RT9212GC [RICHTEK]

Dual 5V Synchronous Buck PWM DC-DC and Linear Power Controller; 5V双路同步降压PWM DC -DC和线性电源控制器
RT9212GC
型号: RT9212GC
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Dual 5V Synchronous Buck PWM DC-DC and Linear Power Controller
5V双路同步降压PWM DC -DC和线性电源控制器

控制器
文件: 总14页 (文件大小:301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
RT9212  
Dual 5V Synchronous Buck PWM DC-DC and Linear Power  
Controller  
General Description  
Features  
z Operating with Single 5V Supply Voltage  
z Drives All Low Cost N-MOSFETs  
z Voltage Mode PWM Control  
The RT9212 is a 3-in-one power controller delivers high  
efficiency and tight regulation from two voltage regulating  
synchronous buck PWM DC-DC and one linear power  
controllers.  
z 300kHz Fixed Frequency Oscillator  
z Fast Transient Response :  
The RT9212 can control two independent output voltages  
adjustment in range of 0.8V to 4.0V with 180 degrees  
channel to channel phase operation to reduce input ripple.  
In dual power supply application the RT9212 monitors the  
output voltage of both Channel 1 and Channel 2. An  
independent PGOOD (power good) signal is asserted for  
each channel after the soft-start sequence has completed,  
and the output voltage is within 15% of the set point. The  
linear controller drives an external transistor to provide an  
adjustable output voltage.  
Full 0% to 100% Duty Ratio  
z Internal Soft-Start  
z Adaptive Non-Overlapping Gate Driver  
z Over-Current Fault Monitor on VCC, No Current  
Sense Resistor Required  
z RoHS Compliant and 100% Lead (Pb)-Free  
Applications  
z Graph Card  
z Motherboard, Desktop Servers  
z IA Equipments  
Built-in over-voltage protection prevents the output from  
going above 137.5% of the set point by holding the lower  
MOSFET on and the upper MOSFET off.Adjustable over-  
current protection (OCP) monitors the voltage drop across  
the RDS(ON) of the upper MOSFET for each synchronous  
buck PWMDC-DC controller individually.  
z Telecomm Equipments  
z High PowerDC-DC Regulators  
Pin Configurations  
(TOP VIEW)  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
UGATE1  
BOOT1  
PHASE1  
NC  
FB1  
COMP1  
NC  
PGND1  
LGATE1  
2
3
4
5
6
Ordering Information  
RT9212  
PVCC1  
OCSET1/SD  
OCSET2/SD  
PGOOD  
FB2  
FBL  
DRV  
VCC  
LGATE2  
PGND2  
Package Type  
C : TSSOP-24  
7
8
9
10  
11  
12  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
NC  
GNDA  
PHASE2  
BOOT2  
UGATE2  
Note :  
TSSOP-24  
RichTek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
DS9212-05 March 2007  
www.richtek.com  
1
Preliminary  
RT9212  
Typical Application Circuit  
V
V
IN  
CC  
5V  
2.5V/3.3V/5V  
( >V  
& V  
)
OUT2  
V
OUT1  
IN  
2.5V/3.3V/5V  
C3  
C10  
470uF  
R9  
10k  
D1  
1N4148  
C1  
C2  
1uF  
R1  
3.48k  
R2  
3.48k  
1nF  
1nF  
RT9212  
C9  
0.1uF  
PHKD6N02LT  
Q5  
Q6  
19  
15  
VCC  
PGOOD  
Q1  
L1  
1uH  
RESET2  
RESET1  
C12 to C15  
150uF (x 4  
)
V
OUT1  
1.8V  
21  
20  
2
1
OCSET1/SD BOOT1  
OCSET2/SD  
UGATE1  
Q2  
3.3V  
3
PHASE1  
PVCC1  
LGATE1  
PGND1  
16  
17  
DRV  
FBL  
22  
23  
V
C4  
100uF  
CC  
5V  
V
IN  
24  
6
2.5V/3.3V/5V  
D2  
COMP1  
2SD1802  
V
1N4148  
OUT3  
2.5V  
11  
12  
10  
14  
C7  
5.6nF  
BOOT2  
UGATE2  
PHASE2  
LGATE2  
C6  
100pF  
C5  
470uF  
C11  
0.1uF  
PHKD6N02LT  
R3  
255  
R5  
6.34k  
5
Q3  
L2  
FB1  
C16 to C17  
150uF (x 2)  
1uH  
V
OUT2  
1.5V  
13  
18  
PGND2  
FB2  
R6  
1k  
R4  
120  
GNDA  
Q4  
R10  
105  
9
C8  
15nF  
R7  
1.25k  
R8  
100  
R11  
120  
www.richtek.com  
2
DS9212-05 March 2007  
Preliminary  
RT9212  
Functional Pin Description  
UGATE1 (Pin 1)  
BOOT2 (Pin 11)  
Channel 1 upper gate driver output. Connect to gate of the  
high-side powerN-MOSFET. This pin is monitored by the  
adaptive shoot-through protection circuitry to determine  
when the upper MOSFET has turned off.  
Bootstrap supply pin for the upper gate driver. Connect the  
bootstrap capacitor between BOOT2 pin and the PHASE2  
pin. The bootstrap capacitor provides the charge to turn on  
the upper MOSFET.  
BOOT1 (Pin 2)  
UGATE2 (Pin 12)  
Bootstrap supply pin for the upper gate driver. Connect  
the bootstrap capacitor between BOOT1 pin and the  
PHASE1 pin. The bootstrap capacitor provides the charge  
to turn on the upper MOSFET.  
Channel 2 upper gate driver output. Connect to gate of the  
high-side powerN-MOSFET. This pin is monitored by the  
adaptive shoot-through protection circuitry to determine  
when the upper MOSFET has turned off.  
PHASE1 (Pin 3)  
PGND2 (Pin 13)  
Connect this pin to the source of the upper MOSFET and  
the drain of the lower MOSFET. PHASE1 is used to  
monitor the Voltage drop across the upper MOSFET of  
the channel 1regulator for over-current protection.  
Return pin for high currents flowing in low-side power  
N-MOSFET. Ties the pin directly to the low-side MOSFET  
source and ground plane with the lowest impedance.  
LGATE2 (Pin 14)  
NC (Pin 4, 7, 8)  
Channel 2 lower gate drive output. Connect to gate of the  
low-side power N-MOSFET. This pin is monitored by the  
adaptive shoot-through protection circuitry to determine  
when the lower MOSFET has turned off.  
No connection. Dont connect any component to this pin.  
FB1 (Pin 5)  
Channel 1 feedback voltage. This pin is the inverting input  
of the error amplifier. FB1 senses the channel 1 through  
an external resistor divider network.  
VCC (Pin 15)  
Connect this pin to a well-decoupled 5V bias supply. It is  
also the positive supply for the lower gate driver, LGATE2.  
COMP1 (Pin 6)  
DRV (Pin 16)  
Channel 1 external compensation. This pin internally  
connects to the output of the error amplifier and input of  
the PWM comparator. Use a RC + C network at this pin  
to compensate the feedback loop to provide optimum  
transient response.  
Connect this pin to the base of an external transistor. This  
pin provides the drive for the linear regulator's pass  
transistor.  
FBL (Pin 17)  
GNDA (Pin 9)  
Linear regulator feedback voltage. This pin is the inverting  
input of the error amplifier and protection monitor. Connect  
this pin to the external resistor divider network of the linear  
regulator.  
Signal ground for the IC. All voltage levels are measured  
with respect to this pin. Ties the pin directly to ground  
plane with the lowest impedance.  
PHASE2 (Pin 10)  
FB2 (Pin 18)  
Connect this pin to the source of the upper MOSFET and  
the drain of the lower MOSFET. PHASE2 is used to  
monitor the Voltage drop across the upper MOSFET of  
the channel 2regulator for over-current protection.  
Channel 2 feedback voltage. This pin is the inverting input  
of the error amplifier. FB2 senses the channel 2 through an  
external resistor divider network.  
DS9212-05 March 2007  
www.richtek.com  
3
Preliminary  
RT9212  
PGOOD (Pin 19)  
PVCC1 (Pin 22)  
PGOODis an open-drain output used to indicate that both  
the channel 1 and channel 2 regulators are within normal  
operating voltage ranges.  
Connect this pin to a well-decoupled 5V supply. It is also  
the positive supply for the lower gate driver, LGATE1.  
LGATE1 (Pin 23)  
OCSET2/SD (Pin 20), OCSET1/SD (Pin 21)  
Channel 1 power gate drive output. Connect to gate of the  
low-side powerN-Channel MOSFET. This pin is monitored  
by the adaptive shoot-through protection circuitry to  
determine when the lower MOSFET has turned off.  
Connect a resistor (ROCSET) from this pin to the drain of  
the upper MOSFET of the supply voltage sets the over-  
current trip point. ROCSET, an internal 40μAcurrent source  
, and the upper MOSFET on-resistance, (RDS(ON), set the  
converter over-current trip point (IOCSET) according to the  
following equation:  
PGND1 (Pin 24)  
Return pin for high currents flowing in low-side power  
N-MOSFET. Ties the pin directly to the low-side MOSFET  
source and ground plane with the lowest impedance.  
40uA × ROCSET  
IOCSET =  
RDS(ON) of the upper MOSFET  
An over-current trip cycles the soft-start function. Pulling  
the pin to ground resets the device and all external  
MOSFETs are turned off allowing the two output voltage  
power rails to float.  
Function Block Diagram  
VCC  
Thermal  
Bias  
SHDN  
137.5%  
0.8V  
Ref.  
+
Power  
on  
Reset  
62.5%  
OCSET1/SD  
POR  
OC  
OV  
40uA  
OVP  
&
UVP  
-
0.8V  
UV  
FB1  
Soft-  
Start  
1
Power  
Good  
BOOT1  
PGOOD  
COMP1  
+
EA  
PWM1  
+
+
-
-
UGATE1  
OC  
Control  
Logic  
PHASE1  
PVCC1  
LGATE1  
PGND1  
OV  
UV  
Thermal  
SHDN  
300kHz  
Oscillator  
PGND2  
PWM2  
-
+
LGATE2  
+
+
EA  
FB2  
-
Control  
Logic  
Zf  
OC  
VCC  
FB2  
PHASE2  
OV  
UV  
180 deg  
shift  
Zc  
Thermal  
SHDN  
Linear  
UGATE2  
BOOT2  
Regulator  
FBL  
Soft-  
Start  
2
OV  
UV  
OCSET2/SD  
+
-
DRV  
OC  
POR  
40uA  
GNDA  
www.richtek.com  
4
DS9212-05 March 2007  
Preliminary  
Absolute Maximum Ratings (Note 1)  
RT9212  
z Supply Voltage, VCC ------------------------------------------------------------------------------------------------- 7V  
z BOOT, VBOOT - VPHASE ----------------------------------------------------------------------------------------------- 7V  
z Input, Output or I/O Voltage ---------------------------------------------------------------------------------------- GND-0.3V to 7V  
z Package Thermal Resistance  
TSSOP-24, θJA -------------------------------------------------------------------------------------------------------- 100°C/W  
z Junction Temperature ------------------------------------------------------------------------------------------------ 150°C  
z Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------------- 260°C  
z Storage Temperature Range --------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ----------------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions  
(Note 3)  
z Supply Voltage, VCC ------------------------------------------------------------------------------------------------- 5V 5 %  
z Ambient Temperature Range--------------------------------------------------------------------------------------- 0°C to 70°C  
z Junction Temperature Range--------------------------------------------------------------------------------------- 0°C to 125°C  
Electrical Characteristics  
(VCC = 5V, TA = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
Min Typ Max Units  
V
CC  
Supply Current  
OCSET1/SD, OCSET2/SD = V  
UGATE1 & 2, LGATE1 & 2 Open  
CC;  
Nominal Supply Current  
--  
--  
5
3
--  
--  
mA  
mA  
I
I
CC  
Shutdown Supply  
(OCSET1/SD, OCSET2/SD) = 0V  
CCSD  
Power-On Reset  
V
V
= 4.5V  
= 4.5V  
OCSET1/SD, OCSET2/SD  
POR Threshold  
3.7  
--  
4.1  
0.5  
4.5  
--  
V
V
VCCRTH  
Rising  
CC  
Hysteresis  
V
VCCHYS  
OCSET1/SD, OCSET2/SD  
Reference  
Error Amp Reference Voltage  
Tolerance  
--  
--  
2
%
V
Δ
VEAR  
Error Amp Reference  
Oscillator  
0.784 0.8 0.816  
V
V
= 5V  
VREF  
CC  
Free Running Frequency  
Ramp Amplitude  
275  
--  
300  
1.9  
325  
--  
kHz  
f
= 5V  
CC  
OSC  
ΔV  
V
P-P  
OSC  
V1 Error Amplifier (External Compensation)  
DC Gain  
--  
--  
--  
90  
10  
6
--  
--  
--  
dB  
Gain-Bandwidth Product  
Slew Rate  
GBW  
SR  
MHz  
V/μs  
COMP = 10pF  
To be continued  
DS9212-05 March 2007  
www.richtek.com  
5
Preliminary  
RT9212  
Parameter  
Symbol  
Test Conditions  
Min  
--  
Typ Max Units  
V2 Error Amplifier (Internal Compensation)  
DC Gain  
35  
--  
--  
dB  
Linear Regulator  
DRV Driver Source  
IDS  
--  
100  
mA  
PWM Controller Gate Drivers  
BOOT = 10V  
Upper Gate Source (UGATE1 and 2)  
--  
7
--  
R
UGATE  
Ω
BOOT V  
= 1V  
UGATE  
Upper Gate Sink (UGATE1 and 2)  
Lower Gate Source (LGATE1 and 2)  
Lower Gate Sink (LGATE1 and 2)  
Upper Gate Rising Time (UGATE1 and 2)  
Upper Gate Falling Time (UGATE1 and 2)  
Lower Gate Rising Time (LGATE1 and 2)  
Lower Gate Falling Time (LGATE1 and 2)  
Dead Time  
--  
--  
--  
--  
--  
--  
--  
--  
5
4
--  
--  
R
R
R
V
V
V
= 1V  
Ω
Ω
UGATE  
UGATE  
V  
= 1V  
LGATE  
CC  
LGATE  
2
--  
= 1V  
Ω
LGATE  
LGATE  
70  
50  
50  
32  
--  
--  
ns  
ns  
ns  
ns  
ns  
T
T
T
T
C
C
C
C
= 3.3nF  
= 3.3nF  
= 3.3nF  
= 3.3nF  
R_UGATE  
F_UGATE  
R_LGATE  
F_LGATE  
Load  
Load  
Load  
Load  
--  
--  
--  
TDT  
100  
Protection  
FB1 & FB2 Over-Voltage Trip  
FB1 & FB2 Under-Voltage Trip  
OCSET1 & OCSET2 Current Source  
OCP Blocking Time  
FB1 & FB2 Rising  
FB1 & FB2 Falling  
125 137.5  
--  
ΔFBOVT  
ΔFBUVT  
%
%
--  
34  
--  
62.5  
40  
75  
46  
I
V , = 4.5V  
OCSET1/SD OCSET2/SD  
μA  
ns  
OCSET  
320  
--  
540  
0.2  
Logic-Low Voltage  
OCSET/SD  
VIL  
VIH  
Shutdown  
Enable  
--  
V
Logic-High Voltage  
2.0  
--  
--  
4
--  
--  
Soft-Start Interval  
ms  
T
SS  
Power Good  
Upper Threshold  
Lower Threshold  
FB1 & FB2 Rising  
FB1 & FB2 Rising  
110  
80  
115  
85  
120  
90  
%
%
V
V
PG+  
PG–  
Note 1.Stresses listed as the above Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for  
extended periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
www.richtek.com  
6
DS9212-05 March 2007  
Preliminary  
Typical Operating Characteristics  
RT9212  
Power Good Rising  
Power Good Falling  
VCC  
(5V/Div)  
VCC  
(5V/Div)  
VOUT1  
(2V/Div)  
VOUT1  
(2V/Div)  
VOUT2  
(2V/Div)  
VOUT2  
(2V/Div)  
PGOOD  
(5V/Div)  
PGOOD  
(5V/Div)  
Time (5ms/Div)  
Time (25ms/Div)  
Power Off  
Power On  
I
= IOUT2 = 5A  
I
= IOUT2 = 5A  
OUT1  
OUT1  
VOUT1  
(2V/Div)  
VOUT1  
(2/Div)  
VOUT2  
(2/Div)  
VOUT2  
(2V/Div)  
UGATE1  
(10/Div)  
UGATE1  
(10V/Div)  
UGATE2  
(5V/Div)  
UGATE2  
(5V/Div)  
Time (500us/Div)  
Time (5ms/Div)  
UGATE Phase Shift  
LGATE Phase Shift  
LGATE1  
(5V/Div)  
UGATE1  
(5V/Div)  
LGATE2  
(5V/Div)  
UGATE2  
(5V/Div)  
Time (1us/Div)  
Time (1us/Div)  
DS9212-05 March 2007  
www.richtek.com  
7
Preliminary  
RT9212  
Bootstrap  
Bootstrap  
UGATE1  
(5V/Div)  
UGATE2  
(5V/Div)  
LGATE1  
(5V/Div)  
LGATE2  
(5V/Div)  
Time (1us/Div)  
Time (1us/Div)  
VOUT2 Short  
VOUT1 Short  
VOUT2  
(1V/Div)  
VOUT1  
(2V/Div)  
LGATE2  
(5V/Div)  
UGATE1  
(10V/Div)  
UGATE2  
(10V/Div)  
LGATE1  
(5V/Div)  
Time (5ms/Div)  
Time (5ms/Div)  
VOUT1 Transient  
VOUT2 Transient  
VOUT1  
(100mV/Div)  
VOUT2  
(10mV/Div)  
IOUT2  
(5A/Div)  
IOUT1  
(5A/Div)  
VIN = 5V, VOUT = 3.3V, COUT = 3000μF  
VIN = 5V, VOUT = 2.5V, COUT = 3000μF  
Time (250us/Div)  
Time (250us/Div)  
www.richtek.com  
DS9212-05 March 2007  
8
Preliminary  
RT9212  
VOUT3 Transient  
POR (Start Up)  
VIN = 5V, VOUT = 1.8V  
VOUT3  
(200mV/Div)  
VCC  
(5V/Div)  
VOUT1  
(2V/Div)  
IOUT3  
(2A/Div)  
VOUT2  
(2V/Div)  
Time (2.5ms/Div)  
Time (5ms/Div)  
POR (Rising/Falling) vs. Temperature  
Frequency vs. Temperature  
4.25  
4.2  
315  
310  
305  
300  
295  
290  
285  
Rising  
4.15  
4.1  
Falling  
4.05  
4
3.95  
3.9  
-40  
-10  
20  
50  
80  
110  
140  
-40  
-20  
0
20  
40  
60  
80  
100 120  
Temperature  
(°C)  
Temperature  
(°C)  
Iocset & Temperature  
Reference vs. Temperature  
0.808  
0.806  
0.804  
0.802  
0.8  
55  
50  
45  
40  
35  
30  
VOUT1  
0.798  
0.796  
0.794  
0.792  
0.79  
VOUT2  
VOUT2  
VOUT1  
0.788  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-40 -20  
0
20  
40  
60  
80 100 120 140  
(°C)  
Temperature  
(°C)  
Temperature  
DS9212-05 March 2007  
www.richtek.com  
9
Preliminary  
RT9212  
Applications Information  
Inductor  
The response time is the time required to slew the inductor  
current from an initial current value to the transient current  
level. The inductor limit input current slew rate during  
the load transient. Minimizing the transient response time  
can minimize the output capacitance required. The response  
time is different for application of load and removal of load  
to a transient. The following equations give the approximate  
response time for application and removal of a transient  
load :  
The inductor is required to supply constant current to the  
output load. The inductor is selected to meet the output  
voltage ripple requirements and minimize the converter's  
response time to the load transient.  
A larger value of inductance reduces ripple current and  
voltage. However, the larger value of inductance has a larger  
physical size, lower output capacitor and slower transient  
response time.  
L× ΔIOUT  
L × ΔIOUT  
VIN VOUT  
A good rule for determining the inductance is to allow the  
peak-to-peak ripple current in the inductor to be  
approximately 30% of the maximum output current. The  
inductance value can be calculated by the following  
equation :  
,
TFall =  
TRise =  
VOUT  
Where  
TRise is the response time to the application of load,  
TFall is the response time to the removal of load,  
(VIN VOUT)× VOUT  
L =  
VIN ×FS × ΔIOUT  
Δ
IOUT is the transient load current step.  
Where  
VIN is the input voltage,  
Input Capacitor  
The input capacitor is required to supply theAC current to  
the Buck converter while maintaining theDC input voltage.  
The capacitor should be chosen to provide acceptable ripple  
on the input supply lines. Use a mix of input bypass  
capacitors to control the voltage overshoot across the  
MOSFETs. Use small ceramic capacitors for high frequency  
decoupling and bulk capacitors to supply the current. Place  
the small ceramic capacitors close to the MOSFETs and  
between the drain of Q1/Q3 and the source of Q2/Q4.  
VOUT is the output voltage,  
FS is the switching frequency,  
Δ
IOUT is the peak-to-peak inductor ripple current.  
The inductance value determines the converter's ripple  
current and the ripple voltage. The ripple current is  
calculated by the following equations :  
(VIN VOUT)× VOUT  
ΔI =  
VIN ×Fs×L  
The key specifications for input capacitor are the voltage  
rating and the RMS current rating. For reliable operation,  
select the bulk capacitor with voltage and current ratings  
above the maximum input voltage and largest RMS current.  
The capacitor voltage rating should be at least 1.25 times  
greater than the maximum input voltage and voltage rating  
of 1.5 times is a conservative guideline. The RMS current  
rating for the input capacitor of a buck regulator should be  
greater than approximately 0.5 the DC load current.  
Increasing the value of inductance reduces the ripple current  
and voltage. However, the large inductance values raise  
the converter's response time to a load transient.  
One of the parameters limiting the converter's response to  
a load transient is the time required to change the inductor  
current. Given a sufficiently fast control loop design, the  
RT9212 will provide 0% to 100% duty cycle in response to  
a load transient.  
www.richtek.com  
10  
DS9212-05 March 2007  
Preliminary  
RT9212  
Output Capacitor  
For the Buck converter the average inductor current is equal  
to the output load current. The conduction loss is defined  
as :  
The output capacitor is required to maintain theDC output  
voltage and supply the load transient current. The capacitor  
must be selected and placed carefully to yield optimal  
results and should be chosen to provide acceptable ripple  
on the output voltage.  
PCD (high side switch) = IO2 * RDS(ON) * D  
PCD (low side switch) = IO2 * RDS(ON) * (1-D)  
The switching loss is more difficult to calculate. The reason  
is the effect of the parasitic components and switching  
times during the switching procedures such as turn-on /  
turn-off delays and rise and fall times. With a linear  
approximation, the switching loss can be expressed as :  
The key specification for output capacitor is its ESR. Low  
ESR capacitors are preferred to keep the output voltage  
ripple low. The bulk capacitor's ESR will determine the  
output ripple voltage and the initial voltage drop after a  
high slew-rate transient. For transient response, a  
combination of low value, high frequency and bulk capacitors  
placed close to the load will be required. High frequency  
decoupling capacitors should be placed as close to the  
power pins of the load as possible. In most cases, multiple  
electrolytic capacitors of small case size perform better  
than a single large case capacitor.  
PSW = 0.5 * VDS(OFF) * IO * (TRise + TFall) * F  
Where  
VDS(OFF) is drain to source voltage at off time,  
T
Rise  
is rise time,  
TFall is fall time,  
F is switching frequency.  
The capacitor value must be high enough to absorb the  
inductor's ripple current. The output ripple is calculated as  
The total power dissipation in the switching MOSFET can  
be calculate as :  
:
ΔVOUT = ΔIOUT ×ESR  
PHigh Side Switch  
=
Another concern is high ESR induced output voltage ripple  
may trigger UV or OV protections will cause IC shutdown.  
IO2 * RDS(ON) D + 0.5 * VDS(OFF)* IO* (TRise + TFall)* F  
PLow Side Switch = IO2 * RDS(ON) * (1-D)  
*
MOSFET  
For input voltages of 3.3V and 5V, conduction losses often  
The MOSFET should be selected to meet power transfer  
requirements is based on maximum drain-source voltage  
(VDS), gate-source drive voltage (VGS), maximum output  
current, minimum on-resistance (RDS(ON)) and thermal  
management.  
dominate switching losses. Therefore, lowering the RDS(ON)  
of the MOSFETs always improves efficiency.  
Feedback Compensation  
The RT9212 is a voltage mode controller; the control loop  
is a single voltage feedback path including an error amplifier  
and PWM comparator as Figure 1 shows. In order to achieve  
fast transient response and accurate output regulation, a  
adequate compensator design is necessary. The goal of  
the compensation network is to provide adequate phase  
margin (greater than 45 degrees) and the highest 0dB  
crossing frequency. And to manipulate loop frequency  
response that its gain crosses over 0dB at a slope of -  
20dB/dec.  
In high-current applications, the MOSFET power  
dissipation, package selection and heatsink are the  
dominant design factors. The losses can be divided into  
conduction and switching losses.  
Conduction losses are related to the on resistance of  
MOSFET, and increase with the load current. Switching  
losses occur on each ON/OFF transition. The conduction  
losses are the largest component of power dissipation for  
both the upper and the lower MOSFETs.  
DS9212-05 March 2007  
www.richtek.com  
11  
Preliminary  
RT9212  
Vin  
Compensation Frequency Equations  
The compensation network consists of the error amplifier  
and the impedance networks ZC and ZF as Figure 2 shows.  
Lo  
Vout  
PWM  
Co  
Zf  
C1  
Zc  
ESR  
R1  
VOUT  
R2  
C2  
Zf  
-
Zc  
FB1  
+
-
-
PWM  
Comparator  
+
EA  
+
COMP1  
Rf  
VREF  
RT9212  
VREF  
Compensator  
VRAMP  
Figure 2  
FP1 = 0  
FZ1 =  
Figure 1  
1
2π ×R2 × C2  
Modulator Frequency Equations  
1
The modulator transfer function is the small-signal transfer  
function of VOUT/VE/A. This transfer function is dominated  
by aDC gain and the output filter (LO and CO), with a double  
pole frequency at FLC and a zero at FESR. The DC gain of  
the modulator is the input voltage (VIN) divided by the peak-  
FP1 =  
2π ×R2(C1// C2)  
Figure 3 shows theDC-DC converter's gain vs. frequency.  
The compensation gain uses external impedance networks  
ZC and ZF to provide a stable, high bandwidth loop.  
to-peak oscillator voltage VRAMP  
.
High crossover frequency is desirable for fast transient  
response, but often jeopardize the system stability. In order  
to cancel one of the LC filter poles, place the zero before  
the LC filter resonant frequency. In the experience, place  
the zero at 75% LC filter resonant frequency.Crossover  
frequency should be higher than the ESR zero but less  
than 1/5 of the switching frequency.  
The first step is to calculate the complex conjugate poles  
contributed by the LC output filter.  
The output LC filter introduces a double pole,40dB/decade  
gain slope above its corner resonant frequency, and a total  
phase lag of 180 degrees. The Resonant frequency of the  
LC filter expressed as follows :  
The second pole be place at half the switching frequency.  
1
FP(LC) =  
2π × LO ×CO  
80
Loop Gain  
60  
The next step of compensation design is to calculate the  
ESR zero. The ESR zero is contributed by the ESR  
associated with the output capacitance. Note that this  
requires that the output capacitor should have enough ESR  
to satisfy stability requirements. The ESR zero of the  
output capacitor expressed as follows :  
40
Compensation  
Gain  
20  
0
Modulator  
Gain  
-20  
1
FZ(ESR) =  
-40  
2π × CO ×ESR  
-60  
10  
100k  
1M  
100  
1k  
10k  
Frequency (Hz)  
Figure 3  
www.richtek.com  
12  
DS9212-05 March 2007  
Preliminary  
RT9212  
Reference Voltage  
2. There are two sets of critical components in a DC-DC  
converter. The switching components are the most critical  
because they switch large amounts of energy, and therefore  
tend to generate large amounts of noise. The others are  
the small signal components that connect to sensitive  
nodes or supply critical bypass current and signal coupling.  
Make all critical component ground connections with vias  
toGNDplane.  
Because one of the RT9212 regulators uses a low 35dB  
gain error amplifier, shown in Figure 4. The voltage  
regulation is dependent on VIN & VOUT setting.The FB  
reference voltage of 0.8V is trimmed at VIN = 5V &  
VOUT = 2.5V condition. In a fixed VIN = 5V application, the  
FB reference voltage vs. VOUT voltage can be calculated  
as Figure 5.  
3. Use fewer, but larger output capacitors, keep the  
capacitors clustered, and use multiple layer traces with  
heavy copper to keep the parasitic resistance low. Place  
the output capacitors as close to the load as possible.  
R2  
56K  
R1  
FB  
+
-
-
EA  
+
1K  
+
PWM  
-
4. The inductor, output capacitor and the MOSFET should  
be as close to each other as possible. This helps to reduce  
the EMI radiated.  
REF  
0.8V  
RAMP  
1.9V  
Figure 4  
5. Place the switching MOSFET as close to the input  
capacitors as possible. The MOSFET gate traces to the  
IC must be as short, straight, and wide as possible. Use  
copper filled polygons on the top and bottom layers for the  
PHASE nodes.  
0.815  
0.81  
0.805  
0.8  
6. Place the CBOOT as close as possible to the BOOT and  
PHASE pins.  
0.795  
0.79  
7. The feedback part of the system should be kept away  
from the inductor and other noise sources, and be placed  
close to the IC. Connect to the GND pin with a single  
trace, and connect this local GND trace to the output  
capacitorGND.  
0.785  
0.78  
0.775  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
VOUT (V)  
8. Minimize the leakage current paths on the OCSET/SD  
pin and locate the resistor as close to the OCSET/SD pin  
as possible because the internal current source is only  
40μA.  
Figure 5  
Layout Consideration  
The layout is very important when designing high frequency  
switching converters. Layout will affect noise pickup and  
can cause a good design to perform with less than expected  
results.  
9. In multilayer PCB, use one layer as ground plane and  
have a control circuit ground (analog ground), to which all  
signals are referenced. The goal is to localize the high  
current path to a separate loop that does not interfere with  
the more sensitive analog control function. These two  
grounds must be connected together on the PC board  
layout at a single point.  
1. Even though double-sided PCB is usually sufficient for  
a good layout, four-layer PCB is the optimum approach to  
reducing the noise. Use the two internal layers as the power  
andGNDplanes, the top layer for power connections with  
wide, copper filled areas, and the bottom layer for the noise  
sensitive traces.  
DS9212-05 March 2007  
www.richtek.com  
13  
Preliminary  
RT9212  
Outline Dimension  
D
L
E
E1  
e
A2  
A
A1  
b
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
0.047  
0.006  
0.041  
0.012  
0.311  
A
A1  
A2  
b
0.850  
0.050  
0.800  
0.190  
7.700  
1.200  
0.150  
1.050  
0.300  
7.900  
0.033  
0.002  
0.031  
0.007  
0.303  
D
e
0.650  
0.026  
E
6.300  
4.300  
0.450  
6.500  
4.500  
0.750  
0.248  
0.169  
0.018  
0.256  
0.177  
0.030  
E1  
L
24-Lead TSSOP Plastic Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
www.richtek.com  
14  
DS9212-05 March 2007  

相关型号:

RT9212PC

Dual 5V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9214

5V/12V Synchronous Buck PWM DC-DC Controller
RICHTEK

RT9214GS

5V/12V Synchronous Buck PWM DC-DC Controller
RICHTEK

RT9214GSP

5V/12V Synchronous Buck PWM DC-DC Controller
RICHTEK

RT9214PS

5V/12V Synchronous Buck PWM DC-DC Controller
RICHTEK

RT9214PSP

5V/12V Synchronous Buck PWM DC-DC Controller
RICHTEK

RT9216B

VFM STEP UP DC/DC CONVERTER
ETC

RT9218

5V/12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9218B

12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9218BGS

12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9218BPS

12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9218GS

5V/12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK