7A (Note) X5045P Z AP  
8 Ld PDIP (Pb-free)  
8 Ld PDIP  
-40 to 85  
-40 to 85  
0 to 70  
8 Ld PDIP (Pb-free)  
8 Ld SOIC  
X5043S8-2.7A*  
X5043 AN  
X5045S8-2.7A  
X5045 AN  
X5043S8Z-2.7A*  
(Note)  
X5043 Z AN X5045S8Z-2.7A  
(Note)  
X5045 Z AN  
0 to 70  
8 Ld SOIC (Pb-free)  
X5043S8I-2.7A*  
X5043 AP  
X5045S8I-2.7A  
X5045 AP  
-40 to 85  
-40 to 85  
8 Ld SOIC  
X5043S8IZ-2.7A*  
(Note)  
X5043 Z AP X5045S8IZ-2.7A  
(Note)  
X5045 Z AP  
8 Ld SOIC  
(Pb-free)  
X5043M8-2.7A*  
AEQ  
DBR  
X5045M8-2.7A  
AEZ  
DCA  
0 to 70  
0 to 70  
8 Ld MSOP  
X5043M8Z-2.7A  
(Note)  
X5045M8Z-2.7A  
(Note)  
8 Ld MSOP (Pb-free)  
X5043M8I-2.7A*  
AER  
DBL  
X5045M8I-2.7A  
AFA  
-40 to 85  
-40 to 85  
8 Ld MSOP  
X5043M8IZ-2.7A*  
(Note)  
X5045M8IZ-2.7A  
(Note)  
DBW  
8 Ld MSOP (Pb-free)  
X5043V14I-2.7A  
X5043V AP  
X5045V14I-2.7A  
X5045V AP  
-40 to 85  
-40 to 85  
14 Ld TSSOP  
X5043V14IZ-2.7A  
(Note)  
X5043V Z AP X5045V14IZ-2.7A  
(Note)  
X5045V Z AP  
14 Ld TSSOP  
(Pb-free)  
X5043P-2.7  
X5043P F  
X5043P Z F X5045PZ-2.7 (Note)  
X5043P G X5045PI-2.7  
X5045P-2.7  
X5045P F  
X5045P Z F  
X5045P G  
2.55-2.7  
0 to 70  
0 to 70  
8 Ld PDIP  
X5043PZ-2.7 (Note)  
X5043PI-2.7  
8 Ld PDIP (Pb-free)  
8 Ld PDIP  
-40 to 85  
-40 to 85  
0 to 70  
X5043PIZ-2.7 (Note)  
X5043S8-2.7*  
X5043P Z G X5045PIZ-2.7 (Note) X5045P Z G  
X5043 F X5045S8-2.7* X5045 F  
X5045S8Z-2.7* (Note) X5045 Z F  
8 Ld PDIP (Pb-free)  
8 Ld SOIC  
X5043S8Z-2.7* (Note) X5043 Z F  
X5043S8I-2.7* X5043 G  
X5043S8IZ-2.7* (Note) X5043 Z G  
0 to 70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC  
X5045S8I-2.7*  
X5045 G  
-40 to 85  
-40 to 85  
X5045S8IZ-2.7*  
(Note)  
X5045 Z G  
8 Ld SOIC (Pb-free)  
X5043M8-2.7  
AES  
X5045M8-2.7  
AFB  
0 to 70  
0 to 70  
8 Ld MSOP  
X5043M8Z-2.7 (Note) DBP  
X5045M8Z-2.7 (Note) DBZ  
X5045M8I-2.7 AFC  
X5045M8IZ-2.7 (Note) DBU  
8 Ld MSOP (Pb-free)  
8 Ld MSOP  
X5043M8I-2.7*  
AET  
DBK  
-40 to 85  
-40 to 85  
X5043M8IZ-2.7*  
(Note)  
8 Ld MSOP (Pb-free)  
X5043V14I-2.7  
X5043V G  
X5045V14I-2.7  
X5045V G  
X5045V Z G  
-40 to 85  
-40 to 85  
14 Ld TSSOP  
X5043V14IZ-2.7  
(Note)  
X5043V Z G X5045V14IZ-2.7  
(Note)  
14 Ld TSSOP  
(Pb-free)  
*Add "-T1" suffix for tape and reel.  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin  
plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN8126.2  
4
March 16, 2006  
X5043, X5045  
cycle has already been initiated, WP going low will have no  
affect on a write.  
Pin Configuration  
8 Ld SOIC/PDIP/MSOP  
Reset (RESET, RESET)  
X5043, X5045, RESET/RESET is an active low/HIGH, open  
drain output which goes active whenever VCC falls below the  
minimum VCC sense level. It will remain active until VCC  
rises above the minimum VCC sense level for 200ms.  
RESET/RESET also goes active if the Watchdog timer is  
enabled and CS remains either high or low longer than the  
Watchdog time out period. A falling edge of CS will reset the  
watchdog timer.  
V
1
8
CS/WDI  
SO  
CC  
2
3
4
7
6
5
RESET/RESET  
X5043, X5045  
WP  
SCK  
SI  
V
SS  
14 Ld TSSOP  
1
V
14  
CS  
SO  
NC  
Pin Names  
CC  
2
3
4
5
6
7
13  
12  
RESET/RESET  
SYMBOL  
DESCRIPTION  
Chip Select Input  
Serial Output  
NC  
NC  
CS/WDI  
X5043, X5045  
11  
10  
9
NC  
NC  
SO  
NC  
SCK  
SI  
SI  
SCK  
Serial Input  
WP  
Serial Clock Input  
Write Protect Input  
Ground  
V
8
SS  
WP  
VSS  
Pin Descriptions  
Serial Output (SO)  
VCC  
Supply Voltage  
Reset Output  
RESET/RESET  
SO is a push/pull serial data output pin. During a read cycle,  
data is shifted out on this pin. Data is clocked out by the  
falling edge of the serial clock.  
Principles of Operation  
Power-on Reset  
Serial Input (SI)  
Application of power to the X5043, X5045 activate a Power-  
on Reset Circuit. This circuit pulls the RESET/RESET pin  
active. RESET/RESET prevents the system microprocessor  
from starting to operate with insufficient voltage or prior to  
stabilization of the oscillator. When VCC exceeds the device  
SI is the serial data input pin. All opcodes, byte addresses,  
and data to be written to the memory are input on this pin.  
Data is latched by the rising edge of the serial clock.  
Serial Clock (SCK)  
VTRIP value for 200ms (nominal) the circuit releases  
The Serial Clock controls the serial bus timing for data input  
and output. Opcodes, addresses, or data present on the SI  
pin is latched on the rising edge of the clock input, while data  
on the SO pin changes after the falling edge of the clock  
input.  
RESET/RESET, allowing the processor to begin executing  
code.  
Low Voltage Monitoring  
During operation, the X5043, X5045 monitor the VCC level  
and asserts RESET/RESET if supply voltage falls below a  
preset minimum VTRIP. The RESET/RESET signal prevents  
the microprocessor from operating in a power fail or  
brownout condition. The RESET/RESET signal remains  
active until the voltage drops below 1V. It also remains active  
until VCC returns and exceeds VTRIP for 200ms.  
Chip Select (CS/WDI)  
When CS is high, the X5043, X5045 are deselected and the  
SO output pin is at high impedance and, unless an internal  
write operation is underway, the X5043, X5045 will be in the  
standby power mode. CS low enables the X5043, X5045,  
placing it in the active power mode. It should be noted that  
after power-up, a high to low transition on CS is required prior  
to the start of any operation.  
Watchdog Timer  
The Watchdog Timer circuit monitors the microprocessor  
activity by monitoring the WDI input. The microprocessor  
must toggle the CS/WDI pin periodically to prevent an active  
RESET/RESET signal. The CS/WDI pin must be toggled  
from HIGH to LOW prior to the expiration of the watchdog  
time out period. The state of two nonvolatile control bits in  
the Status Register determines the watchdog timer period.  
The microprocessor can change these watchdog bits. With  
Write Protect (WP)  
When WP is low, nonvolatile writes to the X5043, X5045 are  
disabled, but the part otherwise functions normally. When  
WP is held high, all functions, including non volatile writes  
operate normally. WP going low while CS is still low will  
interrupt a write to the X5043, X5045. If the internal write  
FN8126.2  
5
March 16, 2006  
X5043, X5045  
no microprocessor action, the watchdog timer control bits  
remain unchanged, even during total power failure.  
address 03h. CS going HIGH on the write operation initiates  
the VTRIP programming sequence. Bring WP LOW to  
complete the operation.  
V
Threshold Reset Procedure  
CC  
Note: This operation also writes 00h to array address 03h.  
The X5043, X5045 are shipped with a standard VCC  
threshold (VTRIP) voltage. This value will not change over  
normal operating and storage conditions. However, in  
applications where the standard VTRIP is not exactly right, or  
if higher precision is needed in the VTRIP value, the X5043,  
X5045 threshold may be adjusted. The procedure is  
described below, and uses the application of a high voltage  
control signal.  
Setting the V  
Voltage  
TRIP  
This procedure is used to set the VTRIP to a higher voltage  
value. For example, if the current VTRIP is 4.4V and the new  
V
TRIP is 4.6V, this procedure will directly make the change. If  
the new setting is to be lower than the current setting, then it  
is necessary to reset the trip point before setting the new  
value.  
To set the new VTRIP voltage, apply the desired VTRIP  
threshold voltage to the VCC pin and tie the WP pin to the  
programming voltage VP. Then send a WREN command,  
followed by a write of Data 00h to address 01h. CS going  
HIGH on the write operation initiates the VTRIP programming  
sequence. Bring WP LOW to complete the operation.  
Note: This operation also writes 00h to array address 01h.  
Resetting the V  
Voltage  
TRIP  
This procedure is used to set the VTRIP to a “native” voltage  
level. For example, if the current VTRIP is 4.4V and the new  
V
TRIP must be 4.0V, then the VTRIP must be reset. When  
TRIP is reset, the new VTRIP is something less than 1.7V.  
V
This procedure must be used to set the voltage to a lower  
value.  
To reset the VTRIP voltage, apply at least 3V to the VCC pin  
and tie the WP pin to the programming voltage VP. Then  
send a WREN command, followed by a write of Data 00h to  
VP = 15-18V  
WP  
CS  
0
1 2 3 4 5 6 7  
0
1
2 3  
4
5 6 7 8 9 10 11 12 13 14 15  
SCK  
8 Bits  
SI  
06h  
02h  
00h  
01h  
WREN  
Write  
Address  
Data  
FIGURE 1. SET VTRIP LEVEL SEQUENCE (VCC = DESIRED VTRIP VALUE.)  
FN8126.2  
6
March 16, 2006  
X5043, X5045  
VP = 15-18V  
WP  
CS  
0
1 2 3 4 5 6 7  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
8 Bits  
SCK  
SI  
06h  
WREN  
02h  
00h  
03h  
Write  
Address  
Data  
FIGURE 2. RESET VTRIP LEVEL SEQUENCE (VCC > 3V. WP = 15–18V)  
4.7K  
VP  
µC  
RESET  
1
2
3
4
8
7
6
5
Adjust  
Run  
X5043  
X5045  
SCK  
SI  
VTRIP  
Adj.  
SO  
CS  
FIGURE 3. SAMPLE VTRIP RESET CIRCUIT  
FN8126.2  
7
March 16, 2006  
X5043, X5045  
SPI Serial Memory  
The memory portion of the device is a CMOS Serial  
EEPROM array with Intersil’s block lock protection. The array  
is internally organized as 512 x 8 bits. The device features a  
Serial Peripheral Interface (SPI) and software protocol  
allowing operation on a simple four-wire bus.  
VTRIP Programming  
Execute  
Reset VTRIP  
Sequence  
The device utilizes Intersil’s proprietary Direct Writecell,  
providing a minimum endurance of 1,000,000 cycles and a  
minimum data retention of 100 years.  
Set VCC = VCC Applied =  
Desired VTRIP  
The device is designed to interface directly with the  
synchronous Serial Peripheral Interface (SPI) of many  
popular microcontroller families.  
New VCC Applied  
New VCC Applied  
Execute  
Set VTRIP  
Sequence  
=
=
Old VCC Applied  
Old VCC Applied  
- Error  
- Error  
The device contains an 8-bit instruction register that controls  
the operation of the device. The instruction code is written to  
the device via the SI input. There are two write operations  
that requires only the instruction byte. There are two read  
operations that use the instruction byte to initiate the output  
of data. The remainder of the operations require an  
instruction byte, an 8-bit address, then data bytes. All  
instruction, address and data bits are clocked by the SCK  
input. All instructions (Table 1), addresses and data are  
transferred MSB first.  
Apply 5V to VCC  
Execute  
Reset VTRIP  
Sequence  
Decrement VCC  
(VCC = VCC–10mV)  
NO  
RESET pin  
goes active?  
Clock and Data Timing  
YES  
Data input on the SI line is latched on the first rising edge of  
SCK after CS goes LOW. Data is output on the SO line by  
the falling edge of SCK. SCK is static, allowing the user to  
stop the clock and then start it again to resume operations  
where left off. CS must be LOW during the entire operation.  
Measured VTRIP  
-Desired VTRIP  
Error -Emax  
Error Emax  
-Emax < Error < Emax  
DONE  
Emax = Maximum Desired Error  
FIGURE 4. VTRIP PROGRAMMING SEQUENCE  
TABLE 1. INSTRUCTION SET  
INSTRUCTION NAME  
INSTRUCTION FORMAT*  
0000 0110  
OPERATION  
Set the Write Enable Latch (Enable Write Operations)  
Reset the Write Enable Latch (Disable Write Operations)  
Read Status Register  
WREN  
WRDI  
0000 0100  
RSDR  
WRSR  
READ  
WRITE  
0000 0101  
0000 0001  
Write Status Register (Watchdog and Block Lock)  
Read Data from Memory Array Beginning at Selected Address  
Write Data to Memory Array Beginning at Selected Address (1 to 16 bytes)  
0000 A8011  
0000 A8010  
Note: *Instructions are shown MSB in leftmost position. Instructions are transferred MSB first.  
FN8126.2  
8
March 16, 2006  
X5043, X5045  
the array that is block lock protected can be read but not  
written. It will remain protected until the BL bits are altered to  
disable block lock protection of that portion of memory.  
Write Enable Latch  
The device contains a Write Enable Latch. This latch must be  
SET before a Write Operation is initiated. The WREN  
instruction will set the latch and the WRDI instruction will reset  
the latch (Figure 5). This latch is automatically reset upon a  
power-up condition and after the completion of a valid byte,  
page, or status register write cycle. The latch is also reset if WP  
is brought LOW.  
STATUS REG BITS  
ARRAY ADDRESSES PROTECTED  
BL1  
0
BL0  
0
X5043, X5045  
None  
0
1
$180–$1FF  
$100–$1FF  
$000–$1FF  
When issuing a WREN, WRDI or RDSR commands, it is not  
necessary to send a byte address or data.  
1
0
1
1
CS  
The Watchdog Timer bits, WD0 and WD1, select the  
Watchdog Time-out Period. These nonvolatile bits are  
programmed with the WRSR instruction.  
0
1
2
3
4
5
6
7
STATUS REGISTER BITS  
WATCHDOG TIME OUT  
SCK  
WD1  
WD0  
(TYPICAL)  
1.4 seconds  
0
0
1
1
0
1
0
1
SI  
600 milliseconds  
200 milliseconds  
disabled (factory default)  
High Impedance  
SO  
FIGURE 5. WRITE ENABLE/DISABLE LATCH SEQUENCE  
(WREN/WRDI INSTRUCTION)  
Read Status Register  
To read the Status Register, pull CS low to select the device,  
then send the 8-bit RDSR instruction. Then the contents of  
the Status Register are shifted out on the SO line, clocked by  
CLK. Refer to the Read Status Register Sequence (Figure  
6). The Status Register may be read at any time, even during  
a Write Cycle.  
Status Register  
The Status Register contains four nonvolatile control bits and  
two volatile status bits. The control bits set the operation of  
the watchdog timer and the memory block lock protection.  
The Status Register is formatted as shown in “Status  
Register”.  
Write Status Register  
Prior to any attempt to write data into the status register, the  
“Write Enable” Latch (WEL) must be set by issuing the  
WREN instruction (Figure 5). First pull CS LOW, then clock  
the WREN instruction into the device and pull CS HIGH.  
Then bring CS LOW again and enter the WRSR instruction  
followed by 8 bits of data. These 8 bits of data correspond to  
the contents of the status register. The operation ends with  
CS going HIGH. If CS does not go HIGH between WREN  
and WRSR, the WRSR instruction is ignored.  
Status Register: (Default = 30H)  
7
6
5
4
3
2
1
0
0
0
WD1 WD0  
BL1  
BL0  
WEL  
WIP  
The Write-In-Progress (WIP) bit is a volatile, read only bit  
and indicates whether the device is busy with an internal  
nonvolatile write operation. The WIP bit is read using the  
RDSR instruction. When set to a “1”, a nonvolatile write  
operation is in progress. When set to a “0”, no write is in  
progress.  
The Write Enable Latch (WEL) bit indicates the status of the  
“write enable” latch. When WEL = 1, the latch is set and  
when WEL = 0 the latch is reset. The WEL bit is a volatile,  
read only bit. The WREN instruction sets the WEL bit and the  
WRDS instruction resets the WEL bit.  
The block lock bits, BL0 and BL1, set the level of block lock  
protection. These nonvolatile bits are programmed using the  
WRSR instruction and allow the user to protect one quarter,  
one half, all or none of the EEPROM array. Any portion of  
FN8126.2  
9
March 16, 2006  
X5043, X5045  
TABLE 2. DEVICE PROTECT MATRIX  
MEMORY BLOCK  
STATUS REGISTER  
(BL0, BL1, WD0, WD1)  
Protected  
WREN CMD  
(WEL)  
DEVICE PIN (WP)  
PROTECTED AREA  
UNPROTECTED AREA  
0
x
1
x
0
1
Protected  
Protected  
Protected  
Protected  
Protected  
Writable  
Protected  
Writable  
CS  
SCK  
SI  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
15  
Instruction  
Data Out  
High Impedance  
SO  
7
6
5
4
3
2
1
0
MSB  
FIGURE 6. READ STATUS REGISTER SEQUENCE  
CS  
0
1
2
3
4
5
6
7
8
7
9
6
10 11 12 13 14 15  
SCK  
Data Byte  
Instruction  
5
4
3
2
1
0
SI  
High Impedance  
FIGURE 7. WRITE STATUS REGISTER SEQUENCE  
SO  
FN8126.2  
March 16, 2006  
10  
X5043, X5045  
For the write operation (byte or page write) to be completed,  
Read Memory Array  
CS must be brought HIGH after bit 0 of the last complete  
data byte to be written is clocked in. If it is brought HIGH at  
any other time, the write operation will not be completed  
(Figure 9).  
When reading from the EEPROM memory array, CS is first  
pulled low to select the device. The 8-bit READ instruction is  
transmitted to the device, followed by the 8-bit address. Bit 3  
of the READ instruction selects the upper or lower half of the  
device. After the READ opcode and address are sent, the  
data stored in the memory at the selected address is shifted  
out on the SO line. The data stored in memory at the next  
address can be read sequentially by continuing to provide  
clock pulses. The address is automatically incremented to  
the next higher address after each byte of data is shifted out.  
When the highest address is reached, the address counter  
rolls over to address 000h allowing the read cycle to be  
continued indefinitely. The read operation is terminated by  
taking CS high. Refer to the Read EEPROM Array  
While the write is in progress following a status register or  
memory array write sequence, the Status Register may be  
read to check the WIP bit. WIP is HIGH while the nonvolatile  
write is in progress.  
Sequence (Figure 8).  
Write Memory Array  
Prior to any attempt to write data into the memory array, the  
“Write Enable” Latch (WEL) must be set by issuing the  
WREN instruction (Figure 5). First pull CS LOW, then clock  
the WREN instruction into the device and pull CS HIGH.  
Then bring CS LOW again and enter the WRITE instruction  
followed by the 8-bit address and then the data to be written.  
Bit 3 of the WRITE instruction contains address bit A8, which  
selects the upper or lower half of the array. If CS does not go  
HIGH between WREN and WRITE, the WRITE instruction is  
ignored.  
The WRITE operation requires at least 16 clocks. CS must  
go low and remain low for the duration of the operation. The  
host may continue to write up to 16 bytes of data. The only  
restriction is that the 16 bytes must reside within the same  
page. A page address begins with address [x xxxx 0000] and  
ends with [x xxxx 1111]. If the byte address reaches the last  
byte on the page and the clock continues, the counter will roll  
back to the first address of the page and overwrite any data  
that has been previously written.  
CS  
0
1
2
3
4
5
6
7
8
9
6
10  
12 13 14 15 16 17 18 19 20 21 22  
SCK  
SI  
Instruction  
8 Bit Address  
7
5
3
2
1
0
8
9th Bit of Address  
Data Out  
High Impedance  
7
6
5
4
3
2
1
0
SO  
MSB  
FIGURE 8. READ EEPROM ARRAY SEQUENCE  
FN8126.2  
11  
March 16, 2006  
X5043, X5045  
CS  
0
1
2
3
4
8
5
6
7
8
9
10  
12 13 14 15 16 17 18 19 20 21 22 23  
SCK  
Instruction  
8 Bit Address  
Data Byte 1  
7
6
5
3
2
1
0
7
6
5
4
3
2
1
0
SI  
9th Bit of Address  
CS  
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  
SCK  
Data Byte 2  
Data Byte 3  
Data Byte N  
SI  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
FIGURE 9. WRITE MEMORY SEQUENCE  
Operational Notes  
The device powers-up in the following state:  
1. The device is in the low power standby state.  
2. A HIGH to LOW transition on CS is required to enter an  
active state and receive an instruction.  
3. SO pin is high impedance.  
4. The Write Enable Latch is reset.  
5. The Flag Bit is reset.  
6. Reset Signal is active for tPURST  
.
Data Protection  
The following circuitry has been included to prevent  
inadvertent writes:  
• A WREN instruction must be issued to set the Write  
Enable Latch.  
• CS must come HIGH at the proper clock count in order to  
start a nonvolatile write cycle.  
• Block Protect bits provide additional level of write  
protection for the memory array.  
• The WP pin LOW blocks nonvolatile write operations.  
FN8126.2  
12  
March 16, 2006  
X5043, X5045  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Temperature:  
Temperature under bias. . . . . . . . . . . . . . . . . . . . . .-65°C to +135°C  
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Voltage on any pin with  
respect to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-1.0V to +7V  
D.C. output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Lead temperature (soldering, 10 seconds) . . . . . . . . . . . . . . .300°C  
Commercial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Supply Voltage:  
-2.7, -2.7A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
Blank, -4.5A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5V to 5.5V  
CAUTION: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only; functional  
operation of the device (at these or any other conditions above those listed in the operational sections of this specification) is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
DC Electrical Specifications (Over the recommended operating conditions unless otherwise specified.)  
LIMITS  
SYMBOL  
ICC1  
PARAMETER  
VCC Write Current (Active)  
VCC Read Current (Active)  
TEST CONDITIONS/COMMENTS  
SCK = 3.3MHz(3); SO, RESET, RESET = Open  
MIN  
TYP(2)  
MAX  
UNIT  
mA  
3
2
ICC2  
SCK = 3.3MHz(3); SI = VSS, RESET, RESET =  
Open  
mA  
ISB1  
ISB2  
ILI  
VCC Standby Current WDT = OFF CS = VCC, SCK, SI = VSS, VCC = 5.5V  
VCC Standby Current WDT = ON CS = VCC, SCK, SI = VSS, VCC = 5.5V  
10  
50  
µA  
µA  
µA  
µA  
V
Input Leakage Current  
Output Leakage Current  
Input LOW Voltage  
SCK, SI, WP = VSS to VCC  
SO, RESET, RESET = VSS to VCC  
SCK, SI, WP, CS  
0.1  
0.1  
10  
ILO  
10  
(1)  
VIL  
-0.5  
VCC x 0.3  
VCC + 0.5  
0.4  
(1)  
VIH  
Input HIGH Voltage  
SCK, SI, WP, CS  
VCC x 0.7  
V
VOL  
Output LOW Voltage (SO)  
IOL = 2mA @ VCC = 2.7V  
V
I
OL = 0.5mA @ VCC = 1.8V  
VOH1  
VOH2  
VOH3  
VOLRS  
Output HIGH Voltage (SO)  
Output HIGH Voltage (SO)  
Output HIGH Voltage (SO)  
VCC > 3.3V, IOH = –1.0mA  
VCC - 0.8  
VCC - 0.4  
VCC - 0.2  
V
V
V
V
2V < VCC 3.3V, IOH = –0.4mA  
V
CC 2V, IOH = –0.25mA  
Output LOW Voltage (RESET,  
RESET)  
IOL = 1mA  
0.4  
Capacitance TA = +25°C, f = 1MHz, VCC = 5V  
SYMBOL  
TEST  
Output Capacitance (SO, RESET, RESET)  
Input Capacitance (SCK, SI, CS, WP)  
CONDITIONS  
MAX  
UNIT  
(2)  
COUT  
VOUT = 0V  
VIN = 0V  
8
6
pF  
pF  
(2)  
CIN  
NOTES:  
1. VIL min. and VIH max. are for reference only and are not tested.  
2. This parameter is periodically sampled and not 100% tested.  
3. SCK frequency measured from VCC x 0.1/VCC x 0.9  
FN8126.2  
13  
March 16, 2006  
X5043, X5045  
Equivalent A.C. Load Circuit at 5V V  
A.C. Test Conditions  
CC  
Input pulse levels  
VCC x 0.1 to VCC x 0.9  
10ns  
5V  
5V  
Input rise and fall times  
Input and output timing level  
V
CC x 0.5  
4.6kΩ  
1.64kΩ  
Output  
1.64kΩ  
RESET/RESET  
30pF  
30pF  
AC Electrical Specifications (Over recommended operating conditions, unless otherwise specified)  
2.7V–5.5V  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
DATA INPUT TIMING  
fSCK  
tCYC  
tLEAD  
tLAG  
tWH  
tWL  
Clock Frequency  
0
3.3  
MHz  
ns  
Cycle Time  
300  
150  
150  
130  
130  
30  
CS Lead Time  
CS Lag Time  
ns  
ns  
Clock HIGH Time  
Clock LOW Time  
Data Setup Time  
Data Hold Time  
Input Rise Time  
Input Fall Time  
CS Deselect Time  
Write Cycle Time  
ns  
ns  
tSU  
ns  
tH  
30  
ns  
(4)  
tRI  
2
2
µs  
µs  
ns  
(4)  
tFI  
tCS  
100  
(5)  
tWC  
10  
ms  
Data Output Timing  
2.7–5.5V  
SYMBOL  
PARAMETER  
MIN  
MAX  
3.3  
UNIT  
MHz  
ns  
fSCK  
tDIS  
tV  
Clock Frequency  
0
Output Disable Time  
Output Valid from Clock Low  
Output Hold Time  
150  
120  
ns  
tHO  
0
ns  
(4)  
tRO  
Output Rise Time  
50  
50  
ns  
(4)  
tFO  
Output Fall Time  
ns  
NOTES:  
4. This parameter is periodically sampled and not 100% tested.  
5. tWC is the time from the rising edge of CS after a valid write sequence has been sent to the end of the self-timed internal nonvolatile write cycle.  
FN8126.2  
14  
March 16, 2006  
X5043, X5045  
Serial Output Timing  
CS  
tCYC  
tWH  
tLAG  
SCK  
SO  
tV  
tHO  
tWL  
tDIS  
MSB Out  
MSB–1 Out  
LSB Out  
ADDR  
LSB IN  
SI  
Serial Input Timing  
tCS  
CS  
SCK  
SI  
tLEAD  
tLAG  
tSU  
tH  
tRI  
tFI  
MSB In  
LSB In  
High Impedance  
SO  
Symbol Table  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
FN8126.2  
15  
March 16, 2006  
X5043, X5045  
Power-Up and Power-Down Timing  
VTRIP  
VTRIP  
VCC  
tPURST  
0 Volts  
tPURST  
tF  
tRPD  
tR  
RESET (X5043)  
RESET (X5045)  
RESET Output Timing  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
VTRIP  
Reset Trip Point Voltage, (-4.5A)  
4.5  
4.62  
4.38  
2.92  
2.62  
4.75  
4.5  
V
Reset Trip Point Voltage, (Blank)  
4.25  
2.85  
2.55  
Reset Trip Point Voltage, (-2.7A)  
Reset Trip Point Voltage, (-2.7)  
3.0  
2.7  
tPURST  
Power-up Reset Time Out  
VCC Detect to Reset/Output  
VCC Fall Time  
100  
200  
400  
500  
ms  
ns  
µs  
ns  
V
(6)  
tRPD  
(6)  
tF  
10  
0.1  
1
(6)  
tR  
VCC Rise Time  
VRVALID  
Reset Valid VCC  
NOTE:  
6. This parameter is periodically sampled and not 100% tested.  
CS/WDI vs. RESET/RESET Timing  
CS/WDI  
tCST  
RESET  
(5043)  
tWDO  
tRST  
tWDO  
tRST  
RESET  
(5045)  
RESET/RESET Output Timing  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
tWDO  
Watchdog Time Out Period,  
WD1 = 1, WD0 = 1 (default)  
WD1 = 1, WD0 = 0  
OFF  
200  
600  
1.4  
100  
450  
1
300  
800  
2
ms  
ms  
sec  
WD1 = 0, WD0 = 1  
WD1 = 0, WD0 = 0  
tCST  
tRST  
CS Pulse Width to Reset the Watchdog  
Reset Time Out  
400  
100  
ns  
200  
400  
ms  
FN8126.2  
March 16, 2006  
16  
X5043, X5045  
V
Programming Timing Diagram  
TRIP  
VCC  
(VTRIP  
VTRIP  
)
tTHD  
tTSU  
VP  
WP  
tVPH  
tVPS  
tVPO  
tPCS  
CS  
tRP  
SCK  
SI  
06h  
02h  
01h or  
03h  
V
Programming Parameters  
TRIP  
PARAMETER  
DESCRIPTION  
MIN  
1
MAX  
UNIT  
µs  
tVPS  
VTRIP Program Enable Voltage Setup time  
VTRIP Program Enable Voltage Hold time  
VTRIP Programming CS inactive time  
VTRIP Setup time  
tVPH  
1
µs  
tPCS  
1
µs  
tTSU  
1
µs  
tTHD  
VTRIP Hold (stable) time  
10  
ms  
ms  
µs  
tWC  
VTRIP Write Cycle Time  
10  
tVPO  
VTRIP Program Enable Voltage Off time (Between successive adjustments)  
VTRIP Program Recovery Period (Between successive adjustments)  
Programming Voltage  
0
tRP  
10  
15  
1.7  
-25  
ms  
V
VP  
18  
VTRAN  
Vtv  
VTRIP Programmed Voltage Range  
4.75  
+25  
V
VTRIP Program variation after programming (0-75°C). (Programmed at 25°C.)  
mV  
VTRIP programming parameters are periodically sampled and are not 100% tested.  
FN8126.2  
17  
March 16, 2006  
X5043, X5045  
Packaging Information  
8-Lead Miniature Small Outline Gull Wing Package Type M  
0.118 ± 0.002  
(3.00 ± 0.05)  
0.012 + 0.006 / -0.002  
0.0256 (0.65) Typ.  
(0.30 + 0.15 / -0.05)  
R 0.014 (0.36)  
0.118 ± 0.002  
(3.00 ± 0.05)  
0.030 (0.76)  
0.0216 (0.55)  
7° Typ.  
0.036 (0.91)  
0.032 (0.81)  
0.040 ± 0.002  
(1.02 ± 0.05)  
0.008 (0.20)  
0.004 (0.10)  
0.0256" Typical  
0.025"  
Typical  
0.150 (3.81)  
0.007 (0.18)  
0.005 (0.13)  
Ref.  
0.193 (4.90)  
Ref.  
0.220"  
0.020"  
Typical  
8 Places  
FOOTPRINT  
NOTE:  
1. ALL DIMENSIONS IN INCHES AND (MILLIMETERS)  
FN8126.2  
18  
March 16, 2006  
X5043, X5045  
Packaging Information  
8-Lead Plastic Dual In-Line Package Type P  
0.430 (10.92)  
0.360 (9.14)  
0.260 (6.60)  
0.240 (6.10)  
Pin 1 Index  
Pin 1  
0.060 (1.52)  
0.020 (0.51)  
0.300  
(7.62) Ref.  
Half Shoulder Width On  
All End Pins Optional  
0.145 (3.68)  
0.128 (3.25)  
Seating  
Plane  
0.025 (0.64)  
0.015 (0.38)  
0.065 (1.65)  
0.150 (3.81)  
0.125 (3.18)  
0.045 (1.14)  
0.110 (2.79)  
0.090 (2.29)  
0.020 (0.51)  
0.016 (0.41)  
0.325 (8.25)  
0.300 (7.62)  
.073 (1.84)  
Max.  
0°  
Typ. 0.010 (0.25)  
15°  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. PACKAGE DIMENSIONS EXCLUDE MOLDING FLASH  
FN8126.2  
19  
March 16, 2006  
X5043, X5045  
Packaging Information  
8-Lead Plastic Small Outline Gull Wing Package Type S  
0.150 (3.80) 0.228 (5.80)  
0.158 (4.00) 0.244 (6.20)  
Pin 1 Index  
Pin 1  
0.014 (0.35)  
0.019 (0.49)  
0.188 (4.78)  
0.197 (5.00)  
(4X) 7°  
0.053 (1.35)  
0.069 (1.75)  
0.004 (0.19)  
0.050 (1.27)  
0.010 (0.25)  
0.010 (0.25)  
0.020 (0.50)  
0.050"Typical  
X 45°  
0.050"  
Typical  
0° - 8°  
0.0075 (0.19)  
0.010 (0.25)  
0.250"  
0.016 (0.410)  
0.037 (0.937)  
0.030"  
Typical  
8 Places  
FOOTPRINT  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
FN8126.2  
20  
March 16, 2006  
X5043, X5045  
Packaging Information  
14-Lead Plastic, TSSOP, Package Type V  
.025 (.65) BSC  
.169 (4.3)  
.177 (4.5)  
.252 (6.4) BSC  
.193 (4.9)  
.200 (5.1)  
.047 (1.20)  
.0075 (.19)  
.0118 (.30)  
.002 (.05)  
.006 (.15)  
.010 (.25)  
Gage Plane  
0° - 8°  
Seating Plane  
.019 (.50)  
.029 (.75)  
Detail A (20X)  
.031 (.80)  
.041 (1.05)  
See Detail “A”  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8126.2  
21  
March 16, 2006  
P r i n t e r F r i e n d l y V e r s i o n  
X 5 0 4 3  
CP U S u pe r vis or wi th 4 k SP I E EP R OM  
D a t a s h e e t s ,  
R e l a t e d D o c s  
& S i m u l a t i o n s  
D e s c r i p t i o n  
K ey  
F e a t u r e s  
P a r a m e t r i c  
D a t a  
A p p l i c a t i o n  
D i a g r a m s  
R e l a t e d  
D e v i c e s  
Or d er in g I nf o r m at io n  
De s ig n - In  
P r i c e  
Pa r t N o.  
S t a t u s  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
Te m p.  
C o m m  
C o m m  
C o m m  
P a c k a g e  
8 L d M SO P  
8 L d M SO P  
8 L d M SO P  
M SL US $  
X5 0 4 3 M8  
1
1
1
1
1
1
1
1
1
1
1
1
2 . 4 6  
2 . 4 6  
2 . 4 6  
2 . 4 6  
2 . 4 6  
2 . 5 5  
2 . 5 5  
2 . 5 5  
2 . 5 5  
2 . 5 5  
2 . 5 5  
2 . 5 5  
X5 0 4 3 M8 -2 . 7  
X5 04 3M 8 - 2. 7A  
X 50 43M 8-2 .7A T 1  
X5 04 3M 8 - 4. 5A  
X5 0 4 3 M8 I  
C o m m 8 L d M S OP T +R  
C o m m  
I n d  
8 L d M SO P  
8 L d M SO P  
X 50 43 M8I - 2.7  
X5 0 4 3 M8 I -2 . 7 A  
X 5043 M8I- 2.7A T1  
X5 0 4 3 M8 I -2 . 7 T1  
X5 0 4 3 M8 I -2 . 7 T2  
X5 0 4 3 M8 I -4 . 5 A  
I n d  
8 L d M SO P  
I n d  
8 L d M SO P  
I n d  
8 L d M S OP T +R  
8 L d M S OP T +R  
8 L d M S OP T +R  
8 L d M SO P  
I n d  
I n d  
I
n
d
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
I n d  
I n d  
8 L d M SO P  
8 L d M SO P  
2
2
2
2
2
2
2
2
2
2
2 . 5 5  
2 . 5 5  
2 . 5 5  
2 . 5 5  
2 . 5 5  
2 . 5 5  
2 . 4 6  
2 . 4 6  
2 . 4 6  
2 . 4 6  
X5 0 4 3 M8 IZ  
X 5043M8IZ -2. 7  
X5 0 43 M 8 I Z- 2. 7 A  
X 504 3M8 IZ -2 .7A T1  
X 5 043 M 8I Z- 2 .7 T1  
X5 0 43 M 8 I Z- 4. 5 A  
X5043M 8Z  
I n d  
8
L
d
M
S
O
P
I n d  
8 L d M S OP T +R  
8 L d M S OP T +R  
8 L d M SO P  
I n d  
I n d  
C o m m  
C o m m  
C o m m  
C o m m  
8 L d M SO P  
8 L d M SO P  
X 5043M8Z -2. 7  
X5 04 3 M 8Z - 2 .7 A  
8 L d M SO P  
8 L d M SO P  
X5 04 3 M 8Z - 4 .5 A  
X 5 0 4 3 P  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
C o m m  
C o m m  
C o m m  
C o m m  
C o m m  
I n d  
8 L d P D I P  
8 L d P D I P  
8 L d P D I P  
8 L d P D I P  
8 L d P D I P  
8 L d P D I P  
8 L d P D I P  
8 L d P D I P  
8 L d P D I P  
8 L d P D I P  
N/ A 1 . 9 9  
N/ A 1 . 9 9  
N/ A 1 . 9 9  
N/ A 1 . 9 9  
N/ A  
X 5 0 4 3 P - 2 . 7  
X 5043P -2.7 A  
X 5043P -4.5 A  
X 5 0 4 3 P C 1 0 3 8  
X5043P I  
N/ A 2 . 0 6  
N/ A 2 . 0 6  
N/ A 2 . 0 6  
N/ A 2 . 0 6  
N/ A  
X 5 0 4 3 P I - 2 . 7  
X 50 43P I -2 .7 A  
X 50 43P I -4 .5 A  
X 5 0 4 3 P I - 4 . 5 A C 1 0 3 8  
I n d  
I
n
d
I n d  
I
n
d
A
c
t
i
v
e
I
n
d
8
L
d
P
D
I
P
N
/
A
2
.
0
6
X
5
0
4
3
P
I
Z
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
I n d  
8 L d P D I P  
8 L d P D I P  
8 L d P D I P  
8 L d P D I P  
8 L d P D I P  
8 L d P D I P  
8 L d P D I P  
N/ A 2 . 0 6  
N/ A 2 . 0 6  
N/ A 2 . 0 6  
N/ A 1 . 9 9  
N/ A 1 . 9 9  
N/ A 1 . 9 9  
N/ A 1 . 9 9  
X5 04 3 PIZ - 2. 7  
X5 0 43 PI Z - 2. 7 A  
X5 0 43 PI Z - 4. 5 A  
X5 0 43 PZ  
I n d  
I n d  
C o m m  
C o m m  
C o m m  
C o m m  
X5 0 4 3 P Z-2 . 7  
X 5043 PZ -2 .7A  
X 5043 PZ -4 .5A  
X 5 0 4 3 S 8  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
C o m m  
C o m m  
C o m m  
8 L d S OI C  
8 L d S OI C  
8 L d S OI C  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1 . 9 9  
1 . 9 9  
1 . 9 9  
1 . 9 9  
1 . 9 9  
1 . 9 9  
1 . 9 9  
X 5 0 4 3 S 8 - 2 . 7  
X 5 04 3S 8 - 2.7 A  
X 504 3S 8- 2.7A T1  
X 5 0 4 3 S 8 - 2 . 7 T 1  
X 5 0 4 3 S 8 - 2 . 7 T 2  
X 5 04 3S 8 - 4.5 A  
X 5 0 4 3 S 8 C 1 0 3 8  
X 5 0 4 3 S 8 C 7 1 6 8  
X 5 0 4 3 S 8 I  
C o m m 8 Ld S OI C T+ R  
C o m m 8 Ld S OI C T+ R  
C o m m 8 Ld S OI C T+ R  
C o m m  
C o m m  
C o m m  
I n d  
8 L d S OI C  
8 L d S OI C  
8 L d S OI C  
8 L d S OI C  
2 . 0 6  
2 . 0 6  
2 . 0 6  
2 . 0 6  
2 . 0 6  
2 . 0 6  
2 . 0 6  
2 . 0 6  
2 . 0 6  
2 . 0 6  
2 . 0 6  
X 5 0 4 3 S 8 I - 2 . 7  
X 5043S 8I- 2.7A  
X 5043S8 I-2.7A T1  
X 5 0 4 3 S 8 I - 2 . 7 T 1  
X 5 0 4 3 S 8 I - 2 . 7 T 2  
X 5043S 8I- 4.5A  
X 5043S8 I-4.5A T1  
X 5 0 4 3 S 8 I T 1  
I n d  
8 L d S OI C  
I n d  
8 L d S OI C  
I n d  
8 Ld S OI C T+ R  
8 Ld S OI C T+ R  
8 Ld S OI C T+ R  
8 L d S OI C  
I n d  
I n d  
I n d  
I n d  
8 Ld S OI C T+ R  
8 Ld S OI C T+ R  
8 Ld S OI C T+ R  
8 Ld S OI C T+ R  
I n d  
X
5
0
4
3
S
8
I
T
2
I n d  
X 5 0 4 3 S 8 I T 4  
I n d  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
I n d  
I n d  
I n d  
I n d  
I n d  
I n d  
I n d  
I n d  
I n d  
8 L d S OI C  
8 L d S OI C  
1
1
1
1
1
1
1
1
1
2 . 0 6  
2 . 0 6  
2 . 0 6  
2 . 0 6  
2 . 0 6  
2 . 0 6  
2 . 0 6  
2 . 0 6  
2 . 0 6  
X5 0 43 S8 IZ  
X 5043S 8IZ-2.7  
X5 04 3S8 IZ - 2. 7A  
X5 0 4 3 S8 I Z-2 .7 AT 1  
X5 0 4 3 S8 I Z-2 . 7 T1  
X5 04 3S8 IZ - 4. 5A  
X5 0 4 3 S8 I Z-4 .5 AT 1  
X5 0 43 S8 I Z T 1  
8 L d S OI C  
8 Ld S OI C T+ R  
8 Ld S OI C T+ R  
8 L d S OI C  
8 Ld S OI C T+ R  
8 Ld S OI C T+ R  
8 Ld S OI C T+ R  
X5 0 43 S8 I Z T 2  
X 5 0 4 3 S 8 T 1  
X 5 0 4 3 S 8 T 2  
A ct i v e  
A ct i v e  
C o m m 8 Ld S OI C T+ R  
C o m m 8 Ld S OI C T+ R  
1
1
1 . 9 9  
1 . 9 9  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
C o m m  
C o m m  
C o m m  
8 L d S OI C  
8 L d S OI C  
8 L d S OI C  
1
1
1
1
1 . 9 9  
1 . 9 9  
1 . 9 9  
1 . 9 9  
X 5 04 3S 8 Z  
X 5 0 4 3 S 8 Z - 2 . 7  
X 50 43 S 8Z - 2 .7A  
X 504 3S 8Z -2.7 AT 1  
C o m m 8 Ld S OI C T+ R  
A ct i v e  
A ct i v e  
A ct i v e  
C o m m 8 Ld S OI C T+ R  
C o m m 8 L d S OI C  
C o m m 8 Ld S OI C T+ R  
1
1
1
1 . 9 9  
1 . 9 9  
1 . 9 9  
X 5 0 4 3 S 8 Z - 2 . 7 T 1  
X 50 43 S 8Z - 4 .5A  
X 5043 S8Z T1  
X 5 04 3V 1 4I  
A ct i v e  
A ct i v e  
A ct i v e  
A ct i v e  
I n d  
I n d  
I n d  
I n d  
1 4 L d TS S OP  
1 4 L d TS S OP  
1 4 L d TS S OP  
1 4 L d TS S OP  
1
1
1
1
2 . 5 5  
2 . 5 5  
2 . 5 5  
2 . 5 5  
X 5 04 3V 1 4I -2 .7  
X 5043V 14I-2.7A  
X 5043V 14I-4.5A  
A ct i v e  
I n d  
1 4 L d TS S OP  
1 4 L d TS S OP  
1 4 L d TS S OP  
1 4 L d TS S OP  
1
1
1
1
2 . 5 5  
X5 04 3 V14 I Z  
C o m i n g S o o n I n d  
C o m i n g S o o n I n d  
C o m i n g S o o n I n d  
X5 0 4 3 V1 4 I Z-2 . 7  
X 5 043 V 1 4I Z -2 .7 A  
X 5 043 V 1 4I Z -4 .5 A  
T h e p r ic e li st e d i s t h e m an uf a ct ur e r 's sugg ested r et ail pr i ce f or q uant it i es bet w ee n 1 00 a n d  
9 9 9 un its . Ho we v e r, pri c es i n to da y' s ma rk et a re fl u i d a n d m ay ch an ge w i th o ut n o t ice .  
MS L = M o i s t u r e S e n s i t i v i t y L e v e l - p e r I P C / J E D E C J - S T D - 0 2 0  
SMD = S t a n d a r d M i c r o c i r c u i t D r a w i n g  
D esc rip ti on  
T h e s e d e v i c e s c o m b i n e f o u r p o p u l a r f u n c t i o n s , P o w e r o n R e s e t C o n t r o l , W a t c h d o g T i m e r , S u p p l y  
V o l t a g e S u p e r v i s i o n , a n d B l o c k L o c k P r o t e c t S e r i a l E E P R O M M e m o r y i n o n e p a c k a g e . T h i s  
c o m b i n a t i o n l o w e r s s y s t e m c o s t , r e d u c e s b o a r d s p a c e r e q u i r e m e n t s , a n d i n c r e a s e s r e l i a b i l i t y .  
A p p l y i n g p o w e r t o t h e d e v i c e a c t i v a t e s t h e p o w e r - o n r e s e t c i r c u i t w h i c h h o l d s RE S E T /R E S E T ac ti v e  
f o r a p e r i o d o f t i m e . T h i s a l l o w s t h e p o w e r s u p p l y a n d o s c i l l a t o r t o s t a b i l i z e b e f o r e t h e p r o c e s s o r  
e x e c u t e s c o d e .  
T h e W a t c h d o g T i m e r p r o v i d e s a n i n d e p e n d e n t p r o t e c t i o n m e c h a n i s m f o r m i c r o c o n t r o l l e r s . W h e n  
t h e m i c r o c o n t r o l l e r f a i l s t o r e s t a r t a t i m e r w i t h i n a s e l e c t a b l e t i m e o u t i n t e r v a l , t h e d e v i c e a c t i v a t e s  
th e RE S E T / R E S E T s i g n a l . T h e u s e r s e l e c t s t h e i n t e r v a l f r o m t h r e e p r e s e t v a l u e s . O n c e s e l e c t e d ,  
t h e i n t e r v a l d o e s n o t c h a n g e , e v e n a f t e r c y c l i n g t h e p o w e r .  
T h e d e v i c e ’ s l o w V d e t e c t i o n c i r c u i t r y p r o t e c t s t h e u s e r ’ s s y s t e m f r o m l o w v o l t a g e c o n d i t i o n s ,  
C C  
r e s e t t i n g t h e s y s t e m w h e n V f a l l s b e l o w t h e m i n i m u m V t r ip p o i n t. RE S E T / R E S E T i s a s s e r t e d  
C C  
C C  
un til V r e t u r n s t o p r o p e r o p e r a t i n g l e v e l a n d s t a b i l i z e s . F o u r i n d u s t r y s t a n d a r d V  
t h r e s h o l d s  
TR I P  
C C  
a r e a v a i l a b l e , h o w e v e r , I n t e r s i l ’ s u n i q u e c i r c u i t s a l l o w t h e t h r e s h o l d t o b e r e p r o g r a m m e d t o m e e t  
c u s t o m r e q u i r e m e n t s o r t o f i n e - t u n e t h e t h r e s h o l d f o r a p p l i c a t i o n s r e q u i r i n g h i g h e r p r e c i s i o n .  
T h e m e m o r y p o r t i o n o f t h e d e v i c e i s a C M O S S e r i a l E E P R O M a r r a y w i t h I n t e r s i l ’ s b l o c k l o c k  
p r o t e c t i o n . T h e a r r a y i s i n t e r n a l l y o r g a n i z e d a s 5 1 2 x 8 . T h e d e v i c e f e a t u r e s a S e r i a l P e r i p h e r a l  
I n t e r f a c e ( S P I ) a n d s o f t w a r e p r o t o c o l a l l o w i n g o p e r a t i o n o n a s i m p l e f o u r w i r e b u s .  
T h e d e v i c e u t i l i z e s I n t e r s i l ’ s p r o p r i e t a r y D i r e c t W r i t e ™ c e l l , p r o v i d i n g a m i n i m u m e n d u r a n c e o f  
1 0 0 , 0 0 0 c y c l e s a n d a m i n i m u m d a t a r e t e n t i o n o f 1 0 0 y e a r s .  
K ey Fe a t u r e s  
Low V D e t e c t i o n a n d R e s e t A s s e r t i o n  
C
C
F
o
u
r
s
t
a
n
d
a
r
d
r
e
s
e
t
t
h
r
e
s
h
o
l
d
v
o
l
t
a
g
e
s
4
.
6
3
V
,
4
.
3
8
V
,
2
.
9
3
V
,
2
.
6
3
V
R
e
-
p
r
o
g
r
a
m
l
o
w
V
r
e
s
e
t
t
h
r
e
s
h
o
l
d
v
o
l
t
a
g
e
u
s
i
n
g
s
p
e
c
i
a
l
p
r
o
g
r
a
m
m
i
n
g
s
e
q
u
e
n
c
e
.
C C  
R e s e t s i g n a l v a l i d t o V = 1V  
C C  
S e l e c t a b l e T i m e O u t W a t c h d o g T i m e r  
L o n g B a t t e r y L i f e w i t h L o w P o w e r C o n s u m p t i o n  
< 5 0 ì A m a x s t a n d b y c u r r e n t , w a t c h d o g o n  
< 1 0 ì A m a x s t a n d b y c u r r e n t , w a t c h d o g o f f  
4 K b i t s o f E E P R O M – 1 M W r i t e C y c l e E n d u r a n c e  
S a v e C r i t i c a l D a t a w i t h B l o c k L o c k ™ M e m o r y  
P ro tect 1/4 , 1 /2 , a ll or no n e of E E P ROM a rra y  
B u i l t - i n I n a d v e r t e n t W r i t e P r o t e c t i o n  
W r i t e e n a b l e l a t c h  
W r i t e p r o t e c t p i n  
S PI I nt erf a c e - 3 .3M Hz Cloc k Ra te  
M i n i m i z e P r o g r a m m i n g T i m e  
1 6 - b y t e p a g e w r i t e m o d e  
5 m s w r i t e c y c l e t i m e ( t y p i c a l )  
A v a i l a b l e P a c k a g e s  
8 Ld M S OP , 8 L d S O IC, 8 L d P DI P  
14 Ld T SS OP  
P b - F r e e P l u s A n n e a l A v a i l a b l e ( R o H S C o m p l i a n t )  
Re la t ed Do cu m e n ta t io n  
A p p l i c a t i o n N o t e ( s ) :  
D e s i g n i n g w i t h I n t e r s i l ’ s X 5 0 0 0 S e r i e s C P U S u p e r v i s o r s  
I n t e r f a c i n g t h e X 5 0 4 3 W a t c h d o g T i m e r t o H i t a c h i H 8 / 3 0 0 0 M i c r o c o n t r o l l e r s  
X 5 0 4 3 , X 5 0 4 5 S y s t e m S u p e r v i s o r s M a n a g e 8 0 5 1 T y p e M i c r o c o n t r o l l e r s  
D a t a s h e e t ( s ) :  
C P U S u p e r v i s o r w i t h 4 K S P I E E P R O M  
P a r a m e t r i c D a t a  
N u m b e r o f V o l t a g e M o n i t o r s  
1
4 .5 to 5 .5  
4 .5 to 5 .5  
2 .7 to 5 .5  
V Ra n g e (V)  
S
2 .7 to 5 .5  
4 . 6 2 ( 2 . 6 % )  
4 . 3 8 ( 3 % )  
2 . 9 2 ( 2 . 4 % )  
V o l t a g e T h r e s h o l d 1  
2 . 6 2 ( 2 . 7 % )  
R e s e t O u t p u t T y p e  
W a t c h d o g T i m e r ( s )  
M a n u a l R e s e t  
A ct i ve H i gh  
O F F, 0 . 2, 0 . 6, 1 . 4  
N
B u s I n t e r f a c e  
S P I  
4
EEPR OM Si ze (k b it s)  
B att ery Mon tor and S witc ho v er  
F a u l t D e t e c t i o n R e g i s t e r  
N
N
-4 .5 A  
B l a n k  
-2 .7 A  
- 2 . 7  
Y
S uffi x  
P
O
R
(
m
s
)
R
T
C
F
u
n
c
t
i
o
n
N
A
p
p
l
i
c
a
t
i
o
n
B
l
o
c
k
D
i
a
g
r
a
m
s
F
r
a
m
e
G
r
a
b
b
e
r
A
p
p
l
i
c
a
t
i
o
n
s
C o m m u n i c a t i o n s E q u i p m e n t  
R o u t e r s , H u b s , S w i t c h e s  
S e t T o p B o x e s  
I
n
d
u
s
t
r
i
a
l
S
y
s
t
e
m
s
P
r
o
c
e
s
s
C
o
n
t
r
o
l
I n t e l l i g e n t I n s t r u m e n t a t i o n  
C o m p u t e r S y s t e m s  
D e s k t o p C o m p u t e r s  
N e t w o r k S e r v e r s  
B
a
t
t
e
r
y
P
o
w
e
r
e
d
E
q
u
i
p
m
e
n
t
R
e
l
a
t
e
d
D
e
v
i
c
e
s
P
a
r
a
m
e
t
r
i
c
T
a
b
l
e
X 5 0 0 1  
X 5 0 4 5  
X 5 0 8 3  
X 5 1 6 3  
X 5 1 6 5  
X 5 1 6 8  
X 5 1 6 9  
X 5 3 2 3  
X 5 3 2 5  
X 5 3 2 8  
X 5 3 2 9  
C P U S u p e r v i s o r  
C P U S u p e r v i s o r w i t h 4 k S P I E E P R O M  
C P U S u p e r v i s o r w i t h 8 K b i t S P I E E P R O M  
C P U S u p e r v i s o r w i t h 1 6 K b i t S P I E E P R O M  
C P U S u p e r v i s o r w i t h 1 6 K b i t S P I E E P R O M  
C P U S u p e r v i s o r w i t h 1 6 K b i t S P I E E P R O M  
C P U S u p e r v i s o r w i t h 1 6 K b i t S P I E E P R O M  
C P U S u p e r v i s o r w i t h 3 2 K b S P I E E P R O M  
C P U S u p e r v i s o r w i t h 3 2 K b S P I E E P R O M  
C P U S u p e r v i s o r w i t h 3 2 K b i t S P I E E P R O M  
C P U S u p e r v i s o r w i t h 3 2 K b i t S P I E E P R O M  
A b o u t U s | C a r e e r s | C o n t a c t U s | I n v e s t o r s | L e g a l | Pr iv a c y | S ite M ap | S u b s c r i b e | I n t r a n e t  
© 2 0 0 7 . A l l r i g h t s r e s e r v e d .  

相关型号:

X5045S8I

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X5045S8I

CPU Supervisor with 4K SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X5045S8I-1.8

Power Supply Management Circuit, Adjustable, 1 Channel, PDSO8, PLASTIC, SOIC-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X5045S8I-2.7

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X5045S8I-2.7

CPU Supervisor with 4K SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X5045S8I-2.7A

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X5045S8I-2.7A

CPU Supervisor with 4K SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X5045S8I-2.7T1

Power Supply Management Circuit, Adjustable, 1 Channel, PDSO8, PLASTIC, SOIC-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X5045S8I-4.5A

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X5045S8I-4.5A

CPU Supervisor with 4K SPI EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X5045S8I-4.5A-T1

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X5045S8I-T1

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOIC-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS