RF3806 [RFMD]

GaAs HBT PRE-DRIVER AMPLIFIER; 砷化镓HBT预驱动放大器
RF3806
型号: RF3806
厂家: RF MICRO DEVICES    RF MICRO DEVICES
描述:

GaAs HBT PRE-DRIVER AMPLIFIER
砷化镓HBT预驱动放大器

放大器 驱动
文件: 总18页 (文件大小:557K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RF3806GaAs  
HBT Pre-Driver  
Amplifier  
RF3806  
GaAs HBT PRE-DRIVER AMPLIFIER  
RoHS Compliant & Pb-Free Product  
Package Style: AlN  
h
3
Features  
VCC1  
VREF  
1
2
3
4
8
7
6
5
RF OUT/VCC2  
RF OUT/VCC2  
RF OUT/VCC2  
RF OUT/VCC2  
Bias  
Circuit  
„
„
„
4W Output Power  
High Linearity  
1500MHz to 2200MHz Oper-  
ation  
RF IN  
„
5V to 8V Supply with Adjust-  
able Bias  
V_BIAS  
PACKAGE BASE  
GND  
Applications  
„
GaAs HBT Linear Amplifier  
„
Power Amplifier Stage for  
Commercial Wireless Infra-  
structure (DCS, PCS, UMTS)  
Functional Block Diagram  
Product Description  
The RF3806 is a GaAs power amplifier, specifically designed for linear  
applications. Using a highly reliable GaAs HBT fabrication process, this  
high-performance two-stage amplifier achieves high output power over a  
broad frequency range. An evaluation board is available to address  
UMTS2100 applications.  
Ordering Information  
RF3806  
GaAs HBT Pre-Driver Amplifier  
RF3806PCK-415  
Fully Assembled Evaluation Board - UMTS2100  
Optimum Technology Matching® Applied  
GaAs HBT  
GaAs MESFET  
InGaP HBT  
SiGe BiCMOS  
Si BiCMOS  
SiGe HBT  
GaAs pHEMT  
Si CMOS  
Si BJT  
GaN HEMT  
9
RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity™, PowerStar®, POLARIS™ TOTAL RADIO™ and UltimateBlue™ are trademarks of RFMD, LLC. BLUETOOTH is a trade-  
mark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006, RF Micro Devices, Inc.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
Rev A3 DS070509  
3-113  
RF3806  
Absolute Maximum Ratings  
Parameter  
Rating  
Unit  
V
Caution! ESD sensitive device.  
Supply Voltage (V and V  
)
BIAS  
8
CC  
DC Supply Current  
2870  
23  
mA  
dBm  
°C  
The information in this publication is believed to be accurate and reliable. How-  
ever, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use,  
nor for any infringement of patents, or other rights of third parties, resulting  
from its use. No license is granted by implication or otherwise under any patent  
or patent rights of RFMD. RFMD reserves the right to change component cir-  
cuitry, recommended application circuitry and specifications at any time without  
prior notice.  
3
Maximum Input Power  
Operating Ambient Temperature  
Storage Temperature  
+85  
+125  
°C  
RoHS status based on EUDirective2002/95/EC (at time of this document revi-  
sion).  
Specification  
Typ.  
Parameter  
Unit  
Condition  
Min.  
Max.  
Overall - UMTS2100  
VCC=8V  
Frequency  
2110  
2170  
MHz  
dBm  
I
=60mA, V =V  
=V =8V,  
REF  
CC  
BIAS REF  
Temp=+25°C  
P1dB  
35  
17  
36  
37  
19  
Performance with impedance match as per  
UMTS evaluation board  
Gain (S21)  
18  
-12  
-6  
dB  
dB  
dB  
Input Return Loss (S11)  
Output Return Loss (S22)  
Two-Tone Specification  
OIP3  
47  
dBm  
23dBm/tone  
Power Supply  
Power Supply Voltage  
8
V
Supply Current (I +I  
)
660  
730  
800  
50  
mA  
I
CCQ  
CC BIAS  
Power Down Current  
VCC=6V  
μA  
V
=0V, V =V  
=8V  
BIAS  
REF  
CC  
Frequency  
2110  
2170  
MHz  
I
=60mA, V =V  
=V =6V,  
REF  
CC  
BIAS REF  
Temp=+25°C  
P1dB  
34.5  
18  
dBm  
dB  
Performance with impedance match as per  
UMTS evaluation board  
Gain (S21)  
Two-Tone Specification  
OIP3  
46  
dBm  
21dBm/tone  
Power Supply  
Power Supply Voltage  
6
V
Supply Current (I +I  
)
718  
mA  
I
I
CC BIAS  
CCQ  
VCC=5V  
Frequency  
2110  
2170  
MHz  
=60mA, V =V  
=V =5V,  
REF  
CC  
BIAS REF  
Temp=+25°C  
P1dB  
33  
dBm  
dB  
Performance with impedance match as per  
UMTS evaluation board  
Gain (S21)  
18.5  
Two-Tone Specification  
OIP3  
45  
dBm  
20dBm/tone  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
3-114  
Rev A3 DS070509  
RF3806  
Specification  
Typ.  
Parameter  
Power Supply  
Unit  
Condition  
Min.  
Max.  
Power Supply Voltage  
5
V
3
Supply Current (I +I  
)
707  
mA  
I
I
CC BIAS  
CCQ  
Overall - PCS1900  
VCC=8V  
Frequency  
1930  
1990  
MHz  
dBm  
=60mA, V =V  
=V =8V,  
REF  
CC  
BIAS REF  
Temp=+25°C  
P1dB  
37  
Performance with impedance match as per  
DCS/PHS/PCS low power linear application  
schematic  
Gain (S21)  
18  
-14  
-8  
dB  
dB  
dB  
Input Return Loss (S11)  
Output Return Loss (S22)  
Two-Tone Specification  
OIP3  
52  
dBm  
23dBm/tone  
Power Supply  
Power Supply Voltage  
8
V
Supply Current (I +I  
)
660  
730  
800  
50  
mA  
I
CCQ  
CC BIAS  
Power Down Current  
VCC=6V  
μA  
V
=0V, V =V  
=8V  
BIAS  
REF  
CC  
Frequency  
1930  
1990  
MHz  
dBm  
I
=60mA, V =V  
=V =6V,  
REF  
CC  
BIAS REF  
Temp=+25°C  
P1dB  
35  
Performance with impedance match as per  
DCS/PHS/PCS low power linear application  
schematic  
Gain (S21)  
18  
49  
dB  
Two-Tone Specification  
OIP3  
dBm  
21dBm/tone  
Power Supply  
Power Supply Voltage  
6
V
Supply Current (I +I  
)
713  
mA  
I
I
CC BIAS  
CCQ  
VCC=5V  
Frequency  
1930  
1990  
MHz  
dBm  
=60mA, V =V  
=V =5V,  
REF  
CC  
BIAS REF  
Temp=+25°C  
P1dB  
33.5  
Performance with impedance match as per  
DCS/PHS/PCS low power linear application  
schematic  
Gain (S21)  
18.5  
49  
dB  
Two-Tone Specification  
OIP3  
dBm  
20dBm/tone  
Power Supply  
Power Supply Voltage  
5
V
Supply Current (I +I  
)
707  
mA  
I
CCQ  
CC BIAS  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
Rev A3 DS070509  
3-115  
RF3806  
Pin  
1
Function  
VCC1  
Description  
For input stage.  
Interface Schematic  
Control for active bias. See “Theory of Operation” section.  
For input stage. Requires RF match and DC block.  
Supply for active bias.  
2
3
4
5
VREF  
RF IN  
VBIAS  
RF OUT/  
VCC2  
3
For output stage. Requires RF match, bias feed and DC block.  
See pin 5.  
6
7
8
RF OUT/  
VCC2  
RF OUT/  
VCC2  
RF OUT/  
VCC2  
See pin 5.  
See pin 5.  
Must be soldered to ground pad through as short a path as possible. This  
Pkg  
Base  
GND  
path also forms the thermal path for minimum T .  
J
Package Drawing  
-A-  
0.0025  
Pin 1  
0.005 A  
Shaded circle designates  
pin 1 location.  
0.200 REF  
0.024  
0.180  
REF  
0.198  
0.236  
0.156  
Dimensions in inches.  
0.025  
R.008  
0.050  
TYP  
0.050  
REF  
0.0780  
MAX  
0.028  
TYP  
0.020  
7 PL  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
3-116  
Rev A3 DS070509  
RF3806  
Application Schematic - DCS/PHS/PCS  
1800MHz to 2025MHz  
Low Power Linear Operation  
VCC  
3
0 Ω  
+
+
0.1 μF  
10 μF  
10 pF  
10 pF  
1000 pF  
0.1 μF  
10 μF  
24 nH  
VREF  
6.8 nH  
1000 pF  
+
10 pF  
1000 pF  
0.1 μF  
10 μF  
270 Ω  
270 Ω  
270 Ω  
270 Ω  
+
1000 pF  
0.1 μF  
10 pF  
Open  
10 μF  
1
2
3
4
8
7
6
5
Bias  
Circuit  
L2  
24 nH  
7.5 pF  
Open  
5.6 pF  
RF OUT  
10 pF  
Open  
5.6 pF  
RF IN  
3.3 pF  
Open  
Open  
Open  
Open  
Open  
Open  
*
VBIAS  
+
10 pF  
0.1 μF  
1000 pF  
10 μF  
* PHS/PCS: 1.8 pF  
DCS: 2.4 pF  
This schematic for low power linear operation:  
21dBm<POUT<27dBm, 5V<VCC<8V. Bias R seen above for 8V and 60mA IREF. See biasing table for setting resistance at  
other supply voltages.  
Application Schematic - DCS/PCS  
1800MHz to 1990MHz  
High Power Operation  
VCC  
+
R10  
C48  
C40  
C51  
C50  
0 Ω  
10 pF  
1000 pF  
0.1 μF  
10 μF  
+
C33  
C34  
C35  
0.1 μF  
10 μF  
10 pF  
L4  
24 nH  
VREF  
C27  
Open  
+
C38  
10 pF  
C39  
1000 pF  
C41  
0.1 μF  
C40  
10 μF  
R4  
390 Ω  
R5  
390 Ω  
R7  
430 Ω  
R8  
430 Ω  
+
C5  
C11  
C7  
C8  
1000 pF  
0.1 μF  
10 pF  
10 μF  
1
2
3
4
8
7
6
5
Bias  
Circuit  
L2  
24 nH  
C13  
6.8 pF  
C14  
2.7 pF  
50 Ω μstrip  
C28  
5.1 pF  
C30  
5.1 pF  
RF OUT  
50 Ω μstrip  
RF IN  
C29  
2.4 pF  
C12  
Open  
C15  
0.5 pF  
C8  
1 pF  
C9  
Open  
C10  
Open  
C18  
Open  
C18  
Open  
C19  
Open  
C20  
1.5 pF  
VBIAS  
C49  
C48  
C44  
+
C45  
10 pF  
0.1 μF  
1000 pF  
10 μF  
This schematic for high power operation:  
POUT>27dBm, 5V<VCC<8V. Bias R seen above for 8V and 41mA IREF. See biasing table for setting resistance at other supply  
voltages.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
Rev A3 DS070509  
3-117  
RF3806  
Evaluation Board Schematic - UMTS2100  
R10  
0 Ω  
VCC  
+
+
C33  
C34  
C35  
C48  
C49  
C51  
C50  
0.1 μF  
10 μF  
10 pF  
10 pF  
1000 pF  
0.1 μF  
10 μF  
L4  
24 nH  
3
VREF  
C27  
1000 pF  
+
C38  
10 pF  
C39  
1000 pF  
C41  
0.1 μF  
C40  
10 μF  
R4  
270 Ω  
R5  
270 Ω  
R7  
270 Ω  
R8  
270 Ω  
+
C5  
C11  
C7  
C6  
1000 pF  
0.1 μF  
10 pF  
10 μF  
1
2
3
4
8
7
6
5
Bias  
Circuit  
L2  
24 nH  
C14  
9.1 pF  
50 Ω μstrip  
C28  
9.1 pF  
J2  
RF OUT  
50 Ω μstrip  
J1  
RF IN  
C13  
9.1 pF  
C29  
3.3 pF  
C12  
Open  
C26  
Open  
C15  
Open  
C8  
Open  
L9  
15 nH  
C10  
Open  
C16  
Open  
C30  
9.1 pF  
C18  
Open  
C19  
Open  
C20  
2.0 pF  
VBIAS  
C43  
C46  
C44  
+
C45  
10 pF  
0.1 μF  
1000 pF  
10 μF  
This eval board for low power linear operation: 21dBm<POUT<27dBm, 5 V<VCC<8V. Bias R seen above for 8V and 60mA IREF  
.
See biasing table for setting resistance at other supply voltages.  
RF3806 Biasing Table  
The resistor values shown below are for varied VCC/ICQ conditions. Biasing for higher quiescent current will give increased lin-  
earity. “R_Bias”=equivalent R in line with VREF (see values on evaluation board schematic: R4, R5, R7, R8).  
Max allowable IREF=60mA.  
V
V
V
R
(at V  
)
I
Typical I  
mA  
CC  
REF  
BIAS  
BIAS  
REF  
REF  
CQ  
Volt  
Volt  
Volt  
Ohm  
mA  
8
7
6
5
8
7
6
5
8
7
6
5
62  
45  
60  
60  
60  
60  
730  
726  
718  
707  
28.5  
11.5  
8
7
6
5
8
7
6
5
8
7
6
5
80.5  
60  
50  
50  
50  
50  
676  
670  
663  
649  
40  
20  
8
7
6
5
8
7
6
5
8
7
6
5
105  
80.5  
56  
41  
41  
41  
41  
623  
614  
601  
584  
31.5  
In I =60mA case, calculated R  
was rounded up to nearest 0.5Ω.  
REF  
BIAS  
This to keep I  
at or slightly below 60mA max.  
REF  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
3-118  
Rev A3 DS070509  
RF3806  
Evaluation Board Layout  
Board Size 2.0” x 2.0”  
Board Thickness 0.020”, Board Material Rogers 4350  
3
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
Rev A3 DS070509  
3-119  
RF3806  
Theory of Operation  
General biasing considerations can be described using RF3806 UMTS evaluation board as a reference. In actual system,  
VCC=VBIAS=VREF can be tied together when PA is to remain biased on at all times. For non-constant operation, VCC is tied to  
3
VBIAS, and VREF used for turn-on preceding transmit. Table is provided in data sheet for adjusting IREF to desired bias current for  
various supply voltage levels (more detailed discussion below).  
RF3806 can be used in frequency bands ranging from 1500MHz to 2200MHz. Depending on specific application, the follow-  
ing parameters and their trade-offs can be considered: linearity, average output power, signal modulation/peak to average  
ratio (PAR), efficiency, dissipated power, junction temperature (Tj), and wear out MTTF. Looking at two distinct examples will  
demonstrate how the above mentioned parameters are taken into account. Note that much of the discussed performance can  
be found in the data sheet area showing graphs.  
First, consider a UMTS pico cell base station transmitter (case 1). Here RF3806 fills the role of final PA, operating from  
21dBm-26dBm POUT. VCC can be run from 5V to 8V. Likewise, bias resistance on VREF line can be set to obtain IREF ranging  
from 41mA-60mA. The choice of voltage supply and bias is determined by required W-CDMA ACPR spec, desired POUT, and sig-  
nal PAR. For instance, consider the following: POUT=26dBm, frequency=2110MHz-2170MHz, signal=W-CDMA test model I  
64 DPCH, ACPR requirement over temperature=-45dBc at 5MHz offset. The operating condition here (see data sheet graph  
section) would be VCC=8V and IREF=60mA, using impedance match found on UMTS Evaluation Board. For a lower output  
power requirement, IREF is kept at 60mA, and VCC reduced to a level below 8V. Sufficient linearity can be obtained at lower  
P
OUT, while the decrease in dissipated power yields a lower junction temperature and enhanced MTTF. For thermal consider-  
ations, refer to graphs provided for thermal resistance, junction temperature, and MTTF (these three graphs based on RF3806  
thermal scan and process reliability data).  
For the second example (case 2), consider a higher power application, where POUT=34dBm and linearity requirement is sub-  
stantially reduced from that seen in above example. For this application, we might run IREF=41mA with VCC=8V. RF3806 out-  
put load line would be set for maximum efficiency and compression point. The result is a transmit PA which obtains output  
power spec, while providing high enough efficiency to keep Tj within desired range. Running IREF=41mA avoids unnecessary  
power dissipation, as higher IREF is used only in lower power case for linearity enhancement. A DCS/PCS application schematic  
is provided in data sheet for higher power applications, along with corresponding information in section containing graphs.  
UMTS evaluation board can be converted to the application schematic, with minor changes to input, output, and interstage  
matches (interstage @VCC1 pin). Also, bias resistors at VREF are scaled for lower IREF=41mA. EDGE ACP plots are provided in  
the graph section. Note that the matching also covers transmit bands for 1850-1910 CDMA. As a result, this converted appli-  
cation board could also be considered for CDMA booster/repeater.  
As mentioned above, junction temperature is an important consideration when operating at maximum VCC (8V). The most  
demanding scenario, case 1 above, will be considered here as an illustration. In the data sheet graph section, refer to graphs  
of Tj vs POUT, RTH vs POUT, and RF3806 wear out MTTF vs Tj. During thermal scan, RF3806 eval board is affixed to a large, tem-  
perature controlled stage, held at ambient. The device is etched open, such that thermal image of die can be taken. Reference  
temperature is measured at evaluation board to stage interface by thermocouple, placed through a thin groove such that it  
makes contact with underside eval board GND plane (directly beneath RF3806). Thermocouple measures "reference tempera-  
ture", from which RTH_JREF (junction to reference) is determined. Evaluation board thermal resistance, RTH_BOARD, has been  
modeled at 1°C/W. Knowing these two values allows us to calculate junction to case thermal resistance of  
RF3806=RTH_JC=RTH_JREF-RTH_BOARD=RTH_JREF-1 (see graph). Thus, RTH_JC is defined as thermal resistance from junction to  
GND slug of device.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
3-120  
Rev A3 DS070509  
RF3806  
At POUT=26dBm, see that Tj=160°C for ambient (stage) temperature=85°C. At this condition, temperature of case (GND  
slug) is calculated:  
TCASE=TREF+PDISS*(RTH_BOARD)=94°C+(6.191W)*1°C/W=100.2°C. Note that TREF was elevated to 94°C when stage was  
set at 85°C. Thus, thermal resistance results can be subject to where one defines "ambient".  
3
Using MTTF curve, it is seen that MTTF=80 years for 160°C junction temperature. In a design where higher MTTF is desired,  
one option would be to run RF3806 at reduced VCC. Viewing UMTS ACP curves in graph section of data sheet, VCC=6V/25dBm  
shows equivalent linearity to VCC=8V/26dBm. Reducing POUT specification to 25dBm will allow for higher MTTF while operat-  
ing at VCC=6V. A practical approximation to Tj at adjusted operating condition can be made. Assume TCASE equal to 100.2°C,  
as with VCC=8V and 26dBm out (conservative estimate). Dissipated power for 6V/25dBm/85°C is known from test data to  
be 4.385W. From data sheet graph, RTH_JC=9.95°C/W. Tj is approximated to be:  
Tj=100.2+4.385*9.95=144°C  
MTTF curve shows >450 years for this Tj. As mentioned, the above analysis is not exact, but does give us a practical way to get  
an idea of where a condition will fall in terms of Tj and MTTF. Required data to do the calculation: data sheet curves and evalu-  
ation board test in temperature chamber (to determine dissipated power).  
Note that projected Tj vs Pout curves are included with DCS/PCS data (1800MHz-1990MHz high power application sche-  
matic), to illustrate the same type of trade offs between operating at 6V and 8V. These curves are approximate, obtained with  
the following method (called out in above paragraph):  
1. UMTS evaluation board was converted to matching seen on DCS/PCS application schematic (changes @ input/out-  
put/interstage/bias resistors at VREF).  
2. Evaluation board was run in oven at 85°C ambient.  
3. Dissipated power was calculated at each data point. Using RTH_JREF from data sheet curve, temperature delta to RF3806  
junction (Tj) can be obtained. Tj was then plotted, and can be applied to MTTF vs Tj curve.  
Finally, a description is included here for running two RF3806 in parallel with hybrid combiners. This approach enables design  
to achieve substantial linearity enhancement for a given POUT, while maintaining low die temperature. In this example, hybrid  
couplers (combiners) from Anaren (part number XC2100E-03) are used with 2 RF3806 UMTS evaluation boards. The bias con-  
dition is VCC=6V, IREF=60mA. ACP performance vs temperature is shown in graph section, which can be compared to that for  
single PA.  
RFMD can be contacted to obtain RF3806 qualification report, which adheres to demanding infrastructure standards.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
Rev A3 DS070509  
3-121  
RF3806  
Small Signal Gain  
UMTS Band (Data taken on UMTS Evaluation Board)  
OIP3 versus POUT versus Frequency versus VCC  
UMTS Band (Data taken on UMTS Evaluation Board)  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
51.0  
50.0  
49.0  
48.0  
47.0  
46.0  
45.0  
44.0  
3
Vcc = 8 V 2110 MHz  
Vcc = 8 V 2140 MHz  
Vcc = 8 V 2170 MHz  
Vcc = 6 V 2110 MHz  
Vcc = 6 V 2140 MHz  
Vcc = 6 V 2170 MHz  
Vcc = 5 V 2110 MHz  
Vcc = 5 V 2140 MHz  
Vcc = 5 V 2170 MHz  
Vcc = 8 V  
Vcc = 6 V  
Vcc = 5 V  
2100.0 2110.0 2120.0 2130.0 2140.0 2150.0 2160.0 2170.0 2180.0  
Freq (MHz)  
19.0  
20.0  
21.0  
22.0  
23.0  
24.0  
P_Tone (dBm)  
OP1dB versus VCC versus Frequency  
UMTS Band (Data taken on UMTS Evaluation Board)  
OIP3 versus Frequency versus VCC, at 10dB Back-off  
from OP1dB, UMTS Band (Data taken on UMTS Evaluation Board)  
51.0  
37.0  
36.5  
36.0  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
50.0  
49.0  
48.0  
47.0  
46.0  
45.0  
44.0  
Vcc = 8 V  
Vcc = 6 V  
Vcc = 5 V  
Vcc = 8 V  
Vcc = 6 V  
Vcc = 5 V  
2100.0 2110.0 2120.0 2130.0 2140.0 2150.0 2160.0 2170.0 2180.0  
Frequency (MHz)  
2100.0 2110.0 2120.0 2130.0 2140.0 2150.0 2160.0 2170.0 2180.0  
Frequency (MHz)  
W-CDMA ACP versus POUT versus Temperature  
W-CDMA ACP versus POUT versus Temperature  
Signal=W-CDMA Test Model I 64 DPCH PAR=10.3dB @ 0.01%  
IREF=60mA VCC=6V (Data taken on UMTS Evaluation Board)  
Signal=W-CDMA Test Model I 64 DPCH PAR=10.3dB @ 0.01%  
IREF=60mA VCC=8V (Data taken on UMTS Evaluation Board)  
-40.0  
-42.0  
-41.0  
-42.0  
-43.0  
-44.0  
-45.0  
-46.0  
-47.0  
-48.0  
-49.0  
-50.0  
-51.0  
-52.0  
-53.0  
-54.0  
-55.0  
-56.0  
-57.0  
-58.0  
-59.0  
-60.0  
-61.0  
-62.0  
-63.0  
-43.0  
-44.0  
-45.0  
-46.0  
-47.0  
-48.0  
-49.0  
-50.0  
-51.0  
-52.0  
-53.0  
-54.0  
-55.0  
-56.0  
-57.0  
-58.0  
25C 2110 MHz 6 V  
25C 2170 MHz 6 V  
85C 2110 MHz 6 V  
85 C 2170 MHz 6 V  
-40 C 2110 MHz 6 V  
-40 C 2170 MHz 6 V  
25 C 2110 MHz 8 V  
25 C 2170 MHz 8 V  
85 C 2110 MHz 8 V  
85 C 2170 MHz 8 V  
-40 C 2110 MHz 8 V  
-40 C 2170 MHz 8 V  
22.0  
22.5 23.0  
23.5 24.0  
24.5 25.0  
25.5 26.0  
26.5 27.0  
24.0  
24.5  
25.0  
25.5  
26.0  
26.5  
27.0  
27.5  
28.0  
POUT (dBm)  
POUT (dBm)  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
3-122  
Rev A3 DS070509  
RF3806  
W-CDMA ACP versus POUT versus Temperature  
Small Signal Gain - PCS Band  
(Data taken on Eval Board configured as per DCS/PHS/PCS Application Schematic for Low  
Power Linear Operation)  
Signal=W-CDMA Test Model I 64 DPCH PAR=10.3dB @ 0.01%  
IREF=60mA VCC=5V (Data taken on UMTS Evaluation Board)  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
-41.0  
-42.0  
-43.0  
-44.0  
-45.0  
-46.0  
-47.0  
-48.0  
-49.0  
-50.0  
-51.0  
-52.0  
-53.0  
-54.0  
-55.0  
-56.0  
-57.0  
-58.0  
-59.0  
-60.0  
-61.0  
3
25C 2110 MHz 5 V  
25C 2170 MHz 5 V  
85C 2110 MHz 5 V  
85 C 2170 MHz 5 V  
-40 C 2110 MHz 5 V  
-40 C 2170 MHz 5 V  
Vcc = 8 V  
Vcc = 6 V  
Vcc = 5 V  
1920.0 1930.0 1940.0 1950.0 1960.0 1970.0 1980.0 1990.0 2000.0  
Frequency (MHz)  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
24.5  
25.0  
POUT (dBm)  
OIP3 versus Frequency versus VCC, at 10dB Back-off from OP1dB PCS Band  
(Data taken on Eval Board Configured as per DCS/PHS/PCS Application Schematic for Low Power  
Linear Operation.)  
OIP3 versus POUT versus Freq versus VCC - PCS Band  
(Data taken on Eval Board configured as per DCS/PHS/PCS Application Schematic for Low  
Power Linear Operation)  
55.0  
55.0  
54.0  
53.0  
52.0  
51.0  
50.0  
49.0  
48.0  
47.0  
54.0  
53.0  
52.0  
51.0  
50.0  
49.0  
48.0  
47.0  
Vcc = 8 V 1930 MHz  
Vcc = 8 V 1960 MHz  
Vcc = 8 V 1990 MHz  
Vcc = 6 V 1930 MHz  
Vcc = 6 V 1960 MHz  
Vcc = 6 V 1990 MHz  
Vcc = 5 V 1930 MHz  
Vcc = 5 V 1960 MHz  
Vcc = 5 V 1990 MHz  
Vcc = 8 V  
Vcc = 6 V  
Vcc = 5 V  
1920.0 1930.0 1940.0 1950.0 1960.0 1970.0 1980.0 1990.0 2000.0  
Frequency (MHz)  
19.0  
20.0  
21.0  
22.0  
23.0  
24.0  
P_Tone (dBm)  
CDMA2K ACP versus POUT versus Temperature, Signal=CDMA2K 9 Channel SR1 PAR=8.5dB  
OP1dB versus VCC versus Freq - PCS Band  
(Data taken on Eval Board configured as per DCS/PHS/PCS Application Schematic for Low  
Power Linear Operation)  
@ 0.01% IREF=60mA VCC=8V (Data taken on Eval Board configured as per DCS/PHS/PCS Application  
Schematic for low power linear operation)  
37.5  
37.0  
36.5  
36.0  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
-50.0  
-52.0  
-54.0  
-56.0  
-58.0  
-60.0  
-62.0  
-64.0  
-66.0  
-68.0  
-70.0  
-72.0  
-74.0  
-76.0  
-78.0  
-80.0  
Vcc = 8 V  
Vcc = 6 V  
Vcc = 5 V  
25 C 1930 MHz 8 V  
25 C 1990 MHz 8 V  
85 C 1930 MHz 8 V  
85 C 1990 MHz 8 V  
-40 C 1930 MHz 8 V  
-40 C 1990 MHz 8 V  
1920.0 1930.0 1940.0 1950.0 1960.0 1970.0 1980.0 1990.0 2000.0  
Frequency (MHz)  
22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0  
POUT (dBm)  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
Rev A3 DS070509  
3-123  
RF3806  
CDMA2K ACP versus POUT versus Temperature, Signal=CDMA2K 9 Channel SR1 PAR=8.5dB  
CDMA2K ACP versus POUT versus Temperature, Signal=CDMA2K 9 Channel SR1 PAR=8.5dB  
@ 0.01% IREF=60mA VCC=5V (Data taken on Eval Board configured as per DCS/PHS/PCS Application  
Schematic for low power linear operation)  
@ 0.01% IREF=60mA VCC=6V (Data taken on Eval Board configured as per DCS/PHS/PCS  
Application Schematic for low power linear operation)  
-50.0  
-50.0  
-52.0  
-54.0  
-56.0  
-58.0  
-60.0  
-62.0  
-64.0  
-66.0  
-68.0  
-70.0  
-72.0  
-74.0  
-76.0  
-78.0  
-80.0  
-52.0  
-54.0  
-56.0  
-58.0  
-60.0  
-62.0  
-64.0  
-66.0  
-68.0  
-70.0  
-72.0  
-74.0  
-76.0  
-78.0  
-80.0  
3
25C 1930 MHz 5 V  
25C 1990 MHz 5 V  
85C 1930 MHz 5 V  
85 C 1990 MHz 5 V  
-40 C 1930 MHz 5 V  
-40 C 1990 MHz 5 V  
25C 1930 MHz 6 V  
25C 1990 MHz 6 V  
85C 1930 MHz 6 V  
85 C 1990 MHz 6 V  
-40 C 1930 MHz 6 V  
-40 C 1990 MHz 6 V  
21.0  
21.5 22.0  
22.5 23.0  
23.5 24.0  
24.5 25.0  
25.5 26.0  
22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0  
POUT (dBm)  
POUT (dBm)  
DCS/PCS EDGE ACP VCC=8V IREF=41mA  
DCS/PCS EDGE ACP VCC=6V IREF=41mA  
(See DCS/PCS High Power Application Schematic, 1800MHz to 1990MHz)  
(See DCS/PCS High Power Application Schematic, 1800MHz to 1990MHz)  
-30.0  
-35.0  
-40.0  
-45.0  
-50.0  
-55.0  
-60.0  
-65.0  
-70.0  
-75.0  
-80.0  
-85.0  
-30.0  
-35.0  
-40.0  
-45.0  
-50.0  
-55.0  
-60.0  
-65.0  
-70.0  
-75.0  
-80.0  
-85.0  
1800 MHz Vcc = 8 V 200 kHz  
1800 MHz Vcc = 8 V 400 kHz  
1800 MHz Vcc = 8 V 600 kHz  
1880 MHz Vcc = 8 V 200 kHz  
1880 MHz Vcc = 8 V 400 kHz  
1880 MHz Vcc = 8 V 600 kHz  
1930 MHz Vcc = 8 V 200 kHz  
1930 MHz Vcc = 8 V 400 kHz  
1930 MHz Vcc = 8 V 600 kHz  
1990 MHz Vcc = 8 V 200 kHz  
1990 MHz Vcc = 8 V 400 kHz  
1990 MHz Vcc = 8 V 600 kHz  
1800 MHz Vcc = 6 V 200 kHz  
1800 MHz Vcc = 6 V 400 kHz  
1800 MHz Vcc = 6 V 600 kHz  
1880 MHz Vcc = 6 V 200 kHz  
1880 MHz Vcc = 6 V 400 kHz  
1880 MHz Vcc = 6 V 600 kHz  
1930 MHz Vcc = 6 V 200 kHz  
1930 MHz Vcc = 6 V 400 kHz  
1930 MHz Vcc = 6 V 600 kHz  
1990 MHz Vcc = 6 V 200 kHz  
1990 MHz Vcc = 6 V 400 kHz  
1990 MHz Vcc = 6 V 600 kHz  
26.0  
27.0  
28.0  
29.0  
30.0  
31.0  
32.0  
33.0  
34.0  
35.0  
26.0  
27.0  
28.0  
29.0  
30.0  
31.0  
32.0  
33.0  
34.0  
35.0  
POUT (dBm)  
POUT (dBm)  
DCS/PCS Projected Junction Temperature at 85°C Ambient  
(See Theory of Operation section, and DCS/PCS High Power Application Schematic,  
1800MHz to 1990MHz) IREF=41mA  
DCS/PCS OP1dB IREF=41mA  
(See DCS/PCS High Power Application Schematic, 1800MHz to 1990MHz)  
38.0  
37.5  
37.0  
36.5  
36.0  
35.5  
35.0  
34.5  
34.0  
174.0  
172.0  
170.0  
168.0  
166.0  
164.0  
162.0  
160.0  
158.0  
156.0  
154.0  
152.0  
150.0  
148.0  
146.0  
144.0  
142.0  
140.0  
138.0  
136.0  
134.0  
132.0  
130.0  
Vcc = 8 V 1800 MHz  
Vcc = 8 V 1880 MHz  
Vcc = 8 V 1930 MHz  
Vcc = 8 V 1990 MHz  
Vcc = 6 V 1800 MHz  
Vcc = 6 V 1880 MHz  
Vcc = 6 V 1930 MHz  
Vcc = 6 V 1990 MHz  
Vcc = 8 V  
Vcc = 6 V  
1780.0  
1830.0  
1880.0  
1930.0  
1980.0  
20.0  
22.0  
24.0  
26.0  
28.0  
30.0  
32.0  
34.0  
36.0  
38.0  
P_Tone (dBm)  
POUT (dBm)  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
3-124  
Rev A3 DS070509  
RF3806  
UMTS Evaluation Boards in Hybrid Coupler Configuration:  
Test Signal=W-CDMA Test Model I, 64 DPCH VCC=6V, IREF=60mA  
Wear Out MTTF versus Tj  
(See Theory of Operation section)  
500.0  
475.0  
450.0  
425.0  
400.0  
375.0  
350.0  
325.0  
300.0  
275.0  
250.0  
225.0  
200.0  
175.0  
150.0  
125.0  
100.0  
75.0  
-42.0  
-44.0  
-46.0  
-48.0  
-50.0  
-52.0  
-54.0  
-56.0  
-58.0  
-60.0  
-62.0  
-64.0  
3
25C 2110 MHz  
25C 2170 MHz  
-40C 2110 MHz  
-40C 2170 MHz  
85 C 2110 MHz  
85C 2170 MHz  
50.0  
25.0  
0.0  
145.0  
150.0  
155.0  
160.0  
165.0  
170.0  
175.0  
25.0  
25.5  
26.0  
26.5  
27.0  
27.5  
28.0  
28.5  
29.0  
29.5  
Tj (°C)  
POUT (dBm)  
UMTS VCC=8V and IREF=60mA, Rth versus POUT @ 85°C Ambient  
(See Theory of Operation section for details)  
UMTS VCC=8V and IREF=60mA, Tj versus POUT @ 85°C Ambient  
(See Theory of Operation section for details)  
170.0  
169.0  
168.0  
167.0  
166.0  
165.0  
164.0  
163.0  
162.0  
161.0  
160.0  
159.0  
158.0  
157.0  
156.0  
155.0  
154.0  
153.0  
152.0  
151.0  
150.0  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
Rth_jref  
Rth_jc  
9.0  
10.0 12.0 14.0 16.0 18.0  
20.0 22.0 24.0 26.0 28.0 30.0  
10.0  
12.0  
14.0  
16.0  
18.0  
20.0  
22.0  
24.0  
26.0  
28.0  
30.0  
POUT (dBm)  
POUT (dBm)  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
Rev A3 DS070509  
3-125  
RF3806  
DCS/PCS High Power Application Schematic, Typical Response  
3
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
3-126  
Rev A3 DS070509  
RF3806  
PCS/PHS/PCS Low Power Linear Application Schematic, Typical Response  
(Input matched for PCS, see data sheet schematic)  
3
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
Rev A3 DS070509  
3-127  
RF3806  
UMTS Evaluation Board Typical Response  
3
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
3-128  
Rev A3 DS070509  
RF3806  
UMTS Evaluation Boards in Hybrid Coupler Configuration, Typical Response  
3
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
Rev A3 DS070509  
3-129  
RF3806  
PCB Design Requirements  
PCB Surface Finish  
The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is 3μinch  
to 8μinch gold over 180μinch nickel.  
3
PCB Land Pattern Recommendation  
PCB land patterns are based on IPC-SM-782 standards when possible. The pad pattern shown has been developed and tested  
for optimized assembly at RFMD; however, it may require some modifications to address company specific assembly pro-  
cesses. The PCB land pattern has been developed to accommodate lead and package tolerances.  
PCB Metal Land Pattern  
A = 1.14 x 0.71  
B = 1.02 x 0.71 Typ.  
C = 3.96 x 4.44  
Dimensions in mm.  
5.93  
Pin 1  
A
B
B
B
B
B
B
B
1.27 Typ.  
1.90  
C
3.81 Typ.  
3.00  
5.99 Typ.  
PCB Solder Mask Pattern  
Liquid Photo-Imageable (LPI) solder mask is recommended. The solder mask footprint will match what is shown for the PCB  
metal land pattern with a 2mil to 3mil expansion to accommodate solder mask registration clearance around all pads. The  
center-grounding pad shall also have a solder mask clearance. Expansion of the pads to create solder mask clearance can be  
provided in the master data or requested from the PCB fabrication supplier.  
A = 1.30 x 0.86  
B = 1.17 x 0.86 Typ.  
C = 4.11 x 4.60  
Dimensions in mm.  
5.93  
Pin 1  
A
B
B
B
B
B
B
B
1.27 Typ.  
1.90  
C
3.81 Typ.  
3.00  
5.99 Typ.  
7628 Thorndike Road, Greensboro, NC 27409-9421 · For sales or technical  
support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.  
3-130  
Rev A3 DS070509  

相关型号:

RF3806PCK-415

GaAs HBT PRE-DRIVER AMPLIFIER
RFMD

RF3807

GaAs HBT PRE-DRIVER AMPLIFIER
RFMD

RF3807PCK-410

GaAs HBT PRE-DRIVER AMPLIFIER
RFMD

RF3807PCK-411

GaAs HBT PRE-DRIVER AMPLIFIER
RFMD

RF3807PCK-412

GaAs HBT PRE-DRIVER AMPLIFIER
RFMD

RF3807PCK-413

GaAs HBT PRE-DRIVER AMPLIFIER
RFMD

RF3807PCK-414

GaAs HBT PRE-DRIVER AMPLIFIER
RFMD

RF3807PCK-415

GaAs HBT PRE-DRIVER AMPLIFIER
RFMD

RF3807_1

GaAs HBT PRE-DRIVER AMPLIFIER
RFMD

RF3808S

Power MOSFET(Vdss=75V, Rds(on)=0.007ohm, Id=106A)
INFINEON

RF3809

GaAs HBT PRE-DRIVER AMPLIFIER
RFMD

RF3809PCK-410

GaAs HBT PRE-DRIVER AMPLIFIER
RFMD