RT2875DQ [RICHTEK]

暂无描述;
RT2875DQ
型号: RT2875DQ
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

暂无描述

文件: 总16页 (文件大小:210K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT2875D  
3A, 36V, Synchronous Step-Down Converter  
General Description  
Features  
3A Output Current  
Internal N-MOSFETs  
Current Mode Control  
The RT2875D is a high efficiency, current-mode  
synchronousDC-DC step-down converter that can deliver  
up to 3A output current over a wide input voltage range  
from 4.5V to 36V. The device integrates 95mΩ high-side  
and 70mΩ low-side MOSFETs to achieve high conversion  
efficiency. The current-mode control architecture supports  
fast transient response and simple external compensation.  
A cycle-by-cycle current limit function provides protection  
against shorted output and an external soft-start eliminates  
input current surge during start-up. The RT2875D provides  
complete protection functions such as input under-voltage  
lockout, output under-voltage protection, over-current  
protection and thermal shutdown.  
Adjustable Switching Frequency : 300kHz to 2.1MHz  
Adjustable Current Limit : 1.5A to 6A  
Synchronous to External Clock : 300kHz to 2.1MHz  
Adjustable Output Voltage from 0.6V to 24V  
High Efficiency Up to 95%  
Stable with Low ESR Ceramic Output Capacitors  
Cycle-by-Cycle Current Limit  
Input Under-Voltage Lockout  
Output Under-Voltage Protection  
0.6V ± ±1% Reference Voltage Over Temperature  
Thermal Shutdown  
The RT2875Dis available in the thermal enhanced TSSOP-  
14 (Exposed Pad) package.  
AEC-Q100 Grade 2 Qualified  
RoHS Compliant and Halogen Free  
Pin Configuration  
Applications  
Point of Load Regulator in Distributed Power Systems  
(TOP VIEW)  
14  
SW  
SW  
PGND  
RT/SYNC  
AGND  
RLIM  
BOOT  
VIN  
VIN  
PGOOD  
EN  
SS  
Digital Set Top Boxes  
2
3
4
5
6
7
13  
12  
11  
10  
9
Broadband Communications  
Vehicle Electronics  
PGND  
15  
8
COMP  
FB  
TSSOP-14 (Exposed Pad)  
Simplified Application Circuit  
VIN  
BOOT  
RT2875D  
V
IN  
C
IN  
C
BOOT  
L
V
SW  
OUT  
Enable  
PGOOD  
EN  
R1  
R2  
PGOOD  
C
FB  
OUT  
RLIM  
C
COMP  
R
COMP  
RT/SYNC  
COMP  
SS  
R
LIM  
R
OSC  
C
SS  
AGND PGND  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2875D-03 November 2018  
www.richtek.com  
1
RT2875D  
Ordering Information  
RT2875D  
Marking Information  
RT2875DQGCP : Product Number  
RT2875DQ  
GCPYMDNN  
YMDNN : Date Code  
Package Type  
CP : TSSOP-14 (Exposed Pad-Option 2)  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
DQ : Hiccup Mode UVP  
Note :  
Richtek products are :  
RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
Suitable for use in SnPb or Pb-free soldering processes.  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
1, 2  
SW  
Switch node. Connect to external L-C filter.  
3,  
Power ground. The exposed pad must be soldered to a large PCB and  
connected to PGND for maximum power dissipation.  
PGND  
15 (Exposed Pad)  
Oscillator resistor and external frequency synchronization input. Must connect a  
resistor from this pin to GND to set the switching frequency. If SYNC clock is  
requested, connect an external clock to change the switching frequency.  
4
RT/SYNC  
5
6
AGND  
RLIM  
Analog ground.  
Current limit setting. Connect a resistor from this pin to GND to set the current  
limit value.  
Feedback voltage input. The pin is used to set the output voltage of the  
converter to regulate to the desired via a resistive divider. Feedback reference =  
0.6V.  
7
FB  
Compensation node. COMP is used to compensate the regulation control loop.  
Connect a series RC network from COMP to GND. In some cases, an additional  
capacitor from COMP to GND is required.  
8
9
COMP  
SS  
Soft-start time setting. Connect a capacitor from SS to GND to set the soft-start  
period.  
10  
11  
EN  
Enable control input. High = Enable.  
Power good indicator output.  
PGOOD  
Power input. Support 4.5V to 36V input voltage. Must bypass with a suitable  
large ceramic capacitor at this pin.  
12, 13  
14  
VIN  
Bootstrap supply for high-side gate driver. Connect a 0.1F ceramic capacitor  
between the BOOT and SW pins.  
BOOT  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS2875D-03 November 2018  
RT2875D  
Functional Block Diagram  
PGOOD  
VIN  
6k  
Internal  
Regulator  
-
+
EN  
UVLO  
Current  
Sense  
1.5V  
Shutdown  
Comparator  
3.8V  
BOOT  
UVLO  
+
0.55V  
-
BOOT  
SW  
PGOOD  
Comparator Protection  
Logic &  
Power  
Stage &  
Deadtime  
Control  
Control  
0.3V  
+
-
UV  
Comparator  
HS Switch  
Current  
Comparator  
LS Switch  
Current  
Comparator  
-
FB  
Current  
Sense  
EA  
0.6V  
6µA  
+
+
PGND  
AGND  
Slop  
Compensation  
Oscillator  
COMP RT/SYNC  
RLIM  
SS  
Operation  
The RT2875D is current-mode synchronous step-down  
converter. In normal operation, the high-sideN-MOSFET  
is turned on when the S-R latch is set by the oscillator  
and is turned off when the current comparator resets the  
S-R latch. While the high-side N-MOSFET is turned off,  
the low-side N-MOSFET is turned on to conduct the  
inductor current until next cycle begins.  
Internal Regulator  
The regulator provides low voltage power to supply the  
internal control circuits and the bootstrap power for high-  
side gate driver.  
Enable  
The converter is turned on when the ENpin is higher than  
1.6V. When the EN pin is lower than 0.4V, the converter  
will enter shutdown mode and reduce the supply current  
lower than 10μA.  
Error Amplifier  
The error amplifier adjusts its output voltage by comparing  
the feedback signal (VFB) with the internal 0.6V reference.  
When the load current increases, it causes a drop in the  
feedback voltage relative to the reference, and then the  
error amplifier's output voltage rises to allow higher inductor  
current to match the load current.  
Soft-Start (SS)  
In order to prevent the converter output voltage from  
overshooting during the startup period, the soft-start  
function is necessary. The soft-start time is adjustable  
by an external capacitor.  
Switching Frequency  
BOOT UVLO  
The switching frequency can be set by using extra resister  
RT or external clock. Switching frequency range is from  
300kHz to 2.1MHz.  
The BOOT UVLO circuit is implemented to ensure a  
sufficient voltage of BOOT capacitor for turning on the high-  
side MOSFET at any condition. The BOOT UVLO usually  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2875D-03 November 2018  
www.richtek.com  
3
RT2875D  
actives at extremely high conversion ratio or the higher  
VOUT application operates at very light load. With such  
conditions, the low-side MOSFET may not have sufficient  
turn-on time to charge the BOOT capacitor. The device  
monitors BOOT pin capacitor voltage and force to turn on  
the low-side MOSFET when the BOOT to SW voltage  
falls below VBOOT_UVLO_L (typically, 2.4V). Meanwhile, the  
minimum off time is extended to 380ns (typically) hence  
prolong the BOOT capacitor charging time. The BOOT  
UVLO is sustained until the VBOOTSW is higher than  
VBOOT_UVLO_H (typically, 2.7V).  
UV Comparator  
If the feedback voltage is lower than 0.3V, the UV  
Comparator will go high to turn off the high-side MOSFET.  
The output under voltage protection is designed to operate  
in Hiccup mode. When the UV condition is removed, the  
converter will resume switching.  
Current Setting  
The current limit of high side MOSFET is adjustable by  
an external resistor connected to the RLIM pin. The current  
limit range is from 1.5A to 6A.  
Thermal Shutdown  
The over-temperature protection function will shut down  
the switching operation when the junction temperature  
exceeds 180°C. Once the junction temperature cools  
down by approximately 15°C, the converter will  
automatically resume switching.  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS2875D-03 November 2018  
RT2875D  
Absolute Maximum Ratings (Note 1)  
Supply Voltage, VIN ------------------------------------------------------------------------------------------------ ±−0.3V to 40V  
Switch Voltage, SW ------------------------------------------------------------------------------------------------ ±−0.3V to (VIN + 0.3V)  
BOOT to SW --------------------------------------------------------------------------------------------------------- ±−0.3V to 6V  
PowerGood Voltage, PGOOD------------------------------------------------------------------------------------ ±−0.3V to 40V  
Other Pins------------------------------------------------------------------------------------------------------------- ±−0.3V to 6V  
Power Dissipation, PD @ TA = 25°C  
TSSOP-14 (Exposed Pad) ---------------------------------------------------------------------------------------- 4.464W  
Package Thermal Resistance (Note 2)  
TSSOP-14 (Exposed Pad), θJA ---------------------------------------------------------------------------------- 28°C/W  
TSSOP-14 (Exposed Pad), θJC ---------------------------------------------------------------------------------- 4.3°C/W  
Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------- 260°C  
Junction Temperature ----------------------------------------------------------------------------------------------- 150°C  
Storage Temperature Range -------------------------------------------------------------------------------------- ±−65°C to 150°C  
ESD Susceptibility (Note 3)  
HBM (Human Body Model)---------------------------------------------------------------------------------------- 2kV  
Recommended Operating Conditions (Note 4)  
Supply Input Voltage, VIN ----------------------------------------------------------------------------------------- 4.5V to 36V  
Junction Temperature Range-------------------------------------------------------------------------------------- ±−40°C to 150°C  
Ambient Temperature Range-------------------------------------------------------------------------------------- ±−40°C to 105°C  
Electrical Characteristics  
(VIN = 12V, TA = 40°C to 105°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
VEN = 0V  
Min  
Typ  
Max Unit  
Shutdown Supply Current  
--  
‐‐  
10  
A  
Switching quiescent current with  
no load at DCDC output  
VEN = 2V, VFB = 0.64V,  
RLIM = 91k, ROSC = 169k  
--  
--  
1.3  
mA  
Feedback Voltage  
VFB  
4.5V VIN 36V  
IC = ±10A  
0.594 0.6 0.606  
V
Error Amplifier Trans-conductance GEA  
--  
--  
--  
950  
95  
--  
--  
--  
A/V  
High-Side  
Low-Side  
RDS(ON)1  
RDS(ON)2  
Switch On-  
Resistance  
m  
A  
70  
High-Side Switch Leakage  
Current  
VEN = 0V, VSW = 0V  
--  
1
--  
Current Limit Setting Rage  
(Note 5)  
1.5  
1.79  
3.52  
4.84  
--  
--  
2.1  
4
6
A
A
A
A
A
High-Side Switch Current Limit 1  
High-Side Switch Current Limit 2  
High-Side Switch Current Limit 3  
Low-Side Switch Current Limit  
HOC1  
HOC2  
HOC3  
RLIM = 100k  
RLIM = 47k  
RLIM = 33k  
From drain to source  
2.41  
4.48  
6.16  
--  
5.5  
2
COMP to Current Sense  
Transconductance  
GCS  
--  
5.2  
--  
--  
A/V  
Include Sync mode and RT mode  
set point  
Switching Frequency Range  
300  
2100 kHz  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2875D-03 November 2018  
www.richtek.com  
5
RT2875D  
Parameter  
Symbol  
fOSC1  
Test Conditions  
ROSC = 169k  
Min  
275  
Typ  
305  
0.98  
2.1  
Max Unit  
335 kHz  
Switching Frequency1  
Switching Frequency2  
Switching Frequency3  
fOSC2  
ROSC = 51k  
ROSC = 23k  
0.83  
1.89  
1.13 MHz  
2.31 MHz  
fOSC3  
Short Circuit Oscillation  
Frequency  
VFB = 0V, ROSC = 100k,  
VIN = 12V  
--  
31.25  
--  
kHz  
ns  
Minimum SYNC Pulse width  
--  
--  
20  
--  
--  
2
High-Level  
SYNC Input Voltage  
Minimum On-Time  
EN Input Voltage  
V
ns  
V
Low- Level  
0.8  
--  
--  
--  
tON  
100  
1.5  
0.2  
4.1  
300  
90  
--  
Logic-High VIH  
Hysteresis  
1.4  
--  
1.6  
--  
EN hysteresis voltage  
VIN rising  
VUVLO  
--  
--  
V
Input Under-Voltage Lockout  
Threshold  
VUVLO  
Hysteresis  
Rising  
--  
--  
mV  
--  
--  
Power Good Threshold  
%
Falling  
--  
85  
--  
Power Good Output High  
Leakage Current  
VFB = VREF, VPGOOD = 5.5V  
IPGOOD = 0.4mA  
--  
30  
--  
nA  
Power Good Output Low  
Soft-Start Charge Current  
SW Discharge Resistance  
Thermal Shutdown  
--  
--  
--  
6
0.3  
--  
V
A  
ISS  
--  
80  
180  
15  
--  
TSD  
160  
--  
200  
--  
C  
C  
Thermal Shutdown Hysteresis  
TSD  
Note 1. Stresses beyond those listed under Absolute Maximum Ratingsmay cause permanent damage to the device.  
These are stress ratings only, and functional operation of the device at these or any other conditions beyond those  
indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Note 2. θJA is measured at TA = 25 °C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is  
measured at the exposed pad of the package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Note 5. Guarantee by design.  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS2875D-03 November 2018  
RT2875D  
Typical Application Circuit  
12, 13  
14  
BOOT  
RT2875D  
VIN  
V
IN  
C
IN  
C
BOOT  
L
10µF x 2  
1, 2  
V
SW  
OUT  
10  
11  
6
Enable  
EN  
R1  
R2  
PGOOD  
PGOOD  
C
7
OUT  
FB  
22µF x 2  
RLIM  
C
COMP  
R
COMP  
4
8
9
RT/SYNC  
COMP  
SS  
R
LIM  
R
OSC  
C
SS  
AGND PGND  
5
3, 15 (Exposed Pad)  
For 500kHz Only  
VOUT  
12  
R1 (k)  
102  
R2 (k)  
5.36  
8.25  
15  
ROSC (k)  
RCOMP (k)  
CCOMP (nF)  
L (H)  
10  
100  
100  
100  
100  
100  
100  
32  
20  
3.9  
3.3  
3.3  
3.3  
3.3  
3.9  
8
102  
8.2  
5
110  
15  
6.8  
3.3  
2.5  
1.2  
115  
25.5  
8.06  
10  
10  
4.7  
25.5  
10  
7.5  
4.3  
3.6  
2.2  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2875D-03 November 2018  
www.richtek.com  
7
RT2875D  
Typical Operating Characteristics  
Efficiency vs. Load Current  
Output Voltage vs. Load Current  
100  
3.37  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
90  
80  
VIN = 5V  
VIN = 12V  
IN = 23V  
VIN = 30V  
VIN = 36V  
70  
60  
50  
40  
30  
20  
10  
0
V
VIN = 12V  
VIN = 5V  
VIN = 24V  
VIN = 30V  
VIN = 36V  
VOUT = 3.3V  
2.5 3  
VOUT = 3.3V  
2.5  
0
0.5  
1
1.5  
2
3
0
0.5  
1
1.5  
2
Load Current (A)  
Load Current (A)  
Referecnec Voltage vs. Input Voltage  
Reference Voltage vs. Temperature  
0.610  
0.65  
0.64  
0.63  
0.62  
0.61  
0.60  
0.59  
0.58  
0.57  
0.56  
0.55  
0.608  
0.605  
0.603  
0.600  
0.598  
0.595  
0.593  
0.590  
VIN = 12V, VOUT = 1.2V, IOUT = 0A  
VIN = 4.5V to 36V, VOUT = 3.3V, IOUT = 0A  
2
9.6  
17.2  
24.8  
32.4  
40  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Input Voltage (V)  
Switching Frequency vs. RT  
Switching Frequency vs. Input Voltage  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
590  
580  
570  
560  
550  
540  
530  
520  
510  
500  
600  
400  
200  
VIN = 12V, VOUT = 3.3V, IOUT = 0A  
VIN = 12V, VOUT = 3.3V, IOUT = 0A, RT = 100kΩ  
0
20  
40  
60  
80 100 120 140 160 180 200  
4
8 12 16 20 24 28 32 36  
RT(kΩ)  
Input Voltage (V)  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS2875D-03 November 2018  
RT2875D  
Current Limit vs. RLIM  
Switching Frequency vs. Temperature  
7
6
5
4
3
2
1
0
600  
580  
560  
540  
520  
500  
480  
460  
440  
420  
400  
VIN = 4.5V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VOUT = 3.3V, IOUT = 0A  
50 75 100 125  
20  
30  
40  
50  
60  
70  
80  
90  
100  
-50  
-25  
0
25  
RLIM (kΩ)  
Ambient Temperature (°C)  
Current Limit vs. Temperature  
Enable Voltage vs. Temperature  
8
7
6
5
4
3
2
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Enable_Rising  
Enable_Falling  
VIN = 12V, VOUT = 3.3V  
50 75 100 125  
VIN = 12V, VOUT = 3.3V, RLIM = 39kΩ  
25 50 75 100 125  
-50  
-25  
0
-50  
-25  
0
25  
Temperature (°C)  
Temperature (°C)  
UVLO vs. Temperature  
Turn On  
Load Transient Response  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
VOUT  
(200mV/Div)  
Turn Off  
IOUT  
(2A/Div)  
VIN = 12V, VOUT = 3.3V  
50 75 100 125  
VIN = 12V, VOUT = 3.3V, IOUT = 0A to 3A  
-50  
-25  
0
25  
Time (250μs/Div)  
Temperature (°C)  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2875D-03 November 2018  
www.richtek.com  
9
RT2875D  
Load Transient Response  
Switching  
VOUT  
VOUT  
(5mV/Div)  
(200mV/Div)  
VSW  
(10V/Div)  
IOUT  
(1A/Div)  
IOUT  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 1.5A  
VIN = 12V, VOUT = 1.2V, IOUT = 0A to 2.5A  
Time (1μs/Div)  
Time (250μs/Div)  
Switching  
Power On from EN  
VOUT  
(5mV/Div)  
VEN  
(2V/Div)  
VOUT  
VSW  
(2V/Div)  
(10V/Div)  
IOUT  
(2A/Div)  
IOUT  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 3A  
Time (5ms/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 3A  
Time (1μs/Div)  
Power Off from EN  
Power On from VIN  
VEN  
VIN  
(2V/Div)  
(5V/Div)  
VOUT  
VOUT  
(2V/Div)  
(2V/Div)  
IOUT  
(2A/Div)  
IOUT  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 3A  
VIN = 12V, VOUT = 3.3V, IOUT = 3A  
Time (10ms/Div)  
Time (50μs/Div)  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS2875D-03 November 2018  
RT2875D  
Power Off from VIN  
VIN  
(5V/Div)  
VOUT  
(2V/Div)  
IOUT  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, sIOUT  
=
Time (5ms/Div)  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2875D-03 November 2018  
www.richtek.com  
11  
