RT8058

更新时间:2024-09-18 05:56:47
品牌:RICHTEK
描述:1MHz, 2A, High Efficiency PWM Step-Down DC/DC Converter

RT8058 概述

1MHz, 2A, High Efficiency PWM Step-Down DC/DC Converter 为1MHz ,2A ,高效率PWM降压型DC / DC转换器

RT8058 规格参数

Status:ActiveVin (min) (V):2.6
Vin (max) (V):5.5Number of Outputs:1
Vout (min) (V):0.6Vout (max) (V):5
Preset Vout (V):Output Adj. Method:Resistor
Iout (max) (A):2Current Limit (typ) (A):3
Freq (typ) (kHz):1000Freq (min) (kHz):
Freq (max) (kHz):Ext Sync:No
Ron_HS (typ) (mOhm):142Ron_LS (typ) (mOhm):96
Iq (typ) (mA):0.34Features:100% Duty Cycle;Current Mode Control;Enable Input;Force PWM;Internal Compensation;OCP;Stable with Ceramic Capacitor;UVP
Package Type:WQFN3x3-16

RT8058 数据手册

通过下载RT8058数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
Preliminary  
RT8058  
1MHz, 2A, High Efficiency PWM Step-Down DC/DC Converter  
General Description  
Features  
l 0.6V Reference Allows Low Output Voltage  
l Low Dropout Operation : 100% Duty Cycle  
l 2A Load Current  
The RT8058 is a current mode PWM step-down converter.  
The chip is ideal for fixed frequency and low ripple  
applications over full range of load conditions. Its input  
voltage range is from 2.6V to 5.5V with a constant 1MHz  
switching frequency that allows it to adopt tiny, low cost  
capacitors and inductors with 2mm or less in height making  
it ideal for single-cell Li-lon/polymer battery applications.  
The low on resistance internal MOSFET can achieve high  
efficiency without the need of external schottky diodes in  
wide operating ranges and the output voltage is adjustable  
from 0.6V to 5V that can provide up to 2A load current.  
The RT8058 operates at 100% duty cycle for low dropout  
operation that extends battery life in portable devices.  
l < 2uA Shutdown Current  
l Up to 95% Efficiency  
l No Schottky Diode Required  
l 1MHZ Constant Switching Frequency  
l Low RDS(ON) Internal Switches  
l Internally Compensated  
l Internal Soft-Start  
l Over temperature Protection  
l Short Circuit Protection  
l Small 16-Lead WQFN Package  
l RoHS Compliant and 100% Lead (Pb)-Free  
The RT8058 is available in a WQFN-16L 3x3 package.  
Applications  
Ordering Information  
l Portable Instruments  
l Microprocessors andDSP Core supplies  
l CellularTelephones  
RT8058  
Package Type  
QW : WQFN-16L 3x3 (W-Type)  
l Wireless andDSL Modems  
l Digital Cameras  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
l PC Cards  
Note :  
Pin Configurations  
Richtek Pb-free and Green products are :  
}RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
(TOP VIEW)  
16 15 14 13  
}Suitable for use in SnPb or Pb-free soldering processes.  
}100% matte tin (Sn) plating.  
12 PVDD  
PGND  
PGND  
PGND  
FB  
1
2
3
4
11  
PVDD  
PGND  
10  
PVDD  
17  
VDD  
9
5
6
7
8
WQFN-16L 3x3  
DS8058-02 August 2007  
www.richtek.com  
1
Preliminary  
RT8058  
Typical Application Circuit  
L1  
3.3uH  
RT8058  
PVDD  
13,14,15  
4
10,11,12  
V
V
LX  
OUT  
IN  
1.2V/2A  
2.6V to 5.5V  
7
R1  
100k  
EN  
9
C
C
OUT2  
FB  
OUT1  
VDD  
22uF  
22uF  
C
IN  
10uF  
R2  
100k  
GND  
5
PGND  
1, 2, 3,  
Exposed Pad (17)  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
Power Ground. Connect this pin close to the () terminal of C and C  
exposed pad must be soldered to a large PCB and connected to PGND for  
maximum power dissipation.  
. The  
OUT  
IN  
1, 2, 3  
Exposed Pad (17)  
PGND  
Feedback Input Pin. Receives the feedback voltage from a resistive divider  
connected across the output.  
4
FB  
Signal Ground. Return the feedback resistive dividers to this ground, which in turn  
connects to PGND at one point.  
No Internal Connection.  
Enable pin. A logical high level at this pin enables the converter, while a logical low  
level causes the converter to shut down.  
5
6, 8, 16  
7
GND  
NC  
EN  
Signal Input Supply. Decouple this pin to GND with a capacitor. Normally VDD is  
equal to PVDD. Keep the voltage difference between VDD and PVDD less than  
0.5V.  
9
VDD  
Power Input Supply of converter power stage. Decouple this pin to PGND with a  
capacitor.  
Internal Power MOSFET Switches Output of converter. Connect this pin to the  
inductor.  
10, 11, 12  
13, 14, 15  
PVDD  
LX  
Function Block Diagram  
PVDD  
ISEN  
Slope  
Com  
OSC  
0.6V  
Output  
Clamp  
OC  
Limit  
EA  
FB  
Driver  
Int-SS  
LX  
0.3V  
Control  
Logic  
OT  
PGND  
GND  
POR  
VREF  
Temp-SEN  
VDD  
EN  
www.richtek.com  
2
DS8058-02 August 2007  
Preliminary  
Absolute Maximum Ratings (Note 1)  
RT8058  
l Supply Input VoltageVDD, PVDD ------------------------------------------------------------------------------------ - 0.3V to 6V  
l LX Pin Switch Voltage -------------------------------------------------------------------------------------------------- - 0.3V to 6V  
l Other I/O Pin Voltage --------------------------------------------------------------------------------------------------- - 0.3V to 6V  
l PowerDissipation, PD @ TA = 25°C  
WQFN-6L 3x3 ------------------------------------------------------------------------------------------------------------ 1.471W  
l Package Thermal Resistance (Note 4)  
WQFN-16L 3x3, qJA ----------------------------------------------------------------------------------------------------- 68°C/W  
WQFN-16L 3x3, qJC ----------------------------------------------------------------------------------------------------- 7°C/W  
l Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------------ 260°C  
l StorageTemperature Range ------------------------------------------------------------------------------------------- - 65°C to 150°C  
l JunctionTemperature --------------------------------------------------------------------------------------------------- 150°C  
l ESD Susceptibility (Note 2)  
HBM (Human Body Mode) --------------------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ---------------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 3)  
l Supply Input Voltage ---------------------------------------------------------------------------------------------------- 2.6V to 5.5V  
l Junction Temperature Range ------------------------------------------------------------------------------------------ - 40°C to 125°C  
l AmbientTemperature Range ------------------------------------------------------------------------------------------ - 40°Cto 85°C  
Electrical Characteristics  
(VDD = VPVDD = 3.6V, TA = 25°C, unless otherwise specified)  
Parameter  
Input Voltage Range  
Symbol  
Test Conditions  
Min  
2.6  
0.582  
--  
Typ  
--  
Max  
5.5  
0.618  
--  
Units  
V
V
IN  
Feedback Voltage  
V
0.6  
3.4  
340  
--  
V
FB  
Active, No Load  
mA  
mA  
mA  
V
DC Bias Current  
--  
--  
Active, Not Switching, V = 0.5V  
FB  
(PVDD, VDD total)  
Shutdown, EN = 0  
--  
2
Under voltage Lockout  
Threshold  
2.3  
--  
2.43  
150  
2.55  
--  
V
DD  
V
DD  
Rising  
UVLO  
mV  
Hysteresis  
Oscillator Frequency  
Switching Frequency  
f
0.75  
1.4  
--  
1.0  
--  
1.25  
--  
MHz  
V
OSC  
EN High-Level Input Voltage  
EN Low-Level Input Voltage  
Switch On Resistance, High  
V
V
R
R
EN_H  
EN_L  
--  
0.4  
V
I
= 200mA  
= 200mA  
--  
--  
142  
96  
210  
160  
--  
mW  
mW  
A
DS(ON)_P OUT  
Switch On Resistance, Low  
Peak Current Limit  
I
DS(ON)_N OUT  
ILIM  
2.2  
--  
3
Output Voltage Line Regulation  
Output Voltage Load Regulation  
0.05  
0.15  
--  
%/V  
%/A  
V
IN  
= 2.6V to 5.5V  
--  
I
= 0Aà2A  
--  
LOAD  
DS8058-02 August 2007  
www.richtek.com  
3
Preliminary  
RT8058  
Note 1. Stresses listed as the above Absolute Maximum Ratingsmay cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. qJA is measured in the natural convection at TA = 25°C on a high effective four layers thermal conductivity test board of  
JEDEC 51-7 thermal measurement standard. The case point of qJC is on the expose pad for the WQFN package.  
www.richtek.com  
4
DS8058-02 August 2007  
Preliminary  
Typical Operating Characteristics  
RT8058  
Efficiency vs. Output Current  
Efficiency vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
VIN = 5V  
VIN = 3.3V  
VIN = 3.3V  
VOUT = 1.8V, L = 3.3mH, COUT = 22mFx2  
VOUT = 1.2V, L = 3.3mH, COUT = 22mFx2  
0
500  
1000  
1500  
2000  
0
500  
1000  
1500  
2000  
Output Current (mA)  
Output Current (mA)  
Reference Voltage vs. Input Voltage  
Output Voltage vs. Outout Current  
0.6010  
0.6008  
0.6006  
0.6004  
0.6002  
0.6000  
0.5998  
0.5996  
0.5994  
0.5992  
0.5990  
1.2000  
1.1998  
1.1996  
1.1994  
1.1992  
1.1990  
1.1988  
1.1986  
1.1984  
1.1982  
1.1980  
VIN = 5V  
VIN = 3.3V  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
0
250 500 750 1000 1250 1500 1750 2000  
Input Voltage (V)  
Outout Current (mA)  
Output Voltage vs. Temperature  
Frequency vs. Temperature  
1100  
1050  
1000  
950  
1.205  
1.203  
1.201  
1.199  
1.197  
1.195  
1.193  
1.191  
1.189  
1.187  
1.185  
900  
VIN = 3.6V, VOUT = 1.2V, IOUT = 0A  
25 50 75 100 125  
VIN = 3.6V  
850  
-50  
-25  
0
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature  
(°C)  
DS8058-02 August 2007  
www.richtek.com  
5
Preliminary  
RT8058  
Quiescent Current vs. Input Voltage  
Quiescent Current vs. Temperature  
450  
400  
350  
300  
250  
450  
400  
350  
300  
250  
VIN = 3.6V  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-50  
-25  
0
25  
50  
75  
100  
125  
(°C)  
Temperature  
Input Voltage(V)  
Peak Current limit vs. Input Voltage  
Peak Current limit vs. Temperature  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
VIN = 3.6V, VOUT = 1.2V  
50 75 100 125  
VOUT = 1.2V  
4.7 5.1 5.5  
-50  
-25  
0
25  
2.7  
3.1  
3.5  
3.9  
4.3  
(°C)  
Temperature  
Input Voltage (V)  
Load Transient Response  
Load Transient Response  
VIN = 3.3V, VOUT = 1.2V, IOUT = 0A to 1A  
VIN = 3.3V, VOUT = 1.2V, IOUT = 0A to 2A  
VOUT  
VOUT  
(50mV/Div)  
(50mV/Div)  
IOUT  
IOUT  
(1A/Div)  
(1A/Div)  
Time (25ms/Div)  
Time (25ms/Div)  
www.richtek.com  
6
DS8058-02 August 2007  
Preliminary  
RT8058  
Load Transient Response  
Load Transient Response  
VIN = 3.3V, VOUT = 1.2V, IOUT = 0.5A to 1.5A  
VIN = 3.3V, VOUT = 1.2V, IOUT = 1A to 2A  
VOUT  
(50mV/Div)  
VOUT  
(50mV/Div)  
IOUT  
(1A/Div)  
IOUT  
(1A/Div)  
Time (25ms/Div)  
Time (25ms/Div)  
Load Transient Response  
Load Transient Response  
VIN = 5V, VOUT = 1.2V, IOUT = 0A to 1A  
VIN = 5V, VOUT = 1.2V, IOUT = 0A to 2A  
VOUT  
VOUT  
(50mV/Div)  
(50mV/Div)  
IOUT  
IOUT  
(1A/Div)  
(1A/Div)  
Time (25ms/Div)  
Time (25ms/Div)  
Load Transient Response  
Load Transient Response  
VIN = 5, VOUT = 1.2V, IOUT = 1A to 2A  
VIN = 5V, VOUT = 1.2V, IOUT = 0.5A to 1.5A  
VOUT  
VOUT  
(50mV/Div)  
(50mV/Div)  
IOUT  
IOUT  
(1A/Div)  
(1A/Div)  
Time (25ms/Div)  
Time (25ms/Div)  
DS8058-02 August 2007  
www.richtek.com  
7
Preliminary  
RT8058  
Output Ripple Noise  
Output Ripple Noise  
VIN = 3.3V, VOUT = 1.2V, IOUT = 1.5A  
VIN = 3.3V, VOUT = 1.2V, IOUT = 2A  
VOUT  
VOUT  
(5mV/Div)  
(5mV/Div)  
VLX  
VLX  
(5V/Div)  
(5V/Div)  
IOUT  
IOUT  
(1A/Div)  
(1A/Div)  
Time (500ns/Div)  
Time (500ns/Div)  
Output Ripple Noise  
Output Ripple Noise  
VIN = 5V, VOUT = 1.2V, IOUT = 2A  
VIN = 5V, VOUT = 1.2V, IOUT = 1.5A  
VOUT  
VOUT  
(5mV/Div)  
(5mV/Div)  
VLX  
VLX  
(5V/Div)  
(5V/Div)  
IOUT  
IOUT  
(1A/Div)  
(1A/Div)  
Time (500ns/Div)  
Time (500ns/Div)  
Power On from EN  
Power On from EN  
VIN = 3.3V, VOUT = 1.2V, RLOAD = 0.6W  
VIN = 5V, VOUT = 1.2V, RLOAD = 0.6W  
VEN  
VEN  
(2V/Div)  
(2V/Div)  
VOUT  
(1V/Div)  
VOUT  
(1V/Div)  
IOUT  
IOUT  
(2A/Div)  
(2A/Div)  
Time (500ms/Div)  
Time (500ms/Div)  
www.richtek.com  
8
DS8058-02 August 2007  
Preliminary  
RT8058  
Soft-Start & Inrush Current  
Soft-Start & Inrush Current  
VIN = 5V, VOUT = 1.2V, IOUT = 1.5A  
VIN = 3.3V, VOUT = 1.2V, IOUT = 1.5A  
VIN  
VIN  
(2V/Div)  
(2V/Div)  
VOUT  
(1V/Div)  
VOUT  
(1V/Div)  
IIN  
IIN  
(1A/Div)  
(1A/Div)  
Time (2.5ms/Div)  
Time (2.5ms/Div)  
DS8058-02 August 2007  
www.richtek.com  
9
Preliminary  
RT8058  
Application Information  
Function Description  
The resistive divider allows the FB pin to sense a fraction  
of the output voltage as shown in Figure 1.  
The RT8058 is a 1MHz constant frequency, current mode  
PWM step-down converter. High switching frequency and  
high efficiency make it suitable for applications where high  
efficiency and small size are critical.  
V
OUT  
R1  
FB  
Frequency compensation is done internally. The output  
voltages are set by external dividers returned to the FB  
pin. The output voltage can be set from 0.8V to 5V.  
RT8058  
GND  
R2  
Figure 1. Setting the Output Voltage  
Main Control Loop  
Slope Compensation and Inductor Peak Current  
During normal operation, the internal top power switch  
(P-MOSFET) is turned on at the beginning of each clock  
cycle. Current in the inductor increases until the peak  
inductor current reach the value defined by the output  
voltage of the error amplifier. The error amplifier adjusts its  
output voltage by comparing the feedback signal from a  
resistor divider on the FB pin with an internal 0.6V  
reference. When the load current increases, it causes a  
reduction in the feedback voltage relative to the reference.  
The error amplifier raisesitsoutput voltageuntil the average  
inductor current matches the new load current. When the  
top power MOSFET shuts off, the synchronous power  
switch (N-MOSFET) turns on until the beginning of the  
next clock cycle.  
Slope compensation provides stability in constant  
frequency architectures by preventing sub harmonic  
oscillations at duty cycles greater than 50%. It is  
accomplished internally by adding a compensating ramp  
to the inductor current signal. Normally, the maximum  
inductor peak current is reduced when slope compensation  
is added. In RT8058, however, separated inductor current  
signal is used to monitor over current condition and this  
keeps the maximum output current relatively constant  
regardless of duty cycle.  
Dropout Operation  
When input supply voltage decreases toward the output  
voltage, the duty cycle increases toward the maximum  
on time. Further reduction of the supply voltage forces  
the main switch to remain on for more than one cycle  
eventually reaching 100% duty cycle. The output voltage  
will then be determined by the input voltage minus the  
voltage drop across the internal P-MOSFET and the  
inductor.  
Soft Start / Enable  
For convenience of power up sequence control, RT8058  
has an enable pin. Logic high at EN pin will enable the  
converter. When the converter is enabled, the clamped  
error amplifier output ramps up during 1024-clock period  
to increase the current provided by converter until the  
output voltage reach the target voltage. If EN is kept at  
high during Vin applying, RT8058 will be enabled when  
VDD surpass Under-Voltage Lockout threshold.  
Low Supply Operation  
The RT8058 is designed to operate down to an input supply  
voltage of 2.7V. One important consideration at low input  
supply voltages is that the RDS(ON) of the P-Channel and  
N-Channel power switches increases. The user should  
calculate the power dissipation when the RT8058 is used  
at 100% duty cycle with low input voltages to ensure that  
thermal limits are not exceeded.  
Output Voltage Programming  
The output voltage is set by an external resistive divider  
according to the following equation :  
VOUT = VREF x (1+ R1/R2)  
where VREF equals to 0.6V typical.  
www.richtek.com  
10  
DS8058-02 August 2007  
Preliminary  
RT8058  
Short-Circuit Protection  
forcing the use of more expensive ferrite or mollypermalloy  
cores. Actual core loss is independent of core size for a  
fixed inductor value but it is very dependent on the  
inductance selected. As the inductance increases, core  
losses decrease. Unfortunately, increased inductance  
requires more turns of wire and therefore copper losses  
will increase.  
At overload condition, current mode operation provides  
cycle-by-cycle current limit to protect the internal power  
switches. When the output is shorted to ground, the  
inductor current will decays very slowly during a single  
switching cycle. A current runaway detector is used to  
monitor inductor current. As current increasing beyond  
the control of current loop, switching cycles will be skipped  
toprevent current runaway fromoccurring. If the FB voltage  
is smaller than 0.3V after the completion of soft-start  
period, under voltage protection (UVP) will lock the output  
to high-z to protect the converter. UVP lock can only be  
cleared by recycling the input power.  
Ferrite designs have very low core losses and are preferred  
at high switching frequencies, so design goals can  
concentrate on copper loss and preventing saturation.  
Ferrite core material saturates hard, which means that  
inductance collapses abruptly when the peak design  
current is exceeded. This result in an abrupt increase in  
inductor ripple current and consequent outputvoltageripple.  
Thermal Protection  
Do not allow the core to saturate!  
If the junction temperature of RT8058 reaches certain  
temperature (150°C), both converters will be disabled. The  
RT8058 will be re-enabled and automatically initializes  
internal soft start when the junction temperature drops  
below 110°C.  
Different core materials and shapes will change the size/  
current and price/current relationship of an inductor. Toroid  
or shielded pot cores in ferrite or permalloy materials are  
small and don' t radiate energy but generally cost more  
than powdered iron core inductors with similar  
characteristics. The choice of which style inductor to use  
mainly depends on the price vs. size requirements and  
any radiated field/EMI requirements.  
Inductor Selection  
For a given input and output voltage, the inductor value  
and operating frequency determine the ripple current. The  
ripple current DIL increases with higher VIN and decreases  
with higher inductance.  
CIN and COUT Selection  
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the source of the top MOSFET. To  
prevent large ripple voltage, a low ESR input capacitor  
sized for the maximum RMS current should be used. RMS  
current is given by :  
V
f ´ L  
V
OUT  
V
IN  
é
ù é  
ù
OUT  
ΔI =  
´ 1-  
ú ê  
L
ê
ú
ë
û ë  
û
Having a lower ripple current reduces the ESR losses in  
the output capacitors and the output voltage ripple. Highest  
efficiency operation is achieved at low frequency with small  
ripple current. This, however, requires a large inductor. A  
reasonable starting point for selecting the ripple current  
is DIL = 0.4(IMAX). The largest ripple current occurs at  
the highest VIN. To guarantee that the ripple current stays  
below a specified maximum, the inductor value should be  
chosen according to the following equation :  
VOUT  
V
IN  
IRMS = IOUT(MAX)  
- 1  
V
VOUT  
IN  
This formula has a maximum at VIN = 2VOUT, where IRMS  
= IOUT/2. This simple worst-case condition is commonly  
used for design because even significant deviations do  
not offer much relief. Note that ripple current ratings from  
capacitor manufacturers are often based on only 2000  
hours of life which makes it advisable to further derate the  
capacitor, or choose a capacitor rated at a higher  
temperature than required. Several capacitors may also  
be paralleled to meet size or height requirements in the  
design.  
é
ù é  
´ 1-  
ù
V
f ´ DI  
V
OUT  
V
IN(MAX)  
OUT  
L =  
ê
ú ê  
ú
L(MAX)  
ë
û ë  
û
Inductor Core Selection  
Once the value for L is known, the type of inductor must  
be selected. High efficiency converters generally cannot  
afford the core loss found in low cost powdered iron cores,  
DS8058-02 August 2007  
www.richtek.com  
11  
Preliminary  
RT8058  
The selection of COUT is determined by the effective series  
resistance (ESR) that is required to minimize voltage ripple  
and load step transients, as well as the amount of bulk  
capacitance that is necessary to ensure that the control  
loop is stable. Loop stability can be checked by viewing  
the load transient response as described in a later section.  
The output ripple, DVOUT, is determined by :  
Checking Transient Response  
The regulator loop response can be checked by looking  
at the load transient response. Switching regulators take  
several cycles to respond to a step in load current. When  
a load step occurs, VOUT immediately shifts by an amount  
equal to DILOAD(ESR), where ESR is the effective series  
resistance of COUT. DILOAD also begins to charge or  
discharge COUT generating a feedback error signal used  
by the regulator to return VOUT to its steady-state value.  
During this recovery time, VOUT can be monitored for  
overshoot or ringing that would indicate a stability problem.  
é
ù
1
ΔV  
£ ΔI ESR +  
OUT  
L
ê
ë
ú
8fC  
OUT  
û
The output ripple is highest at maximum input voltage  
since DIL increases with input voltage. Multiple capacitors  
placed in parallel may be needed to meet the ESR and  
RMS current handling requirements. Dry tantalum, special  
polymer, aluminum electrolytic and ceramic capacitors are  
all available in surface mount packages. Special polymer  
capacitors offer very low ESR but have lower capacitance  
density than other types. Tantalum capacitors have the  
highest capacitance density but it is important to only  
use types that have been surge tested for use in switching  
power supplies. Aluminum electrolytic capacitors have  
significantly higher ESR but can be used in cost-sensitive  
applications provided that consideration is given to ripple  
current ratings and long term reliability. Ceramic capacitors  
have excellent low ESR characteristics but can have a  
high voltage coefficient and audible piezoelectric effects.  
The high Q of ceramic capacitors with trace inductance  
can also lead to significant ringing.  
Efficiency Considerations  
The efficiency of a switching regulator is equal to the output  
power divided by the input power times 100%. It is often  
useful to analyze individual losses to determine what is  
limiting the efficiency and which change would produce  
the most improvement. Efficiency can be expressed as:  
Efficiency = 100% - (L1+ L2+ L3+ ...) where L1, L2, etc.  
are the individual losses as a percentage of input power.  
Although all dissipative elements in the circuit produce  
losses, two main sources usually account for most of the  
losses : VDD quiescent current and I2R losses. The VDD  
quiescent current loss dominates the efficiency loss at  
very low load currents whereas the I2R loss dominates  
the efficiency loss at medium to high load currents. In a  
typical efficiency plot, the efficiency curve at very low load  
currents can be misleading since the actual power lost is  
of no consequence.  
Using Ceramic Input and Output Capacitors  
Higher values, lower cost ceramic capacitors are now  
becoming available in smaller case sizes. Their high ripple  
current, high voltage rating and low ESR make them ideal  
for switching regulator applications. However, care must  
be taken when these capacitors are used at the input and  
output. When a ceramic capacitor is used at the input  
and the power is supplied by a wall adapter through long  
wires, a load step at the output can induce ringing at the  
input, VIN. At best, this ringing can couple to the output  
and be mistaken as loop instability. At worst, a sudden  
inrush of current through the long wires can potentially  
cause a voltage spike at VIN large enough to damage the  
part.  
1. The VDD quiescent current is due to two components :  
theDC bias current as given in the electrical characteristics  
and the internal main switch and synchronous switch gate  
charge currents. The gate charge current results from  
switching the gate capacitance of the internal power  
MOSFET switches. Each time the gate is switched from  
high to low to high again, a packet of charge DQ moves  
from VDD to ground. The resulting DQ/Dt is the current  
out of VDD that is typically larger than theDC bias current.  
In continuous mode,  
IGATECHG = f(QT+QB)  
where QT and QB are the gate charges of the internal top  
and bottom switches. Both the DC bias and gate charge  
losses are proportional to VDD and thus their effects will  
be more pronounced at higher supply voltages.  
www.richtek.com  
12  
DS8058-02 August 2007  
Preliminary  
RT8058  
2. I2R losses are calculated from the resistances of the  
internal switches, RSW and external inductor RL. In  
continuous mode the average output current flowing  
through inductor L is choppedbetween the main switch  
and the synchronous switch. Thus, the series resistance  
looking into the LX pin is a function of both top and bottom  
MOSFET RDS(ON) and the duty cycle (D) as follows :  
derating curves allows the designer to see the effect of  
rising ambient temperature on the maximum power  
allowed.  
1.6  
Four Layers PCB  
1.4  
1.2  
1
RSW = RDS(ON)TOP x D + RDS(ON)BOT x (1- D)  
0.8  
0.6  
0.4  
0.2  
0
The RDS(ON) for both the top and bottom MOSFETs can be  
obtained from the Typical Performance Characteristics  
curves. Thus, to obtain I2R losses, simply add RSW to RL  
and multiply the result by the square of the average output  
current. Other losses including CIN and COUT ESR  
dissipative losses and inductor core losses generally  
account for less than 2% of the total loss.  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature (°C)  
Thermal Considerations  
Figure 2. Derating Curves for RT8058 Package  
For continuous operation, do not exceed the maximum  
operation junction temperature 125°C. The maximum  
power dissipation depends on the thermal resistance of  
IC package, PCB layout, the rate of surroundings airflow  
and temperature difference between junction to ambient.  
The maximum power dissipation can be calculated by  
following formula :  
Layout Considerations  
Follow the PCB layout guidelines for optimal performance  
of RT8058.  
}A ground plane is recommended. If a ground plane layer  
is not used, the signal and power grounds should be  
segregated with all small-signal components returning  
to the GND pin at one point that is then connected to  
the PGND pin close to the IC. The exposed pad should  
be connected toGND.  
PD(MAX) = ( TJ(MAX) - TA ) / qJA  
Where TJ(MAX) is the maximum operation junction  
temperature 125°C, TA is the ambient temperature and  
the qJA is the junction to ambient thermal resistance.  
}Connect the terminal of the input capacitor(s), CIN, as  
close as possible to the PVDD pin. This capacitor provides  
the AC current into the internal power MOSFETs.  
For recommended operating conditions specification of  
RT8058, where TJ(MAX) is the maximum junction  
temperature of the die and TA is the maximum ambient  
temperature. The junction to ambient thermal resistance  
qJA is layout dependent. For WQFN-16L 3x3 packages,  
the thermal resistance qJA is 68°C/W on the standard  
JEDEC 51-7 four-layers thermal test board.  
}LX node is with high frequency voltage swing and should  
be kept small area. Keep all sensitive small-signal nodes  
away from LX node to prevent stray capacitive noise pick-  
up.  
}Flood all unused areas on all layers with copper. Flooding  
with copper will reduce the temperature rise of power  
components. You can connect the copper areas to any  
DC net (PVDD, VDD, VOUT, PGND, GND, or any other  
DC rail in your system).  
The maximum power dissipation at TA = 25°C can be  
calculated by following formula :  
PD(MAX) = ( 125°C - 25°C ) / 68°C/W = 1.471 W for  
WQFN-16L 3x3 packages  
The maximum power dissipation depends on operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance qJA. For RT8058 packages, the Figure 2 of  
}Connect the FB pin directly to the feedback resistors.  
The resistor divider must be connected between VOUT  
andGND.  
DS8058-02 August 2007  
www.richtek.com  
13  
Preliminary  
RT8058  
Figure 3. Top Layer  
Figure 4. Bottom Layer  
Table 1. Recommended Inductors  
Component  
Series  
Inductance  
DCR  
(mW)  
70  
22  
20  
Current Rating  
Dimensions  
(mm)  
Supplier  
(mH)  
3.3  
3.3  
3.3  
3.3  
3.3  
(mA)  
2000  
2600  
2500  
2600  
2360  
TAIYO YUDEN  
Murata  
NR 4018  
LQH66S  
4 x 4 x 1.8  
6.3 x 6.3 x 4.7  
7 x 7 x 4.5  
5.8 x 5.8 x 1.8  
5 x 5 x 2.8  
TDK  
Sumida  
GOTREND  
SLF7045T  
CDRH5D16  
GTSD53  
36  
34  
Table 2. Recommended Capacitors for CIN and COUT  
Component Supplier  
TDK  
Part No.  
Capacitance (mF)  
Case Size  
1210  
C3225X5R0J226M  
C2012X5R0J106M  
ECJ4YB1A226M  
ECJ4YB1A106M  
LMK325BJ226ML  
JMK316BJ226ML  
JMK212BJ106ML  
22  
10  
22  
10  
22  
22  
10  
TDK  
0805  
Panasonic  
1210  
Panasonic  
1210  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
1210  
1206  
0805  
www.richtek.com  
14  
DS8058-02 August 2007  
Preliminary  
RT8058  
Outline Dimension  
SEE DETAIL A  
D
D2  
L
1
E
E2  
1
2
1
2
e
b
DETAILA  
A
A3  
Pin #1 ID and Tie Bar Mark Options  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
0.800  
0.050  
0.250  
0.300  
3.050  
1.750  
3.050  
1.750  
Min  
Max  
0.031  
0.002  
0.010  
0.012  
0.120  
0.069  
0.120  
0.069  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.180  
2.950  
1.300  
2.950  
1.300  
0.028  
0.000  
0.007  
0.007  
0.116  
0.051  
0.116  
0.051  
D
D2  
E
E2  
e
0.500  
0.020  
L
0.350  
0.450  
0.014  
0.018  
W-Type 16L QFN 3x3 Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
DS8058-02 August 2007  
www.richtek.com  
15  

RT8058 相关器件

型号 制造商 描述 价格 文档
RT8058A RICHTEK 1.2MHz, 2A, High Efficiency PWM Step-Down DC/DC Converter 获取价格
RT8058GQW RICHTEK 1MHz, 2A, High Efficiency PWM Step-Down DC/DC Converter 获取价格
RT8058PQW RICHTEK 1MHz, 2A, High Efficiency PWM Step-Down DC/DC Converter 获取价格
RT8059 RICHTEK 1.5MHz, 1A, High Efficiency PWM Step-Down DC/DC Converter 获取价格
RT8059GJ5 RICHTEK 获取价格
RT8060 RICHTEK 1.5MHz, 1A High Efficiency Step-Down Converter 获取价格
RT8060A RICHTEK 1.5MHz, 1A High Efficiency Step-Down Converter 获取价格
RT8061A RICHTEK 3A, 1MHz, Synchronous Step-Down Converter 获取价格
RT8062 RICHTEK 2A, 2MHz, Synchronous Step-Down Converter 获取价格
RT8063 RICHTEK 3A, 2MHz, Synchronous Step-Down Converter 获取价格

RT8058 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6