RT9024PE [RICHTEK]

Low-Dropout Linear Regulator Controller with PGOOD Indication; 低压差线性稳压器控制器的PGOOD指示
RT9024PE
型号: RT9024PE
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Low-Dropout Linear Regulator Controller with PGOOD Indication
低压差线性稳压器控制器的PGOOD指示

稳压器 控制器
文件: 总9页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
RT9024  
Low-Dropout Linear Regulator Controller with PGOOD  
Indication  
General Description  
Features  
z 3.8V to 13.5V Operation Voltage  
z 0.8V 2% High Accuracy Voltage Reference  
z Quick Transient Response  
The RT9024 is a low-dropout voltage regulator controller  
with a specific PGOOD indicating scheme. The part could  
drive an externalN-MOSFET for various applications. The  
part is operated with VCC power ranging from 3.8V to  
13.5V. With such a topology, it's with advantages of  
flexible and cost-effective. The part comes to a small  
footprint package of SOT-23-6.  
z Power Good Indicator with Delay  
z Enable Control  
z Small Footprint Package SOT-23-6  
z RoHS Compliant and 100% Lead (Pb)-Free  
Applications  
z DSC  
Ordering Information  
RT9024  
Package Type  
E : SOT-23-6  
z DSLR  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
Pin Configurations  
(TOP VIEW)  
VCC DRI PGOOD  
Note :  
6
1
5
2
4
3
RichTek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
EN GND  
FB  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100%matte tin (Sn) plating.  
SOT-23-6  
Marking Information  
Note : There is no pin1 indicator on top mark for SOT-23-6  
type, and pin 1 will be lower left pin when reading top mark  
from left to right.  
For marking information, contact our sales representative  
directly or through a RichTek distributor located in your  
area, otherwise visit our website for detail.  
Typical Application Circuit  
V
V
IN  
CC  
Ccc  
Chip Enable  
1
6
5
EN  
VCC  
DRI  
C
C
IN  
2
3
RT9024  
Q1  
GND  
FB  
R
PGOOD  
4
V
PGOOD  
OUT  
R1  
OUT  
PGOOD  
R1+ R2  
R2  
R2  
VOUT = 0.8  
DS9024-01 March 2007  
www.richtek.com  
1
Preliminary  
RT9024  
Test Circuit  
V
CC  
V
IN  
12V  
V
CC  
12V  
Ccc  
1uF  
Chip Enable  
C
1
6
5
IN  
EN  
VCC  
DRI  
Ccc  
1uF  
Chip Enable  
5V  
100uF  
6
5
4
1
2
3
EN  
VCC  
DRI  
2
3
RT9024  
Q1  
PHD3055  
GND  
FB  
RT9024  
V
100k  
DRI  
A
GND  
FB  
4
V
OUT  
PGOOD  
R
PGOOD  
C
OUT  
V
PGOOD  
FB  
PGOOD  
100uF  
R1  
1k  
C
FB  
V
V
= 1V for current sink at DRI  
FB  
FB  
R1+ R2  
R2  
2k  
= 0.6V for current source at DRI  
VOUT = 0.8  
R2  
Figure 1. Typical Test Circuit  
Figure 2. DRI Source/Sink Current Test Circuit  
Functional Pin Description  
Pin No. Pin Name  
Pin Function  
1
2
3
4
5
6
EN  
Chip Enable (Active High).  
GND  
FB  
Ground.  
Output Voltage Feedback.  
Power Good Open Drain Output.  
Driver Output.  
PGOOD  
DRI  
VCC  
Power Supply Input.  
Function Block Diagram  
EN  
VCC  
Reference  
Voltage  
0.8V  
+
DRI  
-
0.7V  
Driver  
PGOOD  
GND  
+
-
3ms  
Delay  
FB  
www.richtek.com  
2
DS9024-01 March 2007  
Preliminary  
Absolute Maximum Ratings (Note 1)  
RT9024  
z Supply Input Voltage, VCC ------------------------------------------------------------------------------------------- 15V  
z Enable Voltage --------------------------------------------------------------------------------------------------------- 7V  
z PowerGood Output Voltage ---------------------------------------------------------------------------------------- 7V  
z Power Dissipation, PD @ TA = 25°C  
SOT-23-6 ---------------------------------------------------------------------------------------------------------------- 0.4W  
z Package Thermal Resistance (Note 4)  
SOT-23-6, θJA ----------------------------------------------------------------------------------------------------------- 250°C/W  
z Lead Temperature (Soldering, 10 sec.)--------------------------------------------------------------------------- 260°C  
z Junction Temperature ------------------------------------------------------------------------------------------------- 150°C  
z Storage Temperature Range ---------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ------------------------------------------------------------------------------------------ 2kV  
MM (Machine Mode) -------------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 3)  
z Supply Input Voltage, VCC ------------------------------------------------------------------------------------------- 3.8V to 13.5V  
z Enable Voltage --------------------------------------------------------------------------------------------------------- 0V to 5.5V  
z Junction Temperature Range---------------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range---------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VCC = 5V/12V, TA = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
Input Range  
Min  
Typ  
Max Units  
V
Operation Voltage Range  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
3.8  
3.15  
0.1  
--  
--  
3.4  
0.2  
0.3  
--  
13.5  
3.65  
0.3  
0.8  
--  
V
CC  
POR Threshold  
POR Hysteresis  
Rising  
V
Falling  
= 12V  
V
V
Supply Current  
mA  
mA  
mA  
V
CC  
Driver Source Current  
Driver Sink Current  
= 12V, V  
= 12V, V  
= 12V, V  
= 6V  
= 6V  
= 5V  
5
DRI  
DRI  
DRI  
5
--  
--  
Reference Voltage (V  
)
0.784 0.8  
0.816  
6
FB  
Reference Line Regulation (V  
Amplifier Voltage Gain  
PSRR at 100Hz, No Load  
Power Good  
)
= 4.5V to 15V  
= 12V, No Load  
= 12V, No Load  
--  
--  
3
70  
--  
mV  
dB  
dB  
FB  
--  
50  
--  
Rising Threshold  
Hysteresis  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 12V  
85  
--  
--  
1
90  
15  
0.2  
3
95  
--  
%
%
= 12V  
Sink Capability  
= 12V @ 1mA  
= 12V  
0.4  
10  
20  
V
Delay Time  
ms  
us  
Falling Delay  
= 12V  
--  
15  
To be Continued  
DS9024-01 March 2007  
www.richtek.com  
3
Preliminary  
RT9024  
Parameter  
Test Conditions  
Min  
Typ  
Max Units  
Chip Enable  
EN Rising Threshold  
EN Hysteresis  
V
CC  
V
CC  
V
CC  
= 12V  
= 12V  
--  
--  
--  
0.7  
30  
--  
1
--  
5
V
mV  
uA  
Standby Current  
= 12V, V = 0V  
EN  
Note 1. Stresses listed as the above Absolute Maximum Ratingsmay cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard.  
www.richtek.com  
4
DS9024-01 March 2007  
Preliminary  
Typical Operating Characteristics  
RT9024  
Feedback Voltage vs. Temperature  
Quiescent Current vs. Temperature  
0.50  
0.48  
0.45  
0.43  
0.40  
0.38  
0.35  
0.33  
0.30  
0.9  
0.85  
0.8  
0.75  
0.7  
VIN = 1.5V, VCC = 12V, RPGOOD = 100k  
CIN = COUT = 100uF, R1 = 1k, R2 = 2k  
VIN = 1.5V, VCC = 12V, RPGOOD = 100k  
CIN = COUT = 100uF, R1 = 1k, R2 = 2k  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
(°C)  
Temperature  
(°C)  
Temperature  
DRI Source Current vs. Temperature  
DRI Sink Current vs. Temperature  
60  
30  
27  
24  
21  
18  
15  
12  
55  
50  
45  
40  
35  
VFB = 1V, VCC = 12V, VDRI = 6V  
-50 -25 25 50  
VFB = 0.6V, VCC = 12V, VDRI = 6V  
-50 -25 25 50  
0
75  
100  
125  
0
75  
100  
125  
(°C)  
Temperature  
(°C)  
Temperature  
DRI Sink Current vs. DRI Voltage  
PGOOD Delay Time vs. Temperature  
4
3.5  
3
25  
20  
15  
10  
5
VIN = 1.5V, VCC = 12V  
RPGOOD = 100k  
R1 = 1k, R2 = 2k  
2.5  
2
TA = 25°C  
1.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
0.5  
1
1.5  
2
2.5  
3
(°C)  
Temperature  
DRI Voltage (V)  
DS9024-01 March 2007  
www.richtek.com  
5
Preliminary  
RT9024  
PGOOD Delay Time  
PGOOD Delay Time  
VCC = 12V, ILOAD = 1A  
CIN = COUT = 100uF  
VCC = 12V, CIN = COUT = 100uF, ILOAD = 100mA  
VOUT  
VOUT  
ILoad (A)  
VPGOOD  
VPGOOD  
VEN (V)  
VEN (V)  
Time (500us/Div)  
Time (500us/Div)  
PGOOD Off  
Enable Threshold Voltage vs. Temperature  
1
VCC = 12V  
VIN = 1.5V, VCC = 12V, RPGOOD = 100kΩ  
VOUT  
C
IN = COUT = 100uF  
C
IN = COUT = 100uF, R1 = 1k, R2 = 2k  
0.95  
0.9  
Turn on  
0.85  
0.8  
ILoad (A)  
Turn off  
0.75  
0.7  
VPGOOD  
VEN (V)  
0.65  
0.6  
-50  
-25  
0
25  
50  
75  
100  
125  
Time (50us/Div)  
Temperature  
(°C)  
Load Transient Response  
Line Transient Response  
VIN = 2.5V, VOUT = 1.2V  
CIN = COUT = 100uF  
VIN = 1.5V to 2.5V, ILOAD = 100mA  
IN = 2.2uF, COUT = 100uF  
C
20  
0
10  
0
-20  
-10  
5
0
2.5  
1.5  
Time (250us/Div)  
Time (100us/Div)  
www.richtek.com  
6
DS9024-01 March 2007  
Preliminary  
RT9024  
Application Information  
Capacitors Selection  
MOSFET Selection  
Careful selection of the external capacitors for RT9024 is  
highly recommended in order to remain high stability and  
performance.  
The RT9024 are designed to driver external N-MOSFET  
pass element. MOSFET selection criteria include  
threshold voltage VGS (VTH), maximum continuous drain  
current ID, on-resistance RDS(ON) ,maximum drain-to-  
Regarding the supply voltage capacitor, connecting a  
capacitor which is 1μF between VCC and ground is a  
must. The capacitor improves the supply voltage stability  
for proper operation.  
source voltage VDS and package thermal resistance θ(JA)  
.
The most critical specification is the MOSFET RDS(ON).  
Calculate the required RDS(ON) from the following formula:  
V - VOUT  
IN  
Regarding the input capacitor, connecting a capacitor which  
100μF between VIN and ground is recommended to  
increase stability. With large value of capacitance could  
result in better performance for both PSRR and line  
transient response.  
NMOSFET RDS(ON) =  
ILOAD  
For example, the MOSFET operate up to 2A when the  
input voltage is 1.5V and set the output voltage is 1.2V,  
RON = (1.5V-1.2V) / 2A = 150mΩ, the MOSFET's  
RON must be lower than 150mΩ. Philip PHD3055E  
MOSFET with an RDS(ON) of 120mΩ(typ.) is a suitable  
solution.  
When driving external pass element, connecting a  
capacitor 100μF between VOUT and ground is  
recommended for stability. With larger capacitance can  
reduce noise and improve load transient response and  
PSRR.  
The power dissipation is calculate as :  
PD = (VIN VOUT) x ILOAD  
The thermal resistance from junction to ambient θ(JA) is :  
(T T )  
Output Voltage Setting  
J
A
θ
=
(JA)  
P
D
The RT9024 develops a 0.8V reference voltage; especially  
suitable for low voltage application.As shown in application  
circuit, the output voltage could easy set the output  
voltage by R1 & R2 divider resistor.  
In this example, PD = (1.5V 1.2V) x 2A = 0.6W. The  
PHD3055E's θ(JA) is 75°C/W for itsD-PAK package, which  
translates to a 45°C temperature rise above ambient. The  
package provides exposed backsides that directly transfer  
heat to the PCB board.  
Power Good Function  
The RT9024 has the power good function with delay. The  
power good output is an open drain output. Connect a  
100kΩ pull up resistor to VOUT to obtain an output voltage.  
When the output voltage arrives 90% of normal value.  
PGOODwill become active and be pulled high by external  
circuits with typically 3ms delay.  
PNP Transistor Selection  
The RT9024 could driver the PNP transistor to sink output  
current. PNP transistor selection criteria includeDC current  
gain hFE, threshold voltage VEB, collector-emitter voltage  
VEN, maximum continues collector current IC, package  
thermal resistance θ(JA).  
Chip Enable Operation  
For example, the PNP transistor operates sink current up  
to 0.5A when the input voltage is 1.5V and set the output  
voltage is 1.2V. As show in Figure 3. A KSB772 PNP  
transistor, the VEN = 1.2V, VBE = -1V, IC = 0.5A, IB = 0.5/  
160 3.125mA, when the DRI pin voltage is 0.2V could  
sink 6.8mA(MAX) is a close match.  
Pull the EN pin low to drive the device into shutdown mode.  
During shutdown mode, the standby current drops to  
5μA(MAX). The external capacitor and load current determine  
the output voltage decay rate. Drive the EN pin high to  
turn on the device again.  
DS9024-01 March 2007  
www.richtek.com  
7
Preliminary  
RT9024  
DRI Sink Current vs. DRI Voltage  
25  
V
IN  
20  
15  
10  
5
PGOOD  
R
C
IN  
VCC  
Q1  
DRI  
V
CC  
Ccc  
PGOOD  
V
PGOOD  
GND  
EN  
OUT  
RT9024  
Chip Enable  
FB  
C
R1  
R2  
OUT  
Q2  
TA = 25°C  
0
0
0.5  
1
1.5  
2
2.5  
3
Figure 3  
DRI Voltage (V)  
Figure 4  
Layout Considerations  
There are three critical layout considerations. One is the divider resistors should be located to RT9024 as possible to  
avoid inducing any noise. The second is capacitors place. The CIN and COUT have to put at near the N-MOSFET for  
improve performance. The third is the copper area for pass element. We have to consider when the pass element  
operating under high power situation that could rise the junction temperature. In addition to the package thermal resistance  
limit, we could add the copper area to improve the power dissipation. As show in Figure 5 and Figure 6.  
V
IN  
V
IN  
PGOOD  
C
IN  
VCC  
Q1  
DRI  
V
GND  
CC  
Ccc  
R
PGOOD  
PGOOD  
GND  
EN  
V
OUT  
PGOOD  
FB  
V
CC  
RT9024  
Chip Enable  
FB  
R1  
R2  
C
V
OUT  
OUT  
EN  
GND  
Figure 5  
Figure 6  
www.richtek.com  
8
DS9024-01 March 2007  
Preliminary  
RT9024  
Outline Dimension  
H
D
L
C
A
B
b
A1  
e
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
B
0.889  
0.000  
1.397  
0.250  
2.591  
2.692  
0.838  
0.080  
0.300  
1.295  
0.152  
1.803  
0.560  
2.997  
3.099  
1.041  
0.254  
0.610  
0.031  
0.000  
0.055  
0.010  
0.102  
0.106  
0.033  
0.003  
0.012  
0.051  
0.006  
0.071  
0.022  
0.118  
0.122  
0.041  
0.010  
0.024  
b
C
D
e
H
L
SOT-23-6 Surface Mount Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
DS9024-01 March 2007  
www.richtek.com  
9

相关型号:

RT9026

暂无描述
RICHTEK

RT9027A

暂无描述
RICHTEK

RT9027B

暂无描述
RICHTEK

RT9030

暂无描述
RICHTEK

RT9030-10GQW

IC REG LINEAR 1V 150MA 6WDFN
RICHTEK

RT9030-10GU5

IC REG LINEAR 1V 150MA SC70-5
RICHTEK

RT9030-11GB

IC REG LINEAR 1.1V 150MA SOT23-5
RICHTEK

RT9030-11GU5

IC REG LINEAR 1.1V 150MA SC70-5
RICHTEK

RT9030-12GQW

IC REG LINEAR 1.2V 150MA 6WDFN
RICHTEK

RT9030-14GU5

IC REG LINEAR 1.4V 150MA SC70-5
RICHTEK

RT9030-15GQW

IC REG LINEAR 1.5V 150MA 6WDFN
RICHTEK

RT9030-15GU5

IC REG LINEAR 1.5V 150MA SC70-5
RICHTEK