RT2875D  
Application Information  
5V  
Output Voltage Setting  
The resistive divider allows the FB pin to sense the output  
voltage as shown in Figure 1.  
BOOT  
RT2875D  
100nF  
V
OUT  
SW  
R1  
FB  
Figure 2. External Bootstrap Diode  
Chip Enable Operation  
RT2875D  
GND  
R2  
The EN pin is the chip enable input. Pulling the EN pin  
low (<0.4V) will shutdown the device. During shutdown  
mode, the RT2875D quiescent current drops to lower than  
10μA. Driving the EN pin high (>1.6V) will turn on the  
device again. For external timing control, the EN pin can  
also be externally pulled high by adding a REN resistor  
and CEN capacitor from the VIN pin (see Figure 3).  
Figure 1. Output Voltage Setting  
The output voltage is set by an external resistive voltage  
divider according to the following equation :  
R1  
R2  
VOUT = VREF 1  
Where VREF is the reference voltage (0.6V typ.).  
EN  
R
EN  
V
EN  
RT2875D  
IN  
Bootstrap Driver Supply  
C
EN  
The bootstrap capacitor (CBOOT) between BOOT pin and  
SW pin is used to create a voltage rail above the applied  
input voltage, VIN. Specifically, the bootstrap capacitor is  
charged through an internal diode to a voltage which is  
built in an internal regulator each time the low-side  
MOSFET is turned on. The charge on this capacitor is  
then used to supply the required current during the  
remainder of the switching cycle. For most applications a  
0.1μF, 0603 ceramic capacitor with X7R is recommended  
and the capacitor should have a 6.3 V or higher voltage  
rating.  
GND  
Figure 3. Enable Timing Control  
An external MOSFET can be added to implement digital  
control on the EN pin when no system voltage above 2.5V  
is available, as shown in Figure 4. In this case, a 100kΩ  
pull-up resistor, REN, is connected between VIN and the  
EN pin. MOSFET Q1 will be under logic control to pull  
down the EN pin.  
R
EN  
100k  
V
EN  
RT2875D  
GND  
IN  
External Bootstrap Diode  
It is recommended to add an external bootstrap diode  
between an external 5V voltage supply and the BOOT pin  
to improve enhancement of the high-side MOSFET and  
improve efficiency when the input voltage is below 5.5V,  
switching frequency is higher than 1MHz or duty ratio is  
higher than 65%. Keeps VBOOTSW always higher than 3V  
to prevent BOOT UVLO function executed. The  
recommended application circuit is shown in Figure 2.  
The bootstrap diode can be a low-cost one, such as  
1N4148 or BAT54.  
Q1  
EN  
Figure 4. Digital Enable Control Circuit  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS2875D-03 November 2018  
RT2875D  
Under-Voltage Protection  
Hiccup Mode  
the highest efficiency operation. However, it requires a  
large inductor to achieve this goal.  
For the ripple current selection, the value of ΔIL= 0.24(IMAX  
)
The RT2875D provides Hiccup Mode Under-Voltage  
Protection (UVP). When the VFB voltage drops below 0.3V,  
the UVP function will be triggered to shut down switching  
operation. If the UVP condition remains for a period, the  
RT2875Dwill retry automatically. When the UVP condition  
is removed, the converter will resume operation. The UVP  
is disabled during soft-start period.  
will be a reasonable starting point. The largest ripple  
current occurs at the highest VIN. To guarantee that the  
ripple current stays below the specified maximum, the  
inductor value should be chosen according to the following  
equation :  
   
V
f  I  
V
OUT  
V
IN(MAX)  
OUT  
L =  
1  
   
L(MAX)  
   
Hiccup Mode  
The inductor's current rating (caused a 40°C temperature  
rising from 25°C ambient) should be greater than the  
maximum load current and its saturation current should  
be greater than the short circuit peak current limit. Please  
see Table 2 for the inductor selection reference.  
VOUT  
(2V/Div)  
Table 2. Suggested Inductors for Typical  
Application Circuit  
IL  
Component  
Supplier  
Dimensions  
(mm)  
Series  
(2A/Div)  
TDK  
TDK  
VLF10045  
SLF12565  
10 x 9.7 x 4.5  
IOUT = Short  
12.5 x 12.5 x 6.5  
Time (50ms/Div)  
TAIYO  
YUDEN  
NR8040  
8 x 8 x 4  
Figure 5. Hiccup Mode Under Voltage Protection  
Over-Temperature Protection  
CIN and COUT Selection  
The RT2875D features an Over-Temperature Protection  
(OTP) circuitry to prevent from overheating due to  
excessive power dissipation. The OTP will shut down  
switching operation when junction temperature exceeds  
180°C. Once the junction temperature cools down by  
approximately 15°C, the converter will resume operation.  
To maintain continuous operation, the maximum junction  
temperature should be lower than 150°C.  
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the Source of the high side MOSFET.  
To prevent large ripple current, a low ESR input capacitor  
sized for the maximum RMS current should be used. The  
approximate RMS current equation is given :  
V
V
V
IN  
V
OUT  
OUT  
I
= I  
1  
RMS  
OUT(MAX)  
IN  
This formula has a maximum at VIN = 2VOUT, where  
IRMS = IOUT / 2. This simple worst case condition is  
commonly used for design because even significant  
deviations do not offer much relief.  
Inductor Selection  
The inductor value and operating frequency determine the  
ripple current according to a specific input and output  
voltage. The ripple current ΔIL increases with higher VIN  
and decreases with higher inductance.  
Choose a capacitor rated at a higher temperature than  
required. Several capacitors may also be paralleled to  
meet size or height requirements in the design.  
V
f L  
VOUT  
V
IN  
OUT    
1  
   
IL =  
For the input capacitor, two 10μF low ESR ceramic  
capacitors are suggested. For the suggested capacitor,  
please refer to Table 3 for more details.  
   
Having a lower ripple current reduces not only the ESR  
losses in the output capacitors but also the output voltage  
ripple. High frequency with small ripple current can achieve  
The selection of COUT is determined by the required ESR  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2875D-03 November 2018  
www.richtek.com  
13  
RT2875D  
to minimize voltage ripple.  
Current Setting  
The current limit of high side MOSFET is adjustable by  
an external resistor connected to the RLIM pin. The current  
limit range is from 1.5A to 6A. When the inductor current  
reaches the current limit threshold, the COMP voltage  
will be clamped to limit the inductor current. Inductor  
current ripple current also should be considered into  
current limit setting. Current limit minimum value should  
be set as below :  
Moreover, the amount of bulk capacitance is also a key  
for COUT selection to ensure that the control loop is stable.  
Loop stability can be checked by viewing the load transient  
response as described in a later section.  
The output ripple, ΔVOUT , is determined by :  
1
VOUT  I ESR   
L   
8fCOUT  
The output ripple will be the highest at the maximum input  
Current limit minimum = (IO(max) + 1 / 2 inductor current  
ripple) x 1.2  
voltage since ΔIL increases with input voltage. Multiple  
capacitors placed in parallel may be needed to meet the  
ESR and RMS current handling requirement. Higher values,  
lower cost ceramic capacitors are now becoming available  
in smaller case sizes. Their high ripple current, high voltage  
rating and low ESR make them ideal for switching regulator  
applications. However, care must be taken when these  
capacitors are used at input and output. When a ceramic  
capacitor is used at the input and the power is supplied  
by a wall adapter through long wires, a load step at the  
output can induce ringing at the input, VIN. At best, this  
ringing can couple to the output and be mistaken as loop  
instability. At worst, a sudden inrush of current through  
the long wires can potentially cause a voltage spike at  
VIN large enough to damage the part.  
Through extra resister RLIMconnect to RLIM pin to setting  
the current limit value below offer approximate formula  
equation :  
ISET = current limit value (A)  
y = (ISET 0.4206) / 167.79  
RLIM (kΩ) = (1 / y)  
Soft-Start  
The RT2875D provides soft-start function. The soft-start  
function is used to prevent large inrush current while  
converter is being powered-up. The soft-start timing can  
be programmed by the external capacitor CSS between  
SS andGND.An internal current source ISS (6μA) charges  
an external capacitor to build a soft-start ramp voltage.  
The VFB voltage will track the internal ramp voltage during  
softstart interval. The typical soft start time is calculated  
as follows :  
Switching Frequency Setting  
The switching frequency can be set by using extra resister  
RT or external clock. Switching frequency range is from  
300kHz to 2.1MHz. Through extra resister RT connect to  
RT/SYNC pin to setting the switching frequency FS, below  
offer approximate formula equation :  
Soft-Start time tSS = CSS x 0.6 / 6μA  
Thermal Considerations  
Setting Frequency = FS (kHz)  
x = [FS 31.379] / 47691  
ROSC (kΩ) = (1 / x)  
For continuous operation, do not exceed absolute  
maximum junction temperature. The maximum power  
dissipation depends on the thermal resistance of the IC  
package, PCB layout, rate of surrounding airflow, and  
difference between junction and ambient temperature. The  
maximum power dissipation can be calculated by the  
following formula :  
The RT2875Dcan be synchronized with an external clock  
ranging from 300kHz to 2.1MHz applied to the RT/SYNC  
pin. The external clock duty cycle must be from 10% to  
90%. The RT/SYNC pin is at logic-high level (>2V). If the  
EN pin is pulled to low-level for 10μs above, the IC will  
shut down.  
PD(MAX) = (TJ(MAX) TA) / θJA  
where TJ(MAX) is the maximum junction temperature, TA is  
the ambient temperature, and θJA is the junction to ambient  
thermal resistance.  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
14  
DS2875D-03 November 2018  
RT2875D  
For recommended operating condition specifications, the  
maximum junction temperature is 150°C. The junction to  
ambient thermal resistance, θJA, is layout dependent. For  
TSSOP-14 (Exposed Pad) package, the thermal  
resistance, θJA, is 28°C/W on a standard JEDEC 51-7  
four-layer thermal test board. The maximum power  
dissipation at TA = 25°C can be calculated by the following  
formula :  
PD(MAX) = (150°C 25°C) / (28°C/W) = 4.464W for  
TSSOP-14 (Exposed Pad) package  
The maximum power dissipation depends on the operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance, θJA. The derating curve in Figure 6 allows the  
designer to see the effect of rising ambient temperature  
on the maximum power dissipation.  
5.0  
Four-Layer PCB  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature (°C)  
Figure 6. Derating Curve of Maximum PowerDissipation  
Copyright 2018 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS2875D-03 November 2018  
www.richtek.com  
15  
RT2875D  
Outline Dimension  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
1.000  
0.000  
0.800  
0.190  
4.900  
Max  
1.200  
0.150  
1.050  
0.300  
5.100  
Min  
0.039  
0.000  
0.031  
0.007  
0.193  
Max  
0.047  
0.006  
0.041  
0.012  
0.201  
A
A1  
A2  
b
D
e
0.650  
0.026  
E
6.300  
4.300  
0.450  
1.900  
2.350  
2.640  
1.600  
2.250  
2.550  
6.500  
4.500  
0.750  
2.900  
2.850  
3.100  
2.600  
2.750  
3.000  
0.248  
0.169  
0.018  
0.075  
0.093  
0.104  
0.063  
0.089  
0.100  
0.256  
0.177  
0.030  
0.114  
0.112  
0.122  
0.102  
0.108  
0.118  
E1  
L
Option1  
Option2  
Option3  
Option1  
Option2  
Option3  
U
V
14-Lead TSSOP (Exposed Pad) Plastic Package  
Richtek Technology Corporation  
14F, No. 8, Tai Yuen 1st Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Customers should obtain the latest relevant information and data sheets before placing orders and should verify  
that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek  
product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use;  
nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent  
or patent rights of Richtek or its subsidiaries.  
www.richtek.com  
16  
DS2875D-03 November 2018  

相关型号:

MARKTECH
MARKTECH
MARKTECH
MARKTECH

RT2901HYDT

Low power quad voltage comparator
STMICROELECTR

RT2902

RobuST low-power quad operational amplifier
STMICROELECTR

RT2902YDT

RobuST low-power quad operational amplifier
STMICROELECTR

RT2903H

RobuST low-power dual voltage comparators
STMICROELECTR

RT2903HYDT

RobuST low-power dual voltage comparators
STMICROELECTR

RT2910A

暂无描述
RICHTEK

RT2A00AM1E

Transistor
ISAHAYA

RT2A00AM1F

Transistor
ISAHAYA