RT2872 [RICHTEK]

暂无描述;
RT2872
型号: RT2872
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

暂无描述

文件: 总15页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT2872  
3A, 36V, Synchronous Step-Down Converter  
General Description  
Features  
z 4.5V to 36V Input Voltage Range  
The RT2872 is a high efficiency, current-mode  
synchronous step-downDC/DC converter that can deliver  
up to 3A output current over a wide input voltage range  
from 4.5V to 36V. The device integrates 105mhigh-side  
and 80mlow-side MOSFETs to achieve high conversion  
efficiency. The current-mode control architecture supports  
fast transient response and simple external compensation.  
z 3A Output Current  
z Internal N-MOSFETs  
z Current Mode Control  
z Frequency Operation : 300kHz to 1MHz  
z Adjustable Output Voltage from 0.8V to 30V  
z High Efficiency Up to 95%  
z Stable with Low ESR Ceramic Output Capacitors  
z Cycle-by-Cycle Current Limit  
A cycle-by-cycle current limit function provides protection  
against shorted output and an internal soft-start eliminates  
input current surge during start-up. The RT2872 provides  
complete protection functions such as input under-voltage  
lockout, output under-voltage protection, over-current  
protection and thermal shutdown.  
z Input Under-Voltage Lockout  
z Output Under-Voltage Protection  
z Thermal Shutdown  
z AEC-Q100 Grade 3 Certification  
z RoHS Compliant and Halogen Free  
The RT2872 is available in the thermal enhanced SOP-8  
(Exposed Pad) package.  
Applications  
z Point of Load Regulator in Distributed Power Systems  
Ordering Information  
z Digital Set Top Boxes  
RT2872  
z Broadband Communications  
Package Type  
SP: SOP-8 (Exposed Pad-Option 2)  
z Vehicle Electronics  
z AutomotiveAudio,Navigation, and Information Systems  
z Enterprise Datacom Platforms Point of Load (POL)  
z IndustrialGradeGeneral Purpose Point of Load  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Note :  
Richtek products are :  
Marking Information  
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering processes.  
RT2872GSP : Product Number  
RT2872  
YMDNN : Date Code  
GSPYMDNN  
Simplified Application Circuit  
BOOT  
RT2872  
VIN  
V
IN  
C
C
B
IN  
L
SW  
V
OUT  
R1  
R2  
RT  
C
OUT  
FB  
R
T
C
C
R
C
GND  
COMP  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2872-06 January 2018  
www.richtek.com  
1
RT2872  
Pin Configurations  
(TOP VIEW)  
8
SW  
BOOT  
EN  
VIN  
RT  
2
3
4
7
6
5
GND  
COMP  
FB  
9
GND  
SOP-8 (Exposed Pad)  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
1
SW  
Switch Node. Connect to external L-C filter.  
Bootstrap Supply for the High-Side MOSFET. Connect a 100nF or greater  
capacitor between the BOOT and SW pins.  
2
3
BOOT  
EN  
Enable Control Input. A logic-high enables the converter; a logic-low forces the  
device into shutdown mode.  
4,  
Ground. The exposed pad must be soldered to a large PCB and connected to  
GND for maximum thermal dissipation.  
GND  
FB  
9 (Exposed Pad)  
Feedback Voltage Input. This pin is used to set the output voltage of the  
converter to regulate to the desired value via an resistive divider.  
5
6
Compensation Node. COMP is used to compensate the regulation control loop.  
Connect a R-C network from the COMP to GND. In some cases, an additional  
capacitor from COMP to GND is required.  
COMP  
Switching Frequency Setting. Connect an external resistor to set the switching  
frequency from 300kHz to 1MHz.  
7
8
RT  
Power Input. The input voltage range is from 4.5V to 36V. Must bypass with a  
suitable large ceramic capacitor at this pin.  
VIN  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS2872-06 January 2018  
RT2872  
Function Block Diagram  
VIN  
V
CC  
Internal  
Regulator  
Oscillator  
Current Sense  
Amplifier  
R
SENSE  
VA  
Shutdown  
Comparator  
V
V
CC  
A
Slope Comp  
UV  
+
-
Foldback  
Control  
1.2V  
+
-
0.4V  
+
-
BOOT  
Lockout  
Comparator  
S
Q
Q
UV  
5kΩ  
Comparator  
SW  
-
+
EN  
+
-
R
1.7V  
Current  
Comparator  
GND  
3.6V  
0.8V  
+
+
-
EA  
SS  
FB  
COMP  
RT  
Operation  
side gate driver.  
The RT2872 is a constant frequency, current-mode  
synchronous step-down converter. In normal operation,  
the high-sideN-MOSFET is turned on when the S-R latch  
is set by the oscillator and is turned off when the current  
comparator resets the S-R latch. While the high-side  
N-MOSFET is turned off, the low-sideN-MOSFET is turned  
on to conduct the inductor current until next cycle begins.  
Enable  
The converter is turned on when the ENpin is higher than  
2V. When the ENpin is lower than 0.4V, the converter will  
enter shutdown mode and reduce the supply current to  
0.5µA.  
Soft-Start (SS)  
Error Amplifier  
An internal current source charges an internal capacitor  
to build a soft-start ramp voltage. The FB voltage will track  
the internal ramp voltage during soft-start interval. The  
typical soft-start time is 2ms.  
The error amplifier adjusts its output voltage by comparing  
the feedback signal (VFB) with the internal 0.8V reference.  
When the load current increases, it causes a drop in the  
feedback voltage relative to the reference, and then the  
error amplifier's output voltage rises to allow higher inductor  
current to match the load current.  
UV Comparator  
If the feedback voltage is lower than 0.4V, the UV  
Comparator will go high to turn off the high-side MOSFET.  
The output under voltage protection is designed to operate  
in hiccup mode. When the UV condition is removed, the  
converter will resume switching.  
Oscillator  
The oscillator frequency can be set by using an external  
resister RT. Oscillator frequency range is from 300kHz to  
1MHz.  
Thermal Shutdown  
1000  
1000  
66876  
=
29.405  
The over-temperature protection function will shut down  
the switching operation when the junction temperature  
exceeds 150°C. Once the junction temperature cools  
down by approximately 20°C, the converter will  
automatically resume switching.  
RT kΩ  
(
)
0.22  
fS kHz  
(
)
Internal Regulator  
The regulator provides low voltage power to supply the  
internal control circuits and the bootstrap power for high-  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2872-06 January 2018  
www.richtek.com  
3
RT2872  
Absolute Maximum Ratings (Note 1)  
z Supply Voltage, VIN ------------------------------------------------------------------------------------------------ 0.3V to 40V  
z Switch Voltage, SW ------------------------------------------------------------------------------------------------ 0.3V to (VIN + 0.3V)  
z BOOT Pin ------------------------------------------------------------------------------------------------------------- 0.3V to 46.3V  
z EN Pin (with REN (150kto 600k) to VIN) ----------------------------------------------------------------- 0.3V to 40V  
z SW Voltage (t < 10ns) --------------------------------------------------------------------------------------------- 5V to 46.3V  
z EN Pin------------------------------------------------------------------------------------------------------------------ 0.3V to 3.6V  
z Other Pins------------------------------------------------------------------------------------------------------------- 0.3V to 6V  
z Power Dissipation, PD @ TA = 25°C  
SOP-8 (Exposed Pad) --------------------------------------------------------------------------------------------- 2.041W  
z Package Thermal Resistance (Note 2)  
SOP-8 (Exposed Pad), θJA ---------------------------------------------------------------------------------------- 49°C/W  
SOP-8 (Exposed Pad), θJC --------------------------------------------------------------------------------------- 8°C/W  
z Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------- 260°C  
z Junction Temperature ----------------------------------------------------------------------------------------------- 150°C  
z Storage Temperature Range -------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Model)---------------------------------------------------------------------------------------- 2kV  
Recommended Operating Conditions (Note 4)  
z Supply Input Voltage, VIN ----------------------------------------------------------------------------------------- 4.5V to 36V  
z Junction Temperature Range-------------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range-------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = 12V, CIN = 20µF, TA = 40°C to 85°C, unless otherwise specified)  
Parameter  
Shutdown Supply Current  
Quiescent Current  
Symbol  
Test Conditions  
= 0V  
Min  
--  
Typ  
--  
Max  
10  
Unit  
µA  
V
V
EN  
EN  
I
= 3V, V = 0.9V  
--  
1
1.3  
mA  
V
Q
FB  
Feedback Reference Voltage  
V
4.5V V 36V  
0.784  
--  
0.8  
105  
80  
0.816  
190  
145  
REF  
IN  
High-Side  
Switch  
R
DS(ON)1  
mΩ  
On-Resistance  
Low-Side  
R
--  
DS(ON)2  
High-Side Switch Current Limit  
Range  
U
4.25  
5
5.75  
A
A
OC  
Low-Side Switch Current Limit  
From Drain to Source  
--  
1.7  
300  
500  
--  
R = 191kΩ  
T
264  
440  
880  
336  
560  
Oscillation Frequency  
f
f
kHz  
kHz  
R = 113kΩ  
T
OSC1  
R = 51kΩ  
T
1000 1120  
Short-Circuit Oscillation  
Frequency  
V
V
= 0V, R = 113kΩ  
--  
50  
--  
OSC2  
FB  
FB  
T
Maximum Duty Cycle  
Minimum On-Time  
D
MAX  
= 0.7V  
--  
--  
95  
--  
%
t
100  
120  
ns  
ON  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS2872-06 January 2018  
RT2872  
Parameter  
Logic-High  
Logic-Low  
Symbol  
VIH  
Test Conditions  
Min Typ Max Unit  
2
--  
--  
3.3  
0.4  
EN Input Voltage  
V
VIL  
--  
Input Under-Voltage Lockout  
Threshold  
VUVLO  
VIN Rising  
3.7  
--  
4.2  
4.5  
--  
V
Input Under-Voltage Lockout  
Hysteresis  
VUVLO  
250  
mV  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
TSD  
--  
--  
150  
25  
--  
--  
°C  
°C  
TSD  
COMP to Current Sense  
Trans-conductance  
GCS  
ICOMP = ±10µA  
--  
--  
4.1  
--  
--  
A/V  
Error Amplifier Trans-conductance GEA  
950  
µA/V  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured at TA = 25 °C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is  
measured at the exposed pad of the package. The PCB copper area with exposed pad is 70mm2.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2872-06 January 2018  
www.richtek.com  
5
RT2872  
Typical Application Circuit  
RT2872  
BOOT  
8
2
1
V
IN  
VIN  
4.5V to 36V  
C
100nF  
B
C
IN  
L
10µF x 2  
SW  
V
OUT  
R
EN  
3
7
R1  
R2  
Enable  
EN  
RT  
5
6
C
OUT  
FB  
R
T
C
C
113k  
R
C
4, 9 (Exposed Pad)  
COMP  
GND  
Table 1. Suggested Component Values  
VOUT (V)  
R1 (k)  
47  
R2 (k)  
3.35  
3
RC (k)  
47  
L (µH)  
10  
CC (nF)  
2.7  
COUT (µF)  
12  
8
22 x 2  
22 x 2  
22 x 2  
22 x 2  
22 x 2  
22 x 2  
27  
36  
8.2  
2.7  
5
62  
11.8  
24  
24  
6.8  
2.7  
3.3  
2.5  
1.2  
75  
16  
4.7  
2.7  
25.5  
30  
12  
12  
3.6  
2.7  
6.8  
60  
2.2  
2.7  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS2872-06 January 2018  
RT2872  
Typical Operating Characteristics  
Efficiency vs. Output Current  
Reference Voltage vs. Input Voltage  
100  
0.810  
0.808  
0.805  
0.803  
0.800  
0.798  
0.795  
0.793  
0.790  
90  
80  
VIN = 5V  
VIN = 12V  
VIN = 24V  
VIN = 30V  
VIN = 36V  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 3.3V, RT = 113k  
2.5  
VIN = 4.5V to 36V, IOUT = 0A, RT = 113k  
0
0.5  
1
1.5  
2
3
4
8
12  
16  
20  
24  
28  
32  
36  
Input Voltage (V)  
Output Current (A)  
Reference vs. Temperature  
Output Voltage vs. Output Current  
0.810  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
3.265  
3.260  
3.255  
3.250  
0.805  
0.800  
0.795  
0.790  
VIN = 5V  
VIN = 12V  
VIN = 24V  
VIN = 30V  
VIN = 36V  
VIN = 4.5V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VOUT = 3.3V, RT = 113k  
VOUT = 3.3V, IOUT = 0A, RT = 113k  
-50  
-25  
0
25  
50  
75  
100  
125  
0
0.5  
1
1.5  
2
2.5  
3
Temperature (°C)  
Output Current (A)  
Switching Frequency vs. Input Voltage  
Switching Frequency vs. Temperature  
520  
515  
510  
505  
500  
495  
490  
485  
480  
600  
580  
560  
540  
520  
500  
480  
460  
440  
420  
400  
VIN = 4.5V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VOUT = 3.3V, IOUT = 0A, RT = 113k  
VOUT = 3.3V, IOUT = 0A, RT = 113k  
4
8
12  
16  
20  
24  
28  
32  
36  
-50  
-25  
0
25  
50  
75  
100  
125  
Input Voltage (V)  
Temperature (°C)  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2872-06 January 2018  
www.richtek.com  
7
RT2872  
Current Limit vs. Temperature  
Frequency vs. RT  
8
7
6
5
4
3
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 4.5V  
VIN = 12V, IOUT = 0A  
50 65 80 95 110 125 140 155 170 185 200  
2
-50  
-25  
0
25  
50  
75  
100  
125  
R (k  
)
Temperature (°C)  
T
Load Transient Response  
Load Transient Response  
VOUT  
VOUT  
(200mV/Div)  
(200mV/Div)  
IOUT  
(2A/Div)  
IOUT  
(2A/Div)  
VIN = 12V, VOUT = 3.3V,  
IOUT = 3A to 1.5A, RT = 113k  
VIN = 12V, VOUT = 3.3V,  
IOUT = 0A to 3A, RT = 113k  
Time (100µs/Div)  
Time (100µs/Div)  
Switching  
Switching  
VOUT  
VOUT  
(5mV/Div)  
(5mV/Div)  
VSW  
VSW  
(5V/Div)  
(5V/Div)  
IL  
IL  
(1A/Div)  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 1.5A, RT = 113k  
VIN = 12V, VOUT = 3.3V, IOUT = 3A, RT = 113k  
Time (1µs/Div)  
Time (1µs/Div)  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS2872-06 January 2018  
RT2872  
Power On from EN  
Power Off from EN  
VEN  
VEN  
(2V/Div)  
(2V/Div)  
VOUT  
VOUT  
(2V/Div)  
(2V/Div)  
IOUT  
(2A/Div)  
IOUT  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 3A, RT = 113k  
Time (2.5ms/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 3A, RT = 113k  
Time (2.5ms/Div)  
Power On from VIN  
Power Off from VIN  
VIN  
VIN  
(5V/Div)  
(5V/Div)  
VOUT  
VOUT  
(2V/Div)  
(2V/Div)  
IL  
IL  
(2A/Div)  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 3A, RT = 113k  
Time (5ms/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 3A, RT = 113k  
Time (5ms/Div)  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2872-06 January 2018  
www.richtek.com  
9
RT2872  
Application Information  
Output Voltage Setting  
Chip Enable Operation  
The resistive divider allows the FB pin to sense the output  
voltage as shown in Figure 1.  
The EN pin is the chip enable input. Pulling the EN pin  
low (<0.4V) will shutdown the device. During shutdown  
mode, the RT2872 quiescent current drops to lower than  
3µA. Driving the EN pin high (>2.5V, <3.3V) will turn on  
the device again. For external timing control, the EN pin  
can also be externally pulled high by adding a REN resistor  
and CEN capacitor from the VIN pin (see Figure 3).  
V
OUT  
R1  
FB  
RT2872  
GND  
R2  
REN must be chose between 150kto 600k, which is  
to avoid huge leak current into chip.  
Figure 1. Output Voltage Setting  
EN  
R
EN  
V
IN  
EN  
The output voltage is set by an external resistive voltage  
divider according to the following equation :  
RT2872  
GND  
C
EN  
R1  
R2  
VOUT = VREF 1+  
Figure 3. Enable Timing Control  
where VREF is the reference voltage (0.8V typ.).  
An external MOSFET can be added to implement digital  
control on the EN pin when no system voltage above 2.5V  
is available, as shown in Figure 4. In this case, a 300kΩ  
pull-up resistor, REN, is connected between VIN and the  
EN pin. MOSFET Q1 will be under logic control to pull  
down the EN pin.  
External Bootstrap Diode  
Connect a 0.1µF low ESR ceramic capacitor between the  
BOOT and SW pins. This capacitor provides the gate driver  
voltage for the high-side MOSFET.  
It is recommended to add an external bootstrap diode  
between an external 5V and BOOT pin for efficiency  
improvement when input voltage is lower than 5.5V or duty  
ratio is higher than 65% .The bootstrap diode can be a  
low cost one such as IN4148 or BAT54. The external 5V  
can be a 5V fixed input from system or a 5V output of the  
RT2872.Note that the external boot voltage must be lower  
than 5.5V  
R
EN  
300k  
V
IN  
EN  
RT2872  
GND  
Q1  
EN  
Figure 4. Digital Enable Control Circuit  
5V  
Under-Voltage Protection  
Hiccup Mode  
BOOT  
The RT2872 provides Hiccup Mode Under-Voltage  
Protection (UVP). When the VFB voltage drops below 0.4V,  
the UVP function will be triggered to shut down switching  
operation. If the UVP condition remains for a period, the  
RT2872 will retry automatically. When the UVP condition  
is removed, the converter will resume operation. The UVP  
is disabled during soft-start period.  
100nF  
RT2872  
SW  
Figure 2. External Bootstrap Diode  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS2872-06 January 2018  
RT2872  
Hiccup Mode  
The inductor's current rating (caused a 40°C temperature  
rising from 25°C ambient) should be greater than the  
maximum load current and its saturation current should  
be greater than the short circuit peak current limit. Please  
see Table 2 for the inductor selection reference.  
VOUT  
(2V/Div)  
Table 2. Suggested Inductors for Typical  
Application Circuit  
ILX  
(2A/Div)  
Component  
Supplier  
Dimensions  
(mm)  
Series  
TDK  
TDK  
VLF10045  
SLF12565  
10 x 9.7 x 4.5  
IOUT = Short  
12.5 x 12.5 x 6.5  
Time (50ms/Div)  
TAIYO  
YUDEN  
NR8040  
8 x 8 x 4  
Figure 5. Hiccup Mode Under-Voltage Protection  
Over-Temperature Protection  
CIN and COUT Selection  
The RT2872 features an Over-Temperature Protection  
(OTP) circuitry to prevent overheat due to excessive power  
dissipation. The OTP will shut down switching operation  
when junction temperature exceeds 150°C. Once the  
junction temperature cools down by approximately 20°C,  
the converter will resume operation. To maintain continuous  
operation, the maximum junction temperature should be  
lower than 125°C.  
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the Source of the high-side MOSFET.  
To prevent large ripple current, a low ESR input capacitor  
sized for the maximum RMS current should be used. The  
approximate RMS current equation is given :  
V
V
V
IN  
V
OUT  
OUT  
I
= I  
1  
RMS  
OUT(MAX)  
IN  
This formula has a maximum at VIN = 2VOUT, where  
IRMS = IOUT / 2. This simple worst case condition is  
commonly used for design because even significant  
deviations do not offer much relief.  
Inductor Selection  
The inductor value and operating frequency determine the  
ripple current according to a specific input and output  
voltage. The ripple current IL increases with higher VIN  
and decreases with higher inductance.  
Choose a capacitor rated at a higher temperature than  
required. Several capacitors may also be paralleled to  
meet size or height requirements in the design.  
V
f ×L  
VOUT  
V
IN  
   
   
OUT  
IL =  
× 1−  
   
For the input capacitor, two 10µF low ESR ceramic  
capacitors are suggested. For the suggested capacitor,  
please refer to Table 3 for more details.  
Having a lower ripple current reduces not only the ESR  
losses in the output capacitors but also the output voltage  
ripple. High frequency with small ripple current can achieve  
the highest efficiency operation. However, it requires a  
large inductor to achieve this goal.  
The selection of COUT is determined by the required ESR  
to minimize voltage ripple.  
Moreover, the amount of bulk capacitance is also a key  
for COUT selection to ensure that the control loop is stable.  
Loop stability can be checked by viewing the load transient  
response as described in a later section.  
For the ripple current selection, the value of IL= 0.24(IMAX  
)
will be a reasonable starting point. The largest ripple  
current occurs at the highest VIN. To guarantee that the  
ripple current stays below the specified maximum, the  
inductor value should be chosen according to the following  
equation :  
The output ripple, VOUT, is determined by :  
1
VOUT ≤ ∆IL ESR +  
8fCOUT  
   
V
f ×I  
V
OUT  
V
IN(MAX)  
OUT  
L =  
× 1−  
   
L(MAX)  
   
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2872-06 January 2018  
www.richtek.com  
11  
RT2872  
thermal resistance θJA is 75°C/W on the standard JEDEC  
51-7 four-layers thermal test board. The maximum power  
dissipation at TA = 25°C can be calculated by following  
formula :  
The output ripple will be the highest at the maximum input  
voltage since IL increases with input voltage. Multiple  
capacitors placed in parallel may be needed to meet the  
ESR and RMS current handling requirement. Higher values,  
lower cost ceramic capacitors are now becoming available  
in smaller case sizes. Their high ripple current, high voltage  
rating and low ESR make them ideal for switching regulator  
applications. However, care must be taken when these  
capacitors are used at input and output. When a ceramic  
capacitor is used at the input and the power is supplied  
by a wall adapter through long wires, a load step at the  
output can induce ringing at the input, VIN. At best, this  
ringing can couple to the output and be mistaken as loop  
instability. At worst, a sudden inrush of current through  
the long wires can potentially cause a voltage spike at  
VIN large enough to damage the part.  
PD(MAX) = (125°C 25°C) / (75°C/W) = 1.333W  
(min.copper area PCB layout)  
PD(MAX) = (125°C 25°C) / (49°C/W) = 2.04W  
(70mm2copper area PCB layout)  
The thermal resistance θJA of SOP-8 (Exposed Pad) is  
determined by the package architecture design and the  
PCB layout design. However, the package architecture  
design had been designed. If possible, it's useful to  
increase thermal performance by the PCB layout copper  
design. The thermal resistance θJA can be decreased by  
adding copper area under the exposed pad of SOP-8  
(Exposed Pad) package.  
Switching Frequency Setting  
As shown in Figure 6, the amount of copper area to which  
the SOP-8 (Exposed Pad) is mounted affects thermal  
performance. When mounted to the standard  
SOP-8 (Exposed Pad) pad (Figure 6.a), θJA is 75°C/W.  
Adding copper area of pad under the SOP-8 (Exposed  
Pad) (Figure 6.b) reduces the θJA to 64°C/W. Even further,  
increasing the copper area of pad to 70mm2 (Figure 6.e)  
reduces the θJA to 49°C/W.  
The switching frequency can be set by using extra resistor  
RT. Switching frequency range is from 300kHz to 1MHz.  
Through extra resistor RT connect to RT pin to setting the  
switching frequency fS, below offer approximate formula  
equation :  
1000  
1000  
66876  
=
29.405  
RT kΩ  
(
)
0.22  
fS kHz  
(
)
The maximum power dissipation depends on operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance θJA. The Figure 7 of derating curves allows the  
designer to see the effect of rising ambient temperature  
on the maximum power dissipation allowed.  
2.2  
Thermal Considerations  
For continuous operation, do not exceed the maximum  
operation junction temperature 125°C. The maximum  
power dissipation depends on the thermal resistance of  
IC package, PCB layout, the rate of surroundings airflow  
and temperature difference between junction to ambient.  
The maximum power dissipation can be calculated by  
following formula :  
Four-Layer PCB  
2.0  
1.8  
Copper Area  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2
70mm  
2
50mm  
30mm  
2
PD(MAX) = (TJ(MAX) TA ) / θJA  
2
10mm  
Min.Layout  
Where TJ(MAX) is the maximum operation junction  
temperature , TA is the ambient temperature and the θJA is  
the junction to ambient thermal resistance.  
For recommended operating conditions specification of  
RT2872, the maximum junction temperature is 125°C. The  
junction to ambient thermal resistance θJA is layout  
dependent. For SOP-8 (Exposed Pad) package, the  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 7. Derating Curve of Maximum PowerDissipation  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS2872-06 January 2018  
RT2872  
Layout Considerations  
For best performance of the RT2872, the following layout  
guidelines must be strictly followed.  
` Input capacitor must be placed as close to the IC as  
possible.  
(a) Copper Area = (2.3 x 2.3) mm2,θJA = 75°C/W  
` SW should be connected to inductor by wide and short  
trace. Keep sensitive components away from this trace.  
` The RT resistor, compensator and feedback components  
must be connected as close to the device as possible.  
(b) Copper Area = 10mm2,θJA = 64°C/W  
(c) Copper Area = 30mm2 , θJA = 54°C/W  
(d) Copper Area = 50mm2 ,θJA = 51°C/W  
(e) Copper Area = 70mm2 ,θJA = 49°C/W  
Figure 6. Thermal Resistance vs. CopperArea Layout  
Design  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2872-06 January 2018  
www.richtek.com  
13  
RT2872  
Input capacitor must be placed  
as close to the IC as possible.  
V
OUT  
V
IN  
C
OUT  
C
IN  
The R resistor must be connected  
T
SW should be connected to  
as close to the device as possible.  
Keep sensitive components away.  
inductor by wide and short trace.  
Keep sensitive components  
C *  
S
R *  
S
L
away from this trace and C  
.
BOOT  
R
T
8
7
6
5
SW  
BOOT  
EN  
VIN  
RT  
C
V
BOOT  
2
3
4
R
C
GND  
C
C
C
COMP  
FB  
IN  
9
R
EN  
GND  
P
R1  
V
OUT  
R2  
The R component  
EN  
must be connected.  
GND  
The Compensator and feedback  
components must be connected as  
close to the device as possible.  
* : Option  
Figure 8. PCB Layout Guide  
Table 3. Suggested Capacitors for CIN and COUT  
Location  
CIN  
Component Supplier  
Part No.  
Capacitance (µF)  
Case Size  
1206  
MURATA  
TAIYO YUDEN  
MURATA  
TDK  
GRM32ER71H475K  
UMK325BJ475MM-T  
GRM31CR61E106K  
C3225X5R1E106K  
TMK316BJ106ML  
GRM31CR60J476M  
C3225X5R0J476M  
GRM32ER71C226M  
C3225X5R1C22M  
4.7  
4.7  
10  
10  
10  
47  
47  
22  
22  
CIN  
1206  
CIN  
1206  
CIN  
1206  
CIN  
TAIYO YUDEN  
MURATA  
TDK  
1206  
COUT  
COUT  
COUT  
COUT  
1206  
1210  
MURATA  
TDK  
1210  
1210  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
14  
DS2872-06 January 2018  
RT2872  
Outline Dimension  
H
A
Y
M
EXPOSED THERMAL PAD  
(Bottom of Package)  
J
B
X
F
C
I
D
Dimensions In Millimeters Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.000  
5.791  
0.406  
2.000  
2.000  
2.100  
3.000  
5.004  
4.000  
1.753  
0.510  
1.346  
0.254  
0.152  
6.200  
1.270  
2.300  
2.300  
2.500  
3.500  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.000  
0.228  
0.016  
0.079  
0.079  
0.083  
0.118  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.006  
0.244  
0.050  
0.091  
0.091  
0.098  
0.138  
J
M
X
Y
X
Y
Option 1  
Option 2  
8-Lead SOP (Exposed Pad) Plastic Package  
Richtek Technology Corporation  
14F, No. 8, Tai Yuen 1st Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Customers should obtain the latest relevant information and data sheets before placing orders and should verify  
that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek  
product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use;  
nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent  
or patent rights of Richtek or its subsidiaries.  
DS2872-06 January 2018  
www.richtek.com  
15  

相关型号:

RT2875A

Synchronous Step-Down Converter
RICHTEK

RT2875AQ

暂无描述
RICHTEK

RT2875AQGCP

Synchronous Step-Down Converter
RICHTEK

RT2875BQ

暂无描述
RICHTEK

RT2875BQGCP

Synchronous Step-Down Converter
RICHTEK

RT2875DQ

暂无描述
RICHTEK
MARKTECH
MARKTECH
MARKTECH
MARKTECH

RT2901HYDT

Low power quad voltage comparator
STMICROELECTR

RT2902

RobuST low-power quad operational amplifier
STMICROELECTR