DK2053 [RFMD]

HIGH PERFORMANCE FRACTIONAL-N SYNTHESIZER WITH INTEGRATED RF MIXER;
DK2053
型号: DK2053
厂家: RF MICRO DEVICES    RF MICRO DEVICES
描述:

HIGH PERFORMANCE FRACTIONAL-N SYNTHESIZER WITH INTEGRATED RF MIXER

文件: 总36页 (文件大小:1647K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF2053  
RF2053  
HIGH PERFORMANCE FRACTIONAL-N  
SYNTHESIZER WITH INTEGRATED RF MIXER  
Package: QFN, 32-Pin, 5mmx5mm  
LO  
divider  
Features  
Fractional-N Synthesizer  
Very Fine Frequency Resolution  
1.5Hz for 26MHz Reference  
Synth  
Frac-N  
sequence  
generator  
300MHz to 2400MHz External  
VCO Frequency Range  
N
divider  
On-Chip Crystal-Sustaining  
Circuit With Programmable  
Loading Capacitors  
Phase/  
freq  
detector  
Charge  
pump  
Integrated LO Buffer and LO  
Divider  
Ref  
divider  
High-Linearity RF Mixer  
Mixer Input IP3 +23dBm Typ.  
Functional Block Diagram  
Mixer Bias Adjustable for Low  
Power Operation  
Product Description  
Mixer Frequency Range 30MHz  
The RF2053 is a low power, high performance, wideband RF frequency conversion  
chip with integrated local oscillator (LO) generation and RF mixer. The RF synthe-  
sizer includes an integrated fractional-N phase locked loop that can control an  
external VCO to produce a low-phase noise LO signal with a very fine frequency res-  
olution. The VCO output frequency can be divided by 1, 2, or 4 in the LO divider,  
whose output is buffered and drives the built-in RF mixer which converts the signal  
into the required frequency band. The mixer bias current can be programmed  
dependent on the required performance and available supply current. The LO gen-  
eration blocks have been designed to operate with external VCOs covering the fre-  
quency range from 300MHz to 2400MHz. The RF mixer is very broad band and  
operates from 30MHz to 2500MHz at the input and output, enabling both up and  
down conversion. An external crystal of between 10MHz and 52MHz or an external  
reference source of between 10MHz and 104MHz can be used with the RF2053 to  
accommodate a variety of reference frequency options.  
to 2500MHz  
2.7V to 3.6V Power Supply  
Low Current Consumption  
50mA to 70mA at 3V  
3-Wire Serial Interface  
Applications  
CATV Head-Ends  
Digital TV Up/Down Converters  
Digital TV Repeaters  
Multi-Dwelling Units  
Frequency Band Shifters  
UHF/VHF Radios  
All on-chip registers are controlled through a simple three-wire serial interface. The  
RF2053 is designed for 2.7V to 3.6V operation for compatibility with portable, bat-  
tery powered devices. It is available in a plastic 32-pin, 5mmx5mm QFN package.  
Software Defined Radios  
Satellite Communications  
Super-Heterodyne Radios  
Optimum Technology Matching® Applied  
GaAs HBT  
GaAs MESFET  
InGaP HBT  
SiGe BiCMOS  
Si BiCMOS  
SiGe HBT  
GaAs pHEMT  
Si CMOS  
Si BJT  
GaN HEMT  
RF MEMS  
LDMOS  
RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity™, PowerStar®, POLARIS™ TOTAL RADIO™ and UltimateBlue™ are trademarks of RFMD, LLC. BLUETOOTH is a trade-  
mark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006, RF Micro Devices, Inc.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
1 of 36  
RF2053  
Detailed Functional Block Diagram  
IP  
ANA_VDD  
DIG_VDD  
RFIPN  
RFIPP  
ENBL  
CONTROL  
MODE  
1:1  
RESETB  
ANA_DEC  
ANA_VDD  
SDATA  
SCLK  
ENX  
RFOPP  
RFOPN  
SERIAL  
BUS  
OP  
Analog  
Regulator  
Digital  
Regulator  
Serial Data Interface,  
Control and Biasing  
4:1  
Mixer  
REXT  
LO Divider  
/1, /2, or /4  
EXTERNAL VCO  
Vtune  
VCOINP  
VCOINN  
LO Buffer  
VCO Buffer  
1:1  
Frac-N  
Sequence  
Generator  
N Divider  
Synthesizer  
Phase /  
Freq  
Detector  
LFILT1  
Charge  
Pump  
Vref  
EXTERNAL  
OP-AMP  
XTALIPP  
XTALIPN  
Reference Oscillator  
Circuitry and  
Crystal Tuning  
Reference Divider  
/1 to /7  
Pin Out  
32 31 30 29 28 27 26 25  
ENBL  
1
2
3
4
5
6
7
8
24 RFIPP  
23 RFIPN  
22 ANA_VDD  
21 NC  
VCOINP  
VCOINN  
REXT  
EP  
ANA_DEC  
LFILT1  
NC  
20 NC  
19 DIG_VDD  
18 NC  
NC  
17 NC  
9
10 11 12 13 14 15 16  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
2 of 36  
DS140110  
RF2053  
Pin  
1
Function  
ENBL  
Description  
Ensure that the ENBL high voltage level is not greater than V . An RC low-pass filter could be used to reduce  
digital noise.  
DD  
External VCO differential input. See note 1.  
2
3
4
VCOINP  
VCOINN  
REXT  
External VCO differential input. See note 1.  
External bandgap bias resistor. Connect a 51kresistor from this pin to ground to set the bandgap reference  
bias current. This could be a sensitive low frequency noise injection point.  
Analog supply decoupling capacitor. Connect to analog supply and apply RF decoupling to a good quality ground  
as close to the pin as possible.  
5
ANA_DEC  
Phase detector output. Low-frequency noise-sensitive node.  
6
7
LFILT1  
NC  
8
NC  
Mode select pin. Connect to DIG_VDD if mode switching is not required.  
9
10  
11  
MODE  
XTALIPP  
XTALIPN  
Reference crystal / reference oscillator input. Should be AC-coupled if an external reference is used. See note 3.  
Reference crystal / reference oscillator input. Should be AC-coupled to ground if an external reference is used.  
See note 3.  
Connect to ground.  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
EP  
GND  
NC  
NC  
NC  
NC  
NC  
NC  
DIG_VDD  
NC  
Digital supply. Should be decoupled as close to the pin as possible.  
NC  
Analog supply. Should be decoupled as close to the pin as possible.  
Differential input. See note 1.  
ANA_VDD  
RFIPN  
RFIPP  
NC  
Differential input. See note 1.  
NC  
Differential output. See note 2.  
RFOPN  
RFOPP  
RESETB  
ENX  
SCLK  
SDATA  
Exposed pad  
Differential output. See note 2.  
Chip reset (active low). Connect to DIG_VDD if external reset is not required.  
Serial interface select (active low). An RC low-pass filter could be used to reduce digital noise.  
Serial interface clock. An RC low-pass filter could be used to reduce digital noise.  
Serial interface data. An RC low-pass filter could be used to reduce digital noise.  
Connect to ground. This is the ground reference for the circuit. All decoupling should be connected here through  
low impedance paths.  
Note 1: The signal should be connected to this pin such that DC current cannot flow into or out of the chip, either by using AC  
coupling capacitors or by use of a transformer (see evaluation board schematic).  
Note 2: DC current needs to flow from ANA_VDD into this pin, either through an RF inductor, or transformer (see evaluation  
board schematic).  
Note 3: Alternatively an external reference can be AC-coupled to pin 11 XTALIPN, and pin 10 XTALIPP decoupled to ground. This  
may make PCB routing simpler.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
3 of 36  
RF2053  
Absolute Maximum Ratings  
Parameter  
Rating  
Unit  
Supply Voltage (V  
)
-0.5 to +3.6  
V
DD  
Input Voltage (V ), any Pin  
IN  
-0.3 to V +0.3  
DD  
V
RF/IF Mixer Input Power  
+15  
dBm  
°C  
Operating Temperature Range  
Storage Temperature Range  
-40 to +85  
-65 to +150  
°C  
Specification  
Parameter  
Unit  
Condition  
Min.  
Typ.  
Max.  
ESD Requirements  
Human Body Model  
General  
2000  
1000  
V
V
RF Pins  
Machine Model  
General  
200  
100  
V
V
RF Pins  
Operating Conditions  
Supply Voltage (V  
)
2.7  
-40  
3.0  
3.6  
V
DD  
Temperature (T  
)
+85  
°C  
OP  
V
=Supply to DIG_VDD pin  
Logic Inputs/Outputs  
Input Low Voltage  
DD  
-0.3  
+0.5  
V
V
Input High Voltage  
V
1.5  
V
DD  
DD /  
Input Low Current  
Input High Current  
-10  
+10  
+10  
uA  
uA  
Input=0V  
Input=V  
-10  
0
DD  
Output Low Voltage  
Output High Voltage  
0.2*V  
V
V
DD  
0.8*V  
10  
V
DD  
DD  
Load Resistance  
Load Capacitance  
Static  
k  
20  
pF  
Programmable Supply Current  
(I  
)
DD  
Low Current Setting  
High Linearity Setting  
50  
70  
3
mA  
mA  
mA  
A  
Standby  
Reference oscillator and bandgap only.  
ENBL=0 and REF_STBY=0  
Power Down Current  
Mixer  
140  
Mixer output driving 4:1 balun.  
Gain  
-2  
dB  
Not including balun losses.  
Noise Figure  
Low Current Setting  
High Linearity Setting  
9.5  
12  
dB  
dB  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
4 of 36  
DS140110  
RF2053  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Mixer, cont.  
IIP3  
Low Current Setting  
High Linearity Setting  
+12  
+23  
dBm  
dBm  
Pin1dB  
Low Current Setting  
+2  
dBm  
dBm  
MHz  
dB  
High Linearity Setting  
RF and IF Port Frequency Range  
Mixer Input Return Loss  
+12  
30  
2500  
10  
-3  
100differential  
Voltage Controlled Oscillator  
Differential Input  
External VCO Input Frequency  
External VCO Input Level  
300  
-6  
2400  
0
MHz  
dBm  
Reference Oscillator  
Xtal Frequency  
10  
10  
1
52  
104  
7
MHz  
MHz  
External Reference Frequency  
Reference Divider Ratio  
External Reference Input Level  
500  
800  
1500  
mV  
AC-coupled  
P-P  
Local Oscillator  
Synthesizer Output Frequency  
Phase Detector Frequency  
75  
2400  
52  
MHz  
MHz  
At LO divider output  
Closed Loop Phase-Noise at 1kHz  
Offset  
26MHz phase detector frequency  
26MHz phase detector frequency  
2GHz LO Frequency  
1GHz LO Frequency  
500MHz LO Frequency  
-85  
-91  
-97  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Closed Loop Phase-Noise at  
10kHz Offset  
2GHz LO Frequency  
1GHz LO Frequency  
-90  
-95  
dBc/Hz  
dBc/Hz  
dBc/Hz  
500MHz LO Frequency  
Charge Pump  
-102  
Charge Pump Current  
Charge Pump Output Voltage  
120  
240  
A  
+0.7  
+1.1  
+1.5  
V
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
5 of 36  
RF2053  
Typical Performance Characteristics for the RF2053 synthesizer  
V
DD=3V, TA=25°C, as measured on RF2053 evaluation board, Phase Detector Frequency=26MHz.  
Phase Noise of RF2053 and UMS-2150-R16 VCO  
(Wideband EVB)  
Phase Noise of RF2053 and UMX-236-D16 VCO  
(NarrowbandEVB) at 1660MHz  
-60.0  
-70.0  
-80.0  
-90.0  
-60.0  
-70.0  
-80.0  
-90.0  
-100.0  
Phase  
Noise  
Phase  
Noise -100.0  
(dBc/Hz)  
(dBc/Hz)  
-110.0  
-110.0  
-120.0  
-130.0  
-140.0  
-150.0  
-160.0  
-120.0  
-130.0  
-140.0  
-150.0  
-160.0  
950MHz  
1250MHz  
1550MHz  
1850MHz  
2150MHz  
Icp = 011111  
Icp = 111111  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Offset Frequency (kHz)  
Offset Frequency (kHz)  
Synthesizer Output Phase Noise Floor at  
10kHz Offset versus Phase DetectorFrequency  
Synthesizer Output Phase Noise Floor at  
1kHz Offset versus Phase Detector Frequency  
-70.0  
-80.0  
-90.0  
-60.0  
-70.0  
-80.0  
2GHz  
1GHz  
0.5GHz  
Phase  
Noise  
(dBc/Hz)  
Phase  
Noise  
(dBc/Hz)  
-100.0  
-110.0  
-120.0  
-90.0  
2GHz  
-100.0  
-110.0  
1GHz  
0.5GHz  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
Phase Detector Frequency (MHz)  
Phase Detector Frequency (MHz)  
Typical Performance Characteristics for the RF2053  
Operating Current versus Temperature and  
Supply Voltage  
80.0  
75.0  
70.0  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
Supply  
Current  
(mA)  
-40DegC, +2.7V  
-40DegC, +3.0V  
-40DegC, +3.6V  
+27DegC, +2.7V  
+27DegC, +3.0V  
+27DegC, +3.6V  
+85DegC, +2.7V  
+85DegC, +3.0V  
+85DegC, +3.6V  
001  
010  
011  
100  
101  
Mixer Bias Current Setting (MIX2_IDD)  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
6 of 36  
DS140110  
RF2053  
Typical Performance Characteristics for the RF2053 mixer  
V
DD=3V, TA=25°C, unless stated, as measured on RF2053 wideband evaluation board, Phase Detector Frequency=26MHz.  
Gain versus Temperatureand Supply Voltage  
RF2053 Mixer Conversion Gain  
(Excluding losses in PCB and Baluns)  
IF Output = 100MHz & LO = RF + IF  
0.0  
-1.0  
0.0  
-0.5  
-2.0  
2.7V  
3.0V  
3.6V  
-3.0  
-4.0  
-1.0  
Gain  
(dB) -1.5  
Conversion  
Gain (dB)-5.0  
-6.0  
-40DegC, +2.7V  
-40DegC, +3.0V  
-40DegC, +3.6V  
+27DegC, +2.7V  
+27DegC, +3.0V  
+27DegC, +3.6V  
+85DegC, +2.7V  
+85DegC, +3.0V  
+85DegC, +3.6V  
-7.0  
-8.0  
-2.0  
-2.5  
-3.0  
-9.0  
-10.0  
250  
500  
750  
1000  
1250  
1500  
1750  
2000  
2250  
-40  
-20  
0
20  
40  
60  
80  
100  
RF Input Frequency (MHz)  
Temperature (°C)  
Mixer Noise Figureversus RF Input Frequency  
IF = 100MHz, +27Deg C and +3.0V Supply  
Mixer Noise Figureversus Temperature& Voltage  
IF = 100MHz & MIX2 _IDD = 001  
14.0  
12.0  
14.0  
12.0  
10.0  
8.0  
10.0  
Noise  
Figure  
(dB)  
Noise  
Figure  
(dB)  
8.0  
-40DegC, +2.7V  
-40DegC, +3.0V  
-40degC, +3.6V  
+27DegC, +2.7V  
+27DegC, +3.0V  
+27DegC, +3.6V  
+85DegC, +2.7V  
+85DegC, +3.0V  
+85DegC, +3.6V  
6.0  
4.0  
2.0  
0.0  
6.0  
MIX2_IDD = 001  
MIX2_IDD = 010  
MIX2_IDD = 011  
MIX2_IDD = 100  
MIX2_IDD = 101  
4.0  
2.0  
0.0  
250  
500  
750  
1000  
1250  
1500  
1750  
250  
500  
750  
1000  
1250  
1500  
1750  
RF Input Frequency (MHz)  
RF Input Frequency (MHz)  
Mixer Input IP3 versus RF Input Frequency  
IF = 100MHz & LO = RF - IF  
NF versus Temperatureand SupplyVoltage  
(Low Noise Mode MIX2_IDD=001)  
+27DegC and +3.0V Supply  
11.0  
30.0  
2.7V  
3.0V  
3.6V  
10.5  
10.0  
9.5  
25.0  
20.0  
Input IP3  
(dBm)  
NF  
15.0  
(dB)  
10.0  
5.0  
9.0  
MIX2_IDD = 001  
MIX2_IDD = 010  
MIX2_IDD = 011  
MIX2_IDD = 100  
MIX2_IDD = 101  
8.5  
0.0  
8.0  
250  
500  
750  
1000  
1250  
1500  
1750  
2000  
2250  
-40  
-20  
0
20  
40  
60  
80  
100  
RF Input Frequency (MHz)  
Temperature (°C)  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
7 of 36  
RF2053  
Typical Performance Characteristics for the RF2053 mixer  
V
DD=3V, TA=25°C, unless stated, as measured on RF2053 wideband evaluation board, Phase Detector Frequency=26MHz  
Mixer Input IP3 versus Temperature& Voltage  
RF Input Frequency = 2000MHz & IF = 100MHz  
Mixer Input IP3 versus Temperature& Voltage  
RF Input Frequency = 1000MHz& IF = 100MHz  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
Input IP3  
(dBm)  
Input IP3  
(dBm)  
-40DegC, +2.7V  
-40DegC, +3.0V  
-40DegC, +3.6V  
+27DegC, +2.7V  
+27DegC, +3.0V  
+27DegC, +3.6V  
+85DegC, +2.7V  
+85DegC, +3.0V  
+85DegC, +3.6V  
-40DegC, +2.7V  
-40DegC, +3.0V  
-40DegC, +3.6V  
+27DegC, +2.7V  
+27DegC, +3.0V  
+27DegC, +3.6V  
+85DegC, +2.7V  
+85DegC, +3.0V  
+85DegC, +3.6V  
0.0  
0.0  
001  
010  
011  
100  
101  
001  
010  
011  
100  
101  
Mixer Bias Current Setting (MIX2_IDD)  
Mixer Bias Current Setting (MIX2_IDD)  
MixerInput Power for 1dB Compression  
versus Temperature& Voltage  
IF = 100MHz & MIX2_IDD = 101  
Mixer Input Power for 1dB Compression  
IF = 100MHz, +27DegC & 3.0V Supply  
16.0  
16.0  
14.0  
12.0  
10.0  
8.0  
14.0  
12.0  
10.0  
8.0  
Pin  
1dB  
(dBm)  
Pin 1dB  
(dBm)  
-40DegC, +2.7V  
-40DegC, +3.0V  
-40DegC, +3.6V  
+27DegC, +2.7V  
+27DegC, +3.0V  
+27DegC, +3.6V  
+85DegC, +2.7V  
+85DegC, +3.0V  
+85DegC, +3.6V  
MIX2_IDD = 001  
6.0  
MIX2_IDD = 010  
MIX2_IDD = 011  
MIX2_IDD = 100  
MIX2_IDD = 101  
4.0  
2.0  
0.0  
6.0  
250  
500  
750  
1000  
1250  
1500  
1750  
2000  
2250  
250  
500  
750  
1000  
1250  
1500  
1750  
2000  
2250  
RF Input Frequency (MHz)  
RF Input Frequency (MHz)  
Mixer RF Input to IF Output Isolation  
versus Temperatureand Supply Voltage  
IF = 100MHz & LO = RF + IF  
LO Leakage in dBm at Mixer IF Output  
versus Temperatureand Supply Voltage  
0.0  
-10.0  
-20.0  
-30.0  
-40.0  
-50.0  
-60.0  
-70.0  
-80.0  
-40DegC, +2.7V  
-40DegC, +3.0V  
-40DegC, +3.6V  
+27DegC, +2.7V  
+27DegC, +3.0V  
+27DegC, +3.6V  
+85DegC, +2.7V  
+85DegC, +3.0V  
+85DegC, +3.6V  
70.0  
60.0  
50.0  
RF to  
IF Isolation  
(dB)  
LO  
Leakage  
(dBm)  
-40DegC, +2.7V  
-40DegC, +3.0V  
-40DegC, +3.6V  
+27DegC, +2.7V  
+27DegC, +3.0V  
+27DegC, +3.6V  
+85DegC, +2.7V  
+85DegC, +3.0V  
+85DegC, +3.6V  
40.0  
30.0  
20.0  
10.0  
0.0  
0
500  
1000  
1500  
2000  
2500  
250  
500  
750  
1000  
1250  
1500  
1750  
2000  
2250  
RF Input Frequency (MHz)  
LO Frequency (MHz)  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
8 of 36  
DS140110  
RF2053  
Detailed Description  
The RF2053 is a wideband RF frequency converter chip which includes a fractional-N phase-locked loop, a crystal oscillator cir-  
cuit, an LO buffer, and an RF mixer. The PLL operates with an external VCO. Synthesizer programming, device configuration and  
control are achieved through a mixture of hardware and software controls. All on-chip registers are programmed through a sim-  
ple three-wire serial interface.  
VCO  
The RF2053 has been designed for use with an external VCO. The VCO inputs on pins 2 and 3 are differential.  
In order to route the VCO input through buffers to the PLL divide circuits then CFG1:EXT_VCO must be set high and the VCO  
control word must be set to VCO3, PLL2x0:P2_VCOSEL=10.  
The course tuning calibration (CT_CAL) which is not used by the RF2053 should be disabled in order to minimize the PLL lock  
time. The VCO signal can be divided by 1, 2, or 4 in the LO divider circuit. The LO divide ratio is set by the PLL2x0:P2_LODIV  
control words.  
For applications where the required LO frequency is above 2GHz it is recommended that the LO buffer current be increased by  
setting CFG5:LO2_I to 1100 (hex value C).  
Fractional-N PLL  
The IC contains a charge-pump based fractional-N phase locked loop (PLL) for controlling the external VCO. The PLL is intended  
to use a reference frequency signal of 10MHz to 104MHz. A reference divider (divide by 1 to divide by 7) is supplied and  
should be programmed to limit the frequency at the phase detector to a maximum of 52MHz. The reference divider bypass is  
controlled by bit CLK_DIV_BYP, set low to enable the reference divider and set high for divider bypass (divide by 1). The remain-  
ing three bits CLK_DIV<15:13> set the reference divider value, divide by 2 (010) to 7 (111) when the reference divider is  
enabled.  
Two PLL programming banks are provided, the first bank is preceded by the label PLL1 and the second bank is preceded by the  
label PLL2. For the RF2053 the default programming bank is PLL2, selected by setting the MODE pin high.  
The PLL will lock the VCO to the frequency FVCO according to:  
FVCO=NEFF*FOSC/R  
where NEFF is the programmed fractional N divider value, FOSC is the reference input frequency, and R is the programmed R  
divider value (1 to 7).  
The N divider is a fractional divider, containing a dual-modulus prescaler and a digitally spur-compensated fractional sequence  
generator to allow fine frequency steps. The N divider is programmed using the N and NUM bits as follows:  
First determine the desired, effective N divider value, NEFF  
:
NEFF=FVCO*R/FOSC  
N(9:0) should be set to the integer part of NEFF. NUM should be set to the fractional part of NEFF multiplied by 224=16777216.  
Example: VCO operating at 2220MHz, 23.92MHz reference frequency, the desired effective divider value is:  
N
EFF=FVCO *R / FOSC=2220 *1 / 23.92=92.80936454895.  
The N value is set to 92, equal to the integer part of NEFF, and the NUM value is set to the fractional portion of NEFF multiplied  
by 224  
:
NUM=0.80936454895 * 224 =13,578,884.  
Converting N and NUM into binary results in the following:  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
9 of 36  
RF2053  
N=0 0101 1100  
NUM=1100 1111 0011 0010 1000 0100  
So the registers would be programmed:  
P2_N=0 0101 1100  
P2_NUM_MSB=1100 1111 0011 0010  
P2_NUM_LSB=1000 0100  
The maximum NEFF is 511, and the minimum NEFF is 15, when in fractional mode. The minimum step size is FOSC/R*224. Thus  
for a 23.92MHz reference, the frequency step size would be 1.4Hz. The minimum reference frequency that can be used is sim-  
ply the maximum VCO frequency required divided by 511. For example for a VCO frequency of 2400MHz, the minimum refer-  
ence frequency, is 2400/511, 4.697MHz (approx).  
Phase Detector and Charge Pump  
The chip provides a current output to drive an external loop filter. An external low noise operational amplifier can be used to  
design an active loop filter or a passive design can be implemented. This depends on the tuning range of the external VCO. The  
maximum charge pump output current is set by the value contained in the P2_CP_DEF field and CP_LO_I.  
In the default state (P2_CP_DEF=31 and CP_LO_I=0) the charge pump current (ICPset) is 120uA. If CP_LO_I is set to 1 this  
current is reduced to 30uA. Note that lowest phase noise within the loop bandwidth is achieved with the maximum charge  
pump current.  
The charge pump current can be altered by changing the value of P2_CP_DEF. The charge pump current is defined as:  
ICP= ICPset*CP_DEF / 31  
Changing the charge pump current will vary the loop filter response, higher current corresponding to a wider loop bandwidth.  
The phase detector will operate with a maximum input frequency of 52MHz.  
The loop filter calibration (KV_CAL) is not used by the RF2053 and is disabled by default.  
Loop Filter  
The PLL may be designed to use an active or a passive loop filter as required. The active loop filter uses an external low noise  
op-amp. The CFG1:LF_ACT bit is set low in both cases so that the internal op-amp is disabled and a high impedance is pre-  
sented to the LFILT1 pin. The RF205x Programming Tool software can assist with loop filter designs. Because the op-amp is  
used in an inverting configuration in active mode, when the passive loop filter mode is selected the phase-detector polarity  
should be inverted. For active mode, CFG1:PDP=1, for passive mode, CFG1:PDP=0.  
+1.1V  
+
RF2053  
Charge Pump  
Typical active  
loop filter  
-
To VCO tuning  
LFILT1  
The charge pump output voltage compliance range is typically +0.7V to +1.5V. For applications using a passive loop filter the  
required VCO tuning voltage must fall within this voltage range under all conditions. When using an external op-amp as an inte-  
grator for the loop filter, as shown above, the non-inverting terminal should be referenced to +1.1V. This holds the charge  
pump output at this voltage in the center of its compliance range. The op-amp power supplies must be adequate to provide the  
necessary VCO tuning voltage.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
10 of 36  
DS140110  
RF2053  
Crystal Oscillator  
The PLL may be used with an external reference source, or its own crystal oscillator. If an external source (such as a TCXO) is  
being used it should be AC-coupled into one of the XO inputs, and the other input should be AC-coupled to ground.  
A crystal oscillator typically takes many milliseconds to settle, and so for applications requiring rapid pulsed operation of the  
PLL (such as a TDMA system, or Rx/Tx half-duplex system) it is necessary to keep the XO running between bursts. However,  
when the PLL is used less frequently, it is desirable to turn off the XO to minimize current draw. The REFSTBY register is pro-  
vided to allow for either mode of operation. If REFSTBY is programmed high, the XO will continue to run even when ENBL is  
asserted low. Thus the XO will be stable and a clock is immediately available when ENBL is asserted high, allowing the chip to  
assume normal operation. On cold start, or if REFSTBY is programmed low, the XO will need a warm-up period before it can pro-  
vide a stable clock. The length of this warm-up period will be dependant on the crystal characteristics.  
The crystal oscillator circuit contains internal loading capacitors. No external loading capacitors are required, dependant on  
the crystal loading specification. The internal loading capacitors are a combination of fixed capacitance, and an array of  
switched capacitors. The switched capacitors can be used to tune the crystal oscillator onto the required center frequency and  
minimize frequency error. The PCB stray capacitance and oscillator input and output capacitance will also contribute to the  
crystal’s total load capacitance. The register settings in the CFG4 register for the switched capacitors are as follows:  
• Coarse Tune XO_CT (4 bits) 15*0.55pF, default 0100  
• Fine Step XO_CR_S (1 bit) 1*0.25pF, default 0  
The on chip fixed capacitance is approximately 4.2pF.  
Wideband Mixer  
The RF2053 includes a wideband, double-balanced Gilbert cell mixer. It supports RF/IF frequencies of 30MHz to 2500MHz.  
The mixer has an input port and an output port that can be used for either IF or RF, i.e. for up conversion or down conversion.  
The mixer current can be programmed to between 15mA and 35mA depending on linearity requirements, using the MIX-  
2_IDD<3:0> word in the CFG2 register. The majority of the mixer current is sourced through the output pins via either a centre-  
tapped balun or an RF choke in the external matching circuitry to the supply.  
The RF mixer input and output ports are differential and require simple matching circuits optimized to the specific application  
frequencies. A conversion gain of approximately -3dB to 0dB is achieved with 100differential input impedance, and the out-  
puts driving 200differential load impedance. Increasing the mixer output load increases the conversion gain.  
The mixer has a broadband common gate input. The input impedance is dominated by the resistance set by the mixer 1/gm  
term, which is inversely proportional to the mixer current setting. The resistance will be approximately 85at the default mixer  
current setting (100). There is also some shunt capacitance at the mixer input, and the inductance of the bond wires to con-  
sider at higher frequencies.  
The mixer output is high impedance, consisting of a resistance of approximately 2kin parallel with some capacitance. The  
mixer output does not need to be matched as such, just to see a resistive load. A higher resistance load will give higher output  
voltage and gain. A shunt inductor can be used to resonate with the mixer output capacitance at the frequency of interest. This  
inductor may not be required at lower frequencies where the impedance of the output capacitance is less significant. At higher  
output frequencies the inductance of the bond wires becomes more significant.  
For more information about the mixer port impedances and matching, please refer to the RF205x Family Application Note on  
Matching Circuits and Baluns.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
11 of 36  
RF2053  
General Programming Information  
Serial Interface  
All on-chip registers in the RF2053 are programmed using a 3-wire serial bus which supports both write and read operations.  
Synthesizer programming, device configuration and control are achieved through a mixture of hardware and software controls.  
Certain functions and operations require the use of hardware controls via the ENBL, MODE, and RESETB pins in addition to  
programming via the serial bus. For most applications the MODE pin can be held high.  
3-wire bus  
ENX  
SCLK  
SDATA  
MCU  
RF2053  
ENBL  
RESETB  
MODE  
Hardware  
Controls  
Serial Data Timing Characteristics  
RESETB  
t1  
ENX  
t3  
t5  
SCLK  
SDATA  
ENBL  
t2  
t6  
t4  
t7  
X
t8  
t9  
X
X
X
X
X
X
X
Reset  
chip  
Initial programming of device  
Programming  
updates  
Parameter  
Description  
Reset delay  
Time  
>5ns  
>5ns  
>5ns  
>5ns  
>5ns  
>5ns  
>5ns  
>0ns  
>0ns  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
Programming setup time  
Programming hold time  
ENX setup time  
ENX hold time  
Data setup time  
Data hold time  
ENBL setup time  
ENBL hold time  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
12 of 36  
DS140110  
RF2053  
Write  
ENX  
SCLK  
SDATA  
X
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Initially ENX is high and SDATA is high impedance. The write operation begins with the controller starting SCLK. On the first fall-  
ing edge of SCLK the baseband asserts ENX low. The second rising edge of SCLK is reserved to allow the SDI to initialize, and  
the third rising edge is used to define whether the operation will be a write or a read operation. In write mode the baseband will  
drive SDATA for the entire telegram. RF2053 will read the data bit on the rising edge of SCLK.  
The next 7 data bits are the register address, MSB first. This is followed by the payload of 16 data bits for a total write mode  
transfer of 24 bits. Data is latched into RF2053 on the last rising edge of SCLK (after ENX is asserted high).  
For more information, please refer to the timing diagram on page 12.  
The maximum clock speed for a register write is 19.2MHz. A register write therefore takes approximately 1.3us. The data is  
latched on the rising edge of the clock. The datagram consists of a single start bit followed by a ‘0’ (to indicate a write opera-  
tion). This is then followed by a seven bit address and a sixteen bit data word.  
Note that since the serial bus does not require the presence of the crystal clock, it is necessary to insert an additional rising  
clock edge before the ENX line is set low to ensure the address/data are read correctly.  
Read  
ENX  
SCLK  
X
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDATA  
Initially ENX is high and SDATA is high impedance. The read operation begins with the controller starting SCLK. The controller is  
in control of the SDATA line during the address write operation. On the first falling edge of SCLK the baseband asserts ENX low.  
The second rising edge of SCLK is reserved to allow the SDI to initialize, and the third rising edge is used to define whether the  
operation will be a write or a read operation. In read mode the baseband will drive SDATA for the address portion of the tele-  
gram, and then control will be handed over to RF2053 for the data portion. RF2053 will read the data bits of the address on  
the rising edge of SCLK. After the address has been written, control of the SDATA line is handed over to RF2053. One and a half  
clocks are reserved for turn-around, and then the data bits are presented by RF2053. The data is set up on the rising edge of  
SCLK, and the controller latches the data on the falling edge of SCLK. At the end of the data transmission, RF2053 will release  
control of the SDATA line, and the controller asserts ENX high. The SDATA port on RF2053 transitions from high impedance to  
low impedance on the first rising edge of the data portion of the transaction (for example, 3 rising edges after the last address  
bit has been read), so the controller chip should be presenting a high impedance by that time.  
For more information, please refer to the timing diagram on page 12.  
The maximum clock speed for a register read is 19.2MHz. A register read therefore takes approximately 1.4us. The address is  
latched on the rising edge of the clock and the data output on the falling edge. The datagram consists of a single start bit fol-  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
13 of 36  
RF2053  
lowed by a ‘1’ (to indicate a read operation), followed by a seven bit address. A 1.5 bit delay is introduced before the sixteen bit  
data word representing the register content is presented to the receiver.  
Note that since the serial bus does not require the presence of the crystal clock, it is necessary to insert an additional rising  
clock edge before the ENX line is set low to ensure the address is read correctly.  
Hardware Control  
Three hardware control pins are provided: ENBL, MODE, and RESETB.  
ENBL Pin  
The ENBL pin has two functions: to enable the analog circuits in the chip and to trigger the PLL to lock.  
ENBL Pin  
Low  
REFSTBY Bit  
XO and Bias Block  
Analogue Block  
Digital Block  
0
1
0
1
Off  
On  
On  
On  
Off  
Off  
On  
On  
On  
On  
On  
On  
Low  
High  
High  
Every time the frequency of the synthesizer is re-programmed, ENBL has to be taken high to initiate PLL locking.  
RESETB Pin  
The RESETB pin is a hardware reset control that will reset all digital circuits to their start-up state when asserted low. The  
device includes a power-on-reset function, so this pin should not normally be required, in which case it should be connected to  
the positive supply.  
MODE Pin  
The MODE pin controls which PLL programming register bank is active.  
For normal operation of the RF2053 the MODE pin should be set high to select the default PLL2 programming registers. It is  
possible to set the FULLD bit in the CFG1 register high. This allows the MODE pin to select either PLL1 register bank  
(MODE=low) or PLL2 register bank (MODE=high). This may be useful for some applications where two LO frequencies can be  
programmed into the registers then the MODE pin used to toggle between them. The ENBL pin will also need to be cycled to re-  
lock the synthesizer for each frequency.  
ENBL  
t1  
MODE  
t2  
Parameter  
Description  
MODE setup time  
MODE hold time  
Time  
>5ns  
>5ns  
t1  
t2  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
14 of 36  
DS140110  
RF2053  
Programming the RF2053  
The figure below shows an overview of the device programming.  
Device off  
Apply power to the device.  
Apply power  
Reset device  
Ensure the device is set into a known and correct  
state.  
1
2
3
4
Set-up device  
operation  
To use the device it will be necessary to program the  
registers with the desired contents to achieve the  
required operating characteristics.  
Set calibration  
mode  
See following sections for details.  
Set operating  
frequencies  
When programming is complete the device can be  
enabled.  
ENABLE device  
Note: The set-up processes 1 to 2, 2 to 3, and 3 to 4 are explained further below.  
Additional information on device use and programming can be found on the RF205x family page of the RFMD web site  
(http://www.rfmd.com/rf205x). The following documents may be particularly helpful:  
• RF205x Frequency Synthesizer User Guide  
• RF205x Calibration User Guide  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
15 of 36  
RF2053  
Start-up  
When starting up and following device reset then REFSTBY=0, REFSTBY should be asserted high approximately 500ecs.  
before ENBL is taken high. This is to allow the XO to settle and will depend on XO characteristics. After taking ENBL high there  
is typically 20usecs for the PLL state machine and charge pump to initialize, the VCO warm-up state, before PLL locking starts.  
The time spent in the VCO warm-up state is set by CFG1:TVCO, which should be set to 00111 when using a 26MHz clock. Fol-  
lowing the warm-up period there will be the additional time taken for the PLL to settle to the required frequency. All of these  
timings will be dependent upon application specific factors such as loop filter bandwidth, reference clock frequency, and XO  
characteristics. The fastest turn-on and lock time will be obtained by leaving REFSTBY asserted high, disabling all calibration  
routines (always the case for the RF2053), minimizing the VCO warm-up time, and setting the PLL loop bandwidth as wide as  
possible.  
The device can be reset into its initial state (default settings) at any time by performing a hard reset. This is achieved by setting  
the RESETB pin low for at least 100ns.  
Setting Up Device Operation  
The device offers a number of operating modes which need to be set up in the device before it will work as intended. This is  
achieved as follows.  
Set-up device  
operation  
1
To set up RF2053 operation w ith an external VCO it is  
necessary to set the EXT_VCO bit in CFG 1 register high  
and to alw ays select VCO3 to route the VCO input  
through to the synthesizer. The LF_ACT bit in CFG 1  
Program  
EXT_VCO=1  
P2_VCOSEL=10  
LF_ACT=0  
register should be set to  
norm ally used in the loop filter.  
0 as an external op-am p is  
W hen setting up the device it is necessary to decide if  
an active or passive loop filter w ill be used in the  
phase locked loop. Set the phase detector polarity bit  
in CFG 1 since the active filter inverts the loop filter  
voltage. Norm ally active loop filter w ith an external op-  
Active loop  
filter?  
N o  
PDP set to 0  
am p is used w ith the RF2053, so set PD P  
default setting.  
= 1, the  
D efault  
The m ixer linearity setting is then selected. The default  
value is w ith being the low est setting and the  
highest. The M IX2_ID D bits are located in the CFG 2  
register.  
M ixer  
linearity  
Program  
M IX2_IDD  
4
1
5
Internal  
capacitors  
used to set  
Xtal load  
The internal crystal loading capacitors are also  
program m ed to present the correct load to the crystal.  
The capacitance internal to the chip can be varied  
from 8-16pF in 0.25pF steps (default=10pF). The  
reference divider m ust also be set to determ ine the  
phase detector frequency (default=1). These bits are  
located in the CFG 4 register.  
Program XO_CT,  
XO_CR_S and  
CLK_D IV  
Set-up com plete  
2
Three registers need to be written, taking 3.9us at the maximum clock speed.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
16 of 36  
DS140110  
RF2053  
Disabling Calibration  
The VCO coarse tune calibration should be disabled as it is not used on the RF5203. The loop filter calibration, also unused, is  
disabled by default.  
Set calibration  
2
mode  
P2_CT_EN  
Set to 00  
Disable coarse tune calibration. Not required for the  
RF2053.  
The loop filter (Kv) calibration is also not required for  
the RF2053. The default setting is for the loop filter  
calibration to be disabled so no programming is  
required for this step.  
Disable loop  
filter calibration  
Default  
Operating mode set  
3
One register needs to be written taking 1.3us at maximum clock speed. Since it is necessary to program this register when set-  
ting the operating frequency (see next section) this operation usually carries no overhead.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
17 of 36  
RF2053  
Setting The Operating Frequency  
Setting the operating frequency of the device requires a number of registers to be programmed.  
Set operating  
frequencies  
3
When programming the operating frequency it is  
necessary to select the appropriate LODIV value,  
located in the PLL2x0 register. If the LO frequency is  
above 2GHz the LO path current (CFG5) should be set  
Program P2_LODIV  
and LO2_I  
to 0xC.  
Program  
P2_N  
The integer part of the PLL division ratio is  
programmed into the PLL2x3 register.  
Program  
P2_NUM_MSB  
The MSB of the fractional part of the synthesizer PLL  
divider value is programmed into the PLL2x1 register.  
The LSB of the fractional part of the synthesizer PLL  
divider value is programmed into the PLL2x2 register.  
Program  
P2_NUM_LSB  
Frequency  
programmed  
4
A total of four registers must be programmed to set the device operating frequency. This will take 5.2us for each path at maxi-  
mum clock speed.  
To change the frequency of the VCO it will be necessary to repeat these operations. However, if the frequency shift is small it  
may not be necessary to reprogram all the bits reducing the number of register writes to three.  
For an example on how to determine the integer and fractional parts of the synthesizer PLL division ratio please refer to the  
detailed description of the PLL on page 9.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
18 of 36  
DS140110  
RF2053  
Programming Registers  
Register Map Diagram  
Data  
Reg.  
R/W  
Add  
Name  
CFG1  
CFG2  
CFG3  
CFG4  
CFG5  
CFG6  
PLL1x0  
15  
14  
13 12 11 10  
TVCO  
9
8
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00  
01  
02  
03  
04  
05  
08  
LD_EN LD_LEV  
MIX1_IDD  
TKV1  
PDP LF_ACT  
CPL  
Res  
Res  
CT_POL Res EXT_VCO FULLD CP_LO_I  
MIX1_VB MIX2_IDD  
TKV2  
MIX2_VB  
KV_RNG NBR_CT_AVG NBR_KV_AVG  
FLL_FACT CT_CPOLREFSTBY  
CLK_DIV_BYPASS  
LO1_I  
XO_CT  
XO_I2 XO_I1 XO_CR_S  
TCT  
T_PH_ALGN  
Res  
LO2_I  
SU_WAIT  
P1_VCOSEL P1_CT_E P1_KV_E P1_LO-  
Res  
P1_CP_DEF  
N
N
DIV  
PLL1x1  
PLL1x2  
PLL1x3  
PLL1x4  
PLL1x5  
PLL2x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
09  
0A  
0B  
0C  
0D  
10  
P1_NUM_MSB  
P1_NUM_LSB  
P1_N  
P1_CT_DEF  
Res  
Res  
Res  
P1_CT_GAIN  
Res  
P1_VCOI  
P1_KV_GAIN  
P1_CT_V  
P2_CP_DEF  
P1_DN  
P1_N_PHS_ADJ  
P2_KV__E  
P2_VCOSEL P2_CT_E  
P2_LO-  
DIV  
Res  
N
N
PLL2x1  
PLL2x2  
PLL2x3  
PLL2x4  
PLL2x5  
GPO  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
11  
12  
13  
14  
15  
18  
P2_NUM_MSB  
P2_NUM_LSB  
P2_N  
P2_CT_DEF  
Res  
Res  
Res  
P2_VCOI  
P2_DN  
P2_CT_GAIN  
Res  
P2_KV_GAIN  
P2_CT_V  
P2_N_PHS_ADJ  
Res  
P1_G- Res P1_ P1_  
Res  
P2_G-  
PO1  
Res  
P2_G- P2_  
Res  
PO1  
GPO GPO  
PO3 GPO  
4
3
4
CHIPREV  
RB1  
R
R
R
R
R
19  
1C  
1D  
1E  
1F  
PARTNO  
REVNO  
LOCK  
TEN  
CT_CAL  
V0_CAL  
RSM_STATE  
TMUX  
CP_CAL  
Res  
RB2  
V1_CAL  
Res  
DACTEST  
RB3  
TEST  
CPU CPD FNZ LDO TSEL Res  
Res  
_BY  
P
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
19 of 36  
RF2053  
CFG1 (OOh) - Operational Configuration Parameters  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
LD_EN  
Default  
Function  
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
9
Enable lock detector circuitry  
LD_LEV  
Modify lock range for lock detector  
TVCO(4:0)  
VCO warm-up time=TVCO/(F *256)  
REF  
1
C
0
8
PDP  
Phase detector polarity: 0=positive, 1=negative  
Active loop filter enable, 1=Active 0=Passive  
7
LF_ACT  
CPL(1:0)  
6
Charge pump leakage current: 00=no leakage, 01=low leakage, 10=mid leakage, 11=high  
leakage  
5
4
CT_POL  
Polarity of VCO coarse-tune word: 0=positive, 1=negative  
3
2
EXT_VCO  
FULLD  
Set to 1=external VCO (VCO3 disabled, KV_CAL and CT_CAL must be disabled)  
1
0=Half duplex, mixer is enabled according to MODE pin, 1=Full duplex, both mixers enabled.  
For RF2053 setting FULLD high gives access to both PLL register banks using MODE pin.  
0
CP_LO_I  
0
0=High charge pump current, 1=low charge pump current  
CFG2 (O1h) - Mixer Bias and PLL Calibration  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
MIX1_IDD  
Default  
Function  
1
0
0
0
1
1
0
0
0
1
0
1
1
0
0
0
8
This register is not used for the RF2053.  
MIX1_VB  
This register is not used for the RF2053.  
C
5
8
MIX2_IDD  
Mixer 2 current setting: 000=0mA to 111=35mA in 5mA steps  
Mixer 2 voltage bias  
8
7
MIX2_VB  
6
5
4
KV_RNG  
Sets accuracy of voltage measurement during KV calibration: 0=8bits, 1=9bits  
Number of averages during CT cal  
3
NBR_CT_AVG  
2
1
NBR_KV_AVG  
Number of averages during KV cal  
0
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
20 of 36  
DS140110  
RF2053  
CFG3 (O2h) - PLL Calibration  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
TKV1  
Default  
Function  
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
Settling time for first measurement in LO KV compensation  
TKV2  
4
0
4
Settling time for second measurement in LO KV compensation  
8
7
6
5
4
3
FLL_FACT  
Default setting 01. Needs to be set to 00 for N<28. This case can arise when higher phase  
detector frequencies are used.  
2
1
CT_CPOL  
REFSTBY  
0
Reference oscillator standby mode 0=XO is off in standby mode, 1=XO is on in standby mode  
CFG4 (O3h) - Crystal Oscillator and Reference Divider  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
CLK_DIV  
Default  
Function  
0
0
0
1
1
0
0
0
0
0
0
0
1
1
1
1
1
Reference divider, divide by 2 (010) to 7 (111) when reference divider is enabled  
CLK_DIV_BYPASS  
XO_CT  
Reference divider enabled=0, divider bypass (divide by 1)=1  
8
0
F
Crystal oscillator coarse tune (approximately 0.5pF steps from 8pF to 16pF)  
8
7
XO_I2  
XO_I1  
XO_CR_S  
TCT  
Crystal oscillator current setting  
6
5
Crystal oscillator additional fixed capacitance (approximately 0.25pF)  
Duration of coarse tune acquisition  
4
3
2
1
0
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
21 of 36  
RF2053  
CFG5 (O4h) - LO Bias  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
LO1_I  
Default  
Function  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
Local oscillator Path1 current setting  
Local oscillator Path2 current setting  
Phase alignment timer  
LO2_I  
0
0
4
8
7
T_PH_ALGN  
6
5
4
3
2
1
0
CFG6 (O5h) - Start-up Timer  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
SU_WAIT  
Default  
Function  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
Crystal oscillator settling timer.  
1
0
0
8
7
6
5
4
3
2
1
0
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
22 of 36  
DS140110  
RF2053  
PLL1x0 (08h) - VCO, LO Divider and Calibration Select  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
P1_VCOSEL  
Default  
Function  
0
1
1
1
0
0
0
1
0
0
0
1
1
1
1
1
7
Path 1 VCO band select: 00=VCO1, 01=VCO2, 10=VCO3, 11=Reserved  
Always set to 10 for VCO3.  
P1_CT_EN  
P1_KV_EN  
P1_LODIV  
Path 1 VCO coarse tune: 00=disabled, 11=enabled  
Set to 00 to disable VCO coarse tune.  
1
1
F
Path 1 VCO tuning gain calibration: 00=disabled, 11=enabled  
Set to 00 to disable calibration.  
Path 1 local oscillator divider: 00=divide by 1, 01=divide by 2, 10=divide by 4, 11=reserved  
8
7
6
5
P1_CP_DEF  
Charge pump current setting  
If P1_KV_EN=11 this value sets charge pump current during KV compensation only  
4
3
2
1
0
PLL1x1 (09h) - MSB of Fractional Divider Ratio  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
P1_NUM_MSB  
Default  
Function  
0
1
1
0
0
0
1
0
0
1
1
1
0
1
1
0
6
Path 1 VCO divider numerator value, most significant 16 bits  
2
7
6
8
7
6
5
4
3
2
1
0
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
23 of 36  
RF2053  
PLL1x2 (0Ah) - LSB of Fractional Divider Ratio and CT Default  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
P1_NUM_LSB  
Default  
Function  
0
0
1
0
0
1
1
1
0
1
1
1
1
1
1
0
2
Path 1 VCO divider numerator value, least significant 8 bits  
7
7
E
8
7
P1_CT_DEF  
Path 1 VCO coarse tuning value, not required for RF2053.  
6
5
4
3
2
1
0
PLL1x3 (0Bh) - Integer Divider Ratio and VCO Current  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
P1_N  
Default  
Function  
0
0
1
0
0
0
1
1
0
0
0
0
0
0
1
0
2
Path 1 VCO divider integer value  
3
0
2
8
7
6
5
4
3
2
P1_VCOI  
Path 1 VCO bias setting: 000=minimum value, 111=maximum value  
1
0
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
24 of 36  
DS140110  
RF2053  
PLL1x4 (0Ch) - Calibration Settings  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
P1_DN  
Default  
Function  
0
0
0
1
0
1
1
1
1
1
1
0
0
1
0
0
1
Path 1 frequency step size used in VCO tuning gain calibration  
7
E
4
8
7
6
P1_CT_GAIN  
P1_KV_GAIN  
Path 1 coarse tuning calibration gain  
Path 1 VCO tuning gain calibration gain  
5
4
3
2
1
0
PLL1x5 (0Dh) - More Calibration Settings  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
P1_N_PHS_ADJ  
Default  
Function  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
Path 1 frequency step size used in VCO tuning gain calibration  
0
1
0
8
7
6
5
4
P1_CT_V  
Path 1 course tuning voltage setting when performing course tuning calibration. Not used by  
RF2053.  
3
2
1
0
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
25 of 36  
RF2053  
PLL2x0 (10h) - VCO, LO Divider and Calibration Select  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
P2_VCOSEL  
Default  
Function  
0
1
1
1
0
0
0
1
7
Path 2 VCO band select: 00=VCO1, 01=VCO2, 10=VCO3, 11=Reserved.  
Always set to 10 for VCO3.  
P2_CT_EN  
P2_KV_EN  
P2_LODIV  
Path 2 VCO coarse tune: 00=disabled, 11=enabled.  
Set to 00 to disable VCO coarse tune.  
1
1
F
Path 2 VCO tuning gain calibration: 00=disabled, 11=enabled.  
Set to 00 to disable calibration.  
Path 2 local oscillator divider: 00=divide by 1, 01=divide by 2, 10=divide by 4, 11=reserved  
8
7
6
5
P2_CP_DEF  
0
1
1
1
1
1
Charge pump current setting.  
If P2_KV_EN=11 this value sets charge pump current during KV compensation only  
4
3
2
1
0
PLL2x1 (11h) - MSB of Fractional Divider Ratio  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
P2_NUM_MSB  
Default  
Function  
0
1
1
0
0
0
1
0
0
1
1
1
0
1
1
0
6
Path 2 VCO divider numerator value, most significant 16 bits  
2
7
6
8
7
6
5
4
3
2
1
0
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
26 of 36  
DS140110  
RF2053  
PLL2x2 (12h) - LSB of Fractional Divider Ratio and CT Default  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
P2_NUM_LSB  
Default  
Function  
0
0
1
0
0
1
1
1
0
1
1
1
1
1
1
0
2
Path 2 VCO divider numerator value, least significant 8 bits.  
7
7
E
8
7
P2_CT_DEF  
Path 2 VCO coarse tuning value. Not required for RF2053.  
6
5
4
3
2
1
0
PLL2x3 (13h) - Integer Divider Ratio and VCO Current  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
P2_N  
Default  
Function  
0
0
1
0
0
0
1
1
0
0
0
0
0
0
1
0
2
Path 2 VCO divider integer value  
3
0
2
8
7
6
5
4
3
2
P2_VCOI  
Path 1 VCO bias setting: 000=minimum value, 111=maximum value  
1
0
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
27 of 36  
RF2053  
PLL2x4 (14h) - Calibration Settings  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
P2_DN  
Default  
Function  
0
0
0
1
0
1
1
1
1
1
1
0
0
1
0
0
1
Path 2 frequency step size used in VCO tuning gain calibration  
7
E
4
8
7
6
P2_CT_GAIN  
P2_KV_GAIN  
Path 2 coarse tuning calibration gain  
Path 2 VCO tuning gain calibration gain  
5
4
3
2
1
0
PLL2x5 (15h) - More Calibration Settings  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
P2_N_PHS_ADJ  
Default  
Function  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
Path 2 synthesizer phase adjustment  
0
1
0
8
7
6
5
4
P2_CT_V  
Path 2 course tuning voltage setting when performing course tuning calibration. Not used by  
RF2053.  
3
2
1
0
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
28 of 36  
DS140110  
RF2053  
GPO (18h) - Internal Control Output Settings  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
Default  
Function  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P1_GPO1  
Setting of GPO1 when path 1 is active, used internally only  
P1_GPO3  
P1_GPO4  
Setting of GPO3 when path 1 is active, used internally only  
Setting of GPO4 when path 1 is active, used internally only  
0
0
0
8
7
6
P2_GPO1  
Setting of GPO1 when path 2 is active, used internally only  
5
4
P2_GPO3  
P2_GPO4  
Setting of GPO3 when path 2 is active, used internally only  
Setting of GPO4 when path 2 is active, used internally only  
3
2
1
0
CHIPREV (19h) - Chip Revision Information  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
PARTNO  
Default  
Function  
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
0
RFMD Part number for device  
0
X
X
8
7
REVNO  
Part revision number  
6
5
4
3
2
1
0
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
29 of 36  
RF2053  
RB1 (1Ch) - PLL Lock and Calibration Results Read-back  
#
15  
14  
12  
11  
10  
9
Bit Name  
LOCK  
Default  
Function  
X
X
X
X
X
X
X
X
X
X
X
X
0
0
X
PLL lock detector, not used by RF2053.  
CT setting, not used by RF2053.  
CT_CAL  
X
8
7
CP_CAL  
X
X
CP setting, not used by RF2053.  
5
4
3
2
1
0
RB2 (1Dh) - Calibration Results Read-Back  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
VO_CAL  
Default  
Function  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
The VCO voltage measured at the start of a VCO gain calibration. Not used by RF2053.  
X
X
X
8
7
V1_CAL  
The VCO voltage measured at the end of a VCO gain calibration. Not used by RF2053.  
6
5
4
3
2
1
0
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
30 of 36  
DS140110  
RF2053  
RB3 (1Eh) - PLL state Read-Back  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
RSM_STATE  
Default  
Function  
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
X
State of the radio state machine  
X
0
0
8
7
6
5
4
3
2
1
0
TEST (1Fh) - Test Modes  
#
15  
14  
13  
12  
11  
10  
9
Bit Name  
TEN  
Default  
Function  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Enables test mode  
TMUX  
Sets test multiplexer state  
CPU  
0
0
0
Set charge pump to pump up, 0=normal operation 1=pump down  
Set charge pump to pump down, 0=normal operation 1=pump down  
0=normal operation, 1=fractional divider modulator disabled  
On chip low drop out regulator bypassed  
CPD  
FNZ  
8
LDO_BYP  
TSEL  
7
6
5
4
DACTEST  
DAC test  
3
2
1
0
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
31 of 36  
RF2053  
Evaluation Board  
The following diagrams show the schematic and PCB layout of the RF2053 evaluation boards.The standard evaluation board,  
DK2053, has been configured with a narrowband VCO covering 1646MHz to 1670MHz. The wideband evaluation board,  
DK2053-WB, has a VCO covering over an octave, 950MHz to 2150MHz. The mixer input and output on both boards have been  
configured for broadband oeration. Application notes have been produced showing how the device is matched and on balun  
implementations for narrowband applications. The evaluation boards are provided as part of a design kit (DK2053 and  
DK2053-WB), along with the necessary cables and programming software tool to enable full evaluation of the RF2053.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
32 of 36  
DS140110  
RF2053  
Evaluation Board Schematic  
Narrowband with UMX-236-D16 VCO  
50 strip  
J7  
LO_OP  
R21  
CB2  
CB4  
12  
11  
10  
9
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SLD  
USB  
VCC  
PU2  
PU1  
CB3  
18R  
UMX-236-D16  
VCO  
16 15 14 13  
22 pF  
C41  
R18  
0R  
12  
2
11  
1
R22  
18R  
R23  
18R  
T5  
R7  
10 K  
50 strip  
50  strip  
50  Strip  
TC1-1-13M  
VDD_VCO  
INDP  
INDN  
C38  
10 nF  
C39  
22 pF  
R24  
DNI  
R25  
DNI  
3
10  
9
DSR#  
8
C42  
22 pF  
4
R2  
1K  
7
VDD  
5
6
7
8
17  
V Tune  
6
C30  
3.3 nF  
5
RST#  
VCC  
UIO  
4
3
CB1  
CB0  
VDDA  
2
C1  
33 pF  
C6  
22 pF  
C29  
100 nF  
1
Socket for USB  
Interface  
RESETB  
L1  
DNI  
R8  
DNI  
C21  
100 pF  
R14  
0 R  
T1  
50 strip  
1
3
2
RESETB  
ENX  
J1  
RF OP  
4
C15  
33 pF  
C14  
33 pF  
C13  
33 pF  
C25  
DNI  
C20  
100 pF  
TC4-19+  
5
6
SCLK  
SDATA  
ENBL  
ENX  
SCLK  
7
8
SDATA  
ENBL  
C24  
9
10  
12  
14  
16  
18  
20  
22  
24  
R15  
0 R  
R3  
100 k  
100 pF  
C35  
33 pF  
50 strip  
J2  
RF IP  
VDD  
VDD  
11  
13  
15  
17  
19  
21  
23  
VDDA  
C12  
10 uF  
C31  
DNI  
VDDD  
C11  
10 uF  
32 31 30 29 28 27 26 25  
T2  
C23  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
100 pF  
+V_OP  
VDDA  
INDP  
VDDA  
MODE  
TC1-1-13M  
R1  
51 k  
INDN  
-V_OP  
C34  
10 nF  
C2  
33 pF  
C18  
10 nF  
Active Loop Filter  
C8  
C10  
100 nF  
VDD_VCO  
10 nF  
C3  
VDDD  
33 pF  
C43  
10 nF  
HDR_2X12  
C5  
LFILT1  
33 pF  
C19  
10 nF  
C16  
R9  
+V_OP  
1.5 nF  
1K5  
C9  
100 nF  
C26  
33 nF  
9
10 11 12 13 14 15 16  
FILT1  
TP4  
R11  
1K  
VTUNE  
MODE  
TP5  
R6  
6.8K  
U1  
OPA27  
Note: For the UMX-236-D16 VCO  
VDD_VCO is +5VDC  
+V_OP is +5VDC  
C36  
33 pF  
C27  
3.3 nF  
+1.2V  
+V_OP  
C28  
100 nF  
R10  
2.2K  
C16  
DNI  
-V_OP is -5VDC  
C4  
10 nF  
-V_OP  
26 MHz XTAL  
J6  
REF  
C7  
DNI  
C22  
DNI  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
33 of 36  
RF2053  
Wideband with UMS-2150-R16 VCO  
50  Strip  
J7  
LO_OP  
UMS-2150-R16  
R21  
Wideband VCO  
68R  
CB2  
CB4  
12  
11  
10  
9
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SLD  
USB  
VCC  
PU2  
PU1  
CB3  
950 MHz to 2150 MHz  
16 15 14 13  
33 pF  
C41  
R18  
0R  
12  
2
11  
1
R22  
0R  
R23  
68R  
T5  
R7  
10 K  
LO  
50  strip  
50  Strip  
TC1-1-13M  
VDD_VCO  
INDP  
INDN  
C40  
33 pF  
C38  
10 nF  
C39  
33 pF  
R24  
100R  
R25  
100R  
3
10  
9
DSR#  
8
C42  
4
33 pF  
R2  
10R  
7
VDD  
5
6
7
8
17  
V Tune  
6
C30  
6.8 nF  
5
RST#  
VCC  
UIO  
4
3
CB1  
CB0  
VDDA  
2
C1  
33 pF  
C6  
33 pF  
C29  
10 nF  
1
Socket for USB  
Interface  
RESETB  
L1  
DNI  
R8  
DNI  
C21  
100 pF  
R14  
0 R  
T1  
50 strip  
1
3
2
RESETB  
ENX  
J1  
RF OP  
4
C15  
33 pF  
C14  
33 pF  
C13  
33 pF  
C25  
DNI  
C20  
100 pF  
TC4-19+  
5
6
SCLK  
SDATA  
ENBL  
ENX  
SCLK  
7
8
SDATA  
ENBL  
C24  
9
10  
12  
14  
16  
18  
20  
22  
24  
R15  
0 R  
R3  
100 k  
100 pF  
C35  
33 pF  
50 strip  
J2  
RF IP  
VDD  
VDD  
11  
13  
15  
17  
19  
21  
23  
VDDA  
C12  
10 uF  
C31  
DNI  
VDDD  
C11  
10 uF  
32 31 30 29 28 27 26 25  
T2  
C23  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
100 pF  
+V_OP  
VDDA  
INDP  
VDDA  
MODE  
TC1-1-13M  
R1  
51 k  
INDN  
-V_OP  
VDD_VCO  
C34  
10 nF  
C2  
33 pF  
C18  
10 nF  
Active Loop Filter  
C8  
C10  
100 nF  
VDD_VCO  
10 nF  
C3  
VDDD  
33 pF  
C43  
1 uF  
HDR_2X12  
C5  
LFILT1  
33 pF  
C19  
10 nF  
C17  
1 nF  
R9  
680R  
+V_OP  
C9  
Note: For the UMS-2150-R16  
VDD_VCO is +12VDC  
+V_OP is +16VDC  
100 nF  
C26  
22 nF  
9
10 11 12 13 14 15 16  
LFILT1  
TP4  
R11  
-V_OP is -5VDC  
120R  
VTUNE  
MODE  
TP5  
R6  
10K  
U1  
OPA27  
C36  
33 pF  
C27  
6.8 nF  
+1.1V  
+V_OP  
C28  
10 nF  
R10  
680R  
C16  
DNI  
C4  
10 nF  
-V_OP  
26 MHz XTAL  
J6  
REF  
C7  
DNI  
C22  
DNI  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
34 of 36  
DS140110  
RF2053  
Evaluation Board Layout  
Board Size 2.5”x2.5”  
Board Thickness 0.040”, Board Material FR-4  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
DS140110  
35 of 36  
RF2053  
Package Drawing  
QFN, 32-Pin, 5mmx5mm  
0.85±0.10  
0.1 M  
1
C A B  
3.70±0.10  
0.1  
C
1
SEE DETAIL ‘D’  
5.00  
0.25 Typ.  
0.50 Typ.  
0.35±0.05  
32x  
-B-  
-A-  
0.23±0.05  
32x  
0.1 M  
C A B  
5.000  
See Detail ‘D’  
Dimensions in mm.  
Shaded area indicates pin 1.  
0.1  
C
0.85±0.10  
0.08  
-C-  
C
SEATING  
PLANE  
0.00  
0.05  
Detail ‘D’  
Rotated CW  
Support and Applications Information  
Application notes and support material can be downloaded from the product web page: www.rfmd.com/rf205x.  
Ordering Information  
Part Number  
RF2053  
Package  
32-Pin QFN  
32-Pin QFN  
32-Pin QFN  
32-Pin QFN  
32-Pin QFN  
Quantity  
25pcs sample bag  
5pcs sample bag  
100pcs reel  
RF2053SB  
RF2053SR  
RF2053TR7  
RF2053TR13  
DK2053  
750pcs reel  
2500pcs reel  
1 box  
Complete Design Kit  
Narrowband VCO Evaluation Board  
DK2053WB  
Complete Design Kit  
1 box  
Wideband VCO Evaluation Board  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
36 of 36  
DS140110  

相关型号:

DK2053WB

HIGH PERFORMANCE FRACTIONAL-N SYNTHESIZER WITH INTEGRATED RF MIXER
RFMD

DK208D

This DK208D 8A, 1200V rated standard recovery rectifier diode in a compact TO-252 surface mount package is ideal as a bypass diode or anti-parallel diode for active switching component
LITTELFUSE

DK208DRP

This DK208D 8A, 1200V rated standard recovery rectifier diode in a compact TO-252 surface mount package is ideal as a bypass diode or anti-parallel diode for active switching component
LITTELFUSE

DK20GY

DATA SUBJECT TO CHANGE WITHOUT NOTLCE
HAMMOND

DK20LG

DATA SUBJECT TO CHANGE WITHOUT NOTLCE
HAMMOND

DK20S16

DATA SUBJECT TO CHANGE WITHOUT NOTLCE
HAMMOND

DK2100

Navigator Motion Processor
ETC

DK225A-14

2.5-INCH DISK DRIVE SPECIFICATION AND JUMPER SETTINGS
ETC

DK2320-7EPB1

DC-DC Regulated Power Supply Module, 2 Output, Hybrid, METAL, CASE K02, MODULE
BEL

DK2320-7EPB2

DC-DC Regulated Power Supply Module, 2 Output, 150W, Hybrid, METAL, CASE K02, MODULE
BEL

DK2320-7EPD0B1

DC-DC Regulated Power Supply Module, 2 Output, 150W, Hybrid, METAL, CASE K02, MODULE
BEL

DK2320-7EPD0T

DC-DC Regulated Power Supply Module, 2 Output, 150W, Hybrid, HEAT SINK, METAL, CASE K02, MODULE
BEL