RT8153C [RICHTEK]

暂无描述;
RT8153C
型号: RT8153C
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

暂无描述

CD
文件: 总29页 (文件大小:388K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT8153C/D  
Single Phase PWM Controller for CPU Core Power Supply  
General Description  
Features  
z Single Phase PWM Controller with Integrated  
The RT8153C/D is a single phase PWM controller with  
integrated MOSFET drivers. Moreover, it is compliant with  
Intel IMVP6.5 Voltage Regulator Specification to fulfill its  
mobile CPU core and Render core voltage regulator  
requirements. The RT8153C/D adopts G-NAVP (Green  
Native AVP), which is a Richtek proprietary topology  
derived from finiteDC gain compensator constant on-time  
mode, making it an easy setting PWM controller which  
meets all Intel AVP (Active Voltage Positioning) mobile  
CPU/Render requirements. The output voltage of the  
RT8153C/D is set by a 7-bit VID code. The built in high  
accuracyDAC converts the VIDcode into a voltage ranging  
from 0V to 1.5V with 12.5mV per step. The system  
accuracy of the controller can reach 1.5%.  
MOSFET Driver  
z G-NAVPTM Control Topology  
z 7-bit DAC with 0.8% DAC Accuracy  
z 1.5% or 11.5mV System Accuracy  
z Fixed VBOOT 1.1V (Only for RT8153C CPU Core Only)  
z Fixed VBOOT 1.2V (Only for RT8153D CPU Core Only)  
z Current Monitor Output  
z Built-in Offset Programming for Platform  
z Differential Remote Voltage Sensing  
z Diode Emulation Mode at Light Load Condition  
z Programmable Output Transition Slew Rate Control  
z System Thermal Compensated AVP  
z Fast Transient Response  
z Load Line Enable/Disable  
The part supports VIDon the fly and mode change on the  
fly functions that are fully compliant with IMVP6.5  
specification. It operates in single phase and diode  
emulation modes. It can reach up to 90% efficiency in  
different modes according to different loading conditions.  
z Power Good Indicator  
z Clock Enable Output (For CPU Core Only)  
z Thermal Throttling  
z Switching Frequency Up to 1MHz  
z OVP, UVP, OCP, OTP, UVLO, NVP  
z RoHS Compliant and Halogen Free  
The RT8153C/Dincludes power good and thermal throttling  
indicator and an additional clock enabling for CPU core  
specification. The soft-start and output transition slew rate  
is programmable by an external capacitor. It also features  
complete fault protection functions including over voltage,  
under voltage, negative voltage, over current and thermal  
shutdown. The RT8153C/Dis available in WQFN-32L 5x5  
and WQFN-32L 4x4 small foot print packages.  
Ordering Information  
RT8153C/D  
Package Type  
QW : WQFN-32L 5x5 (W-Type)  
QW : WQFN-32L 4x4 (W-Type)  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Z : ECO (Ecological Element with  
Halogen Free and Pb free)  
Applications  
z IMVP 6.5 VCORE/Render  
Package Size  
L : 5x5  
z AVP Step-Down Converter  
z Notebook / Desktop Computer / Servers  
S : 4x4  
VBOOT  
C : 1.1V  
D : 1.2V  
Note :  
Richtek products are :  
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering processes.  
DS8153C/D-05 April 2011  
www.richtek.com  
1
RT8153C/D  
Marking Information  
RT8153CLGQW  
RT8153DLGQW  
RT8153CLGQW : Product Number  
YMDNN : Date Code  
RT8153DLGQW : Product Number  
YMDNN : Date Code  
RT8153CL  
GQW  
RT8153DL  
GQW  
YMDNN  
YMDNN  
RT8153CLZQW  
RT8153DLZQW  
RT8153CLZQW : Product Number  
YMDNN : Date Code  
RT8153DLZQW : Product Number  
YMDNN : Date Code  
RT8153CL  
ZQW  
RT8153DL  
ZQW  
YMDNN  
YMDNN  
RT8153CSGQW  
RT8153DSGQW  
EH= : Product Code  
YMDNN : Date Code  
EJ= : Product Code  
YMDNN : Date Code  
EH=YM  
DNN  
EJ=YM  
DNN  
RT8153CSZQW  
RT8153DSZQW  
EH : Product Code  
YMDNN : Date Code  
EJ : Product Code  
YMDNN : Date Code  
EH YM  
DNN  
EJ YM  
DNN  
Pin Configurations  
(TOP VIEW)  
32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
NTC  
OCSET  
DPRSLPVR  
VRON  
BOOT  
UGATE  
PHASE  
PGND  
LGATE  
PVDD  
OFS  
GND  
PGOOD  
CLKEN  
VCC  
33  
SOFT  
TON  
9
10 11 12 13 14 15 16  
WQFN-32L 5x5 / WQFN-32L 4x4  
www.richtek.com  
2
DS8153C/D-05 April 2011  
RT8153C/D  
Typical Application Circuit  
V
IN  
5V to 25V  
RT8153C/D  
R2  
R3  
C3  
C4  
R1  
17  
7
TON  
VCC  
5V  
C5  
C1  
19  
31  
30  
PVDD  
R4  
24  
23  
BOOT  
Q1  
C2  
VID0  
VID1  
VID0  
UGATE  
L1  
R5  
R8  
22  
20  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
PHASE  
LGATE  
V
OUT  
29  
28  
27  
26  
Q2  
VID2  
VID3  
VID4  
VID5  
C7  
R6*  
C6*  
R7  
D1*  
C
OUT  
21  
16  
15  
PGND  
ISEN  
R14 R20  
NTC1  
ISEN_N  
25  
3
VID6  
R13  
11  
DPRSLPVR  
VRON  
CMSET  
VSEN  
FB  
DPRSLPVR  
VRON  
R21  
4
R22  
12  
13  
C9  
5
6
PWRGD  
PGOOD  
CLKEN  
CLKEN  
VRTT  
C12  
C13  
R19  
32  
VRTT  
R18  
14  
R10  
R9  
R11  
COMP  
CP  
U V  
CC_SENSE  
SS_SENSE  
V
CCP  
9
3.3V  
RGND  
SOFT  
CM  
CPU V  
C10  
R15  
NTC2  
8
1
2
R12  
C11  
V
CC  
NTC  
10  
R24  
R23  
CM  
18  
OFS  
R16  
V
CC  
OCSET  
R17  
GND  
33 (Exposed Pad)  
* = Optional  
Figure 1. IMVP 6.5 CPU Core Application Circuit  
DS8153C/D-05 April 2011  
www.richtek.com  
3
RT8153C/D  
V
IN  
5V to 25V  
RT8153C/D  
R2  
R3  
C3  
C4  
R1  
17  
7
TON  
VCC  
5V  
C5  
C1  
19  
31  
30  
PVDD  
R4  
24  
23  
BOOT  
Q1  
C2  
VID0  
VID1  
VID0  
UGATE  
PHASE  
LGATE  
PGND  
L1  
R5  
R8  
22  
20  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
V
OUT  
29  
28  
27  
26  
Q2  
VID2  
VID3  
VID4  
VID5  
C7  
R6*  
C6*  
R7  
D1*  
C
OUT  
21  
16  
15  
R14 R20  
NTC1  
ISEN  
ISEN_N  
25  
3
VID6  
R13  
11  
DPRSLPVR  
VRON  
CMSET  
VSEN  
FB  
DPRSLPVR  
VRON  
R21  
4
R22  
12  
13  
C9  
5
6
PWRGD  
CLKEN  
PGOOD  
CLKEN  
C12  
C13  
R19  
32  
VRTT  
VRTT  
R18  
14  
R10  
R9  
R11  
COMP  
C
PU V  
CC_SENSE  
V
CCP  
9
3.3V  
RGND  
SOFT  
CM  
CPU V  
SS_SENSE  
C10  
R15  
NTC2  
8
1
2
R12  
C11  
V
CC  
NTC  
10  
R24  
R23  
CM  
18  
OFS  
1V to 1.6V  
R16  
V
OCSET  
CC  
R17  
GND  
33 (Exposed Pad)  
* = Optional  
Figure 2. IMVP 6.5 CPU Core with Offset Application Circuit  
www.richtek.com  
4
DS8153C/D-05 April 2011  
RT8153C/D  
V
IN  
5V to 25V  
RT8153C/D  
R2  
R3  
C3  
C4  
R1  
17  
7
TON  
VCC  
5V  
C5  
C1  
19  
31  
30  
PVDD  
R4  
24  
23  
BOOT  
Q1  
C2  
VID0  
VID1  
VID0  
UGATE  
PHASE  
LGATE  
L1  
R5  
R8  
22  
20  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
V
OUT  
29  
28  
27  
26  
Q2  
VID2  
VID3  
VID4  
VID5  
C7  
R6*  
C6*  
R7  
D1*  
C
OUT  
21  
16  
15  
PGND  
ISEN  
R14 R20  
NTC1  
ISEN_N  
25  
3
VID6  
R13  
11  
DPRSLPVR  
VRON  
CMSET  
VSEN  
FB  
DPRSLPVR  
VRON  
R21  
4
R22  
12  
13  
C9  
5
PWRGD  
VRTT  
PGOOD  
C12  
C13  
R19  
32  
VRTT  
R9  
R11  
R18  
14  
COMP  
U V  
GP  
CC_SENSE  
V
CCP  
6
1
CLKEN  
NTC  
3.3V  
9
RGND  
SOFT  
CM  
GPU V  
SS_SENSE  
C10  
R15  
NTC2  
8
R12  
C11  
V
CC  
10  
R24  
R23  
CM  
18  
OFS  
R16  
2
V
CC  
OCSET  
R17  
GND  
33 (Exposed Pad)  
* = Optional  
Figure 3. IMVP 6.5 Render Application Circuit  
DS8153C/D-05 April 2011  
www.richtek.com  
5
RT8153C/D  
V
IN  
5V to 25V  
RT8153C/D  
R2  
R3  
C3  
C4  
R1  
17  
7
TON  
VCC  
5V  
C5  
C1  
19  
31  
30  
PVDD  
R4  
24  
23  
BOOT  
Q1  
C2  
VID0  
VID1  
VID0  
UGATE  
PHASE  
LGATE  
L1  
R5  
R8  
22  
20  
VID1  
VID2  
VID3  
VID4  
VID5  
V
OUT  
29  
28  
27  
26  
Q2  
VID2  
VID3  
VID4  
VID5  
C7  
R6*  
C6*  
R7  
D1*  
C
OUT  
21  
16  
15  
PGND  
ISEN  
R14 R20  
NTC1  
ISEN_N  
25  
3
VID6  
VID6  
DPRSLPVR  
VRON  
R13  
11  
DPRSLPVR  
VRON  
CMSET  
VSEN  
FB  
4
R21 R22  
12  
13  
C9  
5
PWRGD  
VRTT  
PGOOD  
C12  
R18  
C13  
R19  
32  
VRTT  
R9  
R11  
14  
COMP  
GP  
U V  
CC_SENSE  
V
CCP  
6
1
CLKEN  
NTC  
3.3V  
9
RGND  
SOFT  
CM  
GPU V  
SS_SENSE  
C10  
R15  
NTC2  
8
R12  
C11  
V
CC  
10  
R24  
R23  
CM  
18  
OFS  
1V to 1.6V  
R16  
2
V
CC  
OCSET  
R17  
GND  
33 (Exposed Pad)  
* = Optional  
Figure 4. IMVP 6.5 Render with Offset Application Circuit  
www.richtek.com  
6
DS8153C/D-05 April 2011  
RT8153C/D  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
Thermal Detection Input for VRTT Circuit. Connect this pin with a resistor divider  
from VCC using NTC on the top to set the thermal management threshold level.  
Furthermore, this pin provides load line enable/disable function.  
1
NTC  
Over Current Protection Setting. Connect a resistor voltage divider from VCC to  
ground, the joint of the resistive voltage divider is connected to the OCSET pin,  
2
OCSET  
with a voltage VOCSET, to set the over current threshold ILIM  
.
3
4
5
DPRSLPVR  
VRON  
Deeper Sleep Mode Signal.  
Voltage Regulator Enabler.  
PGOOD  
Power Good Indicator.  
Inverted Clock Enable. Pull high by a resistor for CPU core application. This  
open-drain pin is an output indicating the start of the PLL locking of the clock  
chip. Connect to GND for Render application.  
CLKEN  
VCC  
6
7
Chip Power.  
Soft-Start. This pin provides soft-start function and slew rate controller. The  
capacitance of the slew rate control capacitor is restricted to be larger than 10nF.  
The feedback voltage of the converter follows the ramping voltage on the SOFT  
pin during soft-start and other voltage transitions according to different mode of  
operation and VID change.  
8
SOFT  
Return Ground. This pin is the negative node of the differential remote voltage  
sensing.  
9
RGND  
CM  
Current Monitor Output. This pin outputs a voltage proportional to the output  
current.  
10  
Current Monitor Output Gain Externally Setting. Connect this pin with one resistor  
to VSEN the while CM pin is connected to ground with another resistor. In such a  
way, the current monitor output gain can be set by the ratio of these two resistors.  
11  
CMS ET  
Positive Voltage Sensing Pin. This pin is the positive node of the differential  
voltage sensing.  
12  
VSEN  
13  
14  
15  
16  
17  
18  
19  
20  
21  
FB  
Feedback. This is the negative input node of the error amplifier.  
Compensation Pin. This pin is the output node of the error amplifier.  
Negative Input of the Current Sense.  
COMP  
ISEN_N  
ISEN  
Positive Input of the Current Sense.  
TON  
Connect this Pin to VIN with One Resistor.  
Output Voltage Offset Setting.  
OFS  
PVDD  
LGATE  
PGND  
Driver Power.  
Lower Gate Drive. This pin drives the gate of the low side MOSFETs.  
Driver Ground.  
This pin is the return node of the high side MOSFET driver. Connect this pin to  
the high side MOSFET sources together with the low side MOSFET drains and  
the inductor.  
22  
PHASE  
23  
24  
UGATE  
BOOT  
Upper Gate Drive. This pin drives the gate of the high side MOSFETs.  
Bootstrap Power Pin. This pin powers the high side MOSFET drivers. Connect  
this pin to bootstrap capacitor.  
To be continued  
DS8153C/D-05 April 2011  
www.richtek.com  
7
RT8153C/D  
Pin No.  
Pin Name  
Pin Function  
Voltage ID. DAC voltage identification inputs for IMVP6.5.  
VID6 to VID0 The logic threshold is 30% of VCC as the maximum value for low state and  
70% of the VCC as the minimum value for the high state.  
25 to 31  
Voltage Regulator Thermal Throttling. This open drain output pin will be  
pulled low when the preset temperature level is exceeded.  
32  
VRTT  
33  
Ground. The exposed pad must be soldered to a large PCB and connected to  
GND for maximum power dissipation.  
GND  
(Exposed Pad)  
Function Block Diagram  
NTC  
PGOOD  
VRON  
VCC  
DPRSLPVR  
OCSET  
TON  
CLKEN  
VRTT  
SOFT  
VCC  
Power  
Saving  
mode  
Power On Reset  
&
Central Logic  
OCP  
Setting  
Mode  
Selection  
+
-
GND  
BOOT  
+
-
UGATE  
PHASE  
PVDD  
-
NVP Trip  
Point  
0LL  
2V  
+
-
Driver  
Logic  
Control  
+
+
-
1.1V for RT8153C  
1.2V for RT8153D  
OTP  
LGATE  
PWMCP  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
PGND  
+
-
DAC  
MUX  
OVP Trip  
Point  
-
ISEN_N  
ISEN  
+
-
10  
UVP Trip  
Point  
+
0LL  
RGND  
OFS  
Soft Start/Slew  
Rate  
Control/Offset  
Control  
ERROR  
AMP  
DPRSLPVR  
+
SOFT  
FB  
Offset Cancellation  
-
CM  
CM  
CMSET  
COMP  
VSEN  
www.richtek.com  
8
DS8153C/D-05 April 2011  
RT8153C/D  
Table 1. IMVP6.5 VID Code Table  
VID6 VID5 VID4 VID3 VID2 VID1 VID0 Output VID6 VID5 VID4 VID3 VID2 VID1 VID0 Output  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1.5000V  
1.4875V  
1.4750V  
1.4625V  
1.4500V  
1.4375V  
1.4250V  
1.4125V  
1.4000V  
1.3875V  
1.3750V  
1.3625V  
1.3500V  
1.3375V  
1.3250V  
1.3125V  
1.3000V  
1.2875V  
1.2750V  
1.2625V  
1.2500V  
1.2375V  
1.2250V  
1.2125V  
1.2000V  
1.1875V  
1.1750V  
1.1625V  
1.1500V  
1.1375V  
1.1250V  
1.1125V  
1.1000V  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.0875V  
1.0750V  
1.0625V  
1.0500V  
1.0375V  
1.0250V  
1.0125V  
1.0000V  
0.9875V  
0.9750V  
0.9625V  
0.9500V  
0.9375V  
0.9250V  
0.9125V  
0.9000V  
0.8875V  
0.8750V  
0.8625V  
0.8500V  
0.8375V  
0.8250V  
0.8125V  
0.8000V  
0.7875V  
0.7750V  
0.7625V  
0.7500V  
0.7375V  
0.7250V  
0.7125V  
0.7000V  
0.6875V  
To be continued  
DS8153C/D-05 April 2011  
www.richtek.com  
9
RT8153C/D  
VID6 VID5 VID4 VID3 VID2 VID1 VID0 Output  
VID6 VID5 VID4 VID3 VID2 VID1 VID0 Output  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0.6750V  
0.6625V  
0.6500V  
0.6375V  
0.6250V  
0.6125V  
0.6000V  
0.5875V  
0.5750V  
0.5625V  
0.5500V  
0.5375V  
0.5250V  
0.5125V  
0.5000V  
0.4875V  
0.4750V  
0.4625V  
0.4500V  
0.4375V  
0.4250V  
0.4125V  
0.4000V  
0.3875V  
0.3750V  
0.3625V  
0.3500V  
0.3375V  
0.3250V  
0.3125V  
0.3000V  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.2875V  
0.2750V  
0.2625V  
0.2500V  
0.2375V  
0.2250V  
0.2125V  
0.2000V  
0.1875V  
0.1750V  
0.1625V  
0.1500V  
0.1375V  
0.1250V  
0.1125V  
0.1000V  
0.0875V  
0.0750V  
0.0625V  
0.0500V  
0.0375V  
0.0250V  
0.0125V  
0.0000V  
0.0000V  
0.0000V  
0.0000V  
0.0000V  
0.0000V  
0.0000V  
0.0000V  
www.richtek.com  
10  
DS8153C/D-05 April 2011  
RT8153C/D  
Absolute Maximum Ratings (Note 1)  
z VCC to GND -------------------------------------------------------------------------------------------------------- 0.3V to 6.5V  
z RGND, PGNDtoGND ------------------------------------------------------------------------------------------- 0.3V to 0.3V  
z VIDx to GND ------------------------------------------------------------------------------------------------------- 0.3V to (VCC + 0.3V)  
z DPRSLPVR, VRON to GND ----------------------------------------------------------------------------------- 0.3V to (VCC + 0.3V)  
z PGOOD, CLKEN, VRTT toGND------------------------------------------------------------------------------ 0.3V to (VCC + 0.3V)  
z VSEN, FB, COMP, SOFT, OCSET, CM, CMSET, NTC to GND --------------------------------------- 0.3V to (VCC + 0.3V)  
z ISEN, ISEN_NtoGND ------------------------------------------------------------------------------------------ 0.3V to (VCC + 0.3V)  
z PVDDto PGND --------------------------------------------------------------------------------------------------- 0.3V to 6.5V  
z LGATE to PGND  
DC-------------------------------------------------------------------------------------------------------------------- 0.3V to (PVDD + 0.3V)  
<20ns --------------------------------------------------------------------------------------------------------------- 2.5V to 7.5V  
z PHASE to PGND  
DC-------------------------------------------------------------------------------------------------------------------- 0.3V to 30V  
<20ns --------------------------------------------------------------------------------------------------------------- 8V to 38V  
z BOOT to PHASE ------------------------------------------------------------------------------------------------- 0.3V to 6.5V  
z UGATE to PHASE  
DC-------------------------------------------------------------------------------------------------------------------- 0.3V to (PVDD + 0.3V)  
<20ns --------------------------------------------------------------------------------------------------------------- 5V to 7.5V  
z TONtoGND ------------------------------------------------------------------------------------------------------- 0.3V to 30V  
z Power Dissipation, PD @ TA = 25°C  
WQFN32L 5x5 --------------------------------------------------------------------------------------------------- 2.778W  
WQFN32L 4x4 --------------------------------------------------------------------------------------------------- 1.923W  
z Package Thermal Resistance (Note 2)  
WQFN32L 5x5, θJA --------------------------------------------------------------------------------------------- 36°C/W  
WQFN32L 5x5, θJC --------------------------------------------------------------------------------------------- 6°C/W  
WQFN32L 4x4, θJA --------------------------------------------------------------------------------------------- 52°C/W  
WQFN32L 4x4, θJC --------------------------------------------------------------------------------------------- 7°C/W  
z Junction Temperature -------------------------------------------------------------------------------------------- 150°C  
z Storage Temperature Range ----------------------------------------------------------------------------------- 65°C to 150°C  
z Lead Temperature (Soldering, 10 sec.)---------------------------------------------------------------------- 260°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Mode) ------------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) --------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 4)  
z Supply Voltage, VCC --------------------------------------------------------------------------------------------- 4.5V to 5.5V  
z Battery Voltage, VIN --------------------------------------------------------------------------------------------- 5V to 25V  
z Junction Temperature Range----------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range----------------------------------------------------------------------------------- 40°C to 85°C  
DS8153C/D-05 April 2011  
www.richtek.com  
11  
RT8153C/D  
Electrical Characteristics  
(VCC = 5V, TA = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
OFS Function (Only for RT8153C/D)  
Enable  
OFS Threshold Offset  
VOFS > 0.92V before VRON rising  
0.92  
1.2  
--  
V
Voltage  
Disable  
Offset  
VOFS connected to GND before VRON  
rising  
No Offset Voltage  
Offset 400mV  
Offset 200mV  
--  
--  
--  
1
1.2  
1.6  
1
--  
--  
--  
--  
Set OFS voltage  
VOFS  
ROFS  
V
Impedance  
--  
MΩ  
OLL Function  
Pulse sinking current source NTC  
resistor at VRON rising edge.  
Detect and Latch voltage at NTC pin at  
VRON rising edge.  
I0LL  
--  
2
80  
--  
--  
--  
μA  
NTC  
V0LL  
V
V
NTC < V0LL, enable 0 Load Line  
Function.  
Supply Input  
Supply Voltage  
VCC  
4.5  
--  
5
5.5  
10  
V
IVCC  
IPVCC  
+
Supply Current  
VRON = 3.3V, Not Switching  
--  
mA  
ICC  
IPVCC  
Soft-Start/Slew Rate Control (based on 10nF CSS  
+
Shutdown Current  
V
RON = 0V  
--  
--  
5
μA  
)
Soft-Start / Soft-Shutdown ISS1  
VSOFT = 1.5V  
--  
20  
50  
--  
μA  
μA  
Normal VID change slew  
current  
ISS2  
VSOFT = 1.5V  
VSOFT = 1.5V  
40  
60  
Deeper Sleep Exit/VID  
Change Slew Current  
(only at IMVP6.5 Render  
ISS3  
80  
100  
120  
μA  
application)  
Reference and DAC  
VVID = 0.7500 1.5000  
(No Load, Active Mode )  
0.5  
0
0.5  
%VID  
mV  
DC Accuracy  
Boot Voltage  
VFB  
VVID = 0.5000 0.7500  
For RT8153C VCORE  
For RT8153D VCORE  
7.5  
1.089  
1.188  
0
7.5  
1.1  
1.2  
1.111  
1.212  
VBOOT  
V
Error Amplifier  
Input Offset Voltage  
DC Gain  
VOSEA  
2  
70  
--  
--  
2
--  
--  
mV  
dB  
RL = 47kΩ  
80  
10  
Gain Bandwidth Product  
GBW  
CLOAD = 5pF  
MHz  
C
LOAD = 10pF (Gain = 4,  
Slew Rate  
SRCOMP  
VCOMP  
--  
5
--  
V/μs  
RF = 47kΩ, VOUT = 0.5V 3V)  
Output Voltage Range  
RL = 47kΩ  
0.5  
--  
3.6  
V
To be continued  
www.richtek.com  
12  
DS8153C/D-05 April 2011  
RT8153C/D  
Parameter  
Symbol  
Test Conditions  
VCOMP = 2V  
Min  
200  
20  
Typ  
250  
--  
Max Unit  
Maximum Source  
Current  
--  
--  
μA  
IOUTEA_COMP  
Maximum Sink Current  
Current Sense Amplifier  
Input Offset Voltage  
VCOMP = 2V  
mA  
VOSCS  
1  
1
--  
--  
1
--  
--  
--  
1
mV  
MΩ  
MΩ  
V/V  
%
Impedance at Neg. Input RISEN_N  
Impedance at Pos Input RISEN  
DC Gain  
1
--  
1 Phase Operating  
--  
10  
VISEN Linearity  
VISEN_ACC  
30mV < ISEN_IN < 50mV  
1  
DEM TON Setting  
TON Pin Output Voltage VTON  
ITON = 80μA, VTON = VVID = 0.75  
IRTON = 80μA  
5  
--  
0
350  
--  
5
--  
%
ns  
μA  
DEM ON-Time Setting  
RTON Current Range  
tON  
IRTON  
25  
280  
Protection  
Under Voltage Lock out  
Threshold  
UVLO Hysteresis  
VUVLO  
Falling Edge.  
4.1  
--  
4.3  
200  
1.7  
4.5  
--  
V
mV  
V
Absolute Over Voltage  
Protection Threshold  
Absolute Over Voltage  
Offset  
Relative Over Voltage  
Protection Threshold  
VOVABS  
(Respect to 1.7V, ±50mV)  
1.65  
1.75  
VOVABS_OFS (Respect to 2V, ±50mV)  
1.95  
250  
2
2.05  
350  
V
VOV  
(Respect to VDAC, ±50mV)  
300  
mV  
Measured at VSEN with respect to  
Unloaded Output Voltage (UOV)  
(for 0.8 < UOV < 1.5)  
Under Voltage Protection  
Threshold  
VUV  
450 400 350  
mV  
Negative Voltage  
Protection Threshold  
Current Limit Threshold  
Voltage  
Thermal Shut Down  
Threshold  
Measured at VSEN with Respect to  
GND  
VISEN VISEN_N = VILIM,  
VNV  
100  
45  
--  
--  
50  
--  
55  
--  
mV  
mV  
°C  
VILIMIT  
TSD  
VOCSET = 2.4V, 48 x VILIMT = VOCSET  
160  
10  
Thermal Shut Down  
Hysteresis  
ΔTSD  
--  
--  
°C  
Logic Inputs  
VIH  
VIL  
Respect to 1.05V, 70%  
Respect to 1.05V, 30%  
0.735  
--  
--  
--  
--  
VRON Threshold  
V
μA  
V
0.315  
Leakage Current of  
VRON  
1  
--  
1
VIH  
VIL  
Respect to 1.05V, 70%  
Respect to 1.05V, 30%  
0.735  
--  
--  
--  
--  
DAC (VID0 to VID6) and  
DPRSLPVR  
0.315  
Leakage Current of DAC  
(VID0 to VID6), PSI and  
DPRSLPVR  
1  
--  
1
μA  
To be continued  
DS8153C/D-05 April 2011  
www.richtek.com  
13  
RT8153C/D  
Parameter  
Power Good  
Symbol  
Test Conditions  
Min  
Typ  
Max Unit  
PGOOD Low Voltage  
PGOOD Delay  
V
t
I
= 4mA  
--  
3
--  
--  
0.4  
20  
V
PGOOD  
PGOOD  
ms  
CLK_EN Low to PGOOD High  
= 4mA (only for V )  
CORE  
PGD  
Clock Enable  
V
I
--  
--  
0.4  
V
CLKEN Low Voltage  
Thermal Throttling  
CLKEN  
CLKEN  
Thermal Throttling  
Threshold  
V
Measure at NTC Respect to V  
--  
80  
--  
%VDD  
OT  
CC  
Thermal Throttling  
Threshold Hysteresis  
V
V
At V = 5V  
--  
--  
230  
--  
--  
mV  
V
OT_HY  
VRTT  
CC  
I
= 40mA  
0.4  
VRTT  
VRTT Output Voltage  
Current Monitor  
Current Monitor Output  
Voltage in Operating  
Range  
Current Monitor Maximum  
Output Voltage  
V
R
V  
= 18kΩ, R  
= 20mV,  
ISEN  
ISEN_N  
450  
--  
480  
--  
510  
mV  
V
= 12kΩ  
CM  
CMSET  
1.15  
Gate Driver  
V
V  
V  
= 5V  
PHASE  
= 1V  
LGATE  
BOOT  
Upper Driver Source  
R
--  
1
--  
Ω
UGATEsr  
V
BOOT  
Upper Driver Sink  
Lower Driver Source  
Lower Driver Sink  
R
V
= 1V  
1
1
Ω
Ω
Ω
UGATEsk  
UGATE  
R
V
PVDD  
= 5V, V  
V = 1V  
LGATE  
--  
--  
--  
--  
LGATEsr  
PVDD  
R
V
LGATE  
= 1V  
0.5  
LGATEsk  
Upper Driver Source/Sink  
Current  
Lower Driver Source  
Current  
V
V  
= 5V  
BOOT  
PHASE  
I
--  
2
--  
A
UGATE  
V
= 2.5V  
= 2.5V  
LGATE  
UGATE  
I
V
--  
--  
--  
2
4
--  
--  
--  
A
A
Ω
LGATEsr  
Lower Driver Sink Current I  
V
LGATE  
= 2.5V  
LGATEsk  
Internal Boot Charging  
Switch On Resistance  
R
PVDD to BOOT  
30  
BOOT  
Note 1. Stresses listed as the above Absolute Maximum Ratingsmay cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. θJA is measured in natural convection at TA = 25°C on a high effective thermal conductivity four-layers test board of  
JEDEC 51-7 thermal measurement standard. The measurement case position of θJC is on the exposed pad of the  
package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
www.richtek.com  
14  
DS8153C/D-05 April 2011  
RT8153C/D  
Typical Operating Characteristics  
CCM VCC_SENSE vs. Load Current  
CCM Efficiency vs. Load Current  
1.16  
1.14  
1.12  
1.10  
1.08  
1.06  
1.04  
100  
90  
80  
VIN = 8V  
VIN = 12V  
VIN = 19V  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 8V  
VIN = 12V  
VIN = 19V  
VID= 1.15V, RTON= 120kΩ,DPRSLPVR =GND  
VID= 1.15V, RTON= 120kΩ,DPRSLPVR =GND  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Load Current (A)  
Load Current (A)  
CCM VCC_SENSE vs. Load Current  
CCM Efficiency vs. Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.94  
0.92  
0.90  
0.88  
0.86  
0.84  
0.82  
VIN = 8V  
VIN = 12V  
VIN = 19V  
VIN = 8V  
VIN = 12V  
VIN = 19V  
VID= 0.9375V, RTON = 120kΩ,DPRSLPVR =GND  
10 15 20 25 30  
VID= 0.9375V, RTON = 120kΩ, DPRSLPVR =GND  
10 15 20 25 30  
0
5
0
5
Load Current (A)  
Load Current (A)  
VCM vs. Load Current  
DEM Efficiency vs. Load Current  
90  
85  
80  
75  
70  
65  
60  
55  
50  
1200  
1000  
800  
600  
400  
200  
0
VIN = 8V  
VIN = 12V  
VIN = 19V  
VIN = 8V  
VIN = 12V  
VIN = 19V  
VID= 0.85V, RTON= 120kΩ,DPRSLPVR = High  
0.5 1.5 2.5 3  
VID= 0.9375V, RTON= 120kΩ,DPRSLPVR =GND  
10 15 20 25 30  
0
5
0
1
2
Load Current (A)  
Load Current (A)  
DS8153C/D-05 April 2011  
www.richtek.com  
15  
RT8153C/D  
Render Mode Power On  
CPU Mode Power On  
VCC_SENSE  
(1V/Div)  
VCC_SENSE  
(1V/Div)  
PGOOD  
(5V/Div)  
PGOOD  
(5V/Div)  
VRON  
(5V/Div)  
VRON  
(5V/Div)  
CLKEN  
(5V/Div)  
CLKEN  
(5V/Div)  
VID = 0.9375V, CLKEN Pull High to 3.3V  
Time (1ms/Div)  
VID = 0.9375V, CLKEN Pull low to GND  
Time (1ms/Div)  
CPU Mode Power Down  
CCM VID Change Down  
VCC_SENSE  
(100mV/Div)  
VCC_SENSE  
(1V/Div)  
UGATE  
(20V/Div)  
PGOOD  
(5V/Div)  
VRON  
(5V/Div)  
LGATE  
(5V/Div)  
VIN = 12V, DPRSLPVR = GND, No Load  
CLKEN  
(5V/Div)  
VID0  
(2V/Div)  
VID = 0.9375V, CLKEN Pull High to 3.3V  
VID change from 0.9375V to 0.85V  
Time (100μs/Div)  
Time (20μs/Div)  
CPU-DEM VID Change Down  
CCM VID Change Up  
VCC_SENSE  
(100mV/Div)  
VCC_SENSE  
(100mV/Div)  
UGATE  
(20V/Div)  
UGATE  
(20V/Div)  
LGATE  
(5V/Div)  
LGATE  
(5V/Div)  
VIN = 12V, DPRSLPVR = GND, No Load  
VIN = 12V, DPRSLPVR = High, No Load  
VID0  
VID0  
(2V/Div)  
(2V/Div)  
VID change from 0.85V to 0.9375V  
VID change from 0.9375V to 0.85V  
Time (20μs/Div)  
Time (20μs/Div)  
www.richtek.com  
16  
DS8153C/D-05 April 2011  
RT8153C/D  
CCM Load Transient Response  
CCM Load Transient Response  
VIN = 12V, VID = 0.9375V, ILOAD = 5A to 28A  
DPRSLPVR =GND  
VIN = 12V, VID = 0.9375V, ILOAD = 28A to 5A  
DPSLPVR = High  
VCC_SENSE  
(100mV/Div)  
VCC_SENSE  
(100mV/Div)  
UGATE  
(20V/Div)  
UGATE  
(20V/Div)  
LGATE  
(5V/Div)  
LGATE  
(5V/Div)  
Time (10μs/Div)  
Time (10μs/Div)  
Over Voltage Protection  
Over Current Protection  
VIN = 12V, VID= 0.9375V, DPRSLPVR =GND  
VCC_SENSE  
(1V/Div)  
VCC_SENSE  
(1V/Div)  
ILOAD  
(20A/Div)  
UGATE  
(20V/Div)  
PHASE  
(10V/Div)  
LGATE  
(10V/Div)  
VIN = 12V, VID = 0.9375V, DPRSLPVR = GND  
PGOOD  
(2V/Div)  
PGOOD  
(2V/Div)  
Time (10μs/Div)  
Time (10μs/Div)  
Under Voltage Protection  
VCC_SENSE  
(1V/Div)  
UGATE  
(20V/Div)  
LGATE  
(5V/Div)  
PGOOD  
(2V/Div)  
VIN = 12V, VID = 0.9375, VDPRSLPVR = GND  
Time (10μs/Div)  
DS8153C/D-05 April 2011  
www.richtek.com  
17  
RT8153C/D  
Application Information  
Differential Remote Sense Connection  
The RT8153C/D is a single-phase PWM controller with  
embedded gate driver. It is compliant with Intel IMVP6.5  
Voltage Regulator Specification to fulfill its mobile CPU  
and Render voltage regulator power supply requirement.  
Inductor current are continuously sensed for loop control,  
droop tuning, and over current protection. The 7-bit VID  
DAC and low offset differential amplifier allow the controller  
to maintain high regulating accuracy to meet Intel’s  
IMVP6.5 specification.  
The RT8153C/D includes differential, remote-sense inputs  
to eliminate the effects of voltage drops along the PC  
board traces, CPU internal power routes, and socket  
contacts. CPU contains on-die sense pins VCC_SENSE and  
VSS_SENSE. Connect RGND to VSS_SENSE. Connect FB to  
VCC_SENSE with a resistor to build the negative input path  
of the error amplifier. Connect VSEN to VCC_SENSE for  
CLKEN, PGOOD, OVP, and UVP detection. The 7 bit VID  
DAC and the precision voltage reference are referred to  
RGNDfor accurate remote sensing.  
Design Tool  
To help users to reduce the efforts and errors caused by  
manual calculations using the design concept below, a  
user-friendly design tool is now available on request.  
Current Sense Setting  
The RT8153C/D is continuously sensing the inductor  
current. Therefore, the controller can be less noise  
sensitive. Low offset amplifiers are used for loop control  
and over current detection. The internal current sense  
amplifier gain (AI) is fixed to be 10. ISEN and ISEN_N  
denote the positive and negative inputs of the current sense  
amplifier.  
This design tool calculates all necessary design  
parameters by entering user's requirements. Please  
contact Richtek's representatives for details.  
Operation Modes  
Table 2 shows the RT8153C/D operation modes. When  
VRON is enabled (=1), the RT8153C/D will detect CLKEN  
within 10μs to determine which operation mode is applied.  
If CLKEN is low, the RT8153C/D will operate in Render  
core voltage regulator mode. If CLKEN is high, the IC will  
operate in CPU core voltage regulator mode.  
Users can either use a current-sense resistor or the  
inductor'sDCR for current sensing. Using inductor'sDCR  
allows higher efficiency as shown in Figure 5. If  
L
= R × C  
(1)  
X
X
DCR  
then the transient performance will be optimum. For  
example, choose L = 0.36μH with 1mΩ DCR and  
CX = 100nF, to yield for RX :  
DPRSLPVR determines whether the operation mode of  
the controller operation is in CCM orDEM. The controller  
enters DEM (Diode Emulation Mode) when DPRSLPVR  
= 1 and enters CCM when DPRSLPVR = 0.  
0.36μH  
(2)  
R
=
= 3.6kΩ  
X
1m Ω ×1 0 0n F  
Table 2. Control Signal Truth Table for Operation  
Modes of the RT8153C/D  
V
OUT  
L
DCR  
CLKEN DPRSLPVR Operation Mode  
PHASE  
C
R
X
X
0
(GND)  
1
0
1
0
1
Render CCM  
Render DEM  
CPU CCM  
+ V  
-
X
ISEN  
ISEN_N  
(Pull High)  
CPU DEM  
Figure 5. Lossless Inductor Current Sensing  
www.richtek.com  
18  
DS8153C/D-05 April 2011  
RT8153C/D  
so  
Considering the inductance tolerance, the resistor, RX, has  
to be tuned on board by examining the transient voltage.  
If the output voltage transient has an initial dip below the  
minimum load line requirement with a slow recovery, RX  
is chosen too small. Vice-versa, with a resistance too  
large, the output voltage transient has only a small initial  
dip and the recovery become too fast, causing a ring-back.  
R
R R (mR  
+ mR )R mR  
R
NTC  
P
X
NTC  
P
X
NTC P  
R =  
S
(7)  
(R  
R )R + m(R  
+ R )  
NTC  
P
X
NTC P  
RX can be expressed by :  
b ± b2 4ac  
(8)  
R
=
X
2a  
where  
a =ATHCTL ATLCTH  
Since theDCR of inductor is highly temperature dependent,  
it affects the output accuracy, current monitor and over  
current protection accuracy at hot conditions. Temperature  
compensation is recommended for the lossless inductor  
DCR current sense method. Figure 6 shows a simple but  
effective way of compensating the temperature variations  
of the sense resistor using an NTC thermistor at DCR  
sensing network.  
b =ATHDTL BTLCTH ATLDTH  
c = BTLDTH BTHDTL  
where  
ATH = RNTC_THRP mTHRNTC_TH mTHRP  
ATL = RNTC_TLRP mTLRNTC_TL mTLRP  
BTH = RNTC_THRP  
V
OUT  
L
DCR  
PHASE  
BTL = RNTC_TLRP  
C
X
R
X
CTH = RNTC_TH RP  
R
S
R
P
ISEN  
CTL = RNTC_TL RP  
R
NTC  
DTH = mTH (RNTC_TH + RP)  
DTL = mTL (RNTC_TL + RP)  
ISEN_N  
Figure 6. Lossless Inductor Current Sensing withNTC  
Compensation  
where XTH denotes the value of this variable at high  
temperature, and XTL denotes the value of this variable at  
low temperature.  
Usually, RP is set to equal RNTC(25°C). RS is selected to  
linearize theNTC's temperature characteristic. For a given  
NTC, design is to get RS and RX to compensate the  
temperature variations of the sense resistor.  
Using current sense resistor in series with the inductor  
can have better accuracy, but the efficiency is a trade-off.  
Considering the equivalent inductance (LESL) of the current  
sense resistor, a RC filter is recommended. The RC filter  
calculation method is similar to the above-mentioned  
inductorDCR sensing method.  
Let  
Requ = RS + (RP / /RNTC  
)
(3)  
(4)  
Then, according to above circuit,  
Loop Control  
R
equ  
L
DCR  
= C  
x
X
The RT8153C/Dadopts Richtek's proprietaryG-NAVPTM  
topology. G-NAVPTM is based on the finite-gain current  
mode with CCRCOT (Constant Current Ripple Constant  
On Time) topology. The output voltage, VOUT, will decrease  
with increasing output load current. The control loop  
consists of PWM modulator with power stage, current  
sense amplifier and error amplifier as shown in Figure 7.  
R + R  
X equ  
Next, let  
L
m =  
(5)  
DCR x CX  
Then  
R
×R  
R
R
+ R  
+ R  
NTC  
P
NTC  
P
m× R + R +  
= R × R +  
X S  
X
S
R
NTC  
+ R  
P ⎠  
NTC  
P ⎠  
(6)  
DS8153C/D-05 April 2011  
www.richtek.com  
19  
RT8153C/D  
V
IN  
whereAI is the internal current sense amplifier gain. RSENSE  
is the current sense resistor. If no external sense resistor  
present, it is the DCR of the inductor. RDROOP is the  
resistive slope value of the converter output and is the  
desired static output impedance.  
RT8153C/D  
UGATE  
V
OUT  
HS_FET  
CCRCOT  
PWM  
Logic  
L
R
X
C
LGATE  
X
C
LS_FET  
CMP  
+
ISEN  
V
COMP2  
CS  
+
-
A
ISEN_N  
I
V
OUT  
C2  
R2  
C1  
R1  
A
V2  
> A  
V1  
COMP  
V
V
CC_SENSE  
FB  
-
Offset  
Cancellation  
EA  
SOFT  
+
C
SOFT  
A
A
V2  
V1  
10nF  
RGND  
V
DAC  
SS_SENSE  
Figure 7. Simplified Schematic for Droop and Remote  
Sense in CCM  
0
Load Current  
Figure 8. ErrorAmplifierGain (AV) Influence on VOUT  
The HS_FET on-time is determined by CCRCOT On-Time  
generator. When load current increases, VCS increases,  
the steady-state COMP voltage also increases and makes  
VOUT decrease, achieving AVP. A near-DC offset  
cancellation is added to the output of EA to cancel the  
inherent output offset of finite-gain current mode controller.  
As shown in Figure 9, whenDCR sensing network is used  
for NTC thermistor temperature compensation, the error  
amplifier gain can be calculated as :  
A ×R  
Z2  
Z1  
I
SENSE  
(11)  
A
=
=
×K  
V
R
DROOP  
where K is the dividing ratio of DCR sensing as shown  
below :  
In RFM, HS_FET is turned on with constant tON when VCS  
is lower than VCOMP2. Once HS_FET is turned off, LS_FET  
is turned on automatically. With Ringing-Free Technique,  
LS_FET allows only partial negative current when the  
inductor free-wheeling current reaches negative. The  
switching frequency will be proportionately reduced, thus  
the conduction and switching losses will be greatly  
reduced.  
Z2  
Z1+ Z2  
K =  
(12)  
V
OUT  
L
DCR  
PHASE  
ISEN  
C
X
Z1  
Z2  
Output Voltage Droop Setting (with Temperature  
Compensation)  
It's very easy to achieveActive Voltage Positioning (AVP)  
by properly setting the error amplifier gain due to the native  
droop characteristics. The target is to have  
ISEN_N  
Figure 9. Using anNTC Thermistor atDCR Sensing  
Network  
VOUT = VDAC ILOAD x RDROOP  
(9)  
, then solving the switching condition VCOMP = VCS in Figure  
7 yields the desired error amplifier gain as  
Loop Compensation  
Optimized compensation of the RT8153C/D allows for best  
possible load step response of the regulator's output. A  
compensator with one pole and one zero is adequate for  
a proper compensation. Figure 7 shows the compensation  
circuit. Prior design procedure shows how to determine  
A ×R  
R2  
R1  
I
SENSE  
A
=
=
(10)  
V
R
DROOP  
www.richtek.com  
20  
DS8153C/D-05 April 2011  
RT8153C/D  
the resistive feedback components of error amplifier gain.  
The C1 and C2 must be calculated for the compensation.  
The target is to achieve constant resistive output impedance  
over the widest possible frequency range.  
time by a period equal to the HS-FET rising dead time.  
For better efficiency of the given load range, the maximum  
switching frequency is suggested to be :  
1
fS(MAX)  
=
×
(17)  
tON tHS-Delay  
The pole frequency of the compensator must be set to  
compensate the output capacitor ESR zero :  
VDAC(MAX) +ILOAD(MAX) × RON_LS-FET + DCRL RDROOP  
⎡ ⎤  
+ILOAD(MAX) × RON_LS-FET RON_HS-FET  
V
IN(MAX)  
1
fP =  
(13)  
2× π× C×RC  
where  
where C is the capacitance of output capacitor and RC is  
the ESR of output capacitor. C2 can be calculated as  
follows :  
` fsMAX is the maximum switching frequency  
` tHS- Delay is the turn on delay of HS-FET  
` VDAC(MAX) is the maximum VDAC of application  
` VINMAX is the maximum application Input voltage  
` ILOAD(MAX) is the maximum load of application  
` RON_LS-FET is the Low side FET RDS(ON)  
` RON_HS-FET is the High side FET RDS(ON)  
` DCRL is the inductorDCR  
C×R  
R2  
C
C2 =  
(14)  
The zero of compensator has to be placed at half of the  
switching frequency to filter the switching-related noise,  
such that,  
1
C1 =  
(15)  
R1b + R1a // R  
× π× f  
SW  
(
)
NTC, 25  
` RDROOP is the load line setting  
TON Setting  
High frequency operation optimizes the application for the  
smaller component size, trading off efficiency due to higher  
switching losses. This may be acceptable in ultra-portable  
devices where the load currents are lower and the  
controller is powered from a lower voltage supply. Low  
frequency operation offers the best overall efficiency at  
the expense of component size and board space. Figure  
10 shows the On-Time setting circuit. Connect a resistor  
(RTON) between VINand TONto set the on-time of UGATE:  
R
TON  
R1  
C1  
TON  
V
IN  
CCRCOT  
On-Time  
Generator  
V
DAC  
On-Time  
Figure 10. On-Time setting with RC Filter  
14.5×1012 ×R  
(V V  
× 2  
Soft-Start and Mode Transition Slew Rates  
TON  
(16)  
t
=
ON  
)
The RT8153C/D uses 3 slew rates for various modes of  
operation. The three slew rates are internally determined  
by commanding one of three bi-directional current sources  
(ISS) into the SOFT pin. The 7 bit VIDDAC and the precision  
voltage reference are referred to RGNDfor accurate remote  
sensing. Hence, connect a capacitor (CSOFT) from SOFT  
pin to RGND for controlling the slew rate as shown in  
Figure 7. The capacitance of capacitor is restricted to be  
larger than 10nF. The voltage (VSOFT) on the SOFT pin is  
the reference voltage of the error amplifier and is, therefore,  
the commanded system voltage.  
IN  
DAC  
where tON is UGATE turn on period, VIN is input voltage of  
converter, VDAC isDAC voltage.  
On-time translates only roughly to switching frequencies.  
The on-times guaranteed in the Electrical Characteristics  
are influenced by switching delays in external HS-FET.  
Also, the dead-time effect increases the effective on-time,  
reducing the switching frequency. It occurs only in CCM  
(DPRSLPVR = 0) and during dynamic output voltage  
transitions when the inductor current reverses at light or  
negative load currents. With reversed inductor current,  
PHASE goes high earlier than normal, extending the on-  
The first current is typically 20μA used to charge or  
discharge the CSOFT during soft-start, and soft-shutdown.  
DS8153C/D-05 April 2011  
www.richtek.com  
21  
RT8153C/D  
The second current is typically 50μA used during other  
voltage transitions, including VID change and transitions  
between operation modes. The third current is typically  
100μA used during Render DEM with VID change up  
transitions.  
Power Up Sequence  
When the controller's VCC voltage rises above the UVLO  
threshold (typ. 4.3V), the power up sequence begins when  
VRON goes high. If CLKEN = 1 (Pull High), the  
RT8153C/D will enter CPU mode power-up sequence. If  
CLKEN = 0 (Connect to GND), the controller will enter  
Render mode power up sequence.  
The IMVP6.5 specification specifies the critical timing  
associated with regulating the output voltage. The symbol,  
SLEWRATE, as given in the IMVP6.5 specification will  
determine the choice of the SOFT capacitor, CSOFT, by the  
following equation :  
After the RT8153C/D enters CPU mode, VSEN starts  
ramping up to VBOOT within 1ms. The slew rate during  
power-up is 20μA/CSOFT. The RT8153C/Dpulls CLKENlow  
after VSENgets across VBOOT 0.1V for 73μs. Right after  
CLKENgoes low, VSENstarts ramping to first VDAC value.  
After CLKENgoes low for approximately 4.7ms, PGOOD  
is asserted HIGH. DPRSLPVR is valid right after PGOOD  
is asserted. UVP is masked as long as VSEN is less than  
VBOOT 0.1V.  
ISS  
CSOFT  
=
(18)  
SLEWRATE  
4.3V  
VCC  
4.1V  
UVLO  
VRON  
VID  
XX  
Valid  
xx  
V
BOOT  
V
BOOT  
- 0.1V  
VSEN  
0.2V  
PWM  
Hi-Z  
CCM  
XX  
CCM  
Pull Down  
XX  
DPRSLPVR Defined  
Valid  
DPRSLPVR  
CLKEN  
PGOOD  
73µs typ.  
4.7ms typ.  
Figure 11. CPU Mode TimingDiagram for Power Up and PowerDown  
After the RT8153C/Denters Render mode, VSENstarts ramping up to VDAC within 1ms. The slew rate during power-up  
is 20μA/CSOFT. PGOOD is asserted HIGH after VSEN exceeds VDAC 100mV for 4.77ms (typ.). DPRSLPVR is valid  
right after PGOOD is asserted. UVP is masked as long as VSEN is less than VDAC 100mV.  
www.richtek.com  
22  
DS8153C/D-05 April 2011  
RT8153C/D  
4.3V  
4.1V  
VCC  
POR  
VRON  
VID  
xx  
XX  
Valid  
VDAC  
VDAC-100mV  
VSEN  
PWM  
0.2V  
Hi-Z  
CCM  
Pull Down  
XX  
DPRSLPVR Defined  
Valid  
CCM  
DPRSLPVR  
XX  
PGOOD  
4.77ms typ.  
Figure 12. Render Mode TimingDiagram for Power Up and PowerDown  
Power Down  
the joint of the voltage divider connected to OCSET pin as  
shown in Figure 13. For a given ROC2, then  
When VRONgoes low, the RT8153C/Denters low power  
shutdown mode. PGOOD is pulled low immediately and  
the VSOFT ramps down with slew rate of 20μA/CSOFT. VSEN  
also ramps down following VSOFT.After VVSEN is lower than  
200mV, the RT8153C/D turns off high side FETs and low  
side FETs. An internal discharge resistor at VSEN will be  
enabled and the analog part will be turned off.  
V
CC  
(20)  
R
= R  
×
OC2  
1  
OC1  
V
OCSET  
V
CC  
R
OC1  
OCSET  
R
OC2  
Deeper Sleep Mode Transitions  
AfterDPRSLPVR goes high, the RT8153C/Denters deeper  
sleep mode operation. If the VIDs are set to a lower voltage  
setting, the output drops at a rate determined by the load  
and the output capacitance. The internal target VSOFT still  
ramps as before, and UVP, OCP and OVP are masked for  
73μs.  
Figure 13. OCP Setting Without Temperature  
Compensation  
The RT8153C/D provides current limit function and over  
current protection. The current limit function is triggered  
when inductor current exceeds the current limit threshold,  
ILIM, defined by VOCSET. When current limit function is  
tripped, high side MOSFET will be forced off until the over  
current condition is cleared.  
Over Current Protection Setting  
The RT8153C/Dcompares a programmable current limit  
set point to the voltage from the current sense amplifier  
output for over current protection (OCP). The voltage applied  
to OCSET pin defines the desired current limit threshold  
If the current limit function is triggered for 15 switching  
cycles, OCP will be tripped. Once OCP is tripped, both  
high side and low side MOSFET will be turned off, and the  
internal discharge resistor at the VSEN pin will be enabled  
to discharge output capacitors. OCP is a latched  
protection, it can only be reset by cycling VRON or VCC.  
ILIM  
:
VOCSET = 48 x ILIM x RSENSE  
(19)  
Connect a resistive voltage divider from VCC toGND, with  
DS8153C/D-05 April 2011  
www.richtek.com  
23  
RT8153C/D  
Over Voltage Protection (OVP)  
state and the discharging resistor at VSEN pin will be  
enabled. A reset can be executed by cycling VCC or  
VRON.  
The OVP circuit is triggered under two conditions (without  
offset mode):  
` Condition 1 : When VVSEN exceeds 1.7V.  
Thermal Throttling Control  
` Condition 2 : When VVSEN exceeds VDAC by 300mV  
Intel IMVP-6.5 technology supports thermal throttling of  
the processor to prevent catastrophic thermal damage.  
The RT8153C/D includes a thermal monitoring circuit to  
detect an exceeded user-defined temperature on a VR  
point. The thermal monitoring circuit senses the voltage  
change acrossNTC pin. Figure 14 shows the principle of  
setting the temperature threshold. Connect an external  
resistive voltage divider between Vcc andGND. This divider  
uses aNegative Temperature Coefficient (NTC) thermistor  
and a resistor. The joint of the voltage divider is connected  
to the NTC pin in order to generate a voltage that is  
inversely proportional to temperature. The RT8153C/D  
pulls VRTT low if the voltage on the NTC pin is greater  
than 0.8 x VCC. The internal VRTT comparator has a  
hysteresis of 200mV (typ.) to prevent high frequency VRTT  
oscillation when the temperature is near the setting point.  
The minimum assertion/de-assertion time for VRTT toggling  
is 1.6ms (typ.).  
(typ.).  
When offset mode, the relative over voltage protection is  
disable and the over circuit is triggered until VVSEN exceeds  
2V.  
If either condition is valid, the RT8153C/D latches the  
LGATE = 1 and UGATE = 0 as crowbar to the output  
voltage of VR. Turning on all LS_FETs can lead to very  
large reverse inductor current and potentially result in  
negative output voltage of VR. To prevent the CPU from  
damage by negative voltage. The RT8153C/Dturns off all  
LS_FETs when VVSEN falls below 100mV.  
Under Voltage Protection (UVP)  
If VVSEN is lower than VDAC by 400mV (typ.) a UVP fault  
will be tripped. Once UVP is tripped, both high side and  
low side MOSFET will be turned off and the internal  
discharge resistor at VSEN pin will be enabled. UVP is a  
latched protection; it can only be reset by cycling VRON  
or VCC.  
V
CC  
VRTT  
NTC  
NTC  
CMP  
+
-
Negative Voltage Protection (NVP)  
R
TT  
During the state when VVSEN is lower than 100mV, the  
controller will force LGATE = 0 and UGATE = 0 to prevent  
negative voltage. Once VVSEN recovers to be higher than  
0V,NVP will be suspended and LGATE = 1 will be enabled  
again.  
+
0.8 x V  
CC  
Figure 14. Thermal Throttling Setting Principle  
Furthermore, this pin also provides load line enable/disable  
function in which the zero load line regulation can be  
implemented through NTC pin. The NTC pin will sink a  
80μA current pulse inward the IC at VRON rising edge  
and the IC will detect the voltage of NTC pin at the same  
time to determine whether the zero load line function is  
enabled or not. Figure 15 is the recommended setting  
network of zero load line. The 100kΩ NTC resistor is  
recommended in this setting network for zero load line  
application and the resistance of R1 is set to be the same  
value as the resistor at 25°C. In addition, the resistance  
of both R2 and R3 can be obtained by solving the equations  
21 and 22.  
Over Temperature Protection (OTP)  
Over Temperature Protection prevents the VR from  
damage. OTP is considered to be the final protection stage  
against overheating of the VR. The thermal throttling VRTT  
is set to be asserted prior to OTP to manage the VR power.  
When this measure becomes insufficient to keep the die  
temperature of the controller below the OTP threshold,  
OTP will be asserted and latched. The die temperature of  
the controller is monitored internally by a temperature  
sensor. As a result of OTP triggering, a soft shutdown will  
be launched and VVSEN will be monitored. When VVSEN is  
less than 200mV, the driver remains in high impedance  
www.richtek.com  
24  
DS8153C/D-05 April 2011  
RT8153C/D  
for 120°C  
VNTC  
I
(MAX) = 30A, DCR = 1mΩ,  
R3  
=
x VCC = 4V  
VCM = 1V, RCMSET = 10kΩ  
(R1/ /RNTCHT ) + R2 + R3  
(21)  
(22)  
RCM = 20.8kΩ  
for 20°C  
VNTC  
R3  
=
x VCC = 1.5V  
(R1/ /RNTCLT ) + R2 + R3  
VSEN  
V
Current  
Monitor  
Generator  
CC_SENSE  
R
CMSET  
CMSET  
CM  
VRTT  
V
CM  
VCC  
R
CM  
C1  
RGND  
NTC  
R1  
Figure 16. Current Monitor Setting Principle  
R2  
NTC  
CMP  
+
-
When DCR sensing network is used for NTC thermistor  
temperature compensation, the current monitor indication  
voltage, VCM, can be calculated as below :  
R3  
0.8 x V  
CC  
Figure15. For Zero Load LineNetwork  
Current Monitor  
16×I  
×DCR×R ×K  
CM  
LOAD  
V
CM  
=
(25)  
R
CMSET  
To find RCM and RCMSET follow below equation :  
Figure 16 shows the current monitor setting principle.  
Current monitor needs to meet IMVP6.5 specification. The  
RT8153C/Dis based on the relation between RDROOP and  
load current to provide an easy setting and high accuracy  
current monitor indicator.  
V
V
CM(MAX)  
CM  
=
(26)  
R
16×I  
×DCR×R ×K  
CMSET  
(MAX) CM  
where, K is dividing ration of DCR sensing.  
The current monitor indication voltage, VCM, is calculated  
as :  
No Load Offset  
The RT8153C/D feature no-load offset function which  
provides the possibility of wide range positive/negative  
offset. The no-load offset function can be implemented  
through OFS pin. To enable no-load offset function, the  
voltage of the OFS pin should be higher than 0.9V at the  
VRON raising edge. It is recommended to set the OFS  
pin at 1.2V before VRON rising edge. The no-load offset  
range can be from 400mV to 200mV while OFS pin  
voltage varying from 1.6V to 1V. The output offset voltage  
magnitude is equaled to the voltage difference between  
OFS pin and the 1.2V. For example, the OFS pin should  
be set to 1.4V if the target offset voltage is 200mV and  
OFS pin should be set to 1.1V to have 100mV output  
offset voltage. The accuracy of this offset voltage is 10mV  
at no-offset point which OFS pin is 12V and the linearity  
of no-load offset function is higher than 95% in the 400mV  
16×I  
×DCR×R  
LOAD  
CM  
(23)  
V
CM  
=
R
CMSET  
where ILOAD is the output load current, DCR is the load  
line setting of applications, and RCM and RCMSET are the  
current monitor current setting resistors.  
To find RCM and RCMSET, follow below equation :  
RCM  
VCM  
=
(24)  
RCMSET 16×I(MAX) ×DCR  
VCM must be kept equal to 1V and I(MAX) needs to follow  
the setting current of the IMVP6.5 definition with various  
CPU. VCM is clamped not higher than 1.15V.  
For an example of current monitor setting, the following  
design parameters are given :  
DS8153C/D-05 April 2011  
www.richtek.com  
25  
RT8153C/D  
to 200mV range. Furthermore, the offset function has  
clamp mechanism to prevent the output voltage run-away.  
The lower limit of the offset function is 300mV which  
means the output offset voltage magnitude will keep exactly  
300mV even if the OFS pin voltage is lower than 0.9V. In  
another hand, the upper limit of the offset function is about  
600mV which means the output offset voltage magnitude  
will keep about 600mV even if the OFS pin voltage is  
higher than 1.8V.  
maximum power dissipation can be calculated by the  
following formula :  
PD(MAX) = (TJ(MAX) TA) / θJA  
where TJ(MAX) is the maximum junction temperature, TAis  
the ambient temperature, and θJA is the junction to ambient  
thermal resistance.  
For recommended operating condition specifications of  
the RT8153C/D, the maximum junction temperature is  
125°C and TA is the ambient temperature. The junction to  
ambient thermal resistance, θJA, is layout dependent. For  
WQFN-32L 4x4 packages, the thermal resistance, θJA, is  
52°C/W on a standard JEDEC 51-7 four-layer thermal test  
board. For WQFN-32L 5x5 packages, the thermal  
resistance, θJA, is 36°C/W on a standard JEDEC 51-7  
four-layer thermal test board. The maximum power  
dissipation at TA = 25°C can be calculated by the following  
formulas :  
Inductor Selection  
The switching frequency and ripple current determine the  
inductor value as follows :  
V
IN VOUT  
L(MIN)  
=
× tON  
(27)  
IRippleMAX  
where tON is the UGATE turn on period.  
Higher inductance yields in less ripple current and hence  
in higher efficiency. The flaw is the slower transient  
response of the power stage to load transients. This might  
increase the need for more output capacitors driving the  
cost up. Find a low-loss inductor having the lowest possible  
DC resistance that fits in the allotted dimensions. The  
core must be large enough not to be saturated at the  
peak inductor current.  
PD(MAX) = (125°C 25°C) / (36°C/W) = 2.778W for  
WQFN-32L 5x5 package  
PD(MAX) = (125°C 25°C) / (52°C/W) = 1.923W for  
WQFN-32L 4x4 package  
The maximum power dissipation depends on the operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance, θJA. For the RT8153C/Dpackages, the derating  
curves in Figure 17 allow the designer to see the effect of  
rising ambient temperature on the maximum power  
dissipation.  
Output Capacitor Selection  
Output capacitors are used to obtain high bandwidth for  
the output voltage beyond the bandwidth of the converter  
itself. Usually, the CPU manufacturer recommends a  
capacitor configuration. Two different kinds of output  
capacitors can be found including, bulk capacitors closely  
located to the inductors and ceramic output capacitors in  
close proximity to the load. Latter ones are for mid-  
frequency decoupling with especially small ESR and ESL  
values while the bulk capacitors have to provide enough  
stored energy to overcome the low frequency bandwidth  
gap between the regulator and the CPU.  
3.00  
Four Layers PCB  
2.80  
2.60  
2.40  
2.20  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
WQFN-32L 5x5  
WQFN-32L 4x4  
Thermal Considerations  
For continuous operation, do not exceed absolute  
maximum junction temperature. The maximum power  
dissipation depends on the thermal resistance of the IC  
package, PCB layout, rate of surrounding airflow, and  
difference between junction and ambient temperature. The  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 17.Derating Curve for RT8153C/DPackage  
DS8153C/D-05 April 2011  
www.richtek.com  
26  
RT8153C/D  
Layout Considerations  
Careful PC board layout is critical to achieve low switching  
losses and clean, stable operation. The switching power  
stage requires particular attention. If possible, mount all  
of the power components on the top side of the board  
with their ground terminals flush against one another.  
Follow these guidelines for optimum PC board layout :  
` Keep the high current paths short, especially at the  
ground terminals.  
` Keep the power traces and load connections short. This  
is essential for high efficiency.  
` The slew rate control capacitor should be connected  
from SOFT to RGND.  
` When trade-offs in trace lengths must be made, it’s  
preferable to allow the inductor charging path to be made  
longer than the discharging path.  
` Place the current sense component close to the  
controller. ISENand ISEN_Nconnections for current limit  
and voltage positioning must be made using Kelvin sense  
connections to guarantee the current sense accuracy.  
The PCB trace from the sense nodes to controller should  
be parallel to each other.  
` Route high-speed switching nodes away from sensitive  
analog areas (SOFT, COMP, FB, VSEN, ISEN, ISEN_N,  
CM, etc...)  
DS8153C/D-05 April 2011  
www.richtek.com  
27  
RT8153C/D  
Outline Dimension  
D
D2  
SEE DETAIL A  
L
1
E
E2  
1
2
1
2
e
b
DETAILA  
A
Pin #1 ID and Tie Bar Mark Options  
A3  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.180  
4.950  
3.400  
4.950  
3.400  
0.800  
0.050  
0.250  
0.300  
5.050  
3.750  
5.050  
3.750  
0.028  
0.000  
0.007  
0.007  
0.195  
0.134  
0.195  
0.134  
0.031  
0.002  
0.010  
0.012  
0.199  
0.148  
0.199  
0.148  
D
D2  
E
E2  
e
0.500  
0.020  
L
0.350  
0.450  
0.014  
0.018  
W-Type 32L QFN 5x5 Package  
www.richtek.com  
28  
DS8153C/D-05 April 2011  
RT8153C/D  
1
2
1
2
DETAILA  
Pin #1 ID and Tie Bar Mark Options  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.150  
3.900  
2.650  
3.900  
2.650  
0.800  
0.050  
0.250  
0.250  
4.100  
2.750  
4.100  
2.750  
0.028  
0.000  
0.007  
0.006  
0.154  
0.104  
0.154  
0.104  
0.031  
0.002  
0.010  
0.010  
0.161  
0.108  
0.161  
0.108  
D
D2  
E
E2  
e
0.400  
0.016  
L
0.300  
0.400  
0.012  
0.016  
W-Type 32L QFN 4x4 Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
5F, No. 95, Minchiuan Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)86672399 Fax: (8862)86672377  
Email: marketing@richtek.com  
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit  
design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be  
guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.  
DS8153C/D-05 April 2011  
www.richtek.com  
29  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY