ZSSC3230BC3R [RENESAS]

Capacitive Sensor Signal Conditioner IC;
ZSSC3230BC3R
型号: ZSSC3230BC3R
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Capacitive Sensor Signal Conditioner IC

文件: 总39页 (文件大小:1581K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Capacitive Sensor Signal  
Conditioner IC  
ZSSC3230  
Datasheet  
Description  
Features  
The ZSSC3230 is a CMOS integrated circuit for accurate capaci-  
tance-to-digital conversion and sensor-specific correction of  
capacitive sensor signals. Digital compensation of sensor offset,  
sensitivity, and temperature drift is accomplished via an internal  
digital signal processor running a correction algorithm with  
calibration coefficients stored in a nonvolatile, multiple-time  
programmable (NVM) memory. Programming the ZSSC3230 is  
simple via the serial interface. The interface is used for the PC-  
controlled calibration procedure, which programs the set of  
calibration coefficients in memory. The ZSSC3230 is configurable  
for capacitive sensors with capacitances up to 30pF and will  
provide an output resolution that is scalable up to 18-bit. It is  
compatible with single-ended capacitive sensors. Measured and  
corrected sensor values can be output as I2C (≤ 3.4MHz).  
.
.
.
.
.
Low current consumption: 1.3µA at 1 sample per second  
Maximum target input capacitance: 30pF  
Programmable capacitance span and offset  
High sampling rate with 2ms at 14-bit resolution  
ADC resolution: Adjustable in speed and resolution, 18-bit  
maximum  
.
.
Internal auto-compensated temperature sensor; not stress  
sensitive  
Programmable measurement sequence, single-shot and  
automatic cycling of measurements with end-of-sequence  
interrupt output  
.
.
.
Oversampling modes using internal averaging  
Interrupt features  
The ZSSC3230 provides accelerated signal processing, increased  
resolution, and improved noise immunity in order to support high-  
speed control, safety, and real-time sensing applications with the  
highest requirements for energy efficiency.  
Integrated NVM for configuration and free space for  
customer use  
.
.
.
.
Small die size  
External reset pin (low active)  
No external trimming components required  
Highly integrated CMOS design  
Basic Application Diagram  
VDD  
VSS  
Physical Characteristics  
VDD  
C0  
.
Supply voltage VDD: 1.68V to 3.6V  
VSS  
CC  
.
Operating temperature: -40°C to 125°C depending on the part  
code  
C1  
EOC  
.
I2C Interface compatible, supporting  
Standard Mode(100kHz)  
SDA  
SCL  
Fast Mode (400kHz)  
High-Speed Mode (3.4MHz)  
.
.
.
Capacitive input range 0 to 30pF  
Capacitive offset compensation 0 to 15pF  
Available in 4 4 mm2 24-PQFN package or as die  
ZSSC3230  
SDA  
SCL  
Typical Applications  
.
.
.
.
.
Humidity sensors  
Pressure sensors, level sensors  
Smart, digital, capacitive sensors for energy-efficient solutions  
Consumer / white goods (e.g., HVAC)  
Medical applications  
1
October 15, 2019  
Block Diagram  
Vreg int  
VDD  
VTP  
Temperature  
Reference  
Sensor  
AGND / CM  
Generator  
Bias Current  
Generator  
Voltage Regulator  
VTN  
Power Ctr.  
VSS  
ZSSC3230  
EOC  
PDM  
C0  
DSP Core  
(Calculations,  
Communication)  
A
D
SCL  
18 Bit  
CC  
Pre-Amplifier  
SDA  
Cmeasure  
CC  
RESQ  
MTP  
ROM  
I2C  
Clock  
Generator  
System  
Control Unit  
Power-ON  
Reset  
Ring  
Oscillator  
2
October 15, 2019  
Typical Application Examples  
Figure 1. Isolated C Mode  
Figure 2. Grounded C Mode  
Vsupply  
Vsupply  
VDD  
VDD  
ZSSC3230  
ZSSC3230  
GND  
GND  
VSS  
SDA  
VSS  
CC  
SDA  
SCL  
CC  
SCL  
EOC  
C0  
EOC  
C0  
RESQ  
RESQ  
CC  
CC  
3
October 15, 2019  
 
 
Contents  
1. Pin Assignments...........................................................................................................................................................................................6  
2. Pin Descriptions............................................................................................................................................................................................7  
3. Absolute Maximum Ratings..........................................................................................................................................................................8  
4. Recommended Operating Conditions ..........................................................................................................................................................8  
5. Electrical Characteristics ..............................................................................................................................................................................9  
6. Device Description......................................................................................................................................................................................11  
6.1 Signal Flow........................................................................................................................................................................................12  
6.2 Capacitive Sensor Front-End ............................................................................................................................................................13  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
Differential Mode ................................................................................................................................................................14  
Single-Ended Mode............................................................................................................................................................14  
Sensor Leakage Compensation .........................................................................................................................................14  
Shield Driver Mode.............................................................................................................................................................15  
Subtraction Mode ...............................................................................................................................................................16  
6.3 Temperature Sensor..........................................................................................................................................................................16  
6.4 Analog to Digital Converter (ADC).....................................................................................................................................................16  
6.5 Calibration Math ................................................................................................................................................................................17  
6.5.1  
6.5.2  
6.5.3  
1/C Pre-compensation........................................................................................................................................................17  
Sensor Signal Compensation Math....................................................................................................................................18  
Temperature Signal Compensation....................................................................................................................................20  
6.6 Output Stages....................................................................................................................................................................................20  
6.6.1  
6.6.2  
6.6.3  
PDM Output Stage .............................................................................................................................................................20  
I2C Output ..........................................................................................................................................................................21  
EOC and Output Interrupt Signaling...................................................................................................................................24  
6.7 Measurement and Output Options ....................................................................................................................................................26  
6.7.1  
6.7.2  
6.7.3  
6.7.4  
Single Measurements: Digital Raw and SSC Results ........................................................................................................26  
Digital Commands ..............................................................................................................................................................27  
Nonvolatile Memory (NVM) ................................................................................................................................................28  
Memory Contents ...............................................................................................................................................................29  
7. Package Outline Drawings .........................................................................................................................................................................34  
8. Marking Diagram ........................................................................................................................................................................................34  
9. Ordering Information...................................................................................................................................................................................34  
10. Glossary .....................................................................................................................................................................................................35  
11. Revision History..........................................................................................................................................................................................36  
© 2019 Integrated Device Technology, Inc.  
4
October 15, 2019  
List of Figures  
Figure 1. Isolated C Mode ..................................................................................................................................................................................3  
Figure 2. Grounded C Mode...............................................................................................................................................................................3  
Figure 3. Pin Assignments for 4 4 mm 24-PQFN Package Top View ..........................................................................................................6  
Figure 4. Pin (Pad) Assignments for Bare-Die....................................................................................................................................................6  
Figure 5. Main Operating Modes of the ZSSC3230..........................................................................................................................................11  
Figure 6. Capacitive Input Signal Conditions....................................................................................................................................................13  
Figure 7. Capacitive Input in Differential Mode.................................................................................................................................................14  
Figure 8. Capacitive Input in Single-Ended Mode.............................................................................................................................................15  
Figure 9. Shield Driver Mode............................................................................................................................................................................15  
Figure 10. Subtraction Mode ..............................................................................................................................................................................16  
Figure 11. Principal Compensation Flow............................................................................................................................................................17  
Figure 12. System Transfer Function for 1/C......................................................................................................................................................18  
Figure 13. PDM Output Configuration ................................................................................................................................................................21  
Figure 14. I2C Command Request.....................................................................................................................................................................22  
Figure 15. I2C Read Data...................................................................................................................................................................................23  
Figure 16. I2C Read Status................................................................................................................................................................................23  
Figure 17 EOC and Interrupt Thresholds...........................................................................................................................................................25  
List of Tables  
Table 1. Pin Descriptions...................................................................................................................................................................................7  
Table 2. Absolute Maximum Ratings.................................................................................................................................................................8  
Table 3. Recommended Operating Conditions .................................................................................................................................................8  
Table 4. Electrical Characteristics .....................................................................................................................................................................9  
Table 5. Conversion Time for Full Temperature Compensated Measurement................................................................................................12  
Table 6. ADC Resolution and Conversion Times for a Single Analog-to-Digital Conversion with Auto-Zero..................................................16  
Table 7. Data Format of Calibration Coefficients in Memory...........................................................................................................................20  
Table 8. Analog Output Performance by External Capacitor Value.................................................................................................................21  
Table 9. General Status Byte ..........................................................................................................................................................................21  
Table 10. Mode Status ......................................................................................................................................................................................22  
Table 11. I2C Interface Parameters ..................................................................................................................................................................23  
Table 12. Data Format of Interrupt Thresholds (TRSH1 and TRSH2)...............................................................................................................24  
Table 13. Data Format of Raw ADC Readings..................................................................................................................................................26  
Table 14. Data Format of Corrected SSC Results.............................................................................................................................................26  
Table 15. Command List ...................................................................................................................................................................................27  
Table 16. Memory (NVM) Content Assignments...............................................................................................................................................29  
5
October 15, 2019  
1. Pin Assignments  
The ZSSC3230 is available as 8-inch wafer* and QFN24 package. Details about the package are provided in section 7.  
Figure 3. Pin Assignments for 4 4 mm 24-PQFN Package Top View  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
n.c.  
C0  
n.c.  
CC  
CC  
PDM  
EOC  
IDT-Test  
n.c.  
ZSSC3230  
RESQ  
IDT-Test  
n.c.  
7
8
9
10  
11  
12  
Figure 4. Pin (Pad) Assignments for Bare-Die  
IC Core  
Seal Ring  
VSS  
VDD  
CC  
C0  
PDM  
EOC  
CC‘  
RESQ  
IDT-Test  
SCL  
IDT-Test  
SDA  
* Detailed information about wafer-shipments, etc., is available on request. See last page for contact information.  
6
October 15, 2019  
2. Pin Descriptions  
Table 1.  
Pin Descriptions  
Pin Number  
Name  
n.c.  
Type  
Description  
No connection. Leave pin floating.  
1
2
C0  
Analog Input  
Capacitor input signal.  
3
CC’  
Analog Input  
Capacitor input signal, duplicate of CC (pin 17).  
RESET, low active; internal pull-up.  
4
RESQ  
IDT-Test  
n.c.  
Digital Input  
5
Connect to VSS; otherwise no connection; leave pin floating.  
No connection. Leave pin floating.  
No connection. Leave pin floating.  
Clock input for I2C interface.  
6
7
n.c.  
8
SCL  
n.c.  
Digital Input  
9
No connection. Leave pin floating.  
No connection. Leave pin floating.  
Bi-directional data I/O for I2C. Pull-up to VDD.  
No connection. Leave pin floating.  
No connection. Leave pin floating.  
Connect to VSS; otherwise no connection; leave pin floating.  
End-of-conversion and output interrupt signal.  
Digital output for pulse-density modulated output.  
Capacitor input signal, duplicate to CC’ (pin 3).  
No connection. Leave pin floating.  
No connection. Leave pin floating.  
Power supply ground.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
n.c.  
SDA  
n.c.  
Digital Input/Output  
n.c.  
IDT-Test  
EOC  
PDM  
CC  
Digital Output  
Digital Output  
Analog Input  
n.c.  
n.c.  
VSS  
n.c.  
Ground  
No connection. Leave pin floating.  
No connection. Leave pin floating.  
Power supply.  
n.c.  
Supply  
VDD  
n.c.  
No connection. Leave pin floating.  
© 2019 Integrated Device Technology, Inc.  
7
October 15, 2019  
3. Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device.  
Functional operation of the ZSSC3230 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect  
device reliability.  
Table 2.  
Symbol  
Absolute Maximum Ratings  
Parameter  
Junction temperature  
Storage temperature  
Conditions  
Minimum  
Maximum  
135  
Units  
°C  
°C  
V
TJ  
-45  
TS  
150  
ESD Human Body Model  
ESD Charged Device Model  
Latch-up  
2000  
750  
V
-100  
-0.3  
-0.3  
+100  
3.63  
mA  
V
VDDmax  
VIF_max  
Voltage supply range  
Voltage at digital interface pins  
Referenced to VSS  
I2C pins: SDA, SCL  
VDD +0.5V  
or 3.63V  
max.  
V
4. Recommended Operating Conditions  
Table 3.  
Recommended Operating Conditions  
Symbol  
VDD  
Parameter  
Power supply voltage  
Minimum  
Typical  
Maximum  
Units  
V
1.68  
-40  
0
3.6  
125  
TA  
Ambient temperature  
°C  
CVDD  
External (parasitic) capacitance between VDD and VSS  
Recommended VDD rise slew rate for power-on-reset (POR)[a]  
10  
nF  
SRVDD_POR  
10  
V/ms  
[a] Per design, there is no (theoretical) minimum VDD slew-rate to trigger a clean POR; however, a reasonable slew rate is recommended.  
8
October 15, 2019  
 
5. Electrical Characteristics  
All parameter values are valid only under specified operating conditions. All voltages are referenced to VSS.  
Table 4.  
Electrical Characteristics  
Symbol  
IC Supply  
IIC  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
Current consumption,  
active ZSSC3230  
Excluding connected sensor elements;  
noise_mode = 0; see Table 16  
750  
1100  
1
µA  
µA  
IIDLE  
Idle current consumption,  
ZSSC3230 in Sleep  
State  
0.07  
IAVE  
Average current draw  
Mean current consumption for one complete  
SSC-measurement cycle per second at 14-bit  
digital-only output, noise_mode = 0  
1.7  
40  
3.3  
µA  
dB  
PSRR  
Static power supply  
VDD = 3V  
rejection ratio (PSRR)  
CDC Characteristics  
CRANGE  
COFFSET  
CSIGNAL  
fclk  
Sensor capacitance  
range  
0
0
30  
15  
15  
pF  
pF  
Absolute sensor  
capacitance offset  
Effective sensor  
capacitance  
-15  
pF  
Analog base clock  
frequency  
750  
14.4  
kHz  
Bit  
ENOB  
Effective number of bits,  
rADC = 18-bit, no oversampling  
±3Noise  
Analog-to-Digital Converter (ADC, A2D)  
rADC  
Resolution  
12  
94  
18  
Bit  
Hz  
fS,RAW  
Conversion rate;  
conversions per second  
Single external sensor A2D conversion  
(including auto-zero measurement AZ);  
resolution and mode dependent  
1250  
fS,CORR  
SSC-conversion rate for  
full SSC cycle;  
conversions per second  
Full SSC-measurements per second:  
temperature (14-bit) + capacitance (12 to18 bit)  
86  
555  
Hz  
Hz  
fS,TEMP  
SSC-conversion rate for  
temperature  
14-bit resolution  
960  
measurement  
ADCnoise  
ENOB  
rADC = 16-bit  
ADC-noise sigma  
1
LSB  
Bit  
Effective number of bits,  
rADC = 18-bit, no oversampling  
16  
±3Noise  
9
October 15, 2019  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
Power-Up Conditions  
tstup1  
tstup2  
twup1  
twup2  
Start-up time  
communication  
Delay between VDD ramp up and start of first  
command (proven by design)  
1
ms  
ms  
ms  
ms  
Start-up time analog  
operation  
Delay between VDD ramp up and analog  
operation (proven by design)  
2.5  
0.5  
2
Wake-up time  
communication  
Delay between sleep state and start of first  
command (proven by design)  
Wake-up time analog  
operation  
Delay between sleep state and analog  
operation (proven by design)  
Sensor Signal Conditioning Performance  
fSSCout  
Output (update) rate  
SSC-corrected digital output rate;  
capacitance sensor measurement: 16-bit;  
temperature measurement: 14-bit;  
noise_mode = 0; see Table 16  
290  
0.1  
Hz  
ErrA,IC  
ZSSC3230 accuracy  
error using internal SSC  
calculation math  
Accuracy error for sensor being ideally linear  
(for temperature and measurand)  
%FSO  
Oscillator  
fCLK  
Internal oscillator  
frequency  
3.0  
55  
MHz  
Temperature Sensor(s)  
rTemp Internal temperature  
LSB/K  
sensor resolution  
Interface and Memory  
fC,I2C I2C clock frequency  
tPROG  
20  
3.4  
MHz  
ms  
NVM program time  
NVM endurance  
Data retention  
Programming time per 16-bit word  
Number of reprogramming cycles  
nNVM  
1000  
10  
10000  
Numeric  
Years  
tRET,NVM  
© 2019 Integrated Device Technology, Inc.  
10  
October 15, 2019  
6. Device Description  
The ZSSC3230 can be set up for one of three main operating modes:  
.
.
.
Sleep Mode Sleep Mode based operation is recommended for smart sensors for the lowest average power consumption. The  
ZSSC3230 automatically enters an idle state after command execution for minimum current consumption; however, the interface is still  
listening and accepts commands. After receiving of a valid command, the ZSSC3230 wakes up, executes the command, and provides the  
results at the digital interface and then returns to Sleep State.  
Command Mode Command Mode is most appropriate for evaluation, test, and calibration purposes. In this mode, all commands are  
available, both digital and analog outputs are supported, and no restrictions for any functionality need to be considered. Command Mode  
can be used for applications requiring re-occurring (or even continuous) digital interaction and minimum latency. Applications in  
Command Mode are only active on command request. See Table 15 for definitions of the commands.  
Cyclic Measurement Mode Cyclic operation means autonomous, cyclically repeated sensor measurements and related digital and  
output updates.  
After power-on, the voltage regulators are switched on, and the ZSSC3230’s low-voltage section (LV) is active while the related interface  
configuration information is read from memory. Then the LV section is switched off, the ZSSC3230 goes into Sleep Mode, and the interface is  
ready to receive commands. The interface is always powered by VDD, so it is referred to as the high voltage section (HV).  
Figure 5 shows the ZSSC3230 main operation modes: Normal Mode (which uses two operation principles: “Sleep” and “Cyclic”) and Command  
Mode. The Normal Mode automatically returns to Sleep Mode after executing the requested measurements, or periodically wakes up and  
conducts another measurement according to the setting for the sleep duration configured by the CYC_period (bits[14:12] in memory register  
02HEX; see Table 16). In Command Mode, the ZSSC3230 remains active if a dedicated command (e.g., Start_NOM) is sent, which is helpful  
during calibration. Command Mode can only be entered if a Start_CM (command A9HEX; see Table 15) is the first command received after a  
POR.  
Figure 5. Main Operating Modes of the ZSSC3230  
Power-On (VDD)  
Reset  
Initialization  
(Load from configurations from NVM,  
interfaces, default_mode, etc.)  
PDM_enable  
Yes  
No  
Command Mode  
(Activity on command; digital output  
supported; fastest response; all  
commands available)  
Sleep Mode  
(Wake-up on command; automatic sleep  
after command execution; no PDM  
output)  
Cyclic Measurement Mode  
(Autonomous measurements; digital  
and PDM output supported; limited  
commands)  
START_CM  
START_CYC  
START_SLEEP  
Stop PDM  
START_SLEEP  
START_CYC  
11  
October 15, 2019  
 
6.1 Signal Flow  
See Figure 1 and Figure 2 for the ZSSC3230 block diagram sensors input options. The CC pin is duplicated as CC’ depending on the preferred  
physical sensor connection. Selecting CC or CC’ can be done using the signal setup CC_pin_selection bits[1:0] in memory register 19HEX (see  
Table 16).  
Two sensor connections are possible:  
.
Differential Measurement Mode, which is an isolated C mode with CMEAS connected between CC and C0 or CC’ and C0 so that both ends  
of the capacitor are connected to the ZSSC3230.  
.
Single-Ended Measurement Mode, which is a grounded C mode with CMEAS connected between CC and VSS or CC’ and VSS/ground. In  
this mode, C0 is switched to VSS. In this mode, only one capacitor input pin needs to be directly connected to the ZSSC3230.  
The capacitance amplifier (CapAmp), which is also referred to as the charge-voltage converter (CVC), measures an external capacitance value,  
CMEAS and provides a differential output voltage proportional to the capacitance (change) to the subsequent ADC. Thereby CMEAS is connected  
with both ends to the IC or with one pin to VSS.  
The bias current for the stage (CapAmp) can be programmed (using the setup signal noise_mode bit 8 in the Sensor_config memory register  
12HEX; see Table 16) to allow a trade-off between current consumption and achievable signal to noise ratio (SNR).  
The system control unit controls the analog circuitry to perform the measurement types for the external capacitive sensor and internal  
temperature. The multiplexer selects the signal input to the amplifier, which can be the voltage-converted signals of the external capacitive  
sensor or the internal temperature reference sensor signal. A full measurement request will trigger an automatic sequence of all measurement  
types and all input signals.  
The gain amplifier (PGA) adjusts the respective signal from the capacitance-to-voltage converter or internal temperature sensor. The ZSSC3230  
employs a programmable analog-to-digital converter (ADC) optimized for conversion speed and noise suppression. The programmable  
resolution from 12 to 18 bits provides flexibility for adapting the conversion characteristics.  
The math core accomplishes the auto-zero, span, and 1st and 2nd order temperature compensation of the measured external sensor signal. The  
correction coefficients are stored in the nonvolatile memory. The ZSSC3230 supports I2C interface communication for controlling the  
ZSSC3230, configuration, and measurement result output. An adequate PDM signal for the compensated sensor signal can be provided in  
Cyclic Measurement Mode at the PDM pin.  
Table 5 lists the conversion time of a full corrected and compensated measurement. The temperature measurement always has a 14-bit  
resolution. The conversion time for the sensor channels includes a full ADC conversion plus auto-zero measurement and the corresponding  
CVC conversion time for this channel and the respective temperature measurement and math calculation. The 2 noise modes (bit[8] in memory  
register 12HEX) are listed separately.  
Table 5.  
Conversion Time for Full Temperature Compensated Measurement  
adc_bits[7:6]  
Conversion Time for Full Temperature Compensated Measurement, Typical [µs]  
ADC Resolution [Bits]  
bit[7]  
bit[6]  
noise_mode = 0  
1770  
noise_mode = 1  
2550  
0
0
1
1
0
1
0
1
12  
14  
16  
18  
2310  
3850  
3390  
6440  
5520  
11630  
© 2019 Integrated Device Technology, Inc.  
12  
October 15, 2019  
 
6.2 Capacitive Sensor Front-End  
The capacitance amplifier input range (CRANGE) must be adjusted to the external capacitance conditions for signal (CSIGNAL) and offset shift  
(COFFSET) as given in Equation 1. See Figure 6 for an illustration of the terms.  
CRANGE = COFFSET + CSIGNAL  
Equation 1  
COFFSET operates as a zero-shift capacitance to cancel a given offset by the sensor. The offset-shift capacitance must not exceed the selected  
input capacitance range CRANGE. For COFFSET, the respective configuration must be set up in the EEPROM for the shift_cap parameter (bits[5:0]  
in memory register 12HEX; see Table 16).  
The correlating setup for CSIGNAL must be done in the EEPROM for parameter cap_range (bits[13:9] in memory register 12HEX). In Table 16, the  
respective values are given. These values can be measured in the positive and negative direction, so the effective range of CSIGNAL will be  
doubled compared to the cap_range setting. The principle is shown in Figure 6.  
Figure 6. Capacitive Input Signal Conditions  
VDD  
ZSSC3230  
VSS  
CC  
Sensor Characteristic  
SDA  
SCL  
+ Capacitance Range  
CSIGNAL  
CSIGNAL  
COFFSET  
Capacitance Range  
CSIGNAL COFFSET  
EOC  
COFFSET  
C0  
RESQ  
CC  
13  
October 15, 2019  
 
 
 
6.2.1 Differential Mode  
The most relevant measurement mode is the Differential Measurement Mode, with CMEAS connected between CC and C0 or CC’ and C0 so that  
both ends of the capacitor are connected to the ZSSC3230. For electrical connections, see Figure 7.  
For the ZSSC3230 for the Differential Measurement Mode, the configuration must be done in the EEPROM for parameter sensecap_type  
(bit[15] in memory register 12HEX; see Table 16). When the sensecap_type is 0, the differential mode is selected, which is the default  
configuration.  
Figure 7. Capacitive Input in Differential Mode  
CC Configuration  
CC ꢀConfiguration  
Vsup  
VDD  
Vsup  
VDD  
ZSSC3230  
ZSSC3230  
VSS  
CC  
VSS  
SDA  
SDA  
SCL  
CC  
SCL  
EOC  
EOC  
C0  
C0  
RESQ  
RESQ  
CC  
CC  
6.2.2 Single-Ended Mode  
Another measurement mode is the single ended measurement mode, with CMEAS connected between CC and VSS or CC’ and VSS/ground. In  
this mode C0 is switched to VSS. In this mode only 1 Pin needs to be directly connected to the IC.  
Configuring the ZSSC3230 for Single-Ended Input Mode must be done in the EEPROM via the parameter sensecap_type (bit[15] in memory  
register 12HEX; see Table 16). Since the respective bit is defined as “0” in the default configuration for Differential Mode, the bit must be  
programmed to “1.”  
6.2.3 Sensor Leakage Compensation  
Sensor leakage compensation is an additional option for Single-Ended Mode to enable the sensor element’s leakage current compensation.  
The leakage current is caused by the sensor element’s parasitic resistance. Enabling this function via the sensor_leakage bit[14] in memory  
register 12HEX leads to loss of dynamic range and a decrease in the SNR. With losing 1-bit effective resolution on leakage compensation, the  
respective capacitive input range for CSIGNAL will be doubled compared to the description in section 6.2.  
14  
October 15, 2019  
 
Figure 8. Capacitive Input in Single-Ended Mode  
CC Configuration  
CC ꢀConfiguration  
VDD  
VDD  
Vsup  
Vsup  
ZSSC3230  
ZSSC3230  
VSS  
CC  
VSS  
SDA  
SDA  
SCL  
CC  
SCL  
EOC  
Resq  
EOC  
C0  
C0  
Resq  
CC  
CC  
6.2.4 Shield Driver Mode  
The Shield Driver Mode is a special sub-mode for Single-Ended Mode. In this mode, the C0 pin will be forced to the same level as the CC/CC’  
pin. This pin can be used to drive a shield, so the shield parasitic capacitance does not have an effect on the measurement. The Shield Driver  
Mode can be enabled by setting the EEPROM parameter En_shlddrv (bit[4] in memory register 19HEX) to “1” (see Table 16).  
Figure 9. Shield Driver Mode  
CC Configuration  
CC ꢀConfiguration  
VDD  
VDD  
Vsup  
Vsup  
ZSSC3230  
ZSSC3230  
VSS  
CC  
VSS  
SDA  
SDA  
SCL  
CC  
SCL  
EOC  
EOC  
C0  
C0  
RESQ  
RESQ  
CC  
CC  
15  
October 15, 2019  
 
6.2.5 Subtraction Mode  
The Subtraction Mode is a special sub-mode for Single-Ended Mode. It is activated by setting the En_sh2 bit to “1” (bit[3] in memory register  
19HEX; see Table 16). In this mode, C0 is charged to the opposite reference of the CC/CC’ node level. In conversion phase the charge of CC/CC’  
and C0 are integrated. In this mode, the integrated capacitance corresponds to “Cx-Cy”; thus this mode can provide an additional range  
extension.  
Figure 10. Subtraction Mode  
CC Configuration  
CC ꢀConfiguration  
Vsup  
VDD  
Vsup  
VDD  
ZSSC3230  
ZSSC3230  
VSS  
CC  
VSS  
SDA  
SDA  
SCL  
CC  
SCL  
Cx  
EOC  
EOC  
C0  
C0  
Cy  
Cy  
RESQ  
RESQ  
CC  
CC  
Cx  
6.3 Temperature Sensor  
The ZSSC3230 provides a PTAT-based internal temperature sensor measurement to allow compensation for temperature effects. The  
temperature output signal is a differential voltage that is adapted by the amplifier (PGA) for the ADC input. For IC-internal temperature  
measurements, the respective settings are defined and programmed in the NVM by IDT. The resolution setting for temperature measurements  
is defined as 14-bit.  
6.4 Analog to Digital Converter (ADC)  
An analog-to-digital converter (ADC) is used to digitize the amplifier signal. To allow optimizing the trade-off between conversion time and  
resolution, the resolution can be programmed from 12-bit to 18-bit by configuring the parameter adc_bits, (bits [7:6] in memory register 12HEX  
;
see Table 16). The ADC processes differential input signals provided by the internal amplifier for sensor measurement and temperature  
measurement. The application default setting is 16-bit. The corresponding conversion times are listed in Table 6. The conversion time for the  
sensor channels includes a full ADC conversion as well as the corresponding CVC conversion time for this channel. There are 2 noise modes  
(selected with bit[8] in memory register 12HEX). The listed conversion times are valid for raw measurements including auto-zero compensation.  
Table 6. ADC Resolution and Conversion Times for a Single Analog-to-Digital Conversion with Auto-Zero  
adc_bits[7:6]  
bit[7] bit[6]  
Conversion Time ADC (including CVC), typical [µs]  
Conversion Time  
Temperature, Typical [µs]  
ADC Resolution [Bits]  
noise_mode = 0  
noise_mode = 1  
1550  
0
0
1
1
0
1
0
1
12  
14  
16  
18  
770  
630  
1310  
2390  
4550  
2850  
1040  
1810  
3470  
5440  
10620  
© 2019 Integrated Device Technology, Inc.  
16  
October 15, 2019  
 
 
6.5 Calibration Math  
The data path internally calculates with a 26-bit two’s-complement integer representation. The coefficients in the memory are stored as integers  
in sign-magnitude representation (1-bit sign + 23-bit magnitude). Each multiplication scales the product by 223. There is an option to preprocess  
the data by applying a 1/C algorithm. 1/C is typically used to pre-process transfer characteristics for capacitive pressure sensors. A principle  
flow is shown in Figure 11.  
Internal overflows and underflows are detected and the result is automatically saturated. The saturation is reported in the status byte.  
Figure 11. Principal Compensation Flow  
ADC-Conversion:  
Raw-result SM  
Yes  
No  
Apply 1-1/C  
calculation?  
S_raw:=S_raw  
S_rawi:=1-1/S_raw  
SSC-Correction Math (using S_raw or S_rawi;T_raw)  
Result S  
S_out = S  
6.5.1 1/C Pre-compensation  
For capacitive pressure sensors, a pre-compensation of the ADC signal might be beneficial. Using this function will help to fit the typical pressure  
sensor transfer characteristic to matching the second-order compensation input requirements for more accurate compensation results. If the  
1/C pre-compensation is activated, it will apply only in Normal Measurement Mode with math compensation, not in RAW measurements using  
Command Mode. The respective 1/C calculation for determination of calibration coefficients is handled in the respective calibration.dll. This  
feature can be enabled by setting the corresponding bit siginv (bit[11] in memory register 02HEX; see Table 16). Before the 1/C math is applied,  
the ADC value of the respective sensor input signal will be inverted.  
This leads to the following transfer function for S_raw with the system transfer function that is shown in Figure 12.  
25  
2
- 1  
246  
Srawi = [224 −  
]
Equation 2  
Sraw  
25  
-2  
Note: For the application, if a “Crange/CSens” inversion will be performed, the shift capacitor must to be set to “0.”  
17  
October 15, 2019  
 
Figure 12. System Transfer Function for 1/C  
Full transfer function  
4
Normal  
1/c  
3
2
1
0
-1  
-2  
-3  
-4  
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
2
Relative input capacitance (S ) input  
raw  
6.5.2 Sensor Signal Compensation Math  
The SOT_curve (bit [15] in EEPROM word 02HEX; see Table 16) selects whether second-order equations compensate for sensor nonlinearity  
with a parabolic or S-shaped curve. The parabolic compensation is recommended.  
Equations for the Parabolic SOT_curve Setting (SOT_curve = 0):  
The coefficients from the memory (23-bit absolute and 1-bit sign; see Table 7) are read into 26-bit-wide registers in the calculation block. The  
24-bit-memory coefficients are shifted by two bits so that the MSB of the 24-bit memory coefficient is placed at the MSB of the 26-bit calculation  
register coefficient.  
Simplified:  
T_Raw  
223  
4 ∙ SOT_tcg  
K1 = 223 +  
(  
T_Raw + 4 Tcg)  
Equation 3  
223  
T_Raw  
K2 = 4 ∙ Offset_S + S_Raw +  
4 ∙ SOT_tco T_Raw + 4 Tcoꢁ  
23  
23  
Equation 4  
Equation 5  
Equation 6  
2
2
4 Gain_S  
K
1
ZSP  
=
K2 + 223  
(Bounded to positive number range)  
(Bounded to positive number range)  
23  
23  
2
2
Z
SP  
23  
S =  
4 ∙ SOT_sensor ZSP + 223+ Sensor_Shift  
23  
2
2
18  
October 15, 2019  
 
Equations for the S-shaped SOT_curve Setting (SOT_curve = 1):  
Simplified:  
4 ∙ Gain_S  
K
1
ZSS  
=
K2  
23  
23  
Equation 7  
Equation 8  
2
2
Z
S =  
4 ∙ SOT_sensor ZSS + 2 + 2 + Sensor_Shift  
(Bounded to positive number range)  
23  
23  
SS  
23  
|
|
23  
2
2
Complete:  
2
25 1  
25 1  
Equation 9  
K
223  
Gain _S  
221  
2  
1
ZSS  
K2  
25  
2  
25  
2  
24 1  
2
25 1  
2  
25 1  
Equation 10  
25 1  
2  
2  
ZSS  
223  
SOT_ sensor  
223 Sensor _Shift  
23   
S   
ZSS  
2  
221  
25  
2  
25  
2  
25  
2  
0  
Where the following representations are valid:  
S
Corrected capacitive sensor reading output via I2C; range: [0 to FFFFFFHEX  
Raw capacitive sensor reading from ADC (after auto-zero correction); shifted range to: [-7FFFFFHEX to 7FFFFFHEX  
Capacitive sensor gain term; range: [-7FFFFFHEX to 7FFFFFHEX  
Capacitive sensor offset term; range: [-7FFFFFHEX to 7FFFFFHEX  
Temperature coefficient gain term; range: [-7FFFFFHEX to 7FFFFFHEX  
Temperature coefficient offset term; range: [-7FFFFFHEX to 7FFFFFHEX  
Raw temperature reading (after AZ correction); shifted range to: [-7FFFFFHEX to 7FFFFFHEX  
]
S_Raw  
Gain_S  
Offset_S  
Tcg  
]
]
]
]
Tco  
]
T_Raw  
SOT_tcg  
SOT_tco  
SOT_sensor  
Sensor_shift  
]
Second-order term for Tcg non-linearity; range: [-7FFFFFHEX to 7FFFFFHEX  
Second-order term for Tco non-linearity; range: [-7FFFFFHEX to 7FFFFFHEX  
]
]
Second-order term for sensor non-linearity; range: [-7FFFFFHEX to 7FFFFFHEX  
]
Post-calibration, post-assembly offset shift; range: [-7FFFFFHEX to 7FFFFFHEX  
Absolute value  
]
ul  
ll  
Bound number range from ll to ul; if needed, apply saturation at the limits ll or ul and report overflow/underflow in the  
status byte  
19  
October 15, 2019  
6.5.3 Temperature Signal Compensation  
Temperature is measured internally. Temperature correction contains both linear gain and offset terms as well as a second-order term to correct  
for any nonlinearities. For temperature, second-order compensation for nonlinearity is always parabolic:  
Simplified:  
4 Gain_T  
23  
ZT =  
T =  
T_Raw + 4 ∙ Offset_T + 2  
(Bounded to positive number range)  
(Bounded to positive number range)  
23  
Equation 11  
Equation 12  
2
Z
4 SOT_T ZT + 223+ T_Shift  
T
23  
23  
2
2
Where  
T
Corrected Temperature reading output via I2C; range [0HEX to 0xFFFFFFHEX  
Gain coefficient for temperature; range [-7FFFFFHEX to 7FFFFFHEX  
Raw temperature reading after AZ correction; shifted range to [-7FFFFFHEX to 7FFFFFHEX  
Offset coefficient for temperature; range [-7FFFFFHEX to 7FFFFFHEX  
Second-order term for temperature source non-linearity; range [-7FFFFFHEX to 7FFFFFHEX  
]
Gain_T  
T_Raw  
]
]
Offset_T  
SOT_T  
T_Shift  
]
]
Shift for post-calibration/post-assembly offset compensation [-7FFFFFHEX to 7FFFFFHEX  
]
Table 7.  
Data Format of Calibration Coefficients in Memory  
Bit Number:  
23  
22  
21  
20  
2
1
0
Meaning, Weighting: 0 = Positive  
21  
20  
2-1  
2-19  
2-20  
2-21  
1 = Negative  
6.6 Output Stages  
The ZSSC3230 supports signal output via a PDM output pin and I2C output. Measured values are provided at an I2C output interface and at a  
pulse-density modulation (PDM) output. The digital interface can be used for configuration and the calibration procedure using the user’s  
computer in order to program a set of calibration coefficients into the on-chip memory.  
6.6.1 PDM Output Stage  
To use the ZSSC3230 in PDM Output Mode, the Cyclic Measurement Mode is required. The ZSSC3230 will not go into Sleep Mode or power-  
down between measurements. The PDM Output Mode can be enabled via the PDM_enable bit (bit[9] in memory register 02HEX; see Table 16).  
In this case, the PDM output will be started after power-on reset.  
Note: If the ZSSC3230 is not used in PDM Output Mode, the PDM pin should not be connected.  
The ZSSC3230 provides a pseudo-analog output of a sigma-delta modulator, i.e. a pulse-density stream, which can be converted into an analog  
DAC-like output by external low-pass filtering. The PDM signal will be output selectively at the PDM pin. The PDM output is available for the  
compensated sensor signal. The PDM output is scaled to a 16-bit wide output signal.  
When the PDM output is used, an external capacitor must be connected to the PDM output as shown in Figure 13.  
20  
October 15, 2019  
Table 8.  
Analog Output Performance by External Capacitor Value  
Filter Capacitance (nF)  
Vout Ripple (µV/V)  
0 to 90%Settling Time (ms)  
Analog Output Resolution (Bit)  
100  
400  
1000.0  
250  
62  
2.3  
9.2  
10  
12  
14  
16  
1600  
6400  
36.8  
147.2  
16  
Figure 13. PDM Output Configuration  
VDD  
VDD  
ZSSC3230  
VSS  
CC  
AOUT  
PDM  
C0  
VSS  
RESQ  
CC  
6.6.2 I2C Output  
The ZSSC3230 supports an I2C slave interface for digital output operation. The implementation of the interfaces is such that the available  
commands (see section 6.7.2) and request codes for the ZSSC3230 are the same regardless on the interface type used.  
Initially after power-up or reset, the I2C slave address is loaded from the on-chip NVM from the Slave_Addr bits [6:0] in register 02HEX; see  
Table 16). There is a general status byte, which is part of the ZSSC3230’s digital response on READ requests. Every response starts with a  
status byte followed by the data word. The data word depends on the previous command. It is possible to read the same data more than once  
if the read request is repeated. The next command invalidates any previous data.  
Table 9.  
Bit-Number:  
Meaning:  
General Status Byte  
7
6
5
4
3
2
1
0
0
Powered?  
Busy?  
Mode  
Memory  
Error?  
ADC Overflow  
Math  
Saturation  
.
.
.
Bit 7 is intentionally not assigned in order to allow for a 1 bit-length time.  
Bit 6 indicates power: 1 if device is powered, 0 if not powered.  
Bit 5 indicates whether the ZSSC3230 is busy. The data for the last command is not available yet. No new commands are processed if  
the device is busy. It is 1if the device is busy.  
21  
October 15, 2019  
.
.
.
Bit 3 and 4 indicate the actual mode of the ZSSC3230: 00 = Normal Operation Mode; 01 = Command Mode; 10 = Test Mode. See Table  
10.  
Bit 2 shows whether there has been a memory integrity/error as indicated by whether the checksum-based integrity check passed or  
failed: 0 if the integrity test passed; 1 if the test failed.  
Bit 1 shows whether there has been an ADC overflow, which is detected if the raw ADC-output value for capacitive measurement  
exceeded the nominal, digital ADC-output range, depending on the selected ADC resolution. This check is only for the raw results for the  
capacitive measurement.  
.
Bit 0 shows the status Information regarding ALU saturation. If the last executed command was a measurement request, this bit is 0 if any  
intermediate value and the final SSC result are in a valid range and no SSC-calculation internal saturation occurred. If the last command  
was a measurement request, this bit is 1 if an SSC-calculation internal saturation occurred. This bit is also 0 for any non-measurement  
command.  
Table 10. Mode Status  
Status[4:3]  
Mode  
00  
01  
10  
11  
Normal Operation Mode (sleep and cyclic operations)  
Command Mode  
IDT Reserved for Test Mode  
IDT Reserved  
The I2C interface is compliant with the NXP I2C Bus Specification, Rev. 06 (UM10204, 4 April 2014). All modes up to High Speed Mode are  
supported. Slave address codes 04HEX to 07HEX must not be programmed to the ZSSC3230 since they are exclusively used for the High Speed  
Mode. The ZSSC3230 will support 7 bit addressing only.  
In I2C Mode, each command is started as shown in Figure 14. Only the number of bytes that are needed for the command must be sent. An  
exception is the I2C High Speed Mode where 3 bytes must always be sent. After the execution of a command (busy = 0), the expected data  
can be read as illustrated in Figure 15 or if no data are returned by the command, the next command can be sent. The status can be read at  
any time as described in Figure 16.  
Figure 14. I2C Command Request  
Command Request (I2C Write)  
from master to slave  
from slave to master  
S
P
A
N
START condition  
STOP condition  
acknowledge  
S
SlaveAddr  
0
A
Command  
A
A
P
write  
0
CmdDat  
<15:8>  
CmdDat  
<7:0>  
S
SlaveAddr  
A
Command  
A
A
P
not acknowledge  
write  
© 2019 Integrated Device Technology, Inc.  
22  
October 15, 2019  
 
 
Figure 15. I2C Read Data  
Read Data (I2C Read)  
(a) Example: after the completion of a Memory Read command  
MemDat  
<15:8>  
MemDat  
<7:0>  
S
SlaveAddr  
1
A
Status  
A
A
N P  
read  
(b) Example: after the completion of a Measure command (AAHEX  
)
SensorDat  
<23:16>  
SensorDat  
<15:8>  
SensorDat  
<7:0>  
TempDat  
<23:16>  
TempDat  
<15:8>  
TempDat  
<7:0>  
S
SlaveAddr  
1
A
Status  
A
A
A
A
A
A
N P  
read  
Figure 16. I2C Read Status  
Read Status (I2C Read)  
S
SlaveAddr  
1
A
Status  
N P  
read  
Table 11. I2C Interface Parameters  
Symbol  
fSCL  
Parameter  
Interface clock  
Conditions  
Minimum  
Typical  
Maximum  
3.4  
Units  
MHz  
%
0.1  
33  
0.7  
0.0  
DSPI  
Duty cycle  
50  
Vhigh,I2C  
Vlow,I2C  
CSDA  
Input HIGH level voltage  
Input LOW level voltage  
1.0  
VDD  
VDD  
pF  
Referenced to the external supply voltage VDD  
0.3  
Capacitive load at input  
pin, SDA  
.
100pF maximum for Standard and  
Fast Mode; in High-Speed Mode  
fSCL,max = 3.4MHz  
100  
400  
.
400pF only in High-Speed Mode,  
fSCL,max = 1.7MHz  
VSDA=0.4V, Standard and Fast Mode with  
400kHz; 400pF load  
IOL  
LOW level output current  
3
6
40  
mA  
Details for timing and protocol of the ZSSC3230-supported I2C communication in Standard Mode, Fast Mode, and High-Speed Mode are given  
in the I2C-Bus Specification, Rev.6, UM10204.  
23  
October 15, 2019  
6.6.3 EOC and Output Interrupt Signaling  
The EOC pin can be programmed to operate either as a “measurement busy” indicator and end-of-conversion (EOC) transducer, or as a  
configurable interrupt transducer. The respective basic operation must be programmed into INT_setup bits in the memory (bits[8:7] in NVM  
register 02HEX; see Table 16). One or two 24-bit-quantized thresholds can be programmed (see the Interrupt Level Setup memory registers:  
13HEX, 14HEX and 15HEX). Depending on the INT_setup selection, the EOC pin provides a logic 1 or logic 0 according to the SSC-corrected  
measurement result. The respective thresholds are programmed left-aligned in the memory, such that they must be programmed with the  
threshold’s MSB in the memory register’s MSB, etc. The LSBs of the 24-bit threshold in the memory must be ignored according to the number  
of bits of the selected ADC resolution (according to adc_bits).  
If only the effective end-of-conversion is signalized (INT_setup = 00BIN), the EOC signal is pulse of approximately 5µs. The next command will  
be executed only after this EOC-signaling period.  
The interrupt functionality is only available for digital values from the SSC-calculation unit. The interrupt feature cannot monitor any type of raw  
values. The encoding and data format of the interrupt thresholds is the same as for SSC-corrected measurement results (see Table 12).  
Table 12. Data Format of Interrupt Thresholds (TRSH1 and TRSH2)  
Bit-Number:  
23  
22  
21  
20  
2
1
0
Meaning, Weighting:  
20  
2-1  
2-2  
2-3  
2-21  
2-22  
2-23  
24  
October 15, 2019  
 
 
Figure 17 EOC and Interrupt Thresholds  
INT_setup = 01:  
INT_setup = 10:  
Measurement > threshold1  
Measurement < threshold1  
Measurement  
Measurement  
Result  
Result  
max.  
max.  
threshold 1  
threshold 1  
0
0
Time  
Time  
Time  
EOC / INT  
EOC / INT  
1
0
1
0
Time  
INT_setup = 11  
Case A:  
threshold1 > threshold2  
Case B:  
threshold1 < threshold2  
Measurement  
Measurement  
Result  
Result  
max.  
max.  
threshold 1  
threshold 2  
threshold 2  
threshold 1  
0
0
Time  
Time  
Time  
Time  
EOC / INT  
EOC / INT  
1
0
1
0
25  
October 15, 2019  
6.7 Measurement and Output Options  
Sensor measurement results of the ZSSC3230 are provided in digital at the I2C interface. This will be the main active interaction path, and it  
can combined with the PDM output configuration.  
6.7.1 Single Measurements: Digital Raw and SSC Results  
The ZSSC3230 generates digital raw values, which are processed by the IC-internal math-core generating the SSC-corrected (linearized,  
temperature-compensated) output signal; see section 6.5.2 for details about SSC math, etc. In addition to the SSC-corrected digital  
measurement results, the ZSSC3230 can provide raw values with or without SSC correction for evaluation and/or calibration purposes. The  
respective results are provided at the digital interface as a 24-bit-wide data word. Raw values are LSB-aligned. SSC results are MSB-aligned.  
Table 13. Data Format of Raw ADC Readings  
Bit-Number:  
23  
22  
21  
20  
2
1
0
Meaning, Weighting:  
-20  
2-1  
2-2  
2-3  
2-21  
2-22  
2-23  
Table 14. Data Format of Corrected SSC Results  
Bit-Number:  
23  
22  
21  
20  
2
1
0
Meaning, Weighting:  
20  
2-1  
2-2  
2-3  
2-21  
2-22  
2-23  
The ZSSC3230 can process and digitize the following signals:  
.
.
.
.
Direct sensor signal inputs; i.e. perform sensor measurements, SM  
Auto-zero signals for the sensor channel, referred to as AZS  
Direct temperature signal inputs; i.e. perform temperature measurements, TM  
Auto-zero signals for the temperature channel, referred to as AZT  
The utilization of auto-zero measurements allows inherent compensation for long-term drift effects of the ZSSC3230, such that the risk of lifetime  
signal degradation for the application and smart sensor is minimized. For the auto-zero measurement, the sensor signal remains the input for  
the auto-zero measurement with the gain and ADC setups the same as for the original signal measurement, but with swapped inputs and offset  
configurations of the PGA and ADC such that the following holds for the resulting raw value:  
.
.
Sensor raw value with auto-zero: S_raw = 0.5 (SM AZS)  
Temperature raw value with auto-zero: T_raw = 0.5 (TM AZT)  
Enabling auto-zero measurements is strongly recommended.  
The NVM configuration and measurement request commands can be used to select which effective measurements are conducted, processed,  
and provided at the digital interface. The possible options for a single measurement request and output are the following:  
.
.
.
SSC-corrected sensor readings (requested by the “Measure” command AAHEX) generating an output of SSC-corrected, 24-bit sensor data  
followed by SSC-corrected, 24-bit temperature data.  
Raw sensor measurement with auto-zero correction (requested by the “Raw Sensor Measure” command A2HEX) generating an output of  
raw, 24-bit sensor data.  
Raw temperature measurement with auto-zero correction (requested by the “Raw Temperature Measure” command A6HEX) generating an  
output of raw, 24-bit temperature data.  
26  
October 15, 2019  
6.7.2 Digital Commands  
The availability of commands depends on the active Main Operating Mode: Command, Sleep, or Cyclic Measurement Mode.  
Table 15. Command List  
Command Code  
(Byte)  
Return  
16-bit data  
Description  
00HEX to 1F HEX  
Memory Read: Read address 00HEX to 1FHEX  
.
Yes  
Yes  
Yes  
Yes  
No  
No  
20HEX to 3CHEX  
Memory Write: Write data to addresses 00HEX to 1CHEX (the  
NVM-register address is the command minus 20HEX). Note: If the  
NVM is locked, write requests are not acknowledged or ignored.  
followed by data  
(0000HEX to FFFFHEX  
)
90HEX  
Calculate NVM Checksum: Calculate the checksum for the  
NVM and write it to the memory.  
Yes  
Yes  
Yes  
Yes  
No  
No  
A2HEX followed by data 24-bit raw data  
0000HEX  
Raw Sensor Measurement:* Conduct a sensor measurement  
without SSC correction. The configuration is loaded to the  
controlling shadow registers from the Sensor_config register in  
NVM.  
Note: The auto-zero sensor measurement is also performed.  
A3HEX followed by data 24-bit raw data  
ssssHEX  
Raw Sensor Measurement:* Conduct a sensor measurement  
without SSC correction. The ssss is the user’s configuration  
setting for the measurement provided via the interface. The  
format and purpose of the configuration bits must be according  
to the definitions for Sensor_config.  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
No  
Note: The auto-zero sensor measurement is also performed.  
A6HEX followed by data 24-bit raw data  
0000HEX  
Raw Temperature Measurement:* Conduct a temperature  
measurement without SSC correction. The configuration is  
loaded to the controlling shadow registers from the  
extTemp_Config1/2 or T_config1/2 registers in NVM as well as  
the SSF1/2 registers.  
Note: Auto-zero-sensor measurement is performed.  
A8HEX  
START_SLEEP: Exit Command Mode or Cyclic Measurement  
Mode and transition to Sleep Mode.  
Yes  
Note: The response to Start_Sleep is only the status byte.  
A9HEX  
AAHEX  
START_CM: Enter Command Mode and enable/allow  
respective commands. This command must be sent as the first  
command after power-up.  
No  
Yes  
Yes  
No  
No  
24-bit SSC-corrected Measure trigger a full measurement (auto-zero-sensor,  
sensor data and sensor, auto-zero-temperature, temperature) and perform the  
Yes  
24-bit SSC-corrected SSC correction.  
temperature data  
*
These commands can be used to conduct a measurement without SSC correction; e.g., during smart sensor calibration procedure. No digital correction is performed  
on the measurement result.  
27  
October 15, 2019  
 
Command Code  
(Byte)  
Return  
Description  
ABHEX  
24-bit SSC-corrected START_CYC: Enter Cyclic Measurement Mode: continuous  
sensor data and measurement cycles, SSC corrections, and automatic,  
24-bit SSC-corrected continuous digital output updates.  
temperature data  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
ACHEX  
ADHEX  
AEHEX  
AFHEX  
Oversample-2 Measure:* Complete multiple measurements for  
mean-value generation: 2 full measurements are performed (the  
same as measurements triggered with AAHEX, not cyclic) and the  
resulting mean value is provided as output.  
Oversample-4 Measure:* Complete multiple measurements for  
mean-value generation: 4 full measurements are performed (the  
same as AAHEX measurements, not cyclic) and the resulting  
mean value is provided as output.  
24-bit SSC-corrected  
sensor data and  
24-bit SSC-corrected  
temperature data  
Oversample-8 Measure:* Complete multiple measurements for  
mean-value generation: 8 full measurements are performed (the  
same as AAHEX measurements, not cyclic) and the resulting  
mean value is provided as output.  
Oversample-16 Measure:* Complete multiple measurements  
for mean-value generation: 16 full measurements are performed  
(the same as AAHEX measurements, not cyclic) and the resulting  
mean value is provided as output.  
B0HEX  
B4HEX  
16-bit data output  
0 pass / 1 fail  
Broken Chip: Test resistance of corner wire.  
Yes  
No  
Yes  
No  
No  
-
Stop PDM: This command can be used to stop the PDM in  
Yes  
order to change the PDM enable in NVM.  
This command does not sent an ack.  
FXHEX X followed by  
data XXHEX  
-
Soft-Reset: Full reset of digital part.  
Yes  
Yes  
Yes  
Note: Any FXHEX command extended by one arbitrary data byte  
results in the soft reset. This command will not be answered by  
an acknowledge  
6.7.3 Nonvolatile Memory (NVM)  
In the ZSSC3230, the memory is organized in 16-bit wide registers and can be programmed multiple times (approximately 10000). There are  
28 x 16-bit registers available for customer use. Each register can be re-programmed. Basically, there are two NVM content sectors:  
.
Customer Use Accessible by means of regular WRITE operations: 20HEX to 3CHEX. It contains the customer ID, interface setup data,  
measurement setup information, calibration coefficients, etc.  
.
IDT Use Only accessible for WRITE operations by IDT. This sector contains specific trim information and is programmed during  
manufacturing test by IDT; e.g., configurations for the internal temperature sensor are stored there.  
*
Use oversample measurements to obtain noise-minimized measurement results in Sleep or Command Mode. With higher oversampling factors, the command  
execution time increases proportionally.  
28  
October 15, 2019  
 
6.7.4 Memory Contents  
Table 16. Memory (NVM) Content Assignments  
NVM  
Address  
Word/Bit  
Range  
Default  
Setting  
Word/Bit Field  
Name  
Description  
00HEX  
01HEX  
15:0  
15:0  
0000HEX  
0000HEX  
Cust_ID0  
Cust_ID1  
Customer ID byte 0 (combines with memory word 01HEX to form the customer ID).*  
Customer ID byte 1 (combines with memory word 00HEX to form the customer ID).  
Interface Configuration  
I2C and OWI slave address; valid range: 00HEX to 7FHEX (default: 00HEX).  
6:0  
000 0000BIN  
Slave_Addr  
Note: Address codes 04HEX to 07HEX are reserved for entering the I2C High  
Speed Mode.  
Interrupt configuration, EOC pin functionality:  
00 End-of-conversion signal  
01 0-1 transition if threshold1 (TRSH1) is exceeded and 1-0 transition if  
threshold1 is underrun again  
10 0-1 transition if threshold1 is underrun and 1-0 transition if threshold1 is  
exceeded again  
8:7  
00BIN  
INT_setup  
11 EOC is determined by threshold settings (see section 6.6.3):  
If (TRSH1 > TRSH2) then EOC/INT (interrupt level) = 0 if (TRSH1 > MEAS ≥  
TRSH2) where MEAS is the conditioned measurement result.  
Otherwise EOC/INT=1.  
If (TRSH1 ≤ TRSH2) then EOC = 1 if (TRSH1 ≤ MEAS < TRSH2).  
Otherwise EOC = 0.  
Enables PDM-output:  
02HEX  
0 PDM output disabled  
1 PDM output enabled  
9
0BIN  
PDM_enable  
If PDM_enable bit is 1, the ZSSC3230 will start after reset without any further  
command in Cyclic Measurement Mode  
10  
11  
0BIN  
0BIN  
Reserved  
siginv  
Enables input signal inversion (“1-1/C”) in conditioning math:  
0 “1-1/C” disabled  
1 “1-1/C” enabled  
Update period (ZSSC3230 sleep time, except oscillator) in cyclic operation:  
000 0.0ms (= PDM default)  
001 167ms  
100 1333ms  
101 2667ms  
110 5333ms  
111 Not assigned  
14:12  
15  
000BIN  
CYC_period  
SOT_curve  
010 333ms  
011 666ms  
Type/shape of second-order curve correction for the sensor signal.  
0 parabolic curve 1 s-shaped curve  
0BIN  
* For I3C operation, this should contain the Legacy Virtual Register “LVR” info: 0x1X … Index 0; Fast Mode supported.  
29  
October 15, 2019  
NVM  
Address  
Word/Bit  
Range  
Default  
Setting  
Word/Bit Field  
Name  
Description  
Signal Conditioning Parameters  
03HEX  
04HEX  
05HEX  
15:0  
15:0  
15:0  
0000HEX  
0000HEX  
0000HEX  
Offset_S[15:0]  
Gain_S[15:0]  
Tcg[15:0]  
Bits [15:0] of the 24-bit-wide sensor offset correction coefficient Offset_S. (MSBs of  
this coefficient including sign are Offset_S[23:16], which are bits [15:8] in 0DHEX.)  
Bits [15:0] of the 24-bit-wide value of the sensor gain coefficient Gain_S. (MSBs of  
this coefficient including sign are Gain_S[23:16], which are bits [7:0] in 0DHEX.)  
Bits [15:0] of the 24-bit-wide coefficient Tcg for the temperature correction of the  
sensor gain. (The MSBs of this coefficient including sign are Tcg[23:16], which  
are bits [15:8] in 0EHEX.)  
06HEX  
15:0  
0000HEX  
Tco[15:0]  
Bits [15:0] of the 24-bit-wide coefficient Tco for temperature correction of the  
sensor offset. (The MSBs of this coefficient including sign are Tco[23:16], which  
are bits [7:0] in 0EHEX.)  
07HEX  
08HEX  
09HEX  
15:0  
15:0  
15:0  
0000HEX  
0000HEX  
0000HEX  
SOT_tco[15:0]  
SOT_tcg[15:0]  
SOT_sens[15:0]  
Bits [15:0] of the 24-bit-wide 2nd order term SOT_tco applied to Tco. (The MSBs of  
this term including sign are SOT_tco[23:16], which are bits[15:8] in 0FHEX.)  
Bits [15:0] of the 24-bit-wide 2nd order term SOT_tcg applied to Tcg. (The MSBs of  
this term including sign are SOT_tcg[23:16], which are bits[7:0] in 0FHEX.)  
Bits [15:0] of the 24-bit-wide 2nd order term SOT_sens applied to the sensor read-  
out. (The MSBs of this term including sign are SOT_sens[23:16], which are  
bits[15:8] in 10HEX.)  
0AHEX  
0BHEX  
15:0  
15:0  
0000HEX  
0000HEX  
Offset_T[15:0]  
Gain_T[15:0]  
Bits [15:0] of the 24-bit-wide temperature offset correction coefficient Offset_T.  
(MSBs of this coefficient including sign are Offset_T[23:16]; i.e., bits[7:0] in 10HEX.)  
Bits [15:0] of the 24-bit-wide absolute value of the temperature gain coefficient  
Gain_T. (The MSBs of this coefficient including sign are Gain_T[23:16], which are  
bits[15:8] in 11HEX.)  
0CHEX  
15:0  
0000HEX  
SOT_T[15:0]  
Bits [15:0] of the 24-bit-wide 2nd-order term SOT_T applied to the temperature  
reading. (The MSBs of this coefficient including sign are SOT_T[23:16], which are  
bit[7:0] in 11HEX.)  
7:0  
00HEX  
00HEX  
00HEX  
00HEX  
Gain_S[23:16]  
Offset_S[23:16]  
Tco[23:16]  
Bits [23:16] including sign for the 24-bit-wide sensor gain correction coefficient  
Gain_S. (The LSBs of this coefficient are Gain_S[15:0] in register 03HEX.)  
0DHEX  
0EHEX  
0FHEX  
10HEX  
15:8  
7:0  
Bits [23:16] including sign for the 24-bit-wide sensor offset correction coefficient  
Offset_S. (The LSBs are Offset_S[15:0] in register 04HEX.)  
Bits [23:16] including sign for the 24-bit-wide coefficient Tco for temperature  
correction for the sensor offset. (The LSBs are Tco[15:0] in register 05HEX.)  
15:8  
Tcg[23:16]  
Bits [23:16] including sign for the 24-bit-wide coefficient Tcg for the temperature  
correction of the sensor gain. (The LSBs are Tcg[15:0] in register 06HEX.)  
Bits [23:16] including sign for the 24-bit-wide 2nd order term SOT_tcg applied to  
Tcg. (The LSBs are SOT_tcg[15:0] in register 07HEX.)  
7:0  
00HEX  
SOT_tcg[23:16]  
Bits [23:16] including sign for the 24-bit-wide 2nd order term SOT_tco applied to  
Tco. (The LSBs are SOT_tco[15:0] in register 08HEX.)  
15:8  
7:0  
00HEX  
00HEX  
SOT_tco[23:16]  
Offset_T[23:16]  
Bits [23:16] including sign for the 24-bit-wide temperature offset correction  
coefficient Offset_T. (The LSBs are Offset_T[15:0] in register 09HEX.)  
Bits [23:16] including sign for the 24-bit-wide 2nd order term SOT_sens applied to  
the sensor readout. (The LSBs are SOT_sens[15:0] in register 0AHEX.)  
15:8  
00HEX  
SOT_sens[23:16]  
30  
October 15, 2019  
NVM  
Address  
Word/Bit  
Range  
Default  
Setting  
Word/Bit Field  
Name  
Description  
Bits [23:16] including sign for the 24-bit-wide 2nd-order term SOT_T applied to the  
temperature reading. (The LSBs are SOT_T[15:0] in register 0BHEX.)  
7:0  
00HEX  
00HEX  
SOT_T[23:16]  
Gain_T[23:16]  
11HEX  
Bits [23:16] including sign for the 24-bit-wide absolute value of the temperature  
gain coefficient Gain_T. (The LSBs are Gain_T[15:0] in register 0CHEX.)  
15:8  
Measurement Configuration (Sensor_config) Register  
Defines the zero shift capacitanceinput offset shift to cancel the static input  
capacitance of the sensor:  
00 0000 no offset shift  
00 0001 0.25pF  
00 0010 0.50pF  
00 0011 0.75pF  
00 0100 1.00pF  
00 0101 1.25pF  
00 0110 1.50pF  
00 0111 1.75pF  
00 1000 2.00pF  
00 1001 2.25pF  
5:0  
00 0000BIN  
shift_cap  
11 1101 15.00pF  
11 1110 15.50pF  
11 1111 15.75pF  
Note: the offset shift capacitance must not exceed the selected input  
capacitance’s range (see cap_range).  
Defines the absolute number of bits for the A2D conversion:  
7:6  
8
00BIN  
adc_bits  
00 12-bit  
10 16-bit  
11 18-bit  
01 14-bit (default)  
Select between control sequences for noise-quality vs. energy consumption  
optimization:  
0BIN  
noise_mode  
12HEX  
0 Low Current Mode  
1 Low Noise Mode  
Selection maximum possible external signal capacitance; i.e. the capacitance  
sensor range (without any offset):  
00000 0.5pF  
00001 1.0pF  
00010 1.5pF  
00011 2.0pF  
00100 2.5pF  
00101 3.0pF  
00110 3.5pF  
00111 4.0pF  
01000 4.5pF  
01001 5.0pF  
01010 5.5pF  
01011 6.0pF  
01100 6.5pF  
01101 7.0pF  
01110 7.5pF  
01111 8.0pF  
10000 8.5pF  
10001 9.0pF  
10010 9.5pF  
10011 10.0pF  
10100 10.5pF  
10101 11.0pF  
10110 11.5pF  
10111 12.0pF  
11000 12.5pF  
11001 13.0pF  
11010 13.5pF  
11011 14.0pF  
11100 14.5pF  
11101 15.0pF  
11110 15.5pF  
11111 16.0pF  
13:9  
0 0000BIN  
cap_range  
31  
October 15, 2019  
NVM  
Address  
Word/Bit  
Range  
Default  
Setting  
Word/Bit Field  
Name  
Description  
Option to enable sensor element’s leakage current compensation (due to sensor  
element’s parasitic resistance) leakage cancellation leads to loss of dynamic  
range and decrease of SNR (loss of 1 bit of effective resolution).  
The following setups are possible:  
14  
15  
0BIN  
sensor_leakage  
sensecap_type  
0 no sensor leakage cancellation; full internal dynamic range; full Vref  
applied to external sensor  
12HEX  
(Continued)  
1 sensor leakage cancellation enabled; applied voltage at external sensor  
of 0.5 Vref (loss of 1 bit of effective resolution)  
Selection of applied (external) sensor capacitance:  
0 “differential” sensor capacitance between C0 and CC (CC’) pads  
0BIN  
1 single ended sensor capacitance between VSS and CC (CC) pad;  
applied voltage at external sensor of 0.5 × Vref (loss of 1 bit of effective  
resolution)  
Interrupt Level Setup and Post-Calibration (Digital) Offset Calibration  
Bits [15:0] of the 24-bit-wide interrupt threshold1, TRSH1. (The MSBs for this  
threshold are TRSH1[23:16], which are bits [7:0] of register 15HEX.)  
13HEX  
14HEX  
15:0  
15:0  
7:0  
0000HEX  
0000HEX  
00HEX  
TRSH1[15:0]  
Bits [15:0] of the 24-bit-wide interrupt threshold2, TRSH2. (The MSBs for this  
threshold are TRSH2[23:16], which are bits[15:8] of register 15HEX.)  
TRSH2[15:0]  
Bits [23:16] of the 24-bit-wide interrupt threshold1, TRSH1. (The LSBs for this  
threshold are TRSH1[15:0], which are bits[15:0] of register 13HEX.)  
TRSH1[23:16]  
TRSH2[23:16]  
SENS_Shift[15:0]  
T_Shift[15:0]  
15HEX  
Bits [23:16] of the 24-bit-wide interrupt threshold2, TRSH2. (The LSBs for this  
threshold are TRSH2[15:0], which are bits[15:0] of register 14HEX.)  
15:8  
15:0  
15:0  
7:0  
00HEX  
Bits [15:0] of the post-calibration sensor offset shift coefficient SENS_Shift. (The  
MSBs of SENS_Shift are bits [7:0] of register 18HEX.)  
16HEX  
17HEX  
0000HEX  
0000HEX  
00HEX  
Bits [15:0] of the post-calibration temperature offset shift coefficient T_Shift. (The  
MSBs of T_Shift are bits [15:8] of register 18HEX.)  
Bits [23:16] of the post-calibration sensor offset shift coefficient SENS_Shift. (The  
LSBs of SENS_Shift are in register 16HEX.)  
SENS_Shift[23:16]  
T_Shift[23:16]  
18HEX  
Bits [23:16] of the post-calibration temperature offset shift coefficient T_Shift. (The  
LSBs of T_Shift are in register 17HEX.)  
15:8  
00HEX  
© 2019 Integrated Device Technology, Inc.  
32  
October 15, 2019  
NVM  
Address  
Word/Bit  
Range  
Default  
Setting  
Word/Bit Field  
Name  
Description  
Configuration Register  
Defines which pin is used for measurement (CC and/or CC’):  
00 no input  
01 CC  
1:0  
00BIN  
CC_pin_selection  
10 CC’  
11 CC and CC’  
Enable/disable digital dithering to improve EMI performance:  
2
3
0BIN  
0BIN  
0BIN  
Dither  
0 No dithering  
Enable Subtraction Mode in grounded mode (see section 6.2.5):  
0 Disabled 1 Enabled  
Enable active shield drive at the C0 pin (see section 6.2.4):  
0 Disabled 1 Enabled  
1 Dithering enabled  
En_sh2  
En_shlddrv  
19HEX  
4
Enables higher drive current in analog front end, which will be needed if the  
sensor range is much smaller than the shift capacitor:  
5
0BIN  
Dyn_imp  
Test_cap  
0 Disabled  
1 Enabled  
Enables an internal reference sensor capacitor of approx. 2pF in parallel to  
sensor input:  
6
0BIN  
0 Disabled  
1 Enabled  
IDT lot tracking information; can be overwritten and used as free space for  
customer use.  
15:7  
Reserved  
Reserved  
IDT lot tracking information; can be overwritten and used as free space for  
customer use.  
1AHEX  
1BHEX  
15:0  
15:0  
0000HEX  
0000HEX  
Reserved  
CRC  
IDT lot tracking information; can be overwritten and used as free space for  
customer use.  
Generated checksum (CRC) for whole memory through a linear feedback shift  
register (LFSR); Signature is checked upon power-up to ensure memory content  
integrity  
1CHEX  
15:0  
0000HEX  
The NVM-consistency checksum is calculated (IC-internally for the whole NVM) using the polynomial: x16 + x15 + x2 + 1. The checksum  
verification is only realized directly after VDD power-on. If the checksum is successfully verified, then the “Memory Error” status bit is set to 0BIN  
.
33  
October 15, 2019  
7. Package Outline Drawings  
The package outline drawings VFQFPN package are appended at the end of this document and are accessible from the link below. The package  
information is the most current data available.  
https://www.idt.com/document/psc/24-vfqfpn-package-outline-drawing-40-x-40-x-090-mm-body050mm-pitchepad-245-x-245-mm-nlg24p1  
8. Marking Diagram  
1. Line 1 is the truncated part number.  
2. Line 2 – “YYWW” are the last two digit of the year and week that the part was  
assembled.  
3. Line 3 – “XXXXX” denotes assembly lot number.  
9. Ordering Information  
Orderable Part Number  
ZSSC3230BC1B  
ZSSC3230BC2B  
ZSSC3230BI1B  
ZSSC3230BI2B  
ZSSC3230BC5B  
ZSSC3230BC6B  
ZSSC3230BI5B  
ZSSC3230BI6B  
ZSSC3230BC3R  
ZSSC3230BI3R  
ZSSC3230BI3W  
ZSSC3230KIT  
Description and Package  
Dice on 304µm wafer no inking  
Dice on 725µm wafer no inking  
Dice on 304µm wafer no inking  
Dice on 725µm wafer no inking  
Dice on 304µm wafer with inking  
Dice on 725µm wafer with inking  
Dice on 304µm wafer with inking  
Dice on 725µm wafer with inking  
4 4 mm2 PQFN  
MSL Rating  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
MSL1  
Carrier Type  
Wafer Box  
Wafer Box  
Wafer Box  
Wafer Box  
Wafer Box  
Wafer Box  
Wafer Box  
Wafer Box  
13” Reel  
Temperature  
-40 to 85°C  
-40 to 85°C  
-40 to 125°C  
-40 to 125°C  
-40 to 85°C  
-40 to 85°C  
-40 to 125°C  
-40 to 125°C  
-40 to 85°C  
-40 to 125°C  
-40 to 125°C  
4 4 mm2 PQFN  
MSL1  
13” Reel  
4 4 mm2 PQFN  
MSL1  
7” Reel  
ZSSC3230 Evaluation Board with USB Cable and 5 Samples  
34  
October 15, 2019  
10. Glossary  
Term  
Description  
A2D  
ACK  
ADC  
AGND  
AZ  
Analog-to-Digital  
Acknowledge (interface’s protocol indicator for successful data/command transfer)  
Analog-to-Digital Converter or Conversion  
Analog Ground  
Auto-Zero (unspecific)  
AZS  
AZT  
CLK  
CVC  
DAC  
EOC  
FSO  
HVAC  
LFSR  
LSB  
MSB  
MSL  
NACK  
NVM  
OpAmp  
PGA  
POR  
PSRR  
PTAT  
S
Auto-Zero Measurement for (External) Sensor Path  
Auto-Zero Measurement for (External or Internal) Temperature Path  
Clock  
Charge-Voltage Converter  
Digital-to-Analog Converter or Conversion  
End of Conversion  
Full Scale Output (value in percent relative to the ADC maximum output code; resolution dependent)  
Heating, Ventilation, and Air Conditioning  
Linear Feedback Shift Register  
Least Significant Bit  
Most Significant Bit  
Moisture Sensitivity Level  
Not Acknowledge (interface’s protocol indicator for unsuccessful data/command transfer)  
Nonvolatile Memory  
Operating Amplifier  
Programmable Gain Amplifier  
Power-On Reset  
Power Supply (Disturbance) Rejection Ratio  
Proportional to Absolute Temperature  
SSC-Corrected Sensor Readout / Result  
Sensor Measurement  
SM  
SNR  
SOT  
SSF  
T
Signal to Noise Ratio  
Second-Order Term  
Smart-Sensor Function (specific NVM registers)  
SSC-Corrected (additional) Temperature Readout / Result  
Temperature Coefficient  
TC  
© 2019 Integrated Device Technology, Inc.  
35  
October 15, 2019  
11. Revision History  
Revision Date  
Description of Change  
Values updated for Power-up conditions  
Conditions updated for equations for the S-shaped SOT_curve setting  
October 15, 2019  
.
.
September 10, 2019  
Initial release.  
24-VFQFPN, Package Outline Drawing  
4.0 x 4.0 x 0.90 mm Body,0.50mm Pitch,Epad 2.45 x 2.45 mm  
NLG24P1, PSC-4192-01, Rev 02, Page 1  
© Integrated Device Technology, Inc.  
24-VFQFPN, Package Outline Drawing  
4.0 x 4.0 x 0.90 mm Body,0.50mm Pitch,Epad 2.45 x 2.45 mm  
NLG24P1, PSC-4192-01, Rev 02, Page 2  
Package Revision History  
Description  
Date Created Rev No.  
Sept 9, 2016  
Rev 01 Add Chamfer on Epad  
Sept 13, 2018 Rev 02 New Format, Recalculate Land Pattern Change QFN to VFQFPN  
© Integrated Device Technology, Inc.  
1RWLFH  
ꢄꢃ 'HVFULSWLRQVꢀRIꢀFLUFXLWVꢅꢀVRIWZDUHꢀDQGꢀRWKHUꢀUHODWHGꢀLQIRUPDWLRQꢀLQꢀWKLVꢀGRFXPHQWꢀDUHꢀSURYLGHGꢀRQO\ꢀWRꢀLOOXVWUDWHꢀWKHꢀRSHUDWLRQꢀRIꢀVHPLFRQGXFWRUꢀSURGXFWVꢀ  
DQGꢀDSSOLFDWLRQꢀH[DPSOHVꢃꢀ<RXꢀDUHꢀIXOO\ꢀUHVSRQVLEOHꢀIRUꢀWKHꢀLQFRUSRUDWLRQꢀRUꢀDQ\ꢀRWKHUꢀXVHꢀRIꢀWKHꢀFLUFXLWVꢅꢀVRIWZDUHꢅꢀDQGꢀLQIRUPDWLRQꢀLQꢀWKHꢀGHVLJQꢀRIꢀ\RXUꢀ  
SURGXFWꢀRUꢀV\VWHPꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀDQGꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ  
WKHVHꢀFLUFXLWVꢅꢀVRIWZDUHꢅꢀRUꢀLQIRUPDWLRQꢃ  
ꢁꢃ 5HQHVDVꢀ(OHFWURQLFVꢀKHUHE\ꢀH[SUHVVO\ꢀGLVFODLPVꢀDQ\ꢀZDUUDQWLHVꢀDJDLQVWꢀDQGꢀOLDELOLW\ꢀIRUꢀLQIULQJHPHQWꢀRUꢀDQ\ꢀRWKHUꢀFODLPVꢀLQYROYLQJꢀSDWHQWVꢅꢀFRS\ULJKWVꢅꢀRUꢀ  
RWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀWKLUGꢀSDUWLHVꢅꢀE\ꢀRUꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRUꢀWHFKQLFDOꢀLQIRUPDWLRQꢀGHVFULEHGꢀLQꢀWKLVꢀ  
GRFXPHQWꢅꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢅꢀWKHꢀSURGXFWꢀGDWDꢅꢀGUDZLQJVꢅꢀFKDUWVꢅꢀSURJUDPVꢅꢀDOJRULWKPVꢅꢀDQGꢀDSSOLFDWLRQꢀH[DPSOHVꢃꢀ  
ꢆꢃ 1RꢀOLFHQVHꢅꢀH[SUHVVꢅꢀLPSOLHGꢀRUꢀRWKHUZLVHꢅꢀLVꢀJUDQWHGꢀKHUHE\ꢀXQGHUꢀDQ\ꢀSDWHQWVꢅꢀFRS\ULJKWVꢀRUꢀRWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀRUꢀ  
RWKHUVꢃ  
ꢇꢃ <RXꢀVKDOOꢀQRWꢀDOWHUꢅꢀPRGLI\ꢅꢀFRS\ꢅꢀRUꢀUHYHUVHꢀHQJLQHHUꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢅꢀZKHWKHUꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀ  
DQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀRUꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀVXFKꢀDOWHUDWLRQꢅꢀPRGLILFDWLRQꢅꢀFRS\LQJꢀRUꢀUHYHUVHꢀHQJLQHHULQJꢃ  
ꢈꢃ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀFODVVLILHGꢀDFFRUGLQJꢀWRꢀWKHꢀIROORZLQJꢀWZRꢀTXDOLW\ꢀJUDGHVꢉꢀꢊ6WDQGDUGꢊꢀDQGꢀꢊ+LJKꢀ4XDOLW\ꢊꢃꢀ7KHꢀLQWHQGHGꢀDSSOLFDWLRQVꢀIRUꢀ  
HDFKꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀGHSHQGVꢀRQꢀWKHꢀSURGXFWꢋVꢀTXDOLW\ꢀJUDGHꢅꢀDVꢀLQGLFDWHGꢀEHORZꢃ  
ꢊ6WDQGDUGꢊꢉ  
&RPSXWHUVꢌꢀRIILFHꢀHTXLSPHQWꢌꢀFRPPXQLFDWLRQVꢀHTXLSPHQWꢌꢀWHVWꢀDQGꢀPHDVXUHPHQWꢀHTXLSPHQWꢌꢀDXGLRꢀDQGꢀYLVXDOꢀHTXLSPHQWꢌꢀKRPHꢀ  
HOHFWURQLFꢀDSSOLDQFHVꢌꢀPDFKLQHꢀWRROVꢌꢀSHUVRQDOꢀHOHFWURQLFꢀHTXLSPHQWꢌꢀLQGXVWULDOꢀURERWVꢌꢀHWFꢃ  
ꢊ+LJKꢀ4XDOLW\ꢊꢉ 7UDQVSRUWDWLRQꢀHTXLSPHQWꢀꢍDXWRPRELOHVꢅꢀWUDLQVꢅꢀVKLSVꢅꢀHWFꢃꢎꢌꢀWUDIILFꢀFRQWUROꢀꢍWUDIILFꢀOLJKWVꢎꢌꢀODUJHꢏVFDOHꢀFRPPXQLFDWLRQꢀHTXLSPHQWꢌꢀNH\ꢀ  
ILQDQFLDOꢀWHUPLQDOꢀV\VWHPVꢌꢀVDIHW\ꢀFRQWUROꢀHTXLSPHQWꢌꢀHWFꢃ  
8QOHVVꢀH[SUHVVO\ꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀSURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGRFXPHQWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀQRWꢀLQWHQGHGꢀRUꢀDXWKRUL]HGꢀIRUꢀXVHꢀLQꢀSURGXFWVꢀRUꢀV\VWHPVꢀWKDWꢀPD\ꢀSRVHꢀDꢀGLUHFWꢀWKUHDWꢀWRꢀ  
KXPDQꢀOLIHꢀRUꢀERGLO\ꢀLQMXU\ꢀꢍDUWLILFLDOꢀOLIHꢀVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢌꢀVXUJLFDOꢀLPSODQWDWLRQVꢌꢀHWFꢃꢎꢅꢀRUꢀPD\ꢀFDXVHꢀVHULRXVꢀSURSHUW\ꢀGDPDJHꢀꢍVSDFHꢀV\VWHPꢌꢀ  
XQGHUVHDꢀUHSHDWHUVꢌꢀQXFOHDUꢀSRZHUꢀFRQWUROꢀV\VWHPVꢌꢀDLUFUDIWꢀFRQWUROꢀV\VWHPVꢌꢀNH\ꢀSODQWꢀV\VWHPVꢌꢀPLOLWDU\ꢀHTXLSPHQWꢌꢀHWFꢃꢎꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀ  
DQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀGDPDJHVꢀRUꢀORVVHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀDQ\ꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀWKDWꢀLVꢀ  
LQFRQVLVWHQWꢀZLWKꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢅꢀXVHUꢋVꢀPDQXDOꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢃ  
ꢐꢃ :KHQꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀUHIHUꢀWRꢀWKHꢀODWHVWꢀSURGXFWꢀLQIRUPDWLRQꢀꢍGDWDꢀVKHHWVꢅꢀXVHUꢋVꢀPDQXDOVꢅꢀDSSOLFDWLRQꢀQRWHVꢅꢀꢊ*HQHUDOꢀ1RWHVꢀIRUꢀ  
+DQGOLQJꢀDQGꢀ8VLQJꢀ6HPLFRQGXFWRUꢀ'HYLFHVꢊꢀLQꢀWKHꢀUHOLDELOLW\ꢀKDQGERRNꢅꢀHWFꢃꢎꢅꢀDQGꢀHQVXUHꢀWKDWꢀXVDJHꢀFRQGLWLRQVꢀDUHꢀZLWKLQꢀWKHꢀUDQJHVꢀVSHFLILHGꢀE\ꢀ  
5HQHVDVꢀ(OHFWURQLFVꢀZLWKꢀUHVSHFWꢀWRꢀPD[LPXPꢀUDWLQJVꢅꢀRSHUDWLQJꢀSRZHUꢀVXSSO\ꢀYROWDJHꢀUDQJHꢅꢀKHDWꢀGLVVLSDWLRQꢀFKDUDFWHULVWLFVꢅꢀLQVWDOODWLRQꢅꢀHWFꢃꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀPDOIXQFWLRQVꢅꢀIDLOXUHꢀRUꢀDFFLGHQWꢀDULVLQJꢀRXWꢀRIꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRXWVLGHꢀRIꢀVXFKꢀ  
VSHFLILHGꢀUDQJHVꢃ  
ꢑꢃ $OWKRXJKꢀ5HQHVDVꢀ(OHFWURQLFVꢀHQGHDYRUVꢀWRꢀLPSURYHꢀWKHꢀTXDOLW\ꢀDQGꢀUHOLDELOLW\ꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀVHPLFRQGXFWRUꢀSURGXFWVꢀKDYHꢀVSHFLILFꢀ  
FKDUDFWHULVWLFVꢅꢀVXFKꢀDVꢀWKHꢀRFFXUUHQFHꢀRIꢀIDLOXUHꢀDWꢀDꢀFHUWDLQꢀUDWHꢀDQGꢀPDOIXQFWLRQVꢀXQGHUꢀFHUWDLQꢀXVHꢀFRQGLWLRQVꢃꢀ8QOHVVꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀ  
SURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀ  
DUHꢀQRWꢀVXEMHFWꢀWRꢀUDGLDWLRQꢀUHVLVWDQFHꢀGHVLJQꢃꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀLPSOHPHQWLQJꢀVDIHW\ꢀPHDVXUHVꢀWRꢀJXDUGꢀDJDLQVWꢀWKHꢀSRVVLELOLW\ꢀRIꢀERGLO\ꢀLQMXU\ꢅꢀ  
LQMXU\ꢀRUꢀGDPDJHꢀFDXVHGꢀE\ꢀILUHꢅꢀDQGꢒRUꢀGDQJHUꢀWRꢀWKHꢀSXEOLFꢀLQꢀWKHꢀHYHQWꢀRIꢀDꢀIDLOXUHꢀRUꢀPDOIXQFWLRQꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀVXFKꢀDVꢀVDIHW\ꢀ  
GHVLJQꢀIRUꢀKDUGZDUHꢀDQGꢀVRIWZDUHꢅꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢀUHGXQGDQF\ꢅꢀILUHꢀFRQWUROꢀDQGꢀPDOIXQFWLRQꢀSUHYHQWLRQꢅꢀDSSURSULDWHꢀWUHDWPHQWꢀIRUꢀDJLQJꢀ  
GHJUDGDWLRQꢀRUꢀDQ\ꢀRWKHUꢀDSSURSULDWHꢀPHDVXUHVꢃꢀ%HFDXVHꢀWKHꢀHYDOXDWLRQꢀRIꢀPLFURFRPSXWHUꢀVRIWZDUHꢀDORQHꢀLVꢀYHU\ꢀGLIILFXOWꢀDQGꢀLPSUDFWLFDOꢅꢀ\RXꢀDUHꢀ  
UHVSRQVLEOHꢀIRUꢀHYDOXDWLQJꢀWKHꢀVDIHW\ꢀRIꢀWKHꢀILQDOꢀSURGXFWVꢀRUꢀV\VWHPVꢀPDQXIDFWXUHGꢀE\ꢀ\RXꢃ  
ꢓꢃ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀIRUꢀGHWDLOVꢀDVꢀWRꢀHQYLURQPHQWDOꢀPDWWHUVꢀVXFKꢀDVꢀWKHꢀHQYLURQPHQWDOꢀFRPSDWLELOLW\ꢀRIꢀHDFKꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWꢃꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀFDUHIXOO\ꢀDQGꢀVXIILFLHQWO\ꢀLQYHVWLJDWLQJꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢀWKDWꢀUHJXODWHꢀWKHꢀLQFOXVLRQꢀRUꢀXVHꢀRIꢀ  
FRQWUROOHGꢀVXEVWDQFHVꢅꢀLQFOXGLQJꢀZLWKRXWꢀOLPLWDWLRQꢅꢀWKHꢀ(8ꢀ5R+6ꢀ'LUHFWLYHꢅꢀDQGꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀLQꢀFRPSOLDQFHꢀZLWKꢀDOOꢀWKHVHꢀ  
DSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀGDPDJHVꢀRUꢀORVVHVꢀRFFXUULQJꢀDVꢀDꢀUHVXOWꢀRIꢀ\RXUꢀQRQFRPSOLDQFHꢀ  
ZLWKꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢃ  
ꢔꢃ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDQGꢀWHFKQRORJLHVꢀVKDOOꢀQRWꢀEHꢀXVHGꢀIRUꢀRUꢀLQFRUSRUDWHGꢀLQWRꢀDQ\ꢀSURGXFWVꢀRUꢀV\VWHPVꢀZKRVHꢀPDQXIDFWXUHꢅꢀXVHꢅꢀRUꢀVDOHꢀLVꢀ  
SURKLELWHGꢀXQGHUꢀDQ\ꢀDSSOLFDEOHꢀGRPHVWLFꢀRUꢀIRUHLJQꢀODZVꢀRUꢀUHJXODWLRQVꢃꢀ<RXꢀVKDOOꢀFRPSO\ꢀZLWKꢀDQ\ꢀDSSOLFDEOHꢀH[SRUWꢀFRQWUROꢀODZVꢀDQGꢀUHJXODWLRQVꢀ  
SURPXOJDWHGꢀDQGꢀDGPLQLVWHUHGꢀE\ꢀWKHꢀJRYHUQPHQWVꢀRIꢀDQ\ꢀFRXQWULHVꢀDVVHUWLQJꢀMXULVGLFWLRQꢀRYHUꢀWKHꢀSDUWLHVꢀRUꢀWUDQVDFWLRQVꢃ  
ꢄꢂꢃ ,WꢀLVꢀWKHꢀUHVSRQVLELOLW\ꢀRIꢀWKHꢀEX\HUꢀRUꢀGLVWULEXWRUꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀRUꢀDQ\ꢀRWKHUꢀSDUW\ꢀZKRꢀGLVWULEXWHVꢅꢀGLVSRVHVꢀRIꢅꢀRUꢀRWKHUZLVHꢀVHOOVꢀRUꢀ  
WUDQVIHUVꢀWKHꢀSURGXFWꢀWRꢀDꢀWKLUGꢀSDUW\ꢅꢀWRꢀQRWLI\ꢀVXFKꢀWKLUGꢀSDUW\ꢀLQꢀDGYDQFHꢀRIꢀWKHꢀFRQWHQWVꢀDQGꢀFRQGLWLRQVꢀVHWꢀIRUWKꢀLQꢀWKLVꢀGRFXPHQWꢃ  
ꢄꢄꢃ 7KLVꢀGRFXPHQWꢀVKDOOꢀQRWꢀEHꢀUHSULQWHGꢅꢀUHSURGXFHGꢀRUꢀGXSOLFDWHGꢀLQꢀDQ\ꢀIRUPꢅꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢅꢀZLWKRXWꢀSULRUꢀZULWWHQꢀFRQVHQWꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢃ  
ꢄꢁꢃ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀLIꢀ\RXꢀKDYHꢀDQ\ꢀTXHVWLRQVꢀUHJDUGLQJꢀWKHꢀLQIRUPDWLRQꢀFRQWDLQHGꢀLQꢀWKLVꢀGRFXPHQWꢀRUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWVꢃ  
ꢍ1RWHꢄꢎ ꢊ5HQHVDVꢀ(OHFWURQLFVꢊꢀDVꢀXVHGꢀLQꢀWKLVꢀGRFXPHQWꢀPHDQVꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢀDQGꢀDOVRꢀLQFOXGHVꢀLWVꢀGLUHFWO\ꢀRUꢀLQGLUHFWO\ꢀFRQWUROOHGꢀ  
VXEVLGLDULHVꢃ  
ꢍ1RWHꢁꢎ ꢊ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢍVꢎꢊꢀPHDQVꢀDQ\ꢀSURGXFWꢀGHYHORSHGꢀRUꢀPDQXIDFWXUHGꢀE\ꢀRUꢀIRUꢀ5HQHVDVꢀ(OHFWURQLFVꢃ  
ꢍ5HYꢃꢇꢃꢂꢏꢄꢀꢀ1RYHPEHUꢀꢁꢂꢄꢑꢎ  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
For further information on a product, technology, the most up-to-date version  
of a document, or your nearest sales office, please visit:  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com/contact/  
www.renesas.com  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas Electronics  
Corporation. All trademarks and registered trademarks are the property of  
their respective owners.  
‹ꢀꢁꢂ20ꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢃꢀ$OOꢀULJKWVꢀUHVHUYHGꢃ  

相关型号:

ZSSC3230BC5B

Capacitive Sensor Signal Conditioner IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3230BC6B

Capacitive Sensor Signal Conditioner IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3230BI1B

Capacitive Sensor Signal Conditioner IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3230BI2B

Capacitive Sensor Signal Conditioner IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3230BI3R

Capacitive Sensor Signal Conditioner IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3230BI3W

Capacitive Sensor Signal Conditioner IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3230BI5B

Capacitive Sensor Signal Conditioner IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3230BI6B

Capacitive Sensor Signal Conditioner IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3230KIT

Capacitive Sensor Signal Conditioner IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3240

Sensor Signal Conditioner IC for Resistive Sensors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3240CC1B

Sensor Signal Conditioner IC for Resistive Sensors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

ZSSC3240CC2B

Sensor Signal Conditioner IC for Resistive Sensors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS