RT8165B [RICHTEK]

暂无描述;
RT8165B
型号: RT8165B
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

暂无描述

文件: 总38页 (文件大小:496K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT8165B  
Dual Single-Phase PWM Controller for CPU and GPU Core  
Power Supply  
General Description  
Features  
Dual Single-Phase PWM Controller for CPU Core  
The RT8165B is a dual single-phase PWM controller with  
integrated MOSFET drivers, compliant with Intel IMVP7  
Pulse Width Modulation Specification to support both  
CPU core andGPU core power. This part adoptsG-NAVPTM  
(Green-NativeAVP), which is a Richtek proprietary topology  
derived from finite DC gain compensator in constant on-  
time control mode. G-NAVPTM makes this part an easy  
setting PWM controller to meet all Intel AVP (Active  
Voltage Positioning) mobile CPU/GPU requirements. The  
RT8165B uses SVIDinterface to control an 8-bitDAC for  
output voltage programming. The built-in high accuracy  
DAC converts the received VID code into a voltage value  
ranging from 0V to 1.52V with 5mV step voltage. The  
system accuracy of the controller can reach 0.8%. The  
RT8165B operates in continuous conduction mode or  
diode emulation mode, according to the SVIDcommand.  
The maximum efficiency can reach up to 90% in different  
operating modes according to different load conditions.  
The droop function (load line) can be easily programmed  
by setting the DC gain of the error amplifier. With proper  
compensation, the load transient response can achieve  
optimized AVP performance.  
and GPU Core Power  
IMVP7 Compatible Power Management States  
Serial VID Interface  
G-NAVPTM Topology  
AVP for CPU VR Only  
0.5% DAC Accuracy  
0.8% System Accuracy  
Differential Remote Voltage Sensing  
Built-in ADC for Platform Programming  
SETINI/SETINIA for CPU/GPU Core VR Initial  
Startup Voltage  
TMPMAX to Set Platform Maximum Temperature  
ICCMAX/ICCMAXA for CPU/GPU Core VR  
Maximum Current  
Power Good Indicator : VR_READY/VRA_READY for  
CPU/GPU Core Power  
Thermal Throttling Indicator : VRHOT  
Diode Emulation Mode at Light Load Condition  
Fast Line/Load Transient Response  
Switching Frequency up to 1MHz per Phase  
OVP, UVP, NVP, OTP, UVLO, OCP  
Small 40-Lead WQFN Package  
RoHS Compliant and Halogen Free  
The output voltage transition slew rate is set via the SVID  
interface. The RT8165B supports both DCR and sense  
resistor current sensing. The RT8165B provides  
VR_READY and thermal throttling output signals for  
IMVP7 CPU and GPU core. This part also features  
complete fault protection functions including over voltage,  
under voltage, negative voltage, over current and thermal  
shutdown.  
Applications  
IMVP7 Intel CPU/GPU Core Power Supply  
Laptop Computers  
AVP Step-Down Converter  
The RT8165B is available in a WQFN-40L 5x5 small  
footprint package.  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
1
RT8165B  
Ordering Information  
RT8165B  
Pin Configurations  
(TOP VIEW)  
Package Type  
QW : WQFN-40L 5x5 (W-Type)  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Z : ECO (Ecological Element with  
Halogen Free and Pb free)  
40 39 38 37 36 35 34 33 32 31  
30  
29  
1
2
ISENAP  
ISENAN  
COMPA  
FBA  
RGNDA  
VCLK  
VDIO  
ALERT  
VRA_READY  
VR_READY  
BOOT1  
TONSET  
ISEN1P  
ISEN1N  
COMP  
FB  
RGND  
GFXPS2  
VCC  
28  
27  
26  
25  
24  
23  
22  
21  
3
Note :  
4
5
GND  
Richtek products are :  
6
RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
7
8
41  
9
Suitable for use in SnPb or Pb-free soldering processes.  
10  
SETINIA  
11 12 13 14 15 16 17 18 19 20  
Marking Information  
RT8165BGQW  
RT8165BGQW : Product Number  
WQFN-40L 5x5  
RT8165B  
GQW  
YMDNN  
YMDNN : Date Code  
RT8165BZQW  
RT8165BZQW : Product Number  
YMDNN : Date Code  
RT8165B  
ZQW  
YMDNN  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS8165B-03 November 2013  
RT8165B  
Typical Application Circuit  
R1  
2.2  
V
RT8165B  
TONSET  
R2  
130k  
R3  
5.1  
CC  
9
V
IN  
5V to 25V  
2
VCC  
5V  
C1  
1µF  
C2  
0.1µF  
C3  
V
R4  
0
Q1  
CCP  
40  
10µF  
UGATE1  
R6 R7 R8 R9 R10 R11  
130 130 150 10k 10k 75  
DCR = 7.6m  
V
CORE  
C4  
0.1µF  
0
R5  
1
L1  
BOOT1  
Optional  
1µH  
39  
25  
24  
23  
22  
21  
20  
PHASE1  
VCLK  
VDIO  
ALERT  
VRA_READ  
VR_READY  
VRHOT  
VCLK  
VDIO  
ALERT  
C26  
C5  
R12  
0
Q2  
38  
37  
R13  
C7  
330µF  
/9m  
330  
µF  
C6  
0.068µF  
LGATE1  
PVCC  
R14  
3.9k  
/9m  
Y
VRA_READ  
VR_READY  
VRHOT  
Y
5V  
NTC  
C8  
1µF  
1
R15  
4.7k  
4.7k  
R16  
2.4k  
ß = 3500  
V
CC  
3
4
ISEN1P  
ISEN1N  
R17  
27k  
R18  
R19 R20  
Optional  
C10  
8.7k 10k  
10k  
C9  
Optional  
C11  
6
Optional  
CORE V SEN  
FB  
18  
OCSETA  
OCSETA  
OCSET  
SETINIA  
SETINI  
16  
10  
11  
OCSET  
SETINIA  
SETINI  
SE  
CC  
R23  
100  
R22  
10k  
R21  
71k  
5
7
COMP  
RGND  
V
CORE  
CORE V SENSE  
SS  
R24  
10k  
R25  
R26  
10k  
R27  
NC  
NC  
R28  
100  
R34  
5.1  
R33  
130k  
V
31  
IN  
TONSETA  
V
5V to 25V  
CC  
C12  
0.1µF  
R29  
51k  
R30  
R31  
R32  
NC  
0
0
Q3  
R35  
R36  
150k 100k  
C14  
10µF  
34  
33  
UGATEA  
BOOTA  
12  
13  
14  
TMPMAX  
ICCMAX  
ICCMAXA  
GFXPS2  
TMPMAX  
ICCMAX  
ICCMAXA  
GFXPS2  
C13  
0.1µF  
m
DCR = 14.6  
V
GFX  
L2  
2µH  
Optional  
8
35  
36  
PHASEA  
C27  
330µF  
/15m  
C17  
C16  
0.1µF  
R43  
11k  
330µF  
/15m  
R42  
C15  
R37 R38  
33k  
R39 R40  
1.6k 10k  
R41  
0
Q4  
LGATEA  
5.1k  
NTC  
A
R44  
1k  
R45  
1.2k  
1k  
V
CC  
ß = 3650  
30  
29  
ISENAP  
ISENAN  
NTC  
TA  
R46  
12k  
NTC  
R47  
12k  
T1  
10k  
10k  
ß = 3380  
C18  
ß = 3380  
Optional  
Optional  
C19  
Optional  
C20  
27  
FBA  
R71  
750  
R72  
750  
NSE  
GFX V SE  
CC  
17  
15  
19  
TSENA  
TSEN  
IBIAS  
R48  
42k  
R49  
10k  
R50  
100  
28  
26  
COMPA  
RGNDA  
V
GFX  
R52  
1k  
GFX V SENSE  
SS  
R53  
1k  
R54  
53.6k  
R51  
100  
41 (Exposed P  
ad)  
GND  
32  
Chip Enable  
EN  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
3
RT8165B  
Table 1. IMVP7/VR12 Compliant VID Table  
VID7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
VID4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
VID3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
VID2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
VID1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
H1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
H0  
0
VDAC Voltage  
0.000  
0.250  
0.255  
0.260  
0.265  
0.270  
0.275  
0.280  
0.285  
0.290  
0.295  
0.300  
0.305  
0.310  
0.315  
0.320  
0.325  
0.330  
0.335  
0.340  
0.345  
0.350  
0.355  
0.360  
0.365  
0.370  
0.375  
0.380  
0.385  
0.390  
0.395  
0.400  
0.405  
0.410  
0.415  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS8165B-03 November 2013  
RT8165B  
VID7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
VID5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
VID4  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
VID3  
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
VID2  
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
VID1  
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID0  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
H1  
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
H0  
3
DAC Voltage  
0.420  
0.425  
0.430  
0.435  
0.440  
0.445  
0.450  
0.455  
0.460  
0.465  
0.470  
0.475  
0.480  
0.485  
0.490  
0.495  
0.500  
0.505  
0.510  
0.515  
0.520  
0.525  
0.530  
0.535  
0.540  
0.545  
0.550  
0.555  
0.560  
0.565  
0.570  
0.575  
0.580  
0.585  
0.590  
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
5
RT8165B  
VID7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID6  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
VID4  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
VID3  
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
VID2  
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
VID1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
H1  
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
H0  
6
DAC Voltage  
0.595  
0.600  
0.605  
0.610  
0.615  
0.620  
0.625  
0.630  
0.635  
0.640  
0.645  
0.650  
0.655  
0.660  
0.665  
0.670  
0.675  
0.680  
0.685  
0.690  
0.695  
0.700  
0.705  
0.710  
0.715  
0.720  
0.725  
0.730  
0.735  
0.740  
0.745  
0.750  
0.755  
0.760  
0.765  
0.770  
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS8165B-03 November 2013  
RT8165B  
VID7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID6  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID4  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID3  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
VID2  
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
VID1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
H1  
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
H0  
A
B
C
D
E
F
0
DAC Voltage  
0.775  
0.780  
0.785  
0.790  
0.795  
0.800  
0.805  
0.810  
0.815  
0.820  
0.825  
0.830  
0.835  
0.840  
0.845  
0.850  
0.855  
0.860  
0.865  
0.870  
0.875  
0.880  
0.885  
0.890  
0.895  
0.900  
0.905  
0.910  
0.915  
0.920  
0.925  
0.930  
0.935  
0.940  
0.945  
0.950  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
7
RT8165B  
VID7  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID4  
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
VID3  
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
VID2  
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
VID1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
H1  
8
H0  
E
F
0
DAC Voltage  
0.955  
0.960  
0.965  
0.970  
0.975  
0.980  
0.985  
0.990  
0.995  
1.000  
1.005  
1.010  
1.015  
1.020  
1.025  
1.030  
1.035  
1.040  
1.045  
1.050  
1.055  
1.060  
1.065  
1.070  
1.075  
1.080  
1.085  
1.090  
1.095  
1.100  
1.105  
1.110  
1.115  
1.120  
1.125  
1.130  
8
9
9
1
9
2
9
3
9
4
9
5
9
6
9
7
9
8
9
9
9
A
B
C
D
E
F
0
9
9
9
9
9
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS8165B-03 November 2013  
RT8165B  
VID7  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
VID3  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
VID2  
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
VID1  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
H1  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D
D
D
D
D
D
H0  
2
DAC Voltage  
1.135  
1.140  
1.145  
1.150  
1.155  
1.160  
1.165  
1.170  
1.175  
1.180  
1.185  
1.190  
1.195  
1.200  
1.205  
1.210  
1.215  
1.220  
1.225  
1.230  
1.235  
1.240  
1.245  
1.250  
1.255  
1.260  
1.265  
1.270  
1.275  
1.280  
1.285  
1.290  
1.295  
1.300  
1.305  
1.310  
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
9
RT8165B  
VID7  
1
VID6  
1
VID5  
0
VID4  
1
VID3  
0
VID2  
1
VID1  
1
VID0  
0
H1  
D
D
D
D
D
D
D
D
D
D
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
H0  
6
DAC Voltage  
1.315  
1.320  
1.325  
1.330  
1.335  
1.340  
1.345  
1.350  
1.355  
1.360  
1.365  
1.370  
1.375  
1.380  
1.385  
1.390  
1.395  
1.400  
1.405  
1.410  
1.415  
1.420  
1.425  
1.430  
1.435  
1
1
0
1
0
1
1
1
7
1
1
0
1
1
0
0
0
8
1
1
0
1
1
0
0
1
9
1
1
0
1
1
0
1
0
A
B
C
D
E
F
0
1
1
0
1
1
0
1
1
1
1
0
1
1
1
0
0
1
1
0
1
1
1
0
1
1
1
0
1
1
1
1
0
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
1
0
0
0
1
0
2
1
1
1
0
0
0
1
1
3
1
1
1
0
0
1
0
0
4
1
1
1
0
0
1
0
1
5
1
1
1
0
0
1
1
0
6
1
1
1
0
0
1
1
1
7
1
1
1
0
1
0
0
0
8
1
1
1
0
1
0
0
1
9
1
1
1
0
1
0
1
0
A
B
C
D
E
1
1
1
0
1
0
1
1
1
1
1
0
1
1
0
0
1
1
1
0
1
1
0
1
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
E
F
F
F
F
F
F
F
F
F
F
0
1
2
3
4
5
6
7
8
1.440  
1.445  
1.450  
1.455  
1.460  
1.465  
1.470  
1.475  
1.480  
1.485  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS8165B-03 November 2013  
RT8165B  
VID7  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
H1  
F
H0  
9
DAC Voltage  
1.490  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
F
A
1.495  
F
B
1.500  
F
C
D
E
1.505  
F
1.510  
F
1.515  
F
F
1.520  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
11  
RT8165B  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
CPU VR Bootstrap Power Pin. This pin powers the high side MOSFET drivers.  
Connect this pin to the PHASE1 pin with a bootstrap capacitor.  
1
BOOT1  
Single-Phase CPU VR On-Time Setting Pin. Connect this pin to VIN with a  
resistor to set ripple size in PWM mode.  
2
TONSET  
3
4
ISEN1P  
ISEN1N  
Positive Current Sense Input Pin of CPU VR.  
Negative Current Sense Input Pin of CPU VR.  
5
6
COMP  
FB  
CPU VR Compensation Pin. This pin is the output of the error amplifier.  
CPU VR Feedback Pin. This pin is the inverting input node of the error amplifier.  
Return Ground for CPU VR. This pin is the inverting input node for differential  
remote voltage sensing.  
Set Pin for GPU VR Operation Mode. Logic-high on this pin will force the GPU VR  
to enter DCM.  
Controller Power Supply Pin. Connect this pin to GND via a ceramic capacitor  
larger than 1F.  
7
8
9
RGND  
GFXPS2  
VCC  
10  
11  
12  
13  
14  
15  
SETINIA  
SETINI  
ADC Input for Single-Phase GPU VR VBOOT Voltage Setting.  
ADC Input for Single-Phase CPU VR VBOOT Voltage Setting.  
ADC Input for Single-Phase CPU VR Maximum Temperature Setting.  
ADC Input for Single-Phase CPU VR Maximum Current Setting.  
ADC Input for Single-Phase GPU VR Maximum Current Setting.  
Thermal Monitor Sense Input Pin for CPU VR.  
TMPMAX  
ICCMAX  
ICCMAXA  
TSEN  
Set Pin for Single-Phase CPU VR Over Current Protection Threshold.  
Connect a resistive voltage divider from VCC to ground, and connect the joint of  
the voltage divider to the OCSET pin. The voltage, VOCSET, at this pin sets the  
over current threshold, ILIMIT, for CPU VR.  
16  
17  
18  
OCSET  
TSENA  
OCSETA  
Thermal Monitor Sense Input for GPU VR.  
Set Pin for Single-Phase GPU VR Over Current Protection Threshold.  
Connect a resistive voltage divider from VCC to ground, and connect the joint of  
the voltage divider to the OCSETA pin. The voltage, VOCSETA, at this pin sets the  
over current threshold, ILIMIT, for GPU VR.  
Internal Bias Current Setting. Connect a 53.6kresistor from this pin to GND to  
set the internal bias current.  
19  
IBIAS  
20  
21  
22  
Thermal Monitor Output Pin (active low).  
VRHOT  
VR_READY  
CPU VR Voltage Ready Indicator. This pin has an open drain output.  
VRA_READY GPU VR Voltage Ready Indicator. This pin has an open drain output.  
23  
24  
25  
Alert Line of SVID Interface (active low). This pin has an open drain output.  
Data Transmission Line of SVID Interface.  
Clock Signal Line of SVID Interface.  
ALERT  
VDIO  
VCLK  
Return Ground for Single-Phase GPU VR.  
26  
27  
28  
RGNDA  
FBA  
This pin is the inverting input node for differential remote voltage sensing.  
GPU VR Feedback Pin. This pin is the inverting input node of the error amplifier.  
Single-Phase GPU VR Compensation Pin. This pin is the output of the error  
amplifier.  
COMPA  
29  
30  
ISENAN  
ISENAP  
Negative Current Sense Input Pin of Single-Phase GPU VR.  
Positive Current Sense Input Pin of Single-Phase GPU VR.  
Single-Phase GPU VR On-Time Setting Pin. Connect this pin to VIN with a  
resistor to set ripple size in PWM mode.  
31  
TONSETA  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS8165B-03 November 2013  
RT8165B  
Pin No.  
Pin Name  
EN  
Pin Function  
Voltage Regulator Enable Signal Input Pin.  
32  
GPU VR Bootstrap Power Pin. This pin powers the high side MOSFET drivers.  
Connect this pin to the PHASEA pin with a bootstrap capacitor.  
Upper Gate Driver of GPU VR. This pin drives the high side MOSFET of GPU  
VR.  
33  
34  
BOOTA  
UGATEA  
Switch Node of GPU VR. This pin is the return node of the high side MOSFET  
35  
PHASEA driver for GPU VR. Connect this pin to the joint of the source of high side  
MOSFET, drain of the low side MOSFET, and the output inductor.  
Lower Gate Driver of GPU VR. This pin drives the low side MOSFET of GPU  
36  
37  
38  
LGATEA  
VR.  
MOSFET Driver Power Supply Pin. Connect this pin to GND via a ceramic  
capacitor larger than 1F.  
PVCC  
Lower Gate Driver of CPU VR. This pin drives the low side MOSFET of CPU  
LGATE1  
VR.  
Switch Node of CPU VR. This pin is the return node of the high side driver for  
39  
40  
PHASE1  
UGATE1  
CPU VR. Connect this pin to the joint of the source of high side MOSFET, drain  
of the low side MOSFET, and the output inductor.  
Upper Gate Driver of CPU VR. This pin drives the high side MOSFET of CPU  
VR.  
Ground of Low Side MOSFET Driver. The exposed pad must be soldered to a  
large PCB and connected to GND for maximum power dissipation.  
41 (Exposed Pad) GND  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
13  
RT8165B  
Function Block Diagram  
UVLO  
Control & Protection Logic  
PWM CMP  
MUX  
ADC  
From Control Logic  
SVID XCVR  
GFXPS2  
DAC  
RGNDA  
TON Time  
Generator  
TONSETA  
ERROR  
AMP  
Soft-Start & Slew  
Rate Control  
V
REFA  
+
-
Offset  
Cancellation  
+
-
FBA  
BOOTA  
COMPA  
UGATEA  
PHASEA  
PVCC  
Driver Logic  
Control  
IBIAS  
LGATEA  
From Control Logic  
DAC  
To Protection Logic  
ISENAP  
ISENAN  
+
10  
-
RGND  
OVP/UVP/NVP  
OCP  
OCSETA  
TONSET  
ERROR  
AMP  
Soft-Start & Slew  
Rate Control  
V
REF  
TON Time  
Generator  
PWM CMP  
+
-
Offset  
Cancellation  
+
-
FB  
COMP  
BOOT1  
UGATE1  
PHASE1  
LGATE1  
Driver Logic  
Control  
To Protection Logic  
ISEN1P  
ISEN1N  
+
OCP  
OVP/UVP/NVP  
10  
-
OCSET  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
14  
DS8165B-03 November 2013  
RT8165B  
Absolute Maximum Ratings (Note 1)  
PVCC, VCC to GND ------------------------------------------------------------------------------------- 0.3V to 6.5V  
RGNDx toGND ------------------------------------------------------------------------------------------- 0.3V to 0.3V  
TONSETx toGND ---------------------------------------------------------------------------------------- 0.3V to 28V  
Others ------------------------------------------------------------------------------------------------------- 0.3V to (VCC + 0.3V)  
BOOTx to PHASEx -------------------------------------------------------------------------------------- 0.3V to 6.5V  
PHASEx to GND  
DC------------------------------------------------------------------------------------------------------------ 3V to 28V  
<20ns ------------------------------------------------------------------------------------------------------- 8V to 32V  
UGATEx to PHASEx  
DC------------------------------------------------------------------------------------------------------------ 0.3V to (BOOTx PHASEx)  
<20ns ------------------------------------------------------------------------------------------------------- 5V to 7.5V  
LGATEx toGND  
DC------------------------------------------------------------------------------------------------------------ 0.3V to (PVCC + 0.3V)  
<20ns ------------------------------------------------------------------------------------------------------- 2.5V to 7.5V  
Power Dissipation, PD @ TA = 25°C  
WQFN40L 5x5 ------------------------------------------------------------------------------------------- 2.778W  
Package Thermal Resistance (Note 2)  
WQFN40L 5x5, θJA ------------------------------------------------------------------------------------- 36°C/W  
WQFN40L 5x5, θJC ------------------------------------------------------------------------------------- 6°C/W  
Junction Temperature ------------------------------------------------------------------------------------ 150°C  
Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------- 260°C  
Storage Temperature Range --------------------------------------------------------------------------- 65°C to 150°C  
ESD Susceptibility (Note 3)  
HBM (Human Body Mode) ----------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 4)  
Supply Voltage, VCC ------------------------------------------------------------------------------------- 4.5V to 5.5V  
Input Voltage, VIN ----------------------------------------------------------------------------------------- 5V to 25V  
Junction Temperature Range--------------------------------------------------------------------------- 40°C to 125°C  
Ambient Temperature Range--------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VCC = 5V, TA = 25°C, unless otherwise specified)  
Parameter  
Supply Input  
Symbol  
Test Conditions  
Min  
Typ Max Unit  
VCC/VPVCC  
VIN  
VCC + IPVCC  
VEN = 1.05V, Not Switching  
Battery Input Voltage  
4.5  
5
5
5.5  
25  
V
V
Input Voltage Range  
--  
Supply Current  
(VCC + PVCC)  
Supply Current  
(TONSETx)  
I
VEN = 1.05V, Not Switching  
--  
--  
12  
20  
--  
mA  
ITONSETx  
VFB =1V, VIN = 12V, RTON = 100k  
110  
A  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
15  
RT8165B  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Shutdown Current  
I
VCC_SHDN  
V
= 0V  
= 0V  
--  
--  
5
A  
EN  
(PVCC + V  
)
+ I  
CC  
PVCC_SHDN  
Shutdown Current  
(TONSETx)  
I
V
EN  
--  
--  
5
A  
TONSETx_SHDN  
TON Setting  
TONSETx Voltage  
On-Time  
V
I
= 80A, V  
= 1V  
= 1V  
0.95  
315  
1.075  
350  
1.2  
0V  
ns  
TONSETx  
RTON  
FBx  
t
I
I
= 80A, V  
385  
ON  
RTON  
FBx  
TONSETx Input  
Current Range  
V
= 1.1V  
25  
--  
--  
280  
--  
A  
RTON  
FBx  
Minimum Off-Time  
T
350  
ns  
OFF_MIN  
GFX VR Forced DEM  
GFXPS2x Enable  
Threshold  
GFXPS2x Disable  
Threshold  
V
V
4.3  
--  
--  
--  
--  
V
V
GFXPS  
GFXPS  
0.7  
References and System Output Voltage  
VID  
OFS  
Setting = 1.000V~1.520V  
SVID  
0.5  
5  
0
0
0
0
0
0.5  
5
%VID  
mV  
Setting = 0V  
SVID  
VID  
OFS  
Setting = 0.800V~1.000V  
SVID  
Setting = 0V  
SVID  
DAC Accuracy  
(PS0/PS1)  
VID  
OFS  
Setting = 0.500V~0.800V  
SVID  
V
8  
8
FBx  
Setting = 0V  
SVID  
VID  
OFS  
Setting = 0.250V~0.500V  
SVID  
8  
8
Setting = 0V  
SVID  
VID  
OFS  
Setting = 1.100V  
SVID  
10  
10  
Setting =0.640V~0.635V  
SVID  
V
= 0V, V  
= 0V  
0
0.3125 0.5125  
INI_CORE  
INI_GFX  
V
= 0.9V, V  
= 0.9V  
INI_GFX  
0.7375 0.9375 1.1375  
1.3625 1.5625 1.7625  
INI_CORE  
SETINIx Voltage  
IBIAS Pin Voltage  
V
V
V
SETINIx  
IBIAS  
V
= 1V, V  
= 1V  
INI_CORE  
INI_GFX  
V
= 1.1V, V  
= 1.1V  
INI_GFX  
2.6125  
2.09  
2.5  
--  
5
INI_CORE  
R
= 53.6k  
2.14  
3.125  
12.5  
2.19  
3.75  
15  
V
IBIAS  
SetVID Slow  
SetVID Fast  
Dynamic VID Slew  
Rate  
SR  
mV/s  
DVID  
10  
Error Amplifier  
DC Gain  
A
R = 47k(Note5)  
70  
--  
80  
10  
--  
--  
dB  
DC  
L
Gain-Bandwidth  
Product  
GBW  
SR  
C
LOAD  
= 5pF  
(Note5)  
MHz  
C
R
= 10pF (Gain = 4,  
= 47k, V =  
COMPx  
LOAD  
Slew Rate  
--  
5
--  
V/s  
COMP  
LOAD_COMP  
0.5V to 3V)  
Output Voltage  
Range  
MAX Source/Sink  
Current  
V
I
R = 47k  
0.5  
--  
3.6  
V
COMP  
L
V
COMP  
= 2V  
--  
1
250  
--  
--  
--  
A  
COMP  
Impedance of FBx  
R
M  
FBx  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
16  
DS8165B-03 November 2013  
RT8165B  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max Unit  
Current Sense Amplifier  
Input Offset Voltage  
V
1  
1
--  
--  
--  
1
--  
--  
mV  
M  
M  
OFS_CSA  
Impedance of Neg. Input R  
ISENxN  
Impedance of Pos. Input  
R
1
ISENxP  
Current Sense  
Differential Input Range  
V
= 1.1V,  
= V  
FBx  
V
CSDIx  
50  
--  
100  
mV  
V
CSDIx  
V  
ISENxN  
ISENxP  
Current Sense DC Gain  
(Loop)  
A
V
= 1.1V, 30mV < V  
= 1.1V 30mV < V  
< 50mV  
--  
10  
--  
--  
1
V/V  
%
I
FBx  
CSDIx  
V
ISEN  
Linearity  
V
V
DAC  
< 50mV  
1  
ISEN_ACC  
ISEN_IN  
Gate Driver  
V
BOOTx V  
= 5V  
PHASEx  
= 0.1V  
UGATEx  
Upper Driver Source  
R
--  
1
--  
UGATEx_sr  
VBOOTx V  
Upper Driver Sink  
Lower Driver Source  
Lower Driver Sink  
R
V
= 0.1V  
--  
--  
--  
1
1
--  
--  
--  
UGATEx_sk  
UGATEx  
R
PVCC = 5V, PVCC V  
= 0.1V  
LGATEx  
LGATEx_sr  
R
V
= 0.1V  
0.5  
LGATEx_sk  
LGATEx  
Internal Boot Charging  
Switch On-Resistance  
R
PVCC to BOOTx  
= GND V  
--  
--  
30  
10  
--  
--  
BOOTx  
Zero Current Detection  
Threshold  
V
V
mV  
ZCD_TH  
ZCD_TH  
PHASEx  
Protection  
Under Voltage Lock-out  
Threshold  
V
VCC Falling edge  
4.04 4.24  
--  
--  
V
UVLO  
Under Voltage Lock-out  
Hysteresis  
V  
--  
100  
150  
mV  
mV  
mV  
mV  
V/V  
UVLO  
Over Voltage Protection  
Threshold  
Respect to VOUT_MAX  
filter time  
, with 1s  
SVID  
V
OVP  
100  
200  
Under Voltage Protection  
Threshold  
V
= V  
V  
, 0.8V < V  
REFx REFx  
UVP  
ISENxN  
V
UVP  
350 300 250  
<1.52V, with 3s filter time  
Negative Voltage  
Protection Threshold  
V
NVP  
V
NVP  
= VISENxN GND  
100 50  
--  
--  
Current Sense Gain for  
Over Current Protection  
V
= 2.4V  
OCSET  
A
OC  
--  
48  
V
V  
= 50mV  
ISENxP  
ISENxN  
Logic Inputs  
Logic-High  
Logic-Low  
V
With respect to 1V, 70%  
With respect to 1V, 30%  
0.7  
--  
--  
--  
--  
EN Input  
Threshold  
Voltage  
IH  
V
V
IL  
0.3  
Leakage Current of EN  
1  
0.65  
--  
--  
--  
--  
1
--  
A  
V
With respect to Intel Spec.  
With respect to Intel Spec.  
IH  
VCLK,VDIO Input  
Threshold Voltage  
V
V
IL  
0.45  
Leakage Current of  
VCLK, VDIO  
I
1  
--  
1
A  
LEAK_IN  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
17  
RT8165B  
Parameter  
ALERT  
Symbol  
VALERT  
Test Conditions  
Min  
Typ  
Max  
Unit  
ALERT Low Voltage  
VR Ready  
IALERT_ SINK = 4mA  
--  
--  
0.4  
V
VRx_READY Low Voltage VVRx_READY IVRx_READY_ SINK = 4mA  
--  
--  
0.4  
V
VRx_READY Delay  
Thermal Throttling  
VRHOT Output Voltage  
tVRx_READY VISENxN = VBOOT to VVRx_READY high  
70  
100  
160  
s  
VVRHOT  
IVRHOT_SINK = 40mA  
--  
0.4  
--  
--  
1
V
High Impedance Output  
ALERT, VRx_READY,  
VRHOT  
ILEAK_OUT  
1  
A  
Temperature Zone  
TSEN Threshold for  
Tmp_Zone [7] transition  
100°C  
97°C  
94°C  
91°C  
88°C  
85°C  
82°C  
75°C  
--  
--  
--  
--  
--  
--  
--  
1.8725  
1.8175  
1.7625  
1.7075  
1.6525  
1.5975  
1.5425  
--  
--  
--  
--  
--  
--  
--  
V
V
V
V
V
V
V
TSEN Threshold for  
Tmp_Zone [6] transition  
TSEN Threshold for  
Tmp_Zone [5] transition  
VTSENx  
TSEN Threshold for  
Tmp_Zone [4] transition  
TSEN Threshold for  
Tmp_Zone [3] transition  
TSEN Threshold for  
Tmp_Zone [2] transition  
TSEN Threshold for  
Tmp_Zone [1] transition  
VTSENx  
TSEN Threshold for  
Tmp_Zone [0] transition  
--  
--  
1.4875  
1600  
--  
--  
V
Update Period  
ADC  
tTSEN  
s  
Latency  
tLAT  
--  
29  
61  
125  
5
--  
32  
400  
35  
s  
CICCMAX1  
CICCMAX2  
CICCMAX3  
VICCMAX = 0.637V  
VICCMAX = 1.2642V  
VICCMAX = 2.5186V  
decimal  
decimal  
Digital Code of ICCMAX  
64  
67  
128  
8
131 decimal  
CICCMAXA1 VICCMAXA = 0.1666V  
11  
19  
35  
88  
decimal  
decimal  
decimal  
decimal  
Digital Code of ICCMAXA CICCMAXA2 VICCMAXA = 0.3234V  
CICCMAXA3 VICCMAXA = 0.637V  
13  
29  
82  
97  
122  
16  
32  
CTMPMAX1  
Digital Code of TMPMAX CTMPMAX2  
CTMPMAX3  
VTMPMAX = 1.6758V  
VTMPMAX = 1.9698V  
VTMPMAX = 2.4598V  
85  
100  
125  
103 decimal  
128 decimal  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
18  
DS8165B-03 November 2013  
RT8165B  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured at TA = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is  
measured at the exposed pad of the package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Note 5. Guaranteed by design.  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
19  
RT8165B  
Typical Operating Characteristics  
CORE VR Power Off from EN  
CORE VR Power On from EN  
VCORE  
(500mV/Div)  
VCORE  
(500mV/Div)  
EN  
(2V/Div)  
EN  
(2V/Div)  
VR_READY  
(2V/Div)  
VR_READY  
(2V/Div)  
UGATE  
(20V/Div)  
UGATE  
(20V/Div)  
Boot VID = 1V  
Boot VID = 1V  
Time (100μs/Div)  
Time (100μs/Div)  
CORE VR OCP  
CORE VR OVP and NVP  
VCORE  
VCORE  
(1V/Div)  
(1V/Div)  
ILOAD  
LGATE  
(10A/Div)  
(10V/Div)  
VR_READY  
(1V/Div)  
VR_READY  
(1V/Div)  
UGATE  
(20V/Div)  
UGATE  
(20V/Div)  
VID = 1.1V  
VID = 1.1V  
Time (100μs/Div)  
Time (40μs/Div)  
CORE VR Dynamic VID Up  
CORE VR Dynamic VID Down  
VCORE  
VCORE  
(500mV/Div)  
(500mV/Div)  
VCLK  
(2V/Div)  
VCLK  
(2V/Div)  
VDIO  
(2V/Div)  
VDIO  
(2V/Div)  
ALERT  
ALERT  
(2V/Div)  
(2V/Div)  
0.7V to 1.2V, Slew Rate = Slow, ILOAD = 4A  
1.2V to 0.7V, Slew Rate = Slow, ILOAD = 4A  
Time (40μs/Div)  
Time (40μs/Div)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
20  
DS8165B-03 November 2013  
RT8165B  
CORE VR Dynamic VID Down  
CORE VR Dynamic VID Up  
VCORE  
VCORE  
(500mV/Div)  
(500mV/Div)  
VCLK  
(2V/Div)  
VCLK  
(2V/Div)  
VDIO  
(2V/Div)  
VDIO  
(2V/Div)  
ALERT  
ALERT  
(2V/Div)  
(2V/Div)  
0.7V to 1.2V, Slew Rate = Fast, ILOAD = 4A  
1.2V to 0.7V, Slew Rate = Fast, ILOAD = 4A  
Time (10μs/Div)  
Time (10μs/Div)  
CORE VR Load Transient  
CORE VR Load Transient  
VCORE  
VCORE  
(20mV/Div)  
(20mV/Div)  
8
8
ILOAD  
ILOAD  
(A/Div)  
(A/Div)  
1
1
VID = 1.1V, ILOAD = 1A to 8A, Slew Time = 150ns  
VID = 1.1V, ILOAD = 8A to 1A, Slew Time = 150ns  
Time (100μs/Div)  
Time (100μs/Div)  
CORE VR Mode Transition  
CORE VR Mode Transition  
VCORE  
VCORE  
(20mV/Div)  
(20mV/Div)  
VCLK  
(1V/Div)  
VCLK  
(1V/Div)  
LGATE  
LGATE  
(10V/Div)  
(10V/Div)  
UGATE  
UGATE  
(20V/Div)  
(20V/Div)  
VID = 1.1V, PS0 to PS2, ILOAD = 0.2A  
VID = 1.1V, PS2 to PS0, ILOAD = 0.2A  
Time (100μs/Div)  
Time (100μs/Div)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
21  
RT8165B  
CORE VR Thermal Monitoring  
CORE VR VREF vs. Temperature  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
1.9  
1.7  
TSEN  
(V/Div)  
VRHOT  
(500mV/Div)  
TSEN Sweep from 1.7V to 1.9V  
Time (10ms/Div)  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
GFX VR Power On from EN  
GFX VR Power Off from EN  
VGFX  
(500mV/Div)  
VGFX  
(500mV/Div)  
EN  
(2V/Div)  
EN  
(2V/Div)  
VRA_READY  
(2V/Div)  
VRA_READY  
(2V/Div)  
UGATEA  
(20V/Div)  
UGATEA  
(20V/Div)  
Boot VID = 1V  
Boot VID = 1V  
Time (100μs/Div)  
Time (100μs/Div)  
GFX VR OCP  
GFX VR OVP and NVP  
VGFX  
VGFX  
(1V/Div)  
(1V/Div)  
VRA_READY  
(1V/Div)  
ILOAD  
(5A/Div)  
LGATEA  
(10V/Div)  
VRA_READY  
(1V/Div)  
UGATEA  
(20V/Div)  
UGATEA  
(20V/Div)  
VID = 1.1V  
Time (100μs/Div)  
Time (40μs/Div)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
22  
DS8165B-03 November 2013  
RT8165B  
GFX VR Dynamic VID  
GFX VR Dynamic VID  
VGFX  
VGFX  
(500mV/Div)  
(500mV/Div)  
VCLK  
(2V/Div)  
VCLK  
(2V/Div)  
VDIO  
(2V/Div)  
VDIO  
(2V/Div)  
ALERT  
ALERT  
(2V/Div)  
(2V/Div)  
0.7V to 1.2V, Slew Rate = Slow, ILOAD = 1.25A  
1.2V to 0.7V, Slew Rate = Slow, ILOAD = 1.25A  
Time (40μs/Div)  
Time (40μs/Div)  
GFX VR Dynamic VID  
GFX VR Dynamic VID  
VGFX  
VGFX  
(500mV/Div)  
(500mV/Div)  
VCLK  
(2V/Div)  
VCLK  
(2V/Div)  
VDIO  
(2V/Div)  
VDIO  
(2V/Div)  
ALERT  
ALERT  
(2V/Div)  
(2V/Div)  
0.7V to 1.2V, Slew Rate = Fast, ILOAD = 1.25A  
1.2V to 0.7V, Slew Rate = Fast, ILOAD = 1.25A  
Time (10μs/Div)  
Time (10μs/Div)  
GFX VR Load Transient  
GFX VR Load Transient  
VGFX  
VGFX  
(20mV/Div)  
(20mV/Div)  
4
4
ILOAD  
ILOAD  
(A/Div)  
(A/Div)  
1
1
VID = 1.1V, ILOAD = 1A to 4A, Slew Time = 150ns  
VID = 1.1V, ILOAD = 4A to 1A, Slew Time = 150ns  
Time (100μs/Div)  
Time (100μs/Div)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
23  
RT8165B  
GFX VR Mode Transition  
GFX VR Mode Transition  
VGFX  
VGFX  
(20mV/Div)  
(20mV/Div)  
VCLK  
(1V/Div)  
VCLK  
(1V/Div)  
LGATEA  
(10V/Div)  
LGATEA  
(10V/Div)  
UGATEA  
(20V/Div)  
UGATEA  
(20V/Div)  
VID = 1.1V, PS0 to PS2, ILOAD = 0.1A  
VID = 1.1V, PS2 to PS0, ILOAD = 0.1A  
Time (100μs/Div)  
Time (100μs/Div)  
GFX VR VREF vs. Temperature  
GFX VR Thermal Monitoring  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
0.988  
1.9  
TSENA  
(V/Div)  
1.7  
VRHOT  
(500mV/Div)  
TSENA Sweep from 1.7V to 1.9V  
Time (10ms/Div)  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
24  
DS8165B-03 November 2013  
RT8165B  
Application Information  
The RT8165B is a VR12/IMVP7 compliant, dual single-  
phase synchronous Buck PWM controller for the CPU  
CORE VR and GFX VR. The gate drivers are embedded  
to facilitate PCB design and reduce the total BOM cost. A  
serial VID (SVID) interface is built-in in the RT8165B to  
communicate with Intel VR12/IMVP7 compliant CPU.  
The RT8165B supports VR12/IMVP7 compatible power  
management states and VIDon-the-fly function. The power  
management states includeDEM in PS2/PS3 and Forced-  
CCM in PS1/PS0. The VID on-the-fly function has three  
different slew rates : Fast, Slow andDecay. The RT8165B  
integrates a high accuracy ADC for platform setting  
functions, such as no-load offset and over current level.  
The controller supports both DCR and sense-resistor  
current sensing. The RT8165B provides VR ready output  
signals of both CORE VR and GFX VR. It also features  
complete fault protection functions including over voltage,  
under voltage, negative voltage, over current and under  
voltage lockout. The RT8165B is available in a WQFN-  
48L 6x6 small foot print package.  
The RT8165B adopts G-NAVPTM (Green Native AVP),  
which is Richtek's proprietary topology derived from finite  
DC gain compensator, making it an easy setting PWM  
controller to meet AVP requirements. The load line can  
be easily programmed by setting the DC gain of the error  
amplifier. The RT8165B has fast transient response due  
to the G-NAVPTM commanding variable switching  
frequency.  
G-NAVPTM topology also represents a high efficiency  
system with green power concept. With G-NAVPTM  
topology, the RT8165B becomes a green power controller  
with high efficiency under heavy load, light load, and very  
light load conditions. The RT8165B supports mode  
transition function between CCM andDEM. These different  
operating states allow the overall power system to have  
low power loss. By utilizing the G-NAVPTM topology, the  
operating frequency of RT8165B varies with output voltage,  
load and VINto further enhance the efficiency even in CCM.  
Design Tool  
To help users reduce efforts and errors caused by manual  
calculations, a user-friendly design tool is now available  
on request. This design tool calculates all necessary  
design parameters by entering user's requirements.  
Please contact Richtek's representatives for details.  
Serial VID (SVID) Interface  
SVIDis a three-wire serial synchronous interface defined  
by Intel. The three wire bus includes VDIO, VCLK and  
ALERT signals. The master (Intel's VR12/IMVP7 CPU)  
initiates and terminates SVID transactions and drives the  
VDIO, VCLK, andALERT during a transaction. The slave  
(RT8165B) receives the SVID transactions and acts  
accordingly.  
The built-in high accuracy DAC converts the SVID code  
ranging from 0.25V to 1.52V with 5mV per step. The  
differential remote output voltage sense and high accuracy  
DAC allow the system to have high output voltage accuracy.  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
25  
RT8165B  
Standard Serial VID Command  
Master Payload  
Slave Payload  
Contents  
Code  
00h  
Commands  
Description  
N/A  
Contents  
not supported  
SetVID_Fast  
N/A  
N/A  
Set new target VID code, VR jumps to new VID  
target with controlled default “fast” slew rate  
12.5mV/s.  
Set new target VID code, VR jumps to new VID  
target with controlled default “slow” slew rate  
3.125mV/s.  
Set new target VID code, VR jumps to new VID  
target, but does not control the slew rate. The  
output voltage decays at a rate proportional to  
the load current  
01h  
02h  
VID code  
VID code  
N/A  
SetVID_Slow  
N/A  
N/A  
03h  
SetVID_Decay  
VID code  
Byte indicating  
power states  
04h  
05h  
06h  
SetPS  
N/A  
N/A  
N/A  
Set power state  
Pointer of registers  
in data table  
SetRegADR  
SetReg DAT  
Set the pointer of the data register  
Write the contents to the data register  
New data register  
content  
Specified  
Register  
Contents  
Pointer of registers  
in data table  
Slave returns the contents of the specified  
register as the payload  
07h  
GetReg  
08h  
-
not supported  
N/A  
N/A  
N/A  
1Fh  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
26  
DS8165B-03 November 2013  
RT8165B  
Data and Configuration Register  
Description  
Index Register Name  
Access  
Default  
1Eh  
00h  
01h  
02h  
05h  
Vendor ID  
Vendor ID, default 1Eh.  
RO, Vendor  
RO, Vendor  
RO, Vendor  
RO, Vendor  
Product ID  
Product ID.  
65h  
Product Revision  
Protocol ID  
Product Revision.  
01h  
SVID Protocol ID.  
01h  
Bit mapped register, identifies the SVID VR capabilities  
and which of the optional telemetry register are  
supported.  
06h  
VR_Capability  
RO, Vendor  
81h  
10h  
11h  
Status_1  
Status-2  
Data register containing the status of VR.  
R-M, W-PWM  
R-M, W-PWM  
00h  
00h  
Data register containing the status of transmission.  
Temperature  
Zone  
Data register showing temperature zone that have been  
entered.  
12h  
R-M, W-PWM  
00h  
Data register showing direct ADC conversion of  
averaged output current.  
15h  
1Ch  
Output_Current  
R-M, W-PWM  
R-M, W-PWM  
00h  
00h  
Status_2_lastread The register contains a copy of the status_2.  
Data register containing the maximum ICC of platform  
21h  
22h  
ICC_Max  
supports.  
RO, Platform  
RO, Platform  
--  
--  
Binary format in Amp, IE 64h = 100A.  
Data register containing the temperature max the  
platform supports.  
Binary format in °C, IE 64h = 100°C  
Only for CORE VR  
Temp_Max  
Data register containing the capability of fast slew rate  
the platform can sustains. Binary format in mV/s, IE 0Ah  
= 10mV/s.  
24h  
SR-Fast  
RO  
0Ah  
Data register containing the capability of slow slew rate.  
Binary format in mV/s IE 02h = 2.5mV/s.  
25h  
30h  
SR-Slow  
RO  
02h  
The register is programmed by the master and sets the  
maximum VID.  
VOUT_Max  
RW, Master  
FBh  
31h  
32h  
33h  
VID Setting  
Power State  
Offset  
Data register containing currently programmed VID.  
RW, Master  
RW, Master  
RW, Master  
00h  
00h  
00h  
Register containing the current programmed power state.  
Set offset in VID steps.  
Bit mapped data register which configures multiple VRs  
behavior on the same bus.  
34h  
Multi VR Config  
Pointer  
RW, Master  
RW, Master  
00h  
30h  
Scratch pad register for temporary storage of the  
SetRegADR pointer register.  
35h  
Notes :  
RO = Read Only  
RW = Read/Write  
R-M = Read by Master  
W-PWM = Write by PWM only  
Vendor = hard coded by VR vendor  
Platform = programmed by platform  
Master = programmed by the master  
PWM = programmed by the VR control IC  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
27  
RT8165B  
Power Ready Detection and Power On Reset (POR)  
ICCMAX, ICCMAXA and TMPMAX  
During start-up, the RT8165B detects the voltage on the  
The RT8165B provides ICCMAX, ICCMAXAand TMPMAX  
pins for platform users to set the maximum level of output  
current or VR temperature: ICCMAX for CORE VR  
maximum current, ICCMAXA for GFX VR maximum  
current, and TMPMAX for CORE VR maximum  
temperature.  
voltage input pins : VCC and EN. When VCC > VUVLO  
,
the RT8165B will recognize the power state of system to  
be ready (POR = high) and wait for enable command at  
EN pin. After POR = high and EN > VENTH, the RT8165B  
will enter start-up sequence for both CORE VR and GFX  
VR. If the voltage on any voltage pin drops below POR  
threshold (POR = low), the RT8165B will enter power down  
sequence and all the functions will be disabled. SVIDwill  
be invalid within 300μs after chip becomes enabled. All  
the protection latches (OVP, OCP, UVP, OTP) will be  
cleared only after POR = low. EN = low will not clear  
these latches.  
To set ICCMAX, ICCMAXA and TMPMAX, platform  
designers should use resistive voltage dividers on these  
three pins. The current of the divider should be several  
milli-Amps to avoid noise effect. The three items share  
the same algorithms : theADC divides 5V into 255 levels.  
Therefore, LSB = 5/255 = 19.6mV, which means 19.6mV  
applied to ICCMAX pin equals to 1Asetting. For example,  
if a platform designer wants to set TMPMAX to 120°C, the  
voltage applied to TMPMAX should be 120 x 19.6mV =  
2.352V. The ADC circuit inside these three pins will  
decode the voltage applied and store the maximum current/  
temperature setting into ICC_MAX and Temp_Max  
registers. The ADC monitors and decodes the voltage at  
these three pins only after EN = high. If EN = low, the  
RT8165B will not take any action even when the VR output  
current or temperature exceeds its maximum setting at  
these ADC pins. The maximum level settings at these  
ADC pins are different from over current protection or over  
temperature protection. That means, these maximum level  
setting pins are only for platform users to define their  
system operating conditions and these messages will only  
be utilized by the CPU.  
VCC  
EN  
+
-
POR  
V
V
UVLO  
+
-
Chip EN  
ENTH  
Figure 3. Power Ready Detection and Power On Reset  
(POR)  
Precise Reference Current Generation  
The RT8165B includes extensive analog circuits inside  
the controller. These analog circuits need very precise  
reference voltage/current to drive these analog devices.  
The RT8165B will auto-generate a 2.14V voltage source  
at IBIAS pin, and a 53.6kΩ resistor is required to be  
connected between IBIAS and analog ground. Through  
this connection, the RT8165B generates a 40μA current  
from IBIAS pin to analog ground and this 40μAcurrent will  
be mirrored inside the RT8165B for internal use. Other  
types of connection or other values of resistance applied  
at the IBIAS pin may cause failure of the RT8165B's analog  
circuits. Thus a 53.6kΩ resistor is the only recommended  
component to be connected to the IBIAS pin. The  
resistance accuracy of this resistor is recommended to  
be at least 1%.  
V
CC  
ICCMAX  
A/D  
Converter  
ICCMAXA  
TMPMAX  
Figure 5. ADC Pins Setting  
VINI_CORE and VINI_GFX Setting  
The initial start up voltage (VINI_CORE, VINI_GFX) of the  
RT8165B can be set by platform users through SETINI  
and SETINIApins. Voltage divider circuit is recommended  
Current  
Mirror  
2.14V  
+
-
to be applied to SETINI and SETINIApins. The VINI_CORE  
/
IBIAS  
VINI_GFX relate to SETINI/SETINIA pin voltage setting as  
shown in Figure 6. Recommended voltage setting at SETINI  
and SETINIA pins are also shown in Figure 6.  
53.6k  
Figure 4. IBIAS Setting  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
28  
DS8165B-03 November 2013  
RT8165B  
VCC (5  
V)  
VINI_CORE  
Recommended  
V
=
= 1.1  
1.1V  
VINI_GFX SETINI/SETINIA Pin Voltage  
INI_CORE  
V
V
INI_GFX  
5
8
1.1V  
1V  
x VCC3.125V or VCC  
3
8
x VCC1.875V  
1/2 VCC  
V
= 1V  
= 1V  
INI_CORE  
INI_GFX  
3
V
0.9V  
0V  
x VCC0.9375V  
16  
1/4 VCC  
1/8 VCC  
GND  
1
16  
V
=
0.9V  
INI_CORE  
x VCC0.3125V or GND  
V
= 0.9V  
INI_GFX  
V
= 0V  
= 0V  
INI_CORE  
INI_GFX  
V
Figure 6. SETINI and SETINIA Pin Voltage Setting  
Start Up Sequence  
Power Down Sequence  
The RT8165B utilizes internal soft-start sequence which  
strictly follows Intel VR12/IMVP7 start up sequence  
specifications. After POR = high and EN = high, a 300μs  
delay is needed for the controller to determine whether all  
the power inputs are ready for entering start up sequence.  
If pin voltage of SETINI/SETINIA is zero, the output voltage  
of CORE/GFX VR is programmed to stay at 0V. If pin  
voltage of SETINI/SETINIA is not zero, VR output voltage  
will ramp up to initial boot voltage (VINI_CORE,VINI_GFX) after  
both POR = high and EN = high. After the output voltage  
of CORE/GFX VR reaches target initial boot voltage, the  
controller will keep the output voltage at the initial boot  
voltage and wait for the next SVID commands. After the  
RT8165B receives valid VID code (typically SetVID_Slow  
command), the output voltage will ramp up/down to the  
target voltage with specified slew rate. After the output  
voltage reaches the target voltage, the RT8165B will send  
out VR_READY signal to indicate the power state of the  
RT8165B is ready. The VR_READY circuit is an open-  
drain structure so a pull-up resistor is recommended for  
connecting to a voltage source.  
Similar to the start up sequence, the RT8165B also utilizes  
a soft shutdown mechanism during turn-off. After POR =  
low, the internal reference voltage (positive terminal of  
compensation EA) starts ramping down with 3.125mV/μs  
slew rate, and output voltage will follow the reference  
voltage to 0V. After output voltage drops below 0.2V, the  
RT8165B shuts down and all functions are disabled. The  
VR_READY will be pulled down immediately after POR =  
low.  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
29  
RT8165B  
VCC  
POR  
EN  
EN Chip  
(Internal Signal)  
SVID  
Valid  
xx  
XX  
Off  
Off  
300µs  
0.2V  
Off  
V
CORE  
CORE VR  
Operation Mode  
CCM  
CCM  
CCM  
SVID defined  
V
GFX  
0.2V  
Off  
GFX VR  
Operation Mode  
CCM  
SVID defined  
100µs  
VR_READY  
VRA_READY  
100µs  
Figure 7 (a). Power sequence for RT8165B (VINI_CORE = VINI_GFX = 0V)  
VCC  
POR  
EN  
EN Chip  
(Internal Signal)  
300µs  
SVID  
xx  
Valid  
XX  
250µs  
V
INI_CORE  
0.2V  
Off  
V
CORE  
CORE VR  
Operation Mode  
Off  
CCM  
CCM  
SVID defined  
100µs  
VR_READY  
50µs  
V
INI_GFX  
V
GFX  
0.2V  
Off  
GFX VR  
Operation Mode  
Off  
CCM  
SVID defined  
CCM  
100µs  
VRA_READY  
Figure 7 (b). Power sequence for RT8165B (VINI_CORE 0, V  
0V)  
INI_GFX  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
30  
DS8165B-03 November 2013  
RT8165B  
Disable GFX VR : Before EN = High  
Similar to the valley current mode control with finite  
compensator gain, the high side MOSFET on-time is  
determined by the CCRCOT PWM generator. When load  
current increases, VCS increases, the steady state COMP  
voltage also increases which makes the output voltage  
decrease, thus achieving AVP.  
GFX VR enable or disable is determined by the internal  
circuitry that monitors the ISENAN voltage during start  
up. Before EN= high,GFX VR detects whether the voltage  
of ISENAN is higher than VCC 1Vto disable GFX  
VR. The unused driver pins can be connected to GND or  
left floating.  
Droop Setting (with Temperature Compensation)  
GFX VR Forced-DEM Function Enable : After  
VRA_Ready = High  
It's very easy to achieve the Active Voltage Positioning  
(AVP) by properly setting the error amplifier gain due to  
the native droop characteristics. The target is to have  
The GFX VR's forced-DEM function can be enabled or  
disabled with GFXPS2 pin. The RT8165B detects the  
voltage ofGFXPS2 for forced-DEM function. If the voltage  
atGFXPS2 pin is higher than 4.3V, theGFX VR operates  
in forced-DEM. If this voltage is lower than 0.7V, theGFX  
VR follows SVID power state command.  
VOUT = VREFx ILOAD x RDROOP  
(1)  
Then solving the switching condition VCOMPx = VCSx in  
Figure 8 yields the desired error amplifier gain as  
A R  
R
R2  
R1  
I
SENSE  
DROOP  
(2)  
A
V
where AI is the internal current sense amplifier gain and  
RSENSE is the current sense resistance. If no external sense  
resistor is present, the DCR of the inductor will act as  
RSENSE. RDROOP is the resistive slope value of the converter  
output and is the desired static output impedance.  
Loop Control  
Both CORE and GFX VR adopt Richtek's proprietary G-  
NAVPTM topology. G-NAVPTM is based on the finite-gain  
valley current mode with CCRCOT (Constant Current  
Ripple Constant On Time) topology. The output voltage,  
VCORE or VGFX, will decrease with increasing output load  
current. The control loop consists of PWM modulator with  
power stage, current sense amplifier and error amplifier  
as shown in Figure 8.  
V
OUT  
A
> A  
V1  
V2  
A
A
V2  
V1  
V
IN  
V
OUT  
/V  
0
High Side  
MOSFET  
UGATEx  
PHASEx  
Load Current  
(V  
)
CORE GFX  
GFX/CORE VR  
CCRCOT  
Driver  
Logic  
L
Figure 9. ErrorAmplifierGain (AV) Influence on VOUT  
Accuracy  
PWM Generator  
Control  
R
C
LGATEx  
Low Side  
MOSFET  
R
X
C
X
C
Since the DCR of inductor is temperature dependent, it  
affects the output accuracy in high temperature conditions.  
Temperature compensation is recommended for the  
lossless inductor DCR current sense method. Figure 10  
shows a simple but effective way of compensating the  
temperature variations of the sense resistor using anNTC  
thermistor placed in the feedback path.  
CMP  
ISENxP  
ISENxN  
V
CSx  
+
Ai  
-
C
Byp  
C2  
R2  
C1  
R1  
CORE/GFX VR  
COMPx  
FBx  
V
CC_SENSE  
C2  
C1  
-
EA  
CORE/GFX VR  
RGNDx  
+
V
R2  
R1a  
NTC  
SS_SENSE  
R1b  
COMPx  
V
VREFx  
CC_SENSE  
FBx  
-
EA  
RGNDx  
V
+
SS_SENSE  
Figure 8. Simplified Schematic for Droop and Remote  
Sense in CCM  
VREFx  
Figure 10. Loop Setting with Temperature Compensation  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
31  
RT8165B  
Usually, R1a is set to equal RNTC (25°C), while R1b is  
selected to linearize theNTC's temperature characteristic.  
For a given NTC, the design would be to obtain R1b and  
R2 and then C1 and C2. According to (2), to compensate  
the temperature variations of the sense resistor, the error  
amplifier gain (AV) should have the same temperature  
coefficient with RSENSE. Hence  
Loop Compensation  
Optimized compensation of the CORE VR allows for best  
possible load step response of the regulator's output. A  
type-I compensator with one pole and one zero is adequate  
for a proper compensation. Figure 10 shows the  
compensation circuit. It was previously mentioned that to  
determine the resistive feedback components of error  
amplifier gain, C1 and C2 must be calculated for the  
compensation. The target is to achieve constant resistive  
output impedance over the widest possible frequency  
range.  
A
R
SENSE, HOT  
V, HOT  
(3)  
A
R
SENSE, COLD  
V, COLD  
From (2), we can haveAv at any temperature (T) as  
R2  
A
(4)  
V, T  
The pole frequency of the compensator must be set to  
R1a / /R  
R1b  
NTC, T  
compensate the output capacitor ESR zero :  
1
The standard formula for the resistance ofNTC thermistor  
as a function of temperature is given by :  
(9)  
fP  
2CRC  
where C is the capacitance of the output capacitor and RC  
is the ESR of the output capacitor. C2 can be calculated  
as follows :  
1
1
298  
   
T+273  
(5)  
RNTC, T RNTC, 25  
e
where RNTC, 25 is the thermistor's nominal resistance at  
room temperature, β (beta) is the thermistor's material  
constant in Kelvins, and T is the thermistor's actual  
temperature in Celsius.  
CR  
R2  
C
(10)  
C2   
The zero of compensator has to be placed at half of the  
switching frequency to filter the switching-related noise.  
Such that,  
TheDCR value at different temperatures can be calculated  
using the equation below :  
1
C1   
(11)  
R1b R1a // R  
f  
SW  
NTC, 25C  
DCRT = DCR25 x [1+0.00393 x (T-25)]  
(6)  
TON Setting  
where 0.00393 is the temperature coefficient of copper.  
For a givenNTC thermistor, solving (4) at room temperature  
(25°C) yields  
High frequency operation optimizes the application by  
trading off efficiency due to higher switching losses with  
smaller component size. This may be acceptable in ultra-  
portable devices where the load currents are lower and  
the controller is powered from a lower voltage supply. Low  
frequency operation offers the best overall efficiency at  
the expense of component size and board space. Figure  
11 shows the on-time setting circuit. Connect a resistor  
(RTONSETx) between VIN and TONSETx to set the on-time  
of UGATEx :  
R2 = AV, 25 x (R1b + R1a // RNTC, 25  
)
(7)  
whereAV, 25°C is the error amplifier gain at room temperature  
obtained from (2). R1b can be obtained by substituting  
(7) to (3),  
R1b   
RSENSE, HOT  
(R1a //RNTC, HOT ) (R1a//RNTC, COLD  
)
RSENSE, COLD  
RSENSE, HOT  
-12  
2810 R  
1  
TONSETx  
(12)  
t
(V  
REFx  
1.2V)   
RSENSE, COLD  
(8)  
ONx  
V
V  
REFx  
IN  
where tONx is the UGATEx turn on period, VINis the input  
voltage of converter, and VREFx is the internal reference  
voltage.  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
32  
DS8165B-03 November 2013  
RT8165B  
When VREFx is larger than 1.2V, the equivalent switching  
frequency may be over the maximum design range, making  
it unacceptable. Therefore, the VR implements a pseudo-  
constant-frequency technology to avoid this disadvantage  
of CCRCOT topology. When VREFx is larger than 1.2V,  
the on-time equation will be modified to :  
Differential Remote Sense Setting  
The CORE/GFX VR includes differential, remote-sense  
inputs to eliminate the effects of voltage drops along the  
PC board traces, CPU internal power routes and socket  
contacts. The CPU contains on-die sense pins CORE/  
GFX VCC_SENSE and VSS_SENSE. Connect RGNDx to CORE/  
GFX VSS_SENSE. Connect FBx to CORE/GFX VCC_SENSE  
with a resistor to build the negative input path of the error  
amplifier. The precision voltage reference VREFx is referred  
to RGND for accurate remote sensing.  
tONx (VREFx 1.2V)  
23.3310-12 RTONSETx VREFx  
(13)  
VIN VREFx  
On-time translates roughly to switching frequencies. The  
on-times guaranteed in the Electrical Characteristics are  
influenced by switching delays in external high side  
MOSFET.Also, the dead-time effect increases the effective  
on-time, reducing the switching frequency. It occurs only  
in CCM during dynamic output voltage transitions when  
the inductor current reverses at light or negative load  
currents. With reversed inductor current, PHASEx goes  
high earlier than normal, extending the on-time by a period  
equal to the high side MOSFET rising dead time.  
Current Sense Setting  
The current sense topology of the CORE/GFX VR is  
continuous inductor current sensing. Therefore, the  
controller can be less noise sensitive. Low offset amplifiers  
are used for loop control and over current detection. The  
internal current sense amplifier gain (AI) is fixed to be 10.  
The ISENxP and ISENxNdenote the positive and negative  
input of the current sense amplifier.  
Users can either use a current sense resistor or the  
inductor'sDCR for current sensing. Using inductor'sDCR  
allows higher efficiency as shown in Figure 12. To let  
For better efficiency of the given load range, the maximum  
switching frequency is suggested to be :  
1
fS(MAX)(kHz)   
(15)  
L
DCR  
tON tHSDelay  
R C  
X
X
VREFx(MAX) ILOAD(MAX) RON_LSFET DCR RDROOP then the transient performance will be optimum. For  
example, choose L = 0.36μH with 1mΩ DCR and  
CX = 100nF, to yields for RX :  
0.36H  
V
ILOAD(MAX) RON_LSFET RON_HSFET  
IN(MAX)  
(14)  
R
3.6k  
X
(16)  
1m 10 0nF  
where fS(MAX) is the maximum switching frequency, tHS-  
Delay is the turn on delay of high side MOSFET, VREFx(MAX)  
is the maximum application DAC voltage of application,  
VIN(MAX) is the maximum application input voltage,  
ILOAD(MAX) is the maximum load of application, RON_LS-FET  
is the low side MOSFET RDS(ON), RON_HS-FET is the high  
side MOSFET RDS(ON), DCRL is the inductor DCR, and  
RDROOP is the load line setting.  
V
OUT  
(V  
/V  
)
CORE GFX  
L
DCR  
PHASEx  
C
X
R
X
ISENxP  
ISENxN  
+
V
CSx  
A
I
-
C
Byp  
Figure 12. Lossless Inductor Sensing  
R
R1  
C1  
TONSETx  
TONSETx  
VREFx  
GFX/CORE  
VR CCRCOT  
PWM  
V
IN  
Generator  
On-Time  
Figure 11. On-Time Setting with RC Filter  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
33  
RT8165B  
V
Considering the inductance tolerance, the resistor RX has  
to be tuned on board by examining the transient voltage.  
If the output voltage transient has an initial dip below the  
minimum load line requirement with a slow recovery, RX  
is too small. Vice versa, if the resistance is too large the  
output voltage transient will only have a small initial dip  
and the recovery will be too fast, causing a ring-back.  
CC  
R
1
R
NTC  
R
2
TSENx  
R
3
Using current-sense resistor in series with the inductor  
can have better accuracy, but the efficiency is a trade-off.  
Considering the equivalent inductance (LESL) of the current  
sense resistor, a RC filter is recommended. The RC filter  
calculation method is similar to the above-mentioned  
inductorDCR sensing method.  
Figure 13. Thermal Monitoring Circuit  
To meet Intel's VR12/IMVP7 specification, platform users  
have to set the TSEN voltage to meet the temperature  
variation of VR from 75% to 100% VR max temperature.  
For example, if the VR max temperature is 100°C, platform  
users have to set the TSEN voltage to be 1.4875V when  
VR temperature reaches 75°C and 1.8725V when VR  
temperature reaches 100°C. Detailed voltage setting  
versus temperature variation is shown in Table 2.  
Thermometer code is implemented in the Temperature  
Zone register.  
Operation Mode Transition  
The RT8165B supports operation mode transition function  
in CORE/GFX VR for the SetPS command of Intel's VR12/  
IMVP7 CPU. The default operation mode of the RT8165B's  
CORE/GFX VR is PS0, which is CCM operation. The other  
operation mode is PS2 (DEM operation).  
After receiving SetPS command, the CORE/GFX VR will  
immediately change to the new operation state. When  
VR receives SetPS command of PS2 operation mode,  
the VR operates as a DEM controller.  
Table 2. Temperature Zone Register  
Comparator Trip Points  
SVID Temperatures Scaled to maximum =  
Thermal 100%  
VRHOT  
Alert Voltage Represents Assert bit  
Minimum Level  
If VR receives dynamic VID change command (SetVID),  
VR will automatically enter PS0 operation mode. After  
output voltage reaches target voltage, VR will stay at PS0  
state and ignore former SetPS command. Only by  
re-sending SetPS command after SetVID command will  
VR be forced into PS2 operation state again.  
b7  
100%  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
97% 94% 91% 88% 85% 82% 75%  
1.745 1.69 1.635 1.58 1.52 1.47  
1.855V 1.8V  
V
V
V
V
5V  
V
Temperature_Zone  
Register Content  
1111_1111  
TSEN Pin Voltage  
1.855 VTSEN  
Thermal Monitoring and Temperature Reporting  
1.800 VTSEN 1.835  
1.745 VTSEN 1.780  
1.690 VTSEN 1.725  
1.635 VTSEN 1.670  
1.580 VTSEN 1.615  
1.525 VTSEN 1.560  
1.470 VTSEN 1.505  
VTSEN 1.470  
0111_1111  
CORE/GFX VR provides thermal monitoring function via  
sensing TSEN pin voltage. Through the voltage divider  
resistors R1, R2, R3 and RNTC, the voltage of TSEN will  
be proportional to VR temperature. When VR temperature  
rises, the TSENx voltage also rises. The ADC circuit of  
VR monitors the voltage variation at TSENx pin from 1.47V  
to 1.89V with 55mV resolution, and this voltage is decoded  
into digital format and stored into the Temperature Zone  
register.  
0011_1111  
0001_1111  
0000_1111  
0000_0111  
0000_0011  
0000_0001  
0000_0000  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
34  
DS8165B-03 November 2013  
RT8165B  
V
CC  
The RT8165B supports two temperature reporting,  
VRHOT(hardware reporting) and ALERT(software  
reporting), to fulfill VR12/IMVP7 specification. VRHOT is  
an open-drain structure which sends out active-low VRHOT  
signals. When TSEN voltage rises above 1.855V (100%  
of VR temperature), the VRHOT signal will be set to low.  
When TSEN voltage drops below 1.8V (97% of VR  
temperature), the VRHOT signal will be reset to high. When  
TSEN voltage rises above 1.8V (97% of VR temperature),  
The RT8165B will update the bit1 data from 0 to 1 in the  
Status_1 register and assertALERT. When TSENvoltage  
drops below 1.745V (94% of VR temperature), VR will  
update the bit1 data from 1 to 0 in the Status_1 register  
and assertALERT.  
R
OC1  
OCSETx  
R
OC2  
Figure 14. OCP Setting without Temperature  
Compensation  
The current limit is triggered when inductor current  
exceeds the current limit threshold ILIMIT, defined by  
VOCSET. The driver will be forced to turn off UGATE until  
the over current condition is cleared. If the over current  
condition remains valid for 15 PWM cycles, VR will trigger  
OCP latch. Latched OCP forces both UGATE and LGATE  
to go low. When OCP is triggered in one of VRs, the  
other VR will enter into soft shutdown sequence. The OCP  
latch mechanism will be masked when VRx_READY =  
low, which means that only the current limit will be active  
when VOUT is ramping up to initial voltage (or VREFx).  
The temperature reporting function for theGFX VR can be  
disabled by pulling TSENA pin to VCC in case the  
temperature reporting function for theGFX VR is not used  
or the GFX VR is disabled. When the GFX VR's  
temperature reporting function is disabled, the RT8165B  
will reject the SVID command of getting the  
Temperature_Zone register content of the GFX VR.  
However, note that the temperature reporting function for  
the CORE VR is always active. CORE VR's temperature  
reporting function can not be disabled by pulling TSEN  
pin to VCC.  
If inductorDCR is used as the current sense component,  
then temperature compensation is recommended for  
protection under all conditions. Figure 15 shows a typical  
OCP setting with temperature compensation.  
V
CC  
R
OC1a  
NTC  
OC1b  
Over Current Protection  
The CORE/GFX VR compares a programmable current  
limit set point to the voltage from the current sense amplifier  
output for Over Current Protection (OCP). The voltage  
applied to OCSETx pin defines the desired peak current  
R
OCSETx  
R
OC2  
limit threshold ILIMIT  
:
Figure 15. OCP Setting with Temperature Compensation  
VOCSET = 48 x ILIMIT x RSENSE  
(17)  
Connect a resistive voltage divider from VCC toGND, with  
the joint of the resistive divider connected to OCSET pin  
as shown in Figure 14. For a given ROC2, then  
Usually, ROC1a is selected to be equal to the thermistor's  
nominal resistance at room temperature. Ideally, VOCSET  
is assumed to have the same temperature coefficient as  
RSENSE (InductorDCR) :  
V
CC  
(18)  
R
R  
OC2  
1  
OC1  
V
OCSET  
V
R
SENSE, HOT  
OCSET, HOT  
(19)  
V
R
SENSE, COLD  
OCSET, COLD  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
35  
RT8165B  
According to the basic circuit calculation, VOCSET can be  
obtained at any temperature :  
Negative Voltage Protection (NVP)  
During OVP latch state, both CORE/GFX VRs also monitor  
ISENxN pin for negative voltage protection. Since the OVP  
latch will continuously turn on low side MOSFET of VR,  
VR may suffer negative output voltage. Therefore, when  
the voltage of ISENxN drops below 0.05V after triggering  
OVP, VR will turn off low side MOSFETs while high side  
MOSFETs remain off. TheNVP function will be active only  
after OVP is triggered.  
ROC2  
VOCSET, T VCC  
ROC1a / /RNTC, T ROC1b ROC2  
(20)  
Re-write (19) from (20), to get VOCSET at room temperature  
R
//R  
R  
R  
R  
R  
R
SENSE, HOT  
OC1a  
NTC, COLD  
OC1b  
OC2  
R
//R  
R
SENSE, COLD  
OC1a  
NTC, HOT  
OC1b  
OC2  
(21)  
Under Voltage Protection (UVP)  
VOCSET, 25  
VCC  
ROC2  
Both CORE/GFX VR implement Under Voltage Protection  
(22)  
ROC1a / /RNTC, 25 ROC1b ROC2  
(UVP). If ISENxNis less than VREFx by 300mV + VOFFSET  
,
VR will trigger UVP latch. The UVP latch will turn off both  
high side and low side MOSFETs. When UVP is triggered  
by one of the VRs, the other VR will enter into soft  
shutdown sequence. The UVP mechanism is masked  
when VRx_READY = low.  
Solving (21) and (22) yields ROC1b and ROC2  
ROC2  
REQU, HOT REQU, COLD (1 )REQU, 25  
VCC  
VOCSET, 25  
(1 )  
(23)  
(24)  
ROC1b  
Under Voltage Lock Out (UVLO)  
(1)R2   REQU, HOT REQU, COLD  
(1 )  
During normal operation, if the voltage at the VCC pin  
drops below UVLO falling edge threshold, both VR will  
trigger UVLO. The UVLO protection forces all high side  
MOSFETs and low side MOSFETs off to turn off.  
where  
   
RSENSE, HOT  
DCR25 [10.00393(THOT 25)]  
RSENSE, COLD DCR25 [10.00393(TCOLD 25)]  
(25)  
(26)  
Inductor Selection  
The switching frequency and ripple current determine the  
inductor value as follows :  
REQU, T = ROC1a // RNTC, T  
V
IN VOUT  
LMIN  
tON  
(27)  
IRipple(MAX)  
Over Voltage Protection (OVP)  
where tON is the UGATE turn on period.  
The over voltage protection circuit of CORE/GFX VR  
monitors the output voltage via the ISENxN pin. The  
supported maximum operating VID of VR (V(MAX)) is stored  
in the Vout_Max register. Once VISENxN exceeds V(MAX)  
+ 200mV, OVP is triggered and latched. VR will try to  
turn on low side MOSFETs and turn off high side  
MOSFETs to protect CPU. When OVP is triggered by  
the one of the VRs, the other VR will enter soft shutdown  
sequence. A 1μs delay is used in OVP detection circuit  
to prevent false trigger.  
Higher inductance induces less ripple current and hence  
higher efficiency. However, the tradeoff is a slower transient  
response of the power stage to load transients. This might  
increase the need for more output capacitors, thus driving  
up the cost. Find a low-loss inductor having the lowest  
possibleDC resistance that fits in the allotted dimensions.  
The core must be large enough not to be saturated at the  
peak inductor current.  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
36  
DS8165B-03 November 2013  
RT8165B  
Output Capacitor Selection  
The capacitor connected to the ISEN1N/ISENANfor noise  
decoupling is optional and it should also be placed close  
to the ISEN1N/ISENAN pin.  
Output capacitors are used to obtain high bandwidth for  
the output voltage beyond the bandwidth of the converter  
itself. Usually, the CPU manufacturer recommends a  
capacitor configuration. Two different kinds of output  
capacitors can be found, bulk capacitors closely located  
to the inductors and ceramic output capacitors in close  
proximity to the load. Latter ones are for mid-frequency  
decoupling with very small ESR and ESL values while the  
bulk capacitors have to provide enough stored energy to  
overcome the low-frequency bandwidth gap between the  
regulator and the CPU.  
The NTC thermistor should be placed physically close  
to the inductor for better DCR thermal compensation.  
Layout Consideration  
Careful PC board layout is critical to achieving low  
switching losses and clean, stable operation. The  
switching power stage requires particular attention. If  
possible, mount all of the power components on the top  
side of the board with their ground terminals flushed  
against one another. Follow these guidelines for optimum  
PC board layout :  
Keep the high current paths short, especially at the  
ground terminals.  
Keep the power traces and load connections short. This  
is essential for high efficiency.  
When trade-offs in trace lengths must be made, it's  
preferable to allow the inductor charging path to be made  
longer than the discharging path.  
Place the current sense component close to the  
controller. ISENxP and ISENxNconnections for current  
limit and voltage positioning must be made using Kelvin  
sense connections to guarantee the current sense  
accuracy. The PCB trace from the sense nodes should  
be parallel to the controller.  
Route high-speed switching nodes away from sensitive  
analog areas (COMPx, FBx, ISENxP, ISENxN, etc...)  
Special attention should be paid in placing the DCR  
current sensing components. TheDCR current sensing  
capacitor and resistors must be placed close to the  
controller.  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8165B-03 November 2013  
www.richtek.com  
37  
RT8165B  
Outline Dimension  
SEE DETAIL A  
D
D2  
L
1
E2  
E
1
2
1
2
e
b
DETAILA  
A
Pin #1 ID and Tie Bar Mark Options  
A3  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.150  
4.950  
3.250  
4.950  
3.250  
0.800  
0.050  
0.250  
0.250  
5.050  
3.500  
5.050  
3.500  
0.028  
0.000  
0.007  
0.006  
0.195  
0.128  
0.195  
0.128  
0.031  
0.002  
0.010  
0.010  
0.199  
0.138  
0.199  
0.138  
D
D2  
E
E2  
e
0.400  
0.016  
L
0.350  
0.450  
0.014  
0.018  
W-Type 40L QFN 5x5 Package  
Richtek Technology Corporation  
14F, No. 8, Tai Yuen 1st Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should  
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot  
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be  
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.  
www.richtek.com  
38  
DS8165B-03 November 2013  

相关型号:

RT8167A

Dual Single-Phase PWM Controller for CPU Core/GFX Power Supply
RICHTEK

RT8167AGQW

Dual Single-Phase PWM Controller
RICHTEK

RT8167A_14

Dual Single-Phase PWM Controller
RICHTEK

RT8167B

Dual Single-Phase PWM Controller for CPU and GPU Core Power Supply
RICHTEK

RT8167BGQW

IC CTRLR BUCK PWM VM DL 40WQFN
RICHTEK

RT8170A

暂无描述
RICHTEK

RT8171B

暂无描述
RICHTEK

RT8171C

暂无描述
RICHTEK

RT8172A

暂无描述
RICHTEK

RT8175A

暂无描述
RICHTEK

RT8179B

暂无描述
RICHTEK

RT8199B

暂无描述
RICHTEK