RT8239BGQW [RICHTEK]

High Efficiency, Main Power Supply Controller for Notebook Computers;
RT8239BGQW
型号: RT8239BGQW
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

High Efficiency, Main Power Supply Controller for Notebook Computers

文件: 总24页 (文件大小:385K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT8239A/B/C  
High Efficiency, Main Power Supply Controller  
for Notebook Computers  
General Description  
Features  
z 5.5V to 25V Input Voltage Range  
z 2V to 5.5V Output Voltage Range  
z No Current Sense Resistor Needed  
z 5V/3.3V Linear Regulators  
The RT8239A/B/C is a dual step down, Switch Mode Power  
Supply (SMPS) controller which generates logic supply  
voltages for battery powered systems. It includes two  
Pulse Width Modulation (PWM) controllers adjustable  
from 2V to 5.5V and also two fixed 5V/3.3V linear  
regulators. One of the controllers (LDO5) provides  
automatic switch over to the BYP1 input connected to  
the main SMPS1 output for maximized efficiency. An  
optional external charge pump can be monitored through  
SECFB (RT8239B/C). Other features include on board  
power up sequencing, a power good output, internal soft-  
start, and a soft discharge output that prevents negative  
voltage during shutdown.  
z 4700ppm/°C RDS(ON) Current Sensing  
z Internal Current Limit Soft-Start and Soft Discharge  
Output  
z Built In OVP/UVP/OCP  
z Selectable Operation Mode with Switcher Enable  
Control (RT8239A)  
z SECFB Input Maintains Charge Pump Voltage  
(RT8239B/C)  
z Power Good Indicator (RT8239B/C includes SECFB)  
z RoHS Compliant and Halogen Free  
Aconstant on-time PWM control scheme operates without  
sense resistors and assures fast load transient response  
while maintaining nearly constant switching frequency. To  
eliminate noise in audio applications, an ultrasonic mode  
is included, which maintains the switching frequency  
above 25kHz. Moreover, a diode emulation mode  
maximizes efficiency for light load applications. The  
SMPS1/SMPS2 switching frequency can be adjustable  
from 200kHz/233kHz to 400kHz/466kHz respectively.  
Applications  
z Notebook computers  
z System Power Supplies  
z 3- and 4- Cell Li+ Battery-PoweredDevice  
Ordering Information  
RT8239A/B/C  
Package Type  
QW : WQFN-20L 3x3 (W-Type)  
The RT8239A/B/C is available in a WQFN-20L 3x3  
package, and operates over an extended temperature range  
from 40°C to 85°C.  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Z : ECO (Ecological Element with  
Halogen Free and Pb free)  
Pin Function With  
A : ENM  
B : SECFB  
C : SECFB, Ultrasonic Mode  
Note :  
Richtek products are :  
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering processes.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8239A/B/C-06 October 2012  
www.richtek.com  
1
RT8239A/B/C  
Pin Configurations  
(TOP VIEW)  
20 19 18 17 16  
20 19 18 17 16  
1
2
3
4
5
15  
14  
13  
12  
11  
1
2
3
4
5
15  
14  
13  
12  
11  
FB1  
ENTRIP1  
TON  
ENTRIP2  
FB2  
FB1  
ENTRIP1  
TON  
ENTRIP2  
FB2  
LDO3  
LDO5  
SECFB  
ENLDO  
VIN  
LDO3  
LDO5  
ENM  
ENLDO  
VIN  
GND  
GND  
21  
21  
6
7
8
9
10  
6
7
8
9 10  
RT8239A  
RT8239B/C  
WQFN-20L 3x3  
Marking Information  
RT8239B  
RT8239A  
JB= : Product Code  
YMDNN : Date Code  
JC= : Product Code  
YMDNN : Date Code  
JB=YM  
DNN  
JC=YM  
DNN  
JB : Product Code  
YMDNN : Date Code  
JC : Product Code  
YMDNN : Date Code  
JB YM  
DNN  
JC YM  
DNN  
RT8239C  
JD= : Product Code  
YMDNN : Date Code  
JD=YM  
DNN  
JD : Product Code  
YMDNN : Date Code  
JD YM  
DNN  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS8239A/B/C-06 October 2012  
RT8239A/B/C  
Typical Application Circuit  
V
IN  
5.5V to 25V  
R1  
C2  
C1  
RT8239A  
UGATE2  
C6  
10µF  
10µF  
8
7
11  
12  
18  
N3  
VIN  
R5  
0.1µF  
ENLDO  
BOOT2  
UGATE1  
BOOT1  
C7  
N1  
0.1µF  
L2  
9
V
OUT2  
R2  
19  
PHASE2  
LGATE2  
3.3V  
10  
C4  
0.1µF  
N4  
C8  
L1  
V
17  
16  
OUT1  
5V  
R6  
PHASE1  
LGATE1  
6.5k  
5
4
N2  
C3  
FB2  
R8  
100k  
R3  
15k  
R7  
10k  
ENTRIP2  
1
3
R9  
100k  
FB1  
2
R4  
10k  
R
TON  
ENTRIP1  
LDO3  
TON  
15  
3.3V Alwa  
ys On  
20  
13  
C9  
BYP1  
ENM  
4.7µF  
C5  
1µF  
Chip Enable  
14  
6
LDO5  
ys On  
5V Alwa  
C10  
10µF  
R10  
100k  
21 (Exposed Pad)  
PGOOD  
GND  
Figure 1. RT8239ANB Main Supply Typical Application Circuit  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8239A/B/C-06 October 2012  
www.richtek.com  
3
RT8239A/B/C  
V
IN  
5.5V to 25V  
R1  
C2  
C1  
RT8239B/C  
C6  
10µF  
10µF  
8
7
11  
12  
18  
UGATE2  
BOOT2  
VIN  
N3  
N4  
R5  
0.1µF  
ENLDO  
UGATE1  
C7  
N1  
0.1µF  
L2  
V
OUT2  
9
R2  
19  
PHASE2  
LGATE2  
BOOT1  
3.3V  
10  
C4  
0.1µF  
C8  
L1  
V
17  
16  
R6  
OUT1  
5V  
PHASE1  
LGATE1  
6.5k  
5
4
N2  
C3  
FB2  
R8  
100k  
R3  
15k  
R7  
10k  
ENTRIP2  
1
3
R9  
100k  
FB1  
2
R4  
10k  
R
TON  
ENTRIP1  
TON  
On  
Off  
20  
BYP1  
C5  
1µF  
C11  
15  
0.1µF  
3.3  
V Always On  
LDO3  
LDO5  
C9  
C13  
4.7µF  
0.1µF  
C12  
0.1µF  
14  
6
n
5V Always O  
C10  
10µF  
R10  
100k  
R11  
200k  
PGOOD  
GND  
C14  
13  
0.1µF  
SECFB  
21 (Exposed Pad)  
R12  
39k  
C15  
V
CP  
Figure 2. RT8239B/C NB Main Supply Typical Application Circuit  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS8239A/B/C-06 October 2012  
RT8239A/B/C  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
SMPS1 Feedback Input. Connect FB1 to a resistive voltage divider from SMPS1  
output to GND for adjustable output from 2V to 5.5V.  
1
FB1  
Channel 1 Enable and Current Limit Setting Input. Connect resistor to GND to set  
the threshold for Channel 1 synchronous R  
sense. The GND-PHASE1  
DS(ON)  
2
3
4
ENTRIP1  
TON  
current limit threshold is 1/10th the voltage seen at ENTRIP1 over a 0.5V to 3V  
range. There is an internal 10μA current source from LDO5 to ENTRIP1. Leave  
ENTRIP1 floating or drive it above 4.5V to shut down channel 1.  
ON-Time/Frequency Adjustment Input. Connect to GND with 56kΩ to 100kΩ.  
Channel 2 Enable and Current Limit Setting Input. Connect resistor to GND to set  
the threshold for Channel 2 synchronous R  
sense. The GND-PHASE2  
DS(ON)  
ENTRIP2  
current limit threshold is 1/10th the voltage seen at ENTRIP2 over a 0.5V to 3V  
range. There is an internal 10μA current source from LDO5 to ENTRIP2. Leave  
ENTRIP2 floating or drive it above 4.5V to shut down channel 2.  
SMPS2 Feedback Input. Connect FB2 to a resistive voltage divider from SMPS2  
output to GND for adjustable output from 2V to 5.5V.  
5
6
FB2  
Power Good Output for Channel 1 and Channel 2 (RT8239A).  
PGOOD  
Power Good Output for Channel 1, Channel 2 and SECFB (RT8239B/C).  
Boost Flying Capacitor Connection for SMPS2. Connect to an external capacitor  
according to the typical application circuits.  
7
8
9
BOOT2  
Upper Gate Driver Output for SMPS2. UGATE2 swings between PHASE2 and  
BOOT2.  
UGATE2  
PHASE2  
Switch Node for SMPS2. PHASE2 is the internal lower supply rail for the UGATE2  
high side gate driver. PHASE2 is also the current sense input for the SMPS2.  
10  
11  
LGATE2  
VIN  
Lower Gate Drive Output for SMSP2. LGATE2 swings between GND and LDO5.  
Supply Input for LDO5.  
Master Enable Input. LDO5/LDO3 is enabled if it is within logic high level and  
disabled if it is less than the logic low level. Leave ENLDO floating to default  
enable LDO5/LDO3.  
12  
13  
ENLDO  
ENM  
(RT8239A)  
Mode Selection with Enable Input. Pull up to LDO5 (Ultrasonic mode) or LDO3  
(DEM) to turn on both switch Channels. Short to GND for shutdown.  
Change Pump Feedback Pin. The SECFB is used to monitor the optional external  
charge pump. Connect a resistive divider from the change pump output to GND to  
detect the output. If SECFB drops below its feedback threshold, an ultrasonic  
pulse occurs to refresh the charge pump driven by LGATE1 or LGATE2.  
If SECFB drops below its UV threshold, the switcher channels stop working and  
enter into discharge-mode. Pull up to LDO5 or LDO3 to disable SECFB UVP  
function.  
SECFB  
(RT8239B/C)  
5V Linear Regulator Output. LDO5 is the supply voltage for the low side MOSFET  
driver and also the analog supply voltage for the device. Bypass a minimum 4.7μF  
ceramic capacitor to GND  
14  
LDO5  
3.3V Linear Regulator Output. Bypass a minimum 4.7μF ceramic capacitor to  
GND.  
15  
16  
17  
LDO3  
LGATE1  
PHASE1  
Lower Gate Driver Output for SMPS1. LGATE1 swings between GND and LDO5.  
Switch Node SMPS1. PHASE1 is the internal lower supply rail for the UGATE1  
high side gate driver. PHASE1 is also the current sense input for the SMPS1.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8239A/B/C-06 October 2012  
www.richtek.com  
5
RT8239A/B/C  
Pin No.  
Pin Name  
Pin Function  
Upper Gate Driver Output for SMPS1. UGATE1 swings between PHASE1 and  
BOOT1.  
18  
UGATE1  
Boost Flying Capacitor Connection for SMPS1. Connect to an external  
capacitor according to the typical application circuits.  
19  
20  
BOOT1  
BYP1  
Switch Over Source Voltage Input for LDO5.  
Analog Ground and Power Ground. The exposed pad must be soldered to a  
large PCB and connected to GND for maximum power dissipation.  
21 (Exposed Pad) GND  
Function Block Diagram  
BOOT1  
BOOT2  
UGATE1  
UGATE2  
PHASE2  
LDO5  
PHASE1  
LDO5  
SMPS1  
PWM  
Buck  
SMPS2  
PWM  
Buck  
LGATE1  
LGATE2  
Controller  
Controller  
LDO5  
10µA  
LDO5  
10µA  
FB2  
FB1  
ENTRIP2  
ENTRIP1  
On Time  
ENM (RT8239A)  
TON  
SECFB (RT8239B/C)  
Switch Over Threshold  
BYP1  
LDO5  
PGOOD  
GND  
LDO3  
LDO3  
REF  
LDO5  
Power-On  
Sequence  
Clear Fault Latch  
VIN  
ENLDO  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS8239A/B/C-06 October 2012  
RT8239A/B/C  
Absolute Maximum Ratings (Note 1)  
z VIN, ENLDO toGND ------------------------------------------------------------------------------------------------------ 0.3V to 30V  
z BOOTx to PHASEx ------------------------------------------------------------------------------------------------------- 0.3V to 6V  
z ENTRIPx, FBx, TON, BYP1, PGOOD, LDO5, LDO3, ENM/SECFB to GND ------------------------------- 0.3V to 6V  
z PHASEx to GND  
DC----------------------------------------------------------------------------------------------------------------------------- 0.3V to 30V  
< 20ns ----------------------------------------------------------------------------------------------------------------------- 8V to 38V  
z UGATEx to PHASEx  
DC----------------------------------------------------------------------------------------------------------------------------- 0.3V to 6V  
< 20ns ----------------------------------------------------------------------------------------------------------------------- 5V to 7.5V  
z LGATEx toGND  
DC----------------------------------------------------------------------------------------------------------------------------- 0.3V to 6V  
< 20ns ----------------------------------------------------------------------------------------------------------------------- 2.5V to 7.5V  
z PowerDissipation, PD @ TA = 25°C  
WQFN-20L 3x3 ------------------------------------------------------------------------------------------------------------ 3.33W  
z Package Thermal Resistance (Note 2)  
WQFN-20L 3x3, θJA ------------------------------------------------------------------------------------------------------- 30°C/W  
WQFN-20L 3x3, θJC ------------------------------------------------------------------------------------------------------ 7.5°C/W  
z Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------------- 260°C  
z Junction Temperature ----------------------------------------------------------------------------------------------------- 150°C  
z Storage Temperature Range -------------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Model)---------------------------------------------------------------------------------------------- 2kV  
Recommended Operating Conditions (Note 4)  
z Supply Input Voltage, VIN ----------------------------------------------------------------------------------------------- 5.5V to 25V  
z Junction Temperature Range-------------------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range-------------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = 12V, VENLDO = 5V, VENTRIPx = 2V, VBYP1 = 5V, No Load on LDO5, LDO3, TA = 25°C, unless otherwise specified)  
Parameter  
Input Supply  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Rising Threshold  
Falling Threshold  
IVIN_SHDN VENLDO = GND  
--  
5.1  
--  
5.5  
4.5  
VIN Power On Reset  
V
3.5  
VIN Shutdown Current  
--  
--  
20  
40  
μA  
VIN Standby Supply Current  
Both SMPS Off  
250  
350  
IVIN_SBY  
Both SMPSs on, FBx = 2.1V,  
BYP1 = 5V, ENM = 3.3V (RT8239A)  
Quiescent Power Consumption  
--  
5
7
mW  
IQ  
SMPS Output and FB Voltage  
FBx, CCM Operation  
FBx, DEM Operation  
--  
2
--  
FBx Regulation Voltage  
V
VFBx  
1.98 2.006 2.03  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8239A/B/C-06 October 2012  
www.richtek.com  
7
RT8239A/B/C  
Parameter  
Symbol  
Test Conditions  
SMPS1, SMPS2  
Min  
2
Typ Max  
Unit  
Output Voltage Adjustable  
Range  
--  
2
5.5  
V
SECFB Voltage  
RT8239B  
1.92  
2.08  
VSECFB  
On-Time  
--  
--  
256  
220  
--  
--  
--  
VPHASE1 = 2V  
PHASE2 = 2V  
VIN = 20V  
On-Time Pulse Width  
Minimum Off-Time  
Frequency Range  
ns  
ns  
tUGATEx  
R
TON = 56kΩ  
V
--  
400  
400  
466  
--  
tLGATEx  
fSMPS1  
fSMPS2  
fASM  
VFBx = 1.8V  
SMPS1 Operating Frequency  
SMPS2 Operating Frequency  
RT8239C, VPHASEx = 50mV  
200  
233  
25  
--  
kHz  
kHz  
--  
Ultrasonic Mode Frequency  
--  
Soft-Start  
Zero to 200mV Current Limit Threshold  
from ENTRIPx Enable  
Soft-Start Time  
--  
2
--  
ms  
tSSx  
Current Sense  
Current Limit Current Source  
Temperature Coefficient of  
IENTRIPx  
9.4  
--  
10  
10.6  
--  
μA  
IENTRIPx  
VENTRIPx = 0.9V  
4700  
On The Basis of 25°C  
ppm/°C  
Current Limit Adjustment  
Range  
0.5  
--  
2.7  
V
VENTRIPx = IENTRIPx x RENTRIPx  
Current Limit Threshold  
Zero-Current Threshold  
180  
--  
200  
3
225  
--  
mV  
mV  
VENTRIPx  
VZC  
GND PHASEx, VENTRIPx = 2V  
GND PHASEx, FBx = 2.1V  
Internal Regulator and Reference  
4.8  
5
5.2  
VBYP1 = 0V, ILDO5 < 100mA  
VBYP1 = 0V, ILDO5 < 100mA ,  
6.5V < VIN < 25V  
4.75  
--  
5.25  
LDO5 Output Voltage  
V
VLDO5  
VBYP1 = 0V, ILDO5 < 50mA,  
5.5V < VIN < 25V  
4.75  
--  
--  
5.25  
--  
LDO5 Output Current  
5V Switchover Threshold  
5V Switch RDS(ON)  
ISHORT5  
VBYP1TH  
RBYPSW  
VBYP1 = 0V, VLDO5 = 4.5V  
225  
mA  
V
Falling Edge, Rising Edge with FB1  
Regulation Point  
4.53 4.66 4.79  
VBYP1 = 5V, ILDO5 = 50mA  
VBYP1 = 0V, ILDO3 < 100mA  
VBYP1 = 5V, ILDO3 < 100mA  
VBYP1 = 0V, VLDO3 = 2.9V  
--  
3.2  
3.2  
--  
1.5  
3.3  
3.3  
150  
3
Ω
3.46  
3.46  
--  
V
LDO3 Output Voltage  
VLDO3  
LDO3 Output Current  
ISHORT3  
mA  
V
UVLO  
Rising Edge  
Falling Edge  
Both SMPS Off  
--  
3.9  
--  
4.35  
4.05  
2.2  
4.5  
4.2  
--  
LDO5 UVLO Threshold  
VUVLO5  
VUVLO3  
LDO3 UVLO Threshold  
Power Good  
PGOOD Detect, Rising edge with  
soft-start delay time. Hysteresis = 2.5%  
PGOOD Threshold  
VPGOOD  
14  
10  
6  
%
PGOOD Propagation Delay tPD_PGOOD Falling Edge  
--  
5
--  
μs  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS8239A/B/C-06 October 2012  
RT8239A/B/C  
Parameter  
Symbol  
Test Conditions  
Min  
--  
Typ  
--  
Max Unit  
PGOOD Leakage Current  
PGOOD Output Low Voltage  
I
High State, Forced to 5.5V  
1
μA  
LK_PGOOD  
V
I
= 4mA  
--  
--  
0.4  
V
SINK_PGOOD SINK  
SECFB Power Good  
Threshold  
SECFB with Respect to 2V  
(RT8239B/C)  
V
40  
50  
60  
%
SFB_PGOOD  
Fault Detection  
Over Voltage Protection Trip  
Threshold  
V
t
OVP Detect, FBx Rising Edge  
Rising Edge  
108  
--  
112  
5
116  
--  
%
OVP  
Over Voltage Protection  
Propagation Delay  
μs  
DLY_OVP  
V
UVP Detect, FBx Falling Edge.  
53  
58  
--  
63  
%
V
UVP  
Under Voltage Protection Trip  
Threshold  
V
UVP Detect, SECFB Falling Edge.  
0.8  
1.2  
SFB_UVP  
Under Voltage Protection  
Shutdown Blanking Time  
t
From ENTRIPx or ENM Enable  
--  
5
--  
ms  
SSHx  
Thermal Shutdown  
Thermal Shutdown  
TSD  
--  
--  
150  
10  
--  
--  
°C  
°C  
Thermal Shutdown Hysteresis ΔT  
SD  
Logic Input  
ENTRIPx Input Voltage  
V
Clear Fault Level/SMPSx Off Level  
Rising Edge Threshold  
4.5  
1.2  
0.9  
--  
--  
2
1
V
V
ENTRIPx  
1.6  
Falling Edge Threshold  
0.95  
ENLDO Input Voltage  
V
ENLDO  
ENM  
When ENLDO is Floating (Default  
Enable)  
2.1  
--  
--  
Clear Fault Level/SMPSs Off Level  
SMPSs On, DEM Operation  
--  
--  
--  
0.8  
3.6  
ENM Input Voltage  
(RT8239A)  
2.3  
V
V
SMPSs On, Ultrasonic Mode  
Operation  
4.5  
--  
--  
--  
--  
--  
1
1
3
I
V
= 0V or 5V  
FBx  
1  
1  
1  
FBx  
Input Leakage Current  
ENM/SECFB = 0V or 5V  
ENLDO = 0V or 5V  
I
μA  
P13  
I
ENLDO  
Internal BOOT Switch  
Internal Boost Charging  
Switch On-Resistance  
LDO5 to BOOTx, 10mA  
--  
--  
90  
R
BOOTx  
Ω
Power MOSFET Drivers  
--  
--  
--  
--  
--  
--  
5
2
8
4
8
3
--  
--  
R
R
R
R
Source, V  
Sink, V  
V  
= 0.1V  
= 0.1V  
UGATEsr  
UGATEsk  
LGATEsr  
LGATEsk  
BOOTx  
UGATEx  
UGATEx On-Resistance  
Ω
Ω
V  
= 0.1V  
UGATEx  
PHASEx  
5
Source, V  
V  
LGATEx  
LDO5  
LGATEx On-Resistance  
Dead Time  
1.5  
30  
40  
Sink, V  
= 0.1V  
LGATEx  
UGATEx Off to LGATEx On  
LGATEx Off to UGATEx On  
t
LGATERx  
ns  
t
UGATERx  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8239A/B/C-06 October 2012  
www.richtek.com  
9
RT8239A/B/C  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured at TA = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is  
measured at the exposed pad of the package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS8239A/B/C-06 October 2012  
RT8239A/B/C  
Typical Operating Characteristics  
VOUT1 Efficiency vs. Load Current  
VOUT1 Efficiency vs. Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
DEM  
ASM  
DEM  
ASM  
60  
50  
40  
30  
20  
VIN = 8V, RTON = 100kΩ, VENTRIP1 = 1.5V  
VENTRIP2 = 5V, ENLDO = 5V  
0
VIN = 12V, RTON = 100kΩ, VENTRIP1 = 1.5V  
10  
VENTRIP2 = 5V, ENLDO = 5V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
10  
10  
Load Current (A)  
Load Current (A)  
VOUT1 Efficiency vs. Load Current  
VOUT2 Efficiency vs. Load Current  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DEM  
ASM  
DEM  
ASM  
VIN = 20V, RTON = 100kΩ, VENTRIP1 = 1.5V  
ENTRIP2 = 5V, ENLDO = 5V  
VIN = 8V, RTON = 100kΩ, VENTRIP1 = 5V,  
VENTRIP2 = 1.5V, ENLDO = 5V  
V
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
Load Current (A)  
Load Current (A)  
VOUT2 Efficiency vs. Load Current  
VOUT2 Efficiency vs. Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DEM  
ASM  
DEM  
ASM  
VIN = 12V, RTON = 100kΩ, VENTRIP1 = 5V,  
VENTRIP2 = 1.5V, ENLDO = 5V  
VIN = 20V, RTON = 100kΩ, VENTRIP1 = 5V,  
VENTRIP2 = 1.5V, ENLDO = 5V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
Load Current (A)  
Load Current (A)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8239A/B/C-06 October 2012  
www.richtek.com  
11  
RT8239A/B/C  
VOUT1 Switching Frequency vs. Load Current  
VOUT1 Switching Frequency vs. Load Current  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
VIN = 12V, RTON = 100kΩ,  
ENLDO = VIN, VENTRIP1 = 1.5V,  
VENTRIP2 = 5V  
VIN = 8V, RTON = 100kΩ,  
ENLDO = VIN, VENTRIP1 = 1.5V,  
VENTRIP2 = 5V  
240  
220  
200  
180  
160  
140  
120  
100  
80  
ASM  
DEM  
ASM  
DEM  
60  
60  
40  
40  
20  
20  
0
0
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Load Current (A)  
Load Current (A)  
VOUT1 Switching Frequency vs. Load Current  
VOUT2 Switching Frequency vs. Load Current  
260  
280  
VIN = 20V, RTON = 100kΩ,  
ENLDO = VIN, VENTRIP1 = 1.5V,  
VENTRIP2 = 5V  
VIN = 8V, RTON = 100kΩ,  
ENLDO = VIN, VENTRIP1 = 5V,  
VENTRIP2 = 1.5V  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
240  
220  
200  
180  
160  
140  
120  
100  
80  
ASM  
DEM  
ASM  
DEM  
60  
60  
40  
40  
20  
20  
0
0
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Load Current (A)  
Load Current (A)  
VOUT2 Switching Frequency vs. Load Current  
VOUT2 Switching Frequency vs. Load Current  
300  
300  
VIN = 12V, RTON = 100kΩ,  
ENLDO = VIN, VENTRIP1 = 5V,  
VENTRIP2 = 1.5V  
VIN = 20V, RTON = 100kΩ,  
ENLDO = VIN, VENTRIP1 = 5V,  
VENTRIP2 = 1.5V  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
ASM  
DEM  
ASM  
DEM  
60  
60  
40  
40  
20  
20  
0
0
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Load Current (A)  
Load Current (A)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS8239A/B/C-06 October 2012  
RT8239A/B/C  
VOUT2 Output Voltage vs. Load Current  
VOUT1 Output Voltage vs. Load Current  
5.034  
5.031  
5.028  
5.025  
5.022  
5.019  
5.016  
5.013  
5.010  
3.420  
3.414  
3.408  
3.402  
3.396  
3.390  
3.384  
3.378  
3.372  
ASM  
DEM  
ASM  
DEM  
VIN = 12V, RTON = 100kΩ, ENLDO = VIN,  
VENTRIP1 = 1.5V, VENTRIP2 = 5V  
VIN = 12V, RTON = 100kΩ, ENLDO = VIN,  
VENTRIP1 = 5V, VENTRIP2 = 1.5V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Load Current (A)  
Load Current (A)  
LDO5 Output Voltage vs. Output Current  
LDO3 Output Voltage vs. Output Current  
5.072  
5.068  
5.064  
5.060  
5.056  
5.052  
5.048  
3.354  
3.352  
3.350  
3.348  
3.346  
3.344  
3.342  
3.340  
3.338  
3.336  
3.334  
VIN = 12V, VENTRIP1 = VENTRIP2 = 5V, ENLDO = VIN  
VIN = 12V, VENTRIP1 = VENTRIP2 = 5V, ENLDO = VIN  
0
10 20 30 40 50 60 70 80 90 100  
Output Current (mA)  
0
10 20 30 40 50 60 70 80 90 100  
Output Current (mA)  
No Load Battery Current vs. Input Voltage  
Standby Input Current vs. Input Voltage  
100  
10  
1
240  
238  
236  
234  
232  
230  
228  
226  
ASM  
DEM  
RTON = 100kΩ, VENTRIP1 = VENTRIP2 =1.5V,  
EVLDO = VIN  
VENTRIP1 = VENTRIP2 = 5V, ENLDO = VIN, No Load  
0.1  
6 7 8 9 10 11 12 13 14 1516 17 18 19 20 21 22 23 24 25  
Input Voltage (V)  
6
8
10 12 14 16 18 20 22 24 26  
Input Voltage (V)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8239A/B/C-06 October 2012  
www.richtek.com  
13  
RT8239A/B/C  
Power On from ENLDO  
Shutdown Input Current vs. Input Voltage  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
LDO5  
(2V/Div)  
LDO3  
(2V/Div)  
CP  
(10V/Div)  
ENLDO  
(10V/Div)  
VIN = 12V, VENTRIP1 = VENTRIP2 = 1.5V  
VENTRIP1 = VENTRIP2 = 5V, ENLDO = GND, No Load  
ENLDO = VIN, RTON = 100kΩ, No Load  
6
8
10 12 14 16 18 20 22 24 26  
Input Voltage (V)  
Time (2ms/Div)  
Power Off from ENM  
Power On from ENM  
VIN = 12V, VENM = 5V, RTON = 100kΩ,  
VENTRIP1 = VENTRIP2 = 1.5V,  
ENLDO = VIN, No Load  
RT8239A  
RT8239A  
VOUT1  
(5V/Div)  
VOUT2  
VOUT1  
(2V/Div)  
VOUT2  
(5V/Div)  
(2V/Div)  
PGOOD  
(5V/Div)  
PGOOD  
(5V/Div)  
ENM  
ENM  
(5V/Div)  
(5V/Div)  
VIN = 12V, VENM = 5V, RTON = 100kΩ  
VENTRIP1 = VENTRIP2 = 1.5V, ENLDO = VIN, No Load  
Time (1ms/Div)  
Time (10ms/Div)  
Power On from ENTRIP1  
Power Off from ENTRIP1  
RT8239B/C  
RT8239B/C  
VOUT1  
VOUT1  
(2V/Div)  
(2V/Div)  
PGOOD  
(5V/Div)  
PGOOD  
(5V/Div)  
ENTRIP1  
(5V/Div)  
ENTRIP1  
(5V/Div)  
ENLDO = VIN, RTON = 100kΩ, No Load  
VIN = 12V, VENTRIP1 = VENTRIP2 = 1.5V,  
ENLDO = VIN, RTON = 100kΩ, No Load  
VIN = 12V, VENTRIP1 = VENTRIP2 = 1.5V,  
Time (1ms/Div)  
Time (4ms/Div)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
14  
DS8239A/B/C-06 October 2012  
RT8239A/B/C  
Power On from ENTRIP2  
Power Off from ENTRIP2  
RT8239B/C  
RT8239B/C  
VOUT2  
VOUT2  
(1V/Div)  
(1V/Div)  
PGOOD  
(10V/Div)  
PGOOD  
(5V/Div)  
ENTRIP2  
(5V/Div)  
ENTRIP2  
(5V/Div)  
VIN = 12V, VENTRIP1 = VENTRIP2 = 1.5V,  
VIN = 12V, VENTRIP1 = VENTRIP2 = 1.5V,  
ENLDO = VIN, RTON = 100kΩ, No Load  
ENLDO = VIN, RTON = 100kΩ, No Load  
Time (1ms/Div)  
Time (20ms/Div)  
VOUT1 DEM-MODE Load Transient Response  
VOUT2 DEM-MODE Load Transient Response  
VOUT2_AC  
(50mV/Div)  
VOUT1_AC  
(50mV/Div)  
UGATE2  
(20V/Div)  
UGATE1  
(20V/Div)  
LGATE1  
(5V/Div)  
LGATE2  
(5V/Div)  
Inductor  
Current  
(5A/Div)  
Inductor  
Current  
(5A/Div)  
VIN = 12V, RTON = 100kΩ,  
ENLDO = VIN, IOUT2 =1A to 8A  
VIN = 12V, RTON = 100kΩ,  
ENLDO = VIN, IOUT1 =1A to 8A  
Time (20μs/Div)  
Time (20μs/Div)  
OVP  
UVP  
VOUT1  
VOUT1  
(2V/Div)  
(2V/Div)  
PGOOD  
(5V/Div)  
UGATE1  
(50V/Div)  
LGATE1  
(10V/Div)  
PGOOD  
(5V/Div)  
VOUT2  
(2V/Div)  
VIN = 12V, RTON = 100kΩ, ENLDO = VIN, No Load  
VIN = 12V, RTON = 100kΩ, ENLDO = VIN  
Time (100μs/Div)  
Time (10ms/Div)  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8239A/B/C-06 October 2012  
www.richtek.com  
15  
RT8239A/B/C  
Application Information  
The RT8239A/B/C is a dual, Mach ResponseTM DRVTM  
mode synchronous buck controller targeted for notebook  
system power supply solutions. RICHTEK's Mach  
ResponseTM technology provides fast response to load  
steps. The topology circumvents the poor load transient  
timing problems of fixed frequency current mode PWMs  
while avoiding the problems caused by widely varying  
switching frequency in conventional constant on-time and  
constant off-time PWM schemes. A special adaptive on-  
time control trades off the performance and efficiency over  
wide input voltage range. The RT8239A/B/C includes 5V  
(LDO5) and 3.3V (LDO3) linear regulators. The LDO5 linear  
regulator steps down the battery voltage to supply both  
internal circuitry and gate drivers. The synchronous switch  
gate drivers are directly powered by LDO5. When VOUT1  
rises above 4.66V, an automatic circuit disconnects the  
linear regulator and allows the device to be powered by  
VOUT1 via the BYP1 pin.  
measured by VIN and proportional to the output voltage.  
There are two benefits of a constant switching frequency.  
First, the frequency can be selected to avoid noise  
sensitive regions such as the 455kHz IF band. Second,  
the inductor ripple current operating point remains  
relatively constant, resulting in easy design methodology  
and predictable output voltage ripple. The frequency for  
3V SMPS is set higher than the frequency for 5V SMPS.  
This is done to prevent audio frequency beatingbetween  
the two sides, which switch asynchronously for each side.  
The TON pin is connected to GND through the external  
resistor, RTON, to set the switching frequency.  
The RT8239A/B/C adaptively changes the operation  
frequency according to the input voltage. Higher input  
voltage usually comes from an external adapter, so the  
RT8239A/B/C operates with higher frequency to have  
better performance. Lower input voltage usually comes  
from a battery, so the RT8239A/B/C operates with lower  
switching frequency for lower switching losses. For a  
specific input voltage range, the switching cycle period is  
given by :  
PWM Operation  
The Mach ResponseTM DRVTM mode controller relies on  
the output filter capacitor's Effective Series Resistance  
(ESR) to act as a current sense resistor, so that the output  
ripple voltage provides the PWM ramp signal. Referring to  
the RT8239A/B/C's Function Block Diagram, the  
synchronous high side MOSFET will be turned on at the  
beginning of each cycle. After the internal one-shot timer  
expires, the MOSFET will be turned off. The pulse width  
of this one-shot is determined by the converter's input  
voltage and the output voltage to keep the frequency fairly  
constant over the entire input voltage range. Another one-  
shot sets a minimum off-time (400ns typ). The on-time  
one-shot will be triggered if the error comparator is high,  
the low side switch current is below the current limit  
threshold, and the minimum off-time one-shot has timed  
out.  
For 5.5V < VIN < 6.5V :  
tS1 = 61.28p x RTON  
tS2 = 44.43p x RTON  
For 6.5V < VIN < 12V :  
tS1 = 51.85p x RTON  
tS2 = 44.43p x RTON  
For 12V < VIN < 25V :  
tS1 = 45.75p x RTON  
tS2 = 39.2p x RTON  
The on-time guaranteed in the Electrical Characteristics  
table is influenced by switching delays in the external  
high side power MOSFET. Two external factors that  
influence switching frequency accuracy are resistive drops  
in the two conduction loops (including inductor and PC  
board resistance) and the dead time effect. These effects  
are the largest contributors to the change of frequency  
with changing load current. The dead time effect increases  
the effective on-time by reducing the switching frequency  
PWM Frequency and On-time Control  
For each specific input voltage range, the Mach  
ResponseTM control architecture runs with pseudo constant  
frequency by feed forwarding the input and output voltage  
into the on-time one-shot timer. The high side switch on-  
time is inversely proportional to the input voltage as  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
16  
DS8239A/B/C-06 October 2012  
RT8239A/B/C  
as one or both dead times. It occurs only in PWM mode  
when the inductor current reverses at light or negative  
load currents. With reversed inductor current, the  
inductor's EMF causes PHASEx to go high earlier than  
normal, hence extending the on-time by a period equal to  
the low to high dead time. For loads above the critical  
conduction point, the actual switching frequency is :  
load current is further decreased, it takes longer and longer  
time to discharge the output capacitor to the level that  
requires the next ONcycle. The on-time is kept the  
same as that in the heavy load condition. In reverse, when  
the output current increases from light load to heavy load,  
the switching frequency increases to the preset value as  
the inductor current reaches the continuous conduction.  
The transition load point to the light load operation is shown  
in Figure 3. and can be calculated as follows :  
f = (VOUT + VDROP1) / (tON x (VIN + VDROP1 VDROP2))  
where VDROP1 is the sum of the parasitic voltage drops in  
the inductor discharge path, including synchronous  
rectifier, inductor, and PC board resistances; VDROP2 is  
the sum of the resistances in the charging path; and tON  
is the on-time calculated by the RT8239A/B/C.  
I
L
Slope = (V -V  
)/L  
IN OUT  
I
I
t
PEAK  
I
/2  
LOAD = PEAK  
Operation Mode Selection  
The RT8239A/B supports two operation modes : Diode  
Emulation Mode and Ultrasonic Mode. The RT8239C only  
supports Ultrasonic Mode. The operation mode can be  
set via the ENM pin for RT8239A or SECFB pin for  
RT8239B.  
0
t
ON  
Figure 3. Boundary condition of CCM/DEM  
(VIN VOUT  
)
ILOAD(SKIP)  
×tON  
2L  
Table 1. Operation Mode Setting  
where tON is the on-time.  
Part Number  
RT8239A RT8239B RT8239C  
The switching waveforms may appear noisy and  
asynchronous when light loading causes diode emulation  
operation. This is normal and results in high efficiency.  
Trade offs in PFM noise vs. light load efficiency is made  
by varying the inductor value.Generally, low inductor values  
produce a broader efficiency vs. load curve, while higher  
values result in higher full load efficiency (assuming that  
the coil resistance remains fixed) and less output voltage  
ripple. Penalties for using higher inductor values include  
larger physical size and degraded load transient response  
(especially at low input voltage levels).  
Pin Name  
ENM  
SECFB  
SECFB  
Pin-13  
Voltage Range  
Mode State  
4.5V to 5V  
2.3V to 3.6V  
1.2V to 1.8V  
Below 0.8V  
ASM  
DEM  
ASM  
DEM  
ASM  
UVP  
ASM  
ASM  
ASM  
UVP  
ASM  
Shutdown  
Diode Emulation Mode  
In Diode Emulation Mode, the RT8239A/B automatically  
reduces switching frequency at light load conditions to  
maintain high efficiency. This reduction of frequency is  
achieved smoothly. As the output current decreases from  
heavy-load condition, the inductor current is also reduced,  
and eventually comes to the point that its current valley  
touches zero, which is the boundary between continuous  
conduction and discontinuous conduction modes. By  
emulating the behavior of diodes, the low side MOSFET  
allows only partial negative current to flow when the  
inductor free wheeling current becomes negative. As the  
Ultrasonic Mode  
The RT8239A/B/C activates a unique type of Diode  
Emulation Mode with a minimum switching frequency of  
25kHz, called Ultrasonic Mode. This mode eliminates  
audio-frequency modulation that would otherwise be  
present when a lightly loaded controller automatically  
skips pulses. In Ultrasonic Mode, the low side switch gate  
driver signal is ORed with an internal oscillator  
(>25kHz). Once the internal oscillator is triggered, the  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8239A/B/C-06 October 2012  
www.richtek.com  
17  
RT8239A/B/C  
ultrasonic controller pulls LGATEx high and turns on the  
low side MOSFET to induce a negative inductor current.  
After the output voltage falls below the reference voltage,  
the controller turns off the low side MOSFET (LGATEx  
pulled low) and triggers a constant on-time (UGATExdriven  
high). When the on-time has expired, the controller re-  
enables the low side MOSFET until the controller detects  
that the inductor current dropped below the zero crossing  
threshold.  
GND sets the current limit threshold. The resistor, RILIM,  
is connected to a current source from ENTRIPxwhich is  
10μA(typ.) at room temperature. The current source has  
a 4700ppm/°C temperature slope to compensate the  
temperature dependency of the RDS(ON). When the voltage  
drop across the sense resistor or low side MOSFET  
equals 1/10 the voltage across the RILIM resistor, positive  
current limit will be activated. The high side MOSFET will  
not be turned on until the voltage drop across the MOSFET  
falls below 1/10 the voltage across the RILIM resistor.  
Linear Regulators (LDOx)  
Choose a current limit resistor according to the following  
equation :  
The RT8239A/B/C includes 5V (LDO5) and 3.3V (LDO3)  
linear regulators. The regulators can supply up to 100mA  
for external loads. Bypass LDOx with a minimum 4.7μF  
ceramic capacitor. When VOUT1 is higher than the switch  
over threshold (4.66V), an internal 1.5Ω P-MOSFET switch  
connects BYP1 to the LDO5 pin while simultaneously  
disconnects the internal linear regulator.  
VILIM = (RILIM x 10μA) / 10 = IILIM x RDS(ON)  
RILIM = (IILIM x RDS(ON)) x 10 / 10μA  
Carefully observe the PC board layout guidelines to ensure  
that noise andDC errors do not corrupt the current sense  
signal at PHASEx and GND. Mount or place the IC close  
to the low side MOSFET.  
Current Limit Setting (ENTRIPx)  
The RT8239A/B/C has cycle-by-cycle current limit control.  
The current limit circuit employs a unique valleycurrent  
sensing algorithm. If the magnitude of the current sense  
signal at PHASEx is above the current limit threshold,  
the PWM is not allowed to initiate a new cycle (Figure 4).  
The actual peak current is greater than the current limit  
threshold by an amount equal to the inductor ripple current.  
Therefore, the exact current limit characteristic and  
maximum load capability are a function of the sense  
resistance, inductor value, and battery and output voltage.  
Charge Pump (SECFB)  
The external 14V charge pump is driven by LGATEx. When  
LGATEx is low, C1 will be charged by VOUT1 through D1.  
C1 voltage is equal to VOUT1 minus the diode drop. When  
LGATEx becomes high, C1 transfers the charge to C2  
through D2 and charges C2 voltage to VLGATEX plus C1  
voltage. As LGATEx transitions low on the next cycle, C3  
is charged to C2 voltage minus a diode drop throughD3.  
Finally, C3 charges C4 throughD4 when LGATEx switches  
high. Thus, the total charge pump voltage, VCP, is :  
I
L
VCP = VOUT1 + 2 x VLGATEx 4 x VD  
I
I
PEAK  
LOAD  
where VLGATEx is the peak voltage of the LGATEx driver  
which is equal to LDO5 and VD is the forward voltage  
dropped across the Schottky diode.  
I
t
LIMIT  
The SECFB pin in the RT8239B/C is used to monitor the  
charge pump via a resistive voltage divider to generate  
approximately 14V DC voltage and the clock driver uses  
VOUT1 as its power supply. In the event where SECFB  
drops below its feedback threshold, an ultrasonic pulse  
will occur to refresh the charge pump driven by LGATEx.  
If there's an overload on the charge pump in which SECFB  
can not reach more than its feedback threshold, the  
Figure 4. ValleyCurrent Limit  
The RT8239A/B/C uses the on resistance of the  
synchronous rectifier as the current sense element and  
supports temperature compensated MOSFET RDS(ON)  
sensing. The RILIM resistor between the ENTRIPx pin and  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
18  
DS8239A/B/C-06 October 2012  
RT8239A/B/C  
V
controller will enter Ultrasonic Mode. Special care should  
be taken to ensure that enough normal ripple voltage is  
present on each cycle to prevent charge pump shutdown.  
IN  
UGATEx  
BOOTx  
R
BOOT  
The robustness of the charge pump can be increased by  
reducing the charge pump decoupling capacitor and placing  
a small ceramic capacitor, CF (47pF to 220pF), in parallel  
with the upper leg of the SECFB resistor feedback network,  
RCP1, as shown below in Figure 5.  
PHASEx  
Figure 6. Increasing the UGATEx Rise Time  
Soft-Start  
SECFB  
R
CP2  
LGATE1  
VOUT1  
The RT8239A/B/C provides an internal soft-start function  
to prevent large inrush current and output voltage overshoot  
when the converter starts up. The soft-start (SS)  
automatically begins once the chip is enabled.During soft-  
start, the internal current limit circuit gradually ramps up  
the inductor current from zero. The maximum current limit  
value is set externally as described in previous section.  
The soft-start time is determined by the current limit level  
and output capacitor value. The current limit threshold ramp  
up time is typically 2ms from zero to 200mV after  
ENTRIPx is enabled. A unique PWM duty limit control  
that prevents output over voltage during soft-start period  
is designed specifically for FBx floating.  
C1  
C3  
C
F
R
CP1  
Charge Pump  
D1  
D2  
D3  
C2  
D4  
C4  
Figure 5. Charge pump circuit connected to SECFB  
MOSFET Gate Driver (UGATEx, LGATEx)  
The high side driver is designed to drive high current, low  
RDS(ON) N-MOSFET(s). When configured as a floating driver,  
5V bias voltage is delivered from the LDO5 supply. The  
average drive current is also calculated by the gate charge  
at VGS = 5V times switching frequency. The instantaneous  
drive current is supplied by the flying capacitor between  
BOOTx and PHASEx pins. A dead time to prevent shoot  
through is internally generated from high side MOSFET  
off to low side MOSFET on and low side MOSFET off to  
high side MOSFET on.  
UVLO Protection  
The RT8239A/B/C has LDO5 under voltage lock out  
protection (UVLO). When the LDO5 voltage is lower than  
4.05V (typ.) and the LDO3 voltage is lower than 2.2V (typ.),  
both switch power supplies are shut off. This is a non-  
latch protection.  
The low side driver is designed to drive high current low  
RDS(ON) N-MOSFET(s). The internal pull down transistor  
that drives LGATEx low is robust, with a 1.5Ω typical on-  
resistance. A 5V bias voltage is delivered from the LDO5  
supply. The instantaneous drive current is supplied by an  
input capacitor connected between LDO5 andGND.  
Power Good Output (PGOOD)  
PGOOD is an open-drain type output and requires a pull  
up resistor. PGOOD is actively held low in soft-start,  
standby, and shutdown. It is released when both output  
voltages are above 90% of the nominal regulation point  
for RT8239A. For RT8239B/C, besides requiring both  
output voltages to be above 90% of nominal regulation  
point, the SECFB threshold must also be above 50% of  
nominal regulation point in order for PGOODto be released.  
The PGOOD signal goes low if either output turns off or is  
10% below its nominal regulation point.  
For high current applications, some combinations of high  
and low side MOSFETs may cause excessive gate drain  
coupling, which leads to efficiency killing, EMI producing,  
shoot through currents. This is often remedied by adding  
a resistor in series with BOOTx, which increases the turn  
on time of the high side MOSFET without degrading the  
turn-off time. See Figure 6.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8239A/B/C-06 October 2012  
www.richtek.com  
19  
RT8239A/B/C  
Output Over Voltage Protection (OVP)  
overloading LDOx can cause large power dissipation on  
automatic switches, which may still result in thermal  
shutdown.  
The output voltage can be continuously monitored for over  
voltage. If the output voltage exceeds 12% of its set voltage  
threshold, the over voltage protection is triggered and the  
LGATEx low side gate drivers are forced high. This  
activates the low side MOSFET switch, which rapidly  
discharges the output capacitor and pulls the input voltage  
downward.  
Discharge Mode (Soft Discharge)  
When ENTRIPx is low and a transition to standby or  
shutdown mode occurs, or the output under voltage fault  
latch is set, the output discharge mode will be triggered.  
During discharge mode, an internal switch creates a path  
for discharging the output capacitors' residual charge to  
GND.  
The RT8239A/B/C is latched once OVP is triggered and  
can only be released by either toggling ENLDO, ENTRIPx  
or cycling VIN. There is a 5μs delay built into the over  
voltage protection circuit to prevent false transition.  
Shutdown Mode  
SMPS1, SMPS2, LDO3 and LDO5 all have independent  
enabling control. Drive ENLDO, ENTRIP1 and ENTRIP2  
below the precise input falling edge trip level to place the  
RT8239A/B/C in its low power shutdown state. The  
RT8239A/B/C consumes only 20μA of input current while  
in shutdown. When shutdown mode is activated, the  
reference turns off. The accurate 0.95V falling edge  
threshold on ENLDO can be used to detect a specific  
analog voltage level and to shutdown the device. Once in  
shutdown, the 1.6V rising edge threshold activates,  
providing sufficient hysteresis for most applications.  
Note that latching LGATEx high will cause the output  
voltage to dip slightly negative due to previously stored  
energy in the LC tank circuit. For loads that cannot tolerate  
a negative voltage, place a power Schottky diode across  
the output to act as a reverse polarity clamp.  
If the over voltage condition is caused by a short in high  
side switch, turning the low side MOSFET on 100% will  
create an electrical short between the battery and GND,  
hence blowing the fuse and disconnecting the battery from  
the output.  
Output Under Voltage Protection (UVP)  
Power Up Sequencing and On/Off Controls  
(ENTRIPx, ENM)  
The output voltage can be continuously monitored for under  
voltage. If the output is less than 58% of its set voltage  
threshold, the under voltage protection will be triggered  
and then both UGATEx and LGATEx gate drivers will be  
forced low. The UVP is ignored for at least 5ms (typ.)  
after a start up or a rising edge on ENTRIPx. Toggle  
ENTRIPx or cycle VIN to reset the UVP fault latch and  
restart the controller.  
ENTRIP1 and ENTRIP2 control SMPS power up  
sequencing. When the RT8239A/B/C is applied in the  
single channel mode, ENTRIPx disables the respective  
output when ENTRIPx voltage rises above 4.5V.  
Furthermore, when the RT8239A is applied in the dual  
channel mode, the outputs are enabled when ENM voltage  
rises above 2.3V.  
Thermal Protection  
The RT8239A/B/C features thermal shutdown to prevent  
damage from excessive heat dissipation. Thermal  
shutdown occurs when the die temperature exceeds  
150°C. All internal circuitry is inactive during thermal  
shutdown. The RT8239A/B/C triggers thermal shutdown  
if LDOx is not supplied from VOUTx, while input voltage on  
VIN and drawing current from LDOx are too high.  
Nevertheless, even if LDOx is supplied from VOUTx  
,
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
20  
DS8239A/B/C-06 October 2012  
RT8239A/B/C  
Table1. Operation Mode Truth Table  
Mode  
Condition  
Comment  
Transitions to discharge mode after VIN POR and  
after REF becomes valid. LDO5 and LDO3 remain  
active.  
Power Up  
LDOx < UVLO threshold  
ENLDO = high, VOUT1 or VOUT2 are  
enabled  
Run  
Normal Operation.  
LGATEx is forced high. LDO3 and LDO5 are active.  
Either output > 112% of the nominal level. Exit by VIN POR or by toggling ENLDO, ENTRIPx,  
and ENM.  
Over Voltage  
Protection  
Both UGATEx and LGATEx are forced low and  
Either output < 58% of the nominal level  
enter discharge mode. LDO3 and LDO5 are active.  
after 3ms time-out expires and output is  
Exit by VIN POR or by toggling ENLDO, ENTRIPx,  
enabled  
Under Voltage  
Protection  
and ENM.  
During discharge mode, there is one path to  
Either output is still high in standby mode  
discharge the output capacitors’ residual charge to  
or shutdown mode  
Discharge  
GND via an internal switch.  
ENTRIPx or ENM < startup threshold,  
LDO3 and LDO5 are active.  
ENLDO = high.  
Standby  
Shutdown  
ENLDO = low  
All circuitry are off.  
Thermal  
Shutdown  
All circuitry are off. Exit by VIN POR or by toggling  
ENLDO, ENTRIPx, and ENM.  
TJ > 150°C  
Table 2. Power up Sequencing (RT8239A)  
ENTRIP1  
ENTRIP2  
(V)  
ENLDO (V)  
ENM (V)  
Low  
LDO5  
Off  
LDO3  
Off  
SMPS1  
Off  
SMPS2  
Off  
(V)  
Low  
X
X
X
“>1.6V”  
=> High  
Low  
X
On  
On  
Off  
Off  
“>1.6V”  
=> High  
“>2.3V”  
=> High  
Off  
Off  
On  
On  
Off  
On  
On  
Off  
On  
On  
On  
On  
On  
On  
On  
On  
Off  
Off  
On  
On  
Off  
On  
On  
Off  
“>1.6V”  
=> High  
“>2.3V”  
=> High  
“>1.6V”  
=> High  
“>2.3V”  
=> High  
“>1.6V”  
=> High  
“>2.3V”  
=> High  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8239A/B/C-06 October 2012  
www.richtek.com  
21  
RT8239A/B/C  
Output Voltage Setting (FBx)  
Output Capacitor Selection  
Connect a resistive voltage divider at the FBx pin between  
VOUTx and GND to adjust the output voltage between 2V  
and 5.5V (Figure 7). Choose R2 to be approximately 10kΩ,  
and solve for R1 using the equation :  
The capacitor value and ESR determine the amount of  
output voltage ripple and load transient response. Thus,  
the capacitor value must be greater than the largest value  
calculated from below equations.  
(ΔILOAD)2 ×L×(tON + tOFF(MIN)  
)
R1 ⎞  
V
= V  
× 1+  
VSAG  
=
OUT  
FBx  
⎟⎟  
R2  
)
2×COUT × V ×tON VOUTx(tON + tOFF(MIN)  
IN  
where VFBx is 2V (typ.).  
(ΔILOAD)2 ×L  
2×COUT × VOUTx  
VSOAR  
=
V
IN  
1
VPP = LIR×ILOAD(MAX) × ESR +  
UGATEx  
8×COUT ×f  
VOUTx  
PHASEx  
LGATEx  
where VSAG and VSOAR are the allowable amount of  
undershoot and overshoot voltage during load transient,  
Vp-p is the output ripple voltage, and tOFF(MIN) is the  
minimum off-time.  
R1  
R2  
PGND  
FBx  
GND  
Thermal Considerations  
For continuous operation, do not exceed absolute  
maximum junction temperature. The maximum power  
dissipation depends on the thermal resistance of the IC  
package, PCB layout, rate of surrounding airflow, and  
difference between junction and ambient temperature. The  
maximum power dissipation can be calculated by the  
following formula :  
Figure 7. Setting VOUTx with a resistive voltage divider  
Output Inductor Selection  
The switching frequency (on-time) and operating point (%  
ripple or LIR) determine the inductor value as shown  
below :  
t
×(V V  
)
ON  
IN  
OUTx  
L =  
PD(MAX) = (TJ(MAX) TA) / θJA  
LIR×I  
LOAD(MAX)  
where TJ(MAX) is the maximum junction temperature, TA is  
the ambient temperature, and θJA is the junction to ambient  
thermal resistance.  
where LIR is the ratio of the peak-to-peak ripple current to  
the average inductor current.  
Find a low-loss inductor having the lowest possible DC  
resistance that fits in the allotted dimensions. Ferrite cores  
are often the best choice, although powdered iron is  
inexpensive and can work well at 200kHz. The core must  
be large enough not to saturate at the peak inductor  
For recommended operating condition specifications, the  
maximum junction temperature is 125°C. The junction to  
ambient thermal resistance, θJA, is layout dependent. For  
WQFN-20L 3x3 packages, the thermal resistance, θJA, is  
30°C/W on a standard JEDEC 51-7 four-layer thermal test  
board. The maximum power dissipation at TA = 25°C can  
be calculated by the following formula :  
current, IPEAK  
:
IPEAK = ILOAD(MAX) + [ (LIR / 2) x ILOAD(MAX)  
]
The calculation above shall serve as a general reference.  
To further improve transient response, the output  
inductance can be further reduced. Of course, besides  
the inductor, the output capacitor should also be  
considered when improving transient response.  
PD(MAX) = (125°C 25°C) / (30°C/W) = 3.33W for  
WQFN-20L 3x3 package  
The maximum power dissipation depends on the operating  
ambient temperature for fixed TJ(MAX) and thermal  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
22  
DS8239A/B/C-06 October 2012  
RT8239A/B/C  
resistance, θJA. The derating curve in Figure 8 allows the  
designer to see the effect of rising ambient temperature  
on the maximum power dissipation.  
` Place ground terminal of VIN capacitor(s), VOUTx  
capacitor(s), and source of low side MOSFETs as close  
to each other as possible. The PCB trace of PHASEx  
node, which connects to source of high side MOSFET,  
drain of low side MOSFET and high voltage side of the  
inductor, should be as short and wide as possible.  
3.6  
Four-Layer PCB  
3.0  
2.4  
1.8  
1.2  
0.6  
0.0  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 8. Derating Curve of Maximum PowerDissipation  
Layout Considerations  
Layout is very important in high frequency switching  
converter design. Improper PCB layout can radiate  
excessive noise and contribute to the converter’s  
instability. Certain points must be considered before  
starting a layout with the RT8239A/B/C.  
` Place the filter capacitor close to the IC, within 12mm  
(0.5 inch) if possible.  
` Keep current limit setting network as close as possible  
to the IC. Routing of the network should avoid coupling  
to high-voltage switching node.  
` Connections from the drivers to the respective gate of  
the high side or the low side MOSFET should be as  
short as possible to reduce stray inductance. Use  
0.65mm (25 mils) or wider trace.  
` All sensitive analog traces and components such as  
FBx, ENTRIPx, PGOOD, and TON should be placed  
away from high voltage switching nodes such as  
PHASEx, LGATEx, UGATEx, or BOOTx nodes to avoid  
coupling. Use internal layer(s) as ground plane(s) and  
shield the feedback trace from power traces and  
components.  
Copyright 2012 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8239A/B/C-06 October 2012  
www.richtek.com  
23  
RT8239A/B/C  
Outline Dimension  
1
2
1
2
DETAILA  
Pin #1 ID and Tie Bar Mark Options  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.150  
2.900  
1.650  
2.900  
1.650  
0.800  
0.050  
0.250  
0.250  
3.100  
1.750  
3.100  
1.750  
0.028  
0.000  
0.007  
0.006  
0.114  
0.065  
0.114  
0.065  
0.031  
0.002  
0.010  
0.010  
0.122  
0.069  
0.122  
0.069  
D
D2  
E
E2  
e
0.400  
0.016  
L
0.350  
0.450  
0.014  
0.018  
W-Type 20L QFN 3x3 Package  
Richtek Technology Corporation  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should  
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot  
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be  
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.  
www.richtek.com  
24  
DS8239A/B/C-06 October 2012  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY