RT9167A-33PB [RICHTEK]

Low-Noise, Fixed Output Voltage,300mA/500mA LDO Regulator;
RT9167A-33PB
型号: RT9167A-33PB
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Low-Noise, Fixed Output Voltage,300mA/500mA LDO Regulator

文件: 总13页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT9167/A  
Low-Noise, Fixed Output Voltage,300mA/500mA LDO Regulator  
General Description  
Features  
z Stable with Low-ESR Output Capacitor  
z Low Dropout Voltage (350mV @ 300mA)  
z Low Operation Current 80μA Typical  
z Shutdown Function  
The RT9167/A is a 300mA/500mA low dropout and low  
noise micropower regulator suitable for portable  
applications. The output voltages range from 1.5V to 5.0V  
in 100mV increments and 2% accuracy. The RT9167/Ais  
designed for use with very low ESR capacitors. The output  
remains stable even with 1μF ceramic output capacitor.  
z Low Noise Output  
z Low Temperature Coefficient  
z Current and Thermal Limiting  
z Custom Voltage Available  
The RT9167/Auses an internal PMOS as the pass device,  
which does not cause extra GND current in heavy load  
and dropout conditions. The shutdown mode of nearly zero  
operation current makes the IC suitable for battery-powered  
devices. Other features include a reference bypass pin to  
improve low noise performance, current limiting, and over  
temperature protection.  
z SOT-23-5 and SOP-8 Packages  
z RoHS Compliant and 100% Lead (Pb)-Free  
Applications  
z Cellular Telephones  
z Laptop,Notebook, and Palmtop Computers  
z Battery-powered Equipment  
z Hand-held Equipment  
Ordering Information  
RT9167/A-  
Package Type  
B : SOT-23-5  
Marking Information  
For marking information, contact our sales representative  
directly or through a RichTek distributor located in your  
area, otherwise visit our website for detail.  
BR : SOT-23-5 (R-Type)  
S : SOP-8  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-Pin Configurations  
cial Standard)  
Output Voltage  
15 : 1.5V  
16 : 1.6V  
:
49 : 4.9V  
50 : 5.0V  
2H : 2.85V  
(TOP VIEW)  
VOUT  
BP  
VOUT  
GND  
VIN  
BP  
EN  
1
2
3
5
4
1
2
3
5
VIN  
GND  
EN  
4
500mA Output Current  
300mA Output Current  
SOT-23-5  
SOT-23-5 (R-Type)  
Note :  
RichTek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
8
7
6
5
GND  
EN  
VIN  
2
3
4
GND  
GND  
GND  
VOUT  
BP  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100%matte tin (Sn) plating.  
SOP-8  
DS9167/A-26 March 2007  
www.richtek.com  
1
RT9167/A  
Functional Pin Description  
Pin Name  
VIN  
Pin Function  
Power Input Voltage  
Ground  
GND  
EN  
Chip Enable (Active High)  
Reference Noise Bypass  
Output Voltage  
BP  
VOUT  
Function Block Diagram  
Shutdown  
and  
VIN  
EN  
Logic Control  
VREF  
BP  
+
MOS Driver  
Error  
Amplifier  
VOUT  
Current-Limit and  
Thermal Protection  
R1  
R2  
GND  
Typical Application Circuit  
RT9167/A  
V
IN  
OUT  
V
IN  
OUT  
C
1uF  
C
1uF  
IN  
OUT  
GND  
Chip Enable  
EN  
BP  
C
10nF  
BP  
www.richtek.com  
2
DS9167/A-26 March 2007  
RT9167/A  
Absolute Maximum Ratings  
z Input Voltage------------------------------------------------------------------------------------------------------------ 8V  
z Power Dissipation, PD @ TA = 25°C  
SOT-23-5 ---------------------------------------------------------------------------------------------------------------- 0.4W  
SOP-8 -------------------------------------------------------------------------------------------------------------------- 0.625W  
z Package Thermal Resistance (Note1)  
SOT-23-5, θJA ----------------------------------------------------------------------------------------------------------- 250°C/W  
SOT-23-5, θJC ---------------------------------------------------------------------------------------------------------- 130°C/W  
SOP-8, θJA -------------------------------------------------------------------------------------------------------------- 160°C/W  
SOP-8, θJC -------------------------------------------------------------------------------------------------------------- 60°C/W  
z Operating Junction Temperature Range -------------------------------------------------------------------------- 40°C to 125°C  
z Storage Temperature Range ---------------------------------------------------------------------------------------- 65°C to 150°C  
z Lead Temperature (Soldering, 10 sec.)--------------------------------------------------------------------------- 260°C  
Electrical Characteristics  
(VIN = 5.0V, CIN = 1μF, COUT = 1μF, TA = 25°C, unless otherwise specified)  
Parameter  
Input Voltage Range  
Symbol  
Test Conditions  
Min Typ Max Units  
2.9  
2.7  
-2  
--  
--  
--  
--  
--  
--  
7
7
V
%
V
IN  
I = 50mA  
L
Output Voltage Accuracy  
+2  
--  
ΔV  
I = 1mA  
L
OUT  
RT9167  
300  
500  
400  
Maximum Output  
Current  
mA  
IMAX  
RT9167A  
RT9167  
--  
--  
Current Limit  
mA  
I
R
= 1Ω  
LOAD  
LIM  
RT9167A  
RT9167/A  
RT9167/A  
RT9167A  
RT9167/A  
RT9167/A  
RT9167/A  
RT9167A  
500 700  
--  
No Load  
--  
--  
80  
90  
90  
1.1  
55  
150  
150  
150  
5
Quiescent Current  
μA  
I
G
I
I
I
I
I
I
= 300mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
--  
--  
= 500mA  
= 1mA  
(2)  
Dropout Voltage  
(V = 3.0V  
--  
100  
= 50mA  
= 300mA  
= 500mA  
mV  
V
DROP  
OUT(Normal)  
--  
350 450  
600 750  
Version)  
--  
Line Regulation  
Load Regulation  
--  
--  
--  
6
30  
35  
--  
mV/V  
mV  
ΔV  
ΔV  
V = (V  
+0.15) to 7V, I  
=1mA  
OUT  
LINE  
IN  
OUT  
RT9167/A  
RT9167A  
--  
I
= 0mA to 300mA  
= 0mA to 500mA  
OUT  
OUT  
LOAD  
--  
--  
I
EN Input High Threshold  
EN Input Low Threshold  
EN Bias Current  
1.6  
--  
--  
V
V
V
V
V = 3V to 5.5V  
IN  
IH  
--  
0.4  
100  
1
V
IN  
= 3V to 5.5V  
IL  
--  
--  
nA  
μA  
°C  
I
SD  
Shutdown Supply Current  
Thermal Shutdown Temperature  
--  
0.01  
155  
IGSD  
V
OUT  
= 0V  
--  
--  
T
SD  
To be continued  
DS9167/A-26 March 2007  
www.richtek.com  
3
RT9167/A  
Parameter  
Output Noise  
Symbol  
Test Conditions  
= 10nF, C = 10μF  
Min Typ Max Units  
--  
--  
350  
58  
--  
--  
nV  
e
NO  
C
BP  
Hz  
dB  
OUT  
Ripple Rejection  
PSRR  
F = 100Hz, C = 10nF, C  
= 10μF  
BP  
OUT  
Note 1. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard. Pin 1 of SOP-8 and pin4 of SOT-23-5 packages are the case position for  
θJA measurement.  
Note 2. The dropout voltage is defined as VIN -VOUT, which is measured when VOUT is VOUT(NORMAL) 100mV.  
www.richtek.com  
4
DS9167/A-26 March 2007  
RT9167/A  
Typical Operating Characteristics  
Output Voltage vs. Temperature  
Quiescent Current vs. Temperature  
120  
105  
90  
75  
60  
45  
30  
15  
0
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
VOUT = 3.3V  
VOUT = 3.3V  
100 125 150  
3.25  
-50  
-25  
0
25  
50  
75  
100 125 150  
-50  
-25  
0
25  
50  
75  
Temperature  
Temperature  
(°C)  
(°C)  
Dropout Voltage vs. Load Current  
Dropout Voltage vs. Load Current  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
125°C  
125°C  
25°C  
25°C  
-40°C  
-40°C  
RT9167  
RT9167A  
VOUT = 5.0V  
VOUT = 3.3V  
0
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Load Current (A)  
Load Current (A)  
Current Limit vs. Temperature  
Current Limit vs. Temperature  
900  
700  
650  
600  
550  
500  
450  
400  
350  
300  
800  
700  
600  
500  
400  
300  
200  
RT9167  
VOUT = 5.0V  
RT9167A  
VOUT = 3.3V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature  
(°C)  
Temperature  
(°C)  
DS9167/A-26 March 2007  
www.richtek.com  
5
RT9167/A  
Load Transient Response  
Load Transient Response  
60  
40  
20  
0
60  
40  
20  
0
C
= 10uF  
V
= 4V  
IN  
IN  
C
= 10uF  
V
= 4V  
IN  
IN  
COUT = 1uF  
BP = 10nF  
VOUT = 3.0V  
C
OUT = 4.7uF  
BP = 10nF  
VOUT = 3.0V  
C
C
-20  
-20  
50  
1
50  
1
-50  
-50  
Time (50us/Div)  
Time (50us/Div)  
Line Transient Response  
Line Transient Response  
150  
100  
50  
150  
Loading = 1mA  
VOUT = 3.0V  
Loading = 50mA  
VOUT = 3.0V  
COUT = 1uF  
CBP = 10nF  
100 COUT = 1uF  
C
BP = 10nF  
50  
0
0
-50  
-50  
5
5
4
4
Time (1ms/Div)  
Time (1ms/Div)  
Line Transient Response  
Line Transient Response  
150  
60  
40  
20  
0
VOUT = 3.0V  
OUT = 4.7uF  
CBP = 10nF  
VOUT = 3.0V  
OUT = 4.7uF  
CBP = 10nF  
Loading = 1mA  
Loading = 50mA  
C
C
100  
50  
0
-50  
-20  
5
4
5
4
Time (500us/Div)  
Time (500us/Div)  
www.richtek.com  
6
DS9167/A-26 March 2007  
RT9167/A  
PSRR  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 3.3V, ILOAD = 1mA  
OUT = 4.7uF, CBP = 10nF  
10K 100K 1M  
C
10  
100  
1K  
Frequency (kHz)  
DS9167/A-26 March 2007  
www.richtek.com  
7
RT9167/A  
Application Information  
Capacitor Selection and Regulator Stability  
capacitor should be located not more than 0.5" from the  
VOUT pin of the RT9167/A and returned to a clean analog  
ground.  
Like any low-dropout regulator, the external capacitors used  
with the RT9167/A must be carefully selected for regulator  
stability and performance.  
Note that some ceramic dielectrics exhibit large  
capacitance and ESR variation with temperature. It may  
be necessary to use 2.2μF or more to ensure stability at  
temperatures below -10°C in this case. Also, tantalum  
capacitors, 2.2μF or more may be needed to maintain  
capacitance and ESR in the stable region for strict  
application environment.  
Using a capacitor whose value is > 1μF on the RT9167/A  
input and the amount of capacitance can be increased  
without limit. The input capacitor must be located a  
distance of not more than 0.5" from the input pin of the IC  
and returned to a clean analog ground. Any good quality  
ceramic or tantalum can be used for this capacitor. The  
capacitor with larger value and lower ESR (equivalent series  
resistance) provides better PSRR and line-transient  
response.  
Tantalum capacitors maybe suffer failure due to surge  
current when it is connected to a low-impedance source  
of power (like a battery or very large capacitor). If a tantalum  
capacitor is used at the input, it must be guaranteed to  
have a surge current rating sufficient for the application  
by the manufacture.  
The output capacitor must meet both requirements for  
minimum amount of capacitance and ESR in all LDOs  
application. The RT9167/Ais designed specifically to work  
with low ESR ceramic output capacitor in space-saving  
and performance consideration. Using a ceramic capacitor  
whose value is at least 1μF with ESR is > 5mΩ on the  
RT9167/A output ensures stability. The RT9167/A still  
works well with output capacitor of other types due to the  
wide stable ESR range. Figure 1. shows the curves of  
allowable ESR range as a function of load current for various  
output voltages and capacitor values. Output capacitor of  
larger capacitance can reduce noise and improve load-  
transient response, stability, and PSRR. The output  
Use a 10nF bypass capacitor at BP for low output voltage  
noise. The capacitor, in conjunction with an internal 200kΩ  
resistor, which connects bypass pin and the band-gap  
reference, creates an 80Hz low-pass filter for noise  
reduction. Increasing the capacitance will slightly decrease  
the output noise, but increase the start-up time. The  
capacitor connected to the bypass pin for noise reduction  
must have very low leakage. This capacitor leakage current  
causes the output voltage to decline by a proportional  
amount to the current due to the voltage drop on the internal  
200kΩ resistor. Figure 2 shows the power on response.  
Region of Stable COUT ESR vs. Load Current  
100  
COUT = 1uF  
Unstable Region  
Stable Region  
CBP = 10nF  
10  
CBP = 10nF  
1
0.1  
Unstable Region  
0.01  
0.001  
VOUT = 3.0V  
0
50  
100  
150  
200  
250  
300  
0
5.0  
Time (ms)  
10.0  
15.0  
Load Current (mA)  
Figure 1  
Figure 2  
www.richtek.com  
8
DS9167/A-26 March 2007  
RT9167/A  
Load-Transient Considerations  
Input-Output (Dropout) Voltage  
The RT9167/Aload-transient response graphs (see Typical  
Operating Characteristics) show two components of the  
output response: a DC shift from the output impedance  
due to the load current change, and the transient response.  
The DC shift is quite small due to the excellent load  
regulation of the IC. Typical output voltage transient spike  
for a step change in the load current from 0mAto 50mAis  
tens mV, depending on the ESR of the output capacitor.  
Increasing the output capacitor's value and decreasing the  
ESR attenuates the overshoot.  
A regulator's minimum input-output voltage differential  
(or dropout voltage) determines the lowest usable supply  
voltage. In battery-powered systems, this will determine  
the useful end-of-life battery voltage. Because the RT9167/  
Auses a P-Channel MOSFET pass transistor, the dropout  
voltage is a function of drain-to-source on-resistance  
[RDS(ON)] multiplied by the load current.  
Reverse Current Path  
The power transistor used in the RT9167/Ahas an inherent  
diode connected between the regulator input and output  
(see Figure 3). If the output is forced above the input by  
more than a diode-drop, this diode will become forward  
biased and current will flow from the VOUT terminal to VIN.  
This diode will also be turned on by abruptly stepping the  
input voltage to a value below the output voltage. To prevent  
regulator mis-operation, a Schottky diode should be used  
in any applications where input/output voltage conditions  
can cause the internal diode to be turned on (see Figure4).  
As shown, the Schottky diode is connected in parallel  
with the internal parasitic diode and prevents it from being  
turned on by limiting the voltage drop across it to about  
0.3V. < 100mA to prevent damage to the part.  
Shutdown Input Operation  
The RT9167/A is shutdown by pulling the EN input low,  
and turned on by driving the input high. If this feature is  
not to be used, the EN input should be tied to VIN to keep  
the regulator on at all times (the EN input must not be left  
floating).  
To ensure proper operation, the signal source used to  
drive the ENinput must be able to swing above and below  
the specified turn-on/turn-off voltage thresholds which  
guarantee an ON or OFF state (see Electrical  
Characteristics). The ON/OFF signal may come from  
either CMOS output, or an open-collector output with pull-  
up resistor to the RT9167/Ainput voltage or another logic  
supply. The high-level voltage may exceed the  
RT9167/A input voltage, but must remain within the  
absolute maximum ratings for the EN pin.  
VIN  
VOUT  
Internal P-Channel Pass Transistor  
The RT9167/Afeatures a typical 1.1Ω P-Channel MOSFET  
pass transistor. It provides several advantages over similar  
designs using PNP pass transistors, including longer  
battery life. The P-channel MOSFET requires no base  
drive, which reduces quiescent current considerably. PNP-  
based regulators waste considerable current in dropout  
when the pass transistor saturates. They also use high  
base-drive currents under large loads. The RT9167/Adoes  
not suffer from these problems and consume only 80μA of  
quiescent current whether in dropout, light-load, or heavy-  
load applications.  
Figure 3  
VIN  
VOUT  
Figure 4  
DS9167/A-26 March 2007  
www.richtek.com  
9
RT9167/A  
Operating Region and Power Dissipation  
The maximum power dissipation depends on the thermal  
resistance of IC package, PCB layout, the rate of  
surroundings airflow and temperature difference  
between junction to ambient. The maximum power  
dissipation can be calculated by following formula :  
The maximum power dissipation of RT9167/A depends  
on the thermal resistance of the case and circuit board,  
the temperature difference between the die junction and  
ambient air, and the rate of airflow. The power dissipation  
across the device is P = IOUT (VIN - VOUT). The maximum  
power dissipation is: PMAX = (TJ - TA) /θJA  
PD(MAX) = ( TJ(MAX) - TA ) / θJA  
Where TJ(MAX) is the maximum operation junction  
temperature 125°C, TA is the ambient temperature and  
the θJA is the junction to ambient thermal resistance.  
where TJ - TA is the temperature difference between the  
RT9167/Adie junction and the surrounding environment,  
θJA is the thermal resistance from the junction to the  
surrounding environment. TheGNDpin of the RT9167/A  
performs the dual function of providing an electrical  
connection to ground and channeling heat away. Connect  
theGNDpin to ground using a large pad or ground plane.  
For recommended operating conditions specification of  
RT9167/A, where TJ(MAX) is the maximum junction  
temperature of the die (125°C) and TA is the operated  
ambient temperature. The junction to ambient thermal  
resistance θJA is layout dependent. For SOT-23-5 package,  
the thermal resistance θJA is 250°C/W on the standard  
JEDEC 51-3 single-layer thermal test board. The maximum  
power dissipation at TA = 25°C can be calculated by  
following formula :  
Current Limit and Thermal Protection  
T9167 includes a current limit which monitors and controls  
the pass transistor's gate voltage limiting the output current  
to 350mA Typ. (700mA Typ. for RT9167A). Thermal-  
overload protection limits total power dissipation in the  
RT9167/A. When the junction temperature exceeds  
TJ = +155°C, the thermal sensor signals the shutdown  
logic turning off the pass transistor and allowing the IC to  
cool. The thermal sensor will turn the pass transistor on  
again after the IC's junction temperature cools by 10°C,  
resulting in a pulsed output during continuous thermal-  
overload conditions. Thermal-overloaded protection is  
designed to protect the RT9167/A in the event of fault  
conditions.Do not exceed the absolute maximum junction-  
temperature rating of TJ = +150°C for continuous operation.  
The output can be shorted to ground for an indefinite  
amount of time without damaging the part by cooperation  
of current limit and thermal protection.  
PD(MAX) = (125°C 25°C) / 250 = 0.4W for SOT-23-5  
package  
PD(MAX) = (125°C - 25°C) / 160 = 0.625W for SOP-8  
package  
The maximum power dissipation depends on operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance θJA. For RT9167/A packages, the Figure 5 of  
derating curves allows the designer to see the effect of  
rising ambient temperature on the maximum power  
allowed.  
700  
SOP-8  
600  
500  
SOT-23-5  
400  
Thermal Considerations  
Thermal protection limits power dissipation in RT9167/A.  
When the operation junction temperature exceeds 165°C,  
the OTP circuit starts the thermal shutdown function and  
turns the pass element off. The pass element turn on again  
after the junction temperature cools by 30°C.  
300  
200  
100  
0
For continuous operation, do not exceed absolute  
maximum operation junction temperature 125°C. The  
power dissipation definition in device is:  
0
20  
40  
60  
80  
100  
120  
140  
Ambient Temperature  
Figure 5. Derating Curves for RT9167/APackages  
DS9167/A-26 March 2007  
PD = (VIN VOUT) x IOUT + VIN x IQ  
www.richtek.com  
10  
RT9167/A  
The value of junction to case thermal resistance θJC is  
popular for users. This thermal parameter is convenient  
for users to estimate the internal junction operated  
temperature of packages while IC operating. Its  
independent of PCB layout, the surroundings airflow effects  
and temperature difference between junction to ambient.  
The operated junction temperature can be calculated by  
following formula :  
TJ = TC + PD x θJC  
Where TC is the package case temperature measured by  
thermal sensor, PD is the power dissipation defined by  
users function and the θJC is the junction to case thermal  
resistance provided by IC manufacturer. Therefore its easy  
to estimate the junction temperature by any condition.  
For example, how to calculate the junction temperature  
of RT9167A-28CB SOT-23-5 package? If we use input  
voltage VIN = 3.3V at an output current IO = 500mA and  
the case temperature (pin 4 of SOT-23-5 package)  
TC = 70°C measured by thermal couple while operating,  
then our power dissipation is as follows:  
PD = (3.3V 2.8V) x 500mA + 3.3V x 90μA 250mW  
And the junction temperature TJ could be calculated as  
following :  
TJ = TC + PD x θJC  
TJ = 70°C + 0.25W x 130°C/W  
= 70°C + 32.5°C  
= 102.5°C < TJ(MAX) =125°C  
For this operation application, TJ is lower than absolute  
maximum operation junction temperature 125°C and it’s  
safe to use.  
DS9167/A-26 March 2007  
www.richtek.com  
11  
RT9167/A  
Outline Dimension  
H
D
L
B
C
A
b
A1  
e
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
B
0.889  
0.000  
1.397  
0.356  
2.591  
2.692  
0.838  
0.080  
0.300  
1.295  
0.152  
1.803  
0.559  
2.997  
3.099  
1.041  
0.254  
0.610  
0.035  
0.000  
0.055  
0.014  
0.102  
0.106  
0.033  
0.003  
0.012  
0.051  
0.006  
0.071  
0.022  
0.118  
0.122  
0.041  
0.010  
0.024  
b
C
D
e
H
L
SOT-23-5 Surface Mount Package  
www.richtek.com  
12  
DS9167/A-26 March 2007  
RT9167/A  
H
A
M
J
B
F
C
I
D
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.050  
5.791  
0.400  
5.004  
3.988  
1.753  
0.508  
1.346  
0.254  
0.254  
6.200  
1.270  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.002  
0.228  
0.016  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.010  
0.244  
0.050  
J
M
8-Lead SOP Plastic Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
DS9167/A-26 March 2007  
www.richtek.com  
13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY