RT9247GC [RICHTEK]

Multi-Phase PWM Controller for CPU Core Power Supply; 多相PWM控制器,用于CPU核心供电
RT9247GC
型号: RT9247GC
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Multi-Phase PWM Controller for CPU Core Power Supply
多相PWM控制器,用于CPU核心供电

多相元件 控制器
文件: 总15页 (文件大小:331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
RT9247  
Multi-Phase PWM Controller for CPU Core Power Supply  
General Description  
Features  
z Multi-Phase Power Conversion with Automatic  
The RT9247 is a multi-phase buck DC/DC controller  
integrated with all control functions for GHz CPU VRM.  
The RT9247 controls 2 or 3 buck switching stages operating  
in interleaved phase set automatically. The multi-phase  
architecture provides high output current while maintaining  
low power dissipation on power devices and low stress on  
input and output capacitors. The high equivalent operating  
frequency also reduces the component dimension and the  
output voltage ripple in load transient.  
Phase Selection  
z VRD10 DAC Output with Active Droop Compensation  
for Fast Load Transient  
z Smooth VCORE Transition at VID Jump  
z Power Stage Thermal Balance by RDS(ON) Current  
Sense  
z Hiccup Mode Over-Current Protection  
z Programmable Switching Frequency (50kHz to  
400kHz per Phase), Under-Voltage Lockout and  
Soft-Start  
RT9247 controls both voltage and current loops to achieve  
good regulation, response & power stage thermal balance.  
Precise current loop using RDS(ON) as sense component  
builds precise load line for strict VRM DC & transient  
specification and also ensures thermal balance of different  
power stages. The settings of current sense, droop tuning,  
VCORE initial offset and over current protection are  
independent to compensation circuit of voltage loop. The  
feature greatly facilitates the flexibility of CPU power supply  
design and tuning.  
z High Ripple Frequency Times Channel Number  
z RoHS Compliant and 100% Lead (Pb)-Free  
Applications  
z Intel® Processors Voltage Regulator: VRD10  
z Low Output Voltage, High CurrentDC-DC Converters  
z Voltage Regulator Modules  
Pin Configurations  
The DAC output of RT9247 supports VRD10 by 6-bit VID  
input, precise initial value & smooth VCORE transient at  
VID jump. The IC monitors the VCORE voltage for PGOOD  
and over-voltage protection. Soft-start, over-current  
protection and programmable under-voltage lockout are also  
provided to assure the safety of microprocessor and power  
system.  
(TOP VIEW)  
VID4  
VID3  
VID2  
VCC  
PWM1  
PWM2  
28  
27  
26  
25  
24  
23  
22  
21  
2
3
4
5
6
7
8
VID1  
VID0  
VID125  
PWM3  
ISN1  
ISP1  
SGND  
FB  
ISP2  
ISP3  
ISN23  
Ordering Information  
RT9247  
COMP  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
13  
14  
PGOOD  
DVD  
SS  
RT  
VOSS  
GND  
ADJ  
VDIF  
VSEN  
IMAX  
Package Type  
C : TSSOP-28  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
TSSOP-28  
Note :  
RichTek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
DS9247-05 March 2007  
www.richtek.com  
1
Preliminary  
RT9247  
Typical Application Circuit  
www.richtek.com  
2
DS9247-05 March 2007  
Preliminary  
RT9247  
Functional Pin Description  
VID4 (Pin 1), VID3 (Pin 2), VID2 (Pin 3), VID1 (Pin 4),  
VOSS (Pin 14)  
VID0 (Pin 5) & VID125 (Pin 6)  
VCORE initial value offset. Connect this pin to GND with a  
resistor to set the offset value.  
DAC voltage identification inputs. These pins are internally  
pulled to 3.3V if left open.  
IMAX (Pin 15)  
SGND (Pin 7)  
Over-Current protection set.  
VCORE differential sense negative input.  
VSEN (Pin 16)  
FB (Pin 8)  
VCORE differential sense positive input.  
Inverting input of the internal error amplifier.  
VDIF (Pin 17)  
COMP (Pin 9)  
VCORE differential sense output.  
Output of the error amplifier and input of the PWM  
comparator.  
ADJ (Pin 18)  
Current sense output for active droop adjust. Connect a  
resistor from this pin to GND to set the load droop.  
PGOOD (Pin 10)  
Power good open-drain output.  
GND (Pin 19)  
DVD (Pin 11)  
IC ground.  
Programmable power UVLO detection or converter enable  
input.  
ISN23 (Pin 20)  
RDS(ON) current sense inputs from converter 2nd & 3rd phase  
channel sense components'GNDnode.  
SS (Pin 12)  
Connect this SS pin to GND with a capacitor to set the  
soft-start time interval.  
ISP1 (Pin 23), ISP2 (Pin 22), ISP3 (Pin 21)  
RDS(ON) current sense inputs for individual converter  
channels. Tie this pin to the component's sense node.  
RT (Pin 13)  
Switching frequency setting. Connect this pin toGNDwith  
a resistor to set the frequency.  
ISN1 (Pin 24)  
RDS(ON) current sense inputs from converter 1st channel  
sense component'sGNDnode.  
Frequency vs. RRT  
450  
PWM1 (Pin 27), PWM2 (Pin 26), PWM3 (Pin 25)  
400  
350  
300  
250  
200  
150  
100  
50  
PWM outputs for each driven channel. Connect these pins  
to the PWM input of the MOSFET driver. For systems  
which use 2 channels, connect PWM3 high.  
VCC (Pin 28)  
IC power supply. Connect this pin to a 5V supply.  
0
0
10  
20  
30  
40  
50  
60  
70  
RRT (k Ω)  
DS9247-05 March 2007  
www.richtek.com  
3
Preliminary  
RT9247  
Function Block Diagram  
www.richtek.com  
4
DS9247-05 March 2007  
Preliminary  
RT9247  
Table 1. Output Voltage Program  
Pin Name  
VID1  
Nominal Output Voltage DACOUT  
VID4  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
VID3  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
VID2  
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
VID0  
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
1
0
0
VID125  
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
1
1
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
No CPU  
0.8375V  
0.850V  
0.8625V  
0.875V  
0.8875V  
0.900V  
0.9125V  
0.925V  
0.9375V  
0.950V  
0.9625V  
0.975V  
0.9875V  
1.000V  
1.0125V  
1.025V  
1.0375V  
1.050V  
1.0625V  
1.075V  
1.0875V  
1.100V  
1.1125V  
1.125V  
1.1375V  
1.150V  
1.1625V  
1.175V  
1.1875V  
1.200V  
1.2125V  
To be continued  
DS9247-05 March 2007  
www.richtek.com  
5
Preliminary  
RT9247  
Table 1. Output Voltage Program  
Pin Name  
Nominal Output Voltage DACOUT  
VID4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
VID3  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
VID2  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
VID1  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
VID0  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
VID125  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.225V  
1.2375V  
1.250V  
1.2625V  
1.275V  
1.2875V  
1.300V  
1.3125V  
1.325V  
1.3375V  
1.350V  
1.3625V  
1.375V  
1.3875V  
1.400V  
1.4125V  
1.425V  
1.4375V  
1.450V  
1.4625V  
1.475V  
1.4875V  
1.500V  
1.5125V  
1.525V  
1.5375V  
1.550V  
1.5625V  
1.575V  
1.5875V  
1.600V  
Note: (1) 0 : Connected to GND  
(2) 1 : Open  
(3) X : Don't Care  
www.richtek.com  
6
DS9247-05 March 2007  
Preliminary  
Absolute Maximum Ratings (Note 1)  
RT9247  
z Supply Voltage, VCC ----------------------------------------------------------------------------------------------------------------------------------- 7V  
z Input, Output or I/O Voltage ---------------------------------------------------------------------------------- GND-0.3V to VCC+0.3V  
z Package Thermal Resistance  
TSSOP-28, θJA -------------------------------------------------------------------------------------------------- 45°C/W  
z Junction Temperature ------------------------------------------------------------------------------------------ 150°C  
z Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------- 260°C  
z Storage Temperature Range --------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ----------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 3)  
z Supply Voltage, VCC ------------------------------------------------------------------------------------------- 5V 10%  
z Ambient Temperature Range--------------------------------------------------------------------------------- 0°C to 70°C  
z Junction Temperature Range--------------------------------------------------------------------------------- 0°C to 125°C  
Electrical Characteristics  
(VCC = 5V, TA = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
PWM 1,2,3 Open  
VCC Rising  
Min  
Typ  
Max Units  
VCC Supply Current  
--  
Nominal Supply Current  
Power-On Reset  
POR Threshold  
Hysteresis  
ICC  
12  
--  
mA  
VCCRTH  
VCCHYS  
VDVDTP  
VDVDHYS  
4.0  
0.2  
0.95  
--  
4.2  
0.5  
1.0  
70  
4.5  
--  
V
V
Trip (Low to High)  
Hysteresis  
Enable  
1.05  
--  
V
VDVD Threshold  
mV  
Oscillator  
Free Running Frequency  
Frequency Adjustable Range  
Ramp Amplitude  
fOSC  
170  
50  
--  
200  
--  
230  
400  
--  
kHz  
kHz  
V
RRT = 12kΩ  
RRT = 12kΩ  
fOSC_ADJ  
Δ
VOSC  
1.9  
1.0  
66  
Ramp Valley  
VRV  
--  
--  
V
Maximum On-Time of Each Channel  
RT Pin Voltage  
62  
0.55  
75  
%
VRT  
0.60  
0.65  
V
RRT = 12kΩ  
Reference and DAC  
--  
--  
--  
--  
+1  
+10  
0.4  
--  
%
mV  
V
VDAC 1V  
1  
DACOUT Voltage Accuracy  
Δ
VDAC  
VDAC < 1V  
10  
DAC (VID0-VID125) Input Low  
DAC (VID0-VID125) Input High  
VILDAC  
VIHDAC  
--  
0.8  
V
To be continued  
DS9247-05 March 2007  
www.richtek.com  
7
Preliminary  
RT9247  
Parameter  
Symbol  
IBIAS_DAC  
VVOSS  
Test Conditions  
Min  
60  
Typ  
120  
1.0  
Max  
180  
Units  
DAC (VID0-VID125) Bias Current  
VOSS Pin Voltage  
μ
A
0.95  
1.05  
V
RVOSS = 100kΩ  
Error Amplifier  
DC Gain  
--  
--  
--  
85  
10  
3
--  
--  
--  
dB  
Gain-Bandwidth Product  
Slew Rate  
GBW  
SR  
MHz  
V/μS  
COMP = 10pF  
Differential Sense Amplifier  
Input Impedance  
ZIMP  
GBW  
SR  
--  
--  
--  
16  
10  
3
--  
--  
--  
kΩ  
Gain-Bandwidth Product  
Slew Rate  
MHz  
V/μS  
Current Sense GM Amplifier  
ISP 1,2,3 Full Scale Source Current  
ISP 1,2,3 Current for OCP  
Protection  
IISPFSS  
IISPOCP  
60  
90  
--  
--  
--  
--  
μ
μ
A
A
IMAX Voltage  
VIMAX  
ISS  
RIMAX = 10k  
VSS = 1V  
0.55  
--  
0.60  
13  
0.65  
--  
V
SS Current  
μ
A
Over-Voltage Trip (VSEN/DACOUT)  
Power Good  
ΔOVT  
--  
140  
--  
%
Lower Threshold (VSEN/DACOUT)  
Output Low Voltage  
VSEN Rising  
IPG = 4mA  
--  
--  
92  
--  
--  
%
V
VPG  
VPGL  
0.2  
Note 1. Stresses listed as the above Absolute Maximum Ratingsmay cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
www.richtek.com  
8
DS9247-05 March 2007  
Preliminary  
RT9247  
Application Information  
RT9247 is a multi-phase DC/DC controller that precisely  
regulates CPU core voltage and balances the current of  
different power channels. The converter consisting of  
RT9247 and its companion MOSFET driver provides high  
quality CPU power and all protection functions to meet  
the requirement of modern VRM.  
Fault Detection  
The chip detects VCORE for over voltage and power good  
detection. The hiccup modeoperation of over-current  
protection is adopted to reduce the short circuit current.  
The inrush current at the start up is suppressed by the  
soft start circuit through clamping the pulse width and output  
voltage.  
Voltage Control  
RT9247 senses the CPU VCORE by an precise instrumental  
amplifier to minimize the voltage drop on PCB trace at  
heavy load. VSEN& SGNDare the differential inputs. VDIF  
is the output node of the differential voltage & the input for  
PGOOD & OVP sense. The internal high accuracy VID  
DAC provides the reference voltage for VRD10 compliance.  
Control loop consists of error amplifier, multi-phase pulse  
width modulator, driver and power components. Like  
conventional voltage mode PWM controller, the output  
voltage is locked at the VREF of error amplifier and the error  
signal is used as the control signal VC of pulse width  
modulator. The PWM signals of different channels are  
generated by comparison of EA output and split-phase  
sawtooth wave. Power stage transforms VIN to output by  
PWM signal on-time ratio.  
Phase Setting and Converter Start Up  
RT9247 interfaces with companion MOSFET drivers (like  
RT9600, RT9602 or RT9603 series) for correct converter  
initialization. The tri-state PWM output (high, low and high  
impedance) pins sense the interface voltage at IC POR  
period (both VCC andDVDtrip). The channel is enabled if  
the pin voltage is 1.2V less than VCC. Please tie the PWM  
output to VCC and the current sense pins to GND or left  
floating if the channel is unused. For 2-Channel application,  
connect PWM3 high.  
Current Sensing Setting  
RT9247 senses the current of low side MOSFET in each  
synchronous rectifier when it is conducting for channel  
current balance and droop tuning. The differential sensing  
GM amplifier converts the voltage on the sense component  
(can be a sense resistor or the RDS(ON) of the low side  
MOSFET) to current signal into internal circuit (see  
Figure 1). Be careful to chooseGNDsense input ISN23 of  
GM amplifier of channel 2 & 3 (tied together by internal  
wiring) for effective channel current balance.  
Current Balance  
RT9247 senses the current of low side MOSFET in each  
synchronous rectifier when it is conducting for channel  
current balance and droop tuning. The differential sensing  
GM amplifier converts the voltage on the sense component  
(can be a sense resistor or the RDS(ON) of the low side  
MOSFET) to current signal into internal balance circuit.  
The current balance circuit sums and averages the current  
signals then produces the balancing signals injected to  
pulse width modulator. If the current of some power channel  
is greater than average, the balancing signal reduces the  
output pulse width to keep the balance.  
IX1  
Current  
Balance  
I
2I  
I
X
X
X
IBP  
R
R
<
SP1  
SN1  
ISP1  
ISN1  
Sample  
&
Hold  
-
Droop Tune  
R
<
<
GM  
IL  
S
+
IBN  
Over-Current  
Detection  
IX2  
Current  
Balance  
I
2I  
I
X
X
X
IBP  
R
<
SP2  
R
ISP2  
Sample  
&
Hold  
-
Droop Tune  
Load Droop  
<
<
GM  
+
R
IL  
S
IBN  
The sensed power channel current signals regulate the  
reference ofDAC to form a output voltage droop proportional  
to the load current. The droop or so-called active voltage  
positioningcan reduce the output voltage ripple at load  
transient and the LC filter size.  
Over-Current  
Detection  
SN23  
ISN23  
IBN  
Channel 2 & 3  
GND return  
Current  
Balance  
I
2I  
I
+
X
X
X
<
GM  
ISP3  
Sample  
&
Hold  
-
Droop Tune  
<
<
R
IBP  
SP3  
R
IL  
S
Over-Current  
Detection  
IX3  
Figure 1. Current Sense Circuit  
DS9247-05 March 2007  
www.richtek.com  
9
Preliminary  
RT9247  
IL ×RS  
RSP  
IX =  
The sensing circuit gets  
by local feedback.  
Protection and SS Function  
RSP = RSN for channel 1 & RSP = 2RSN for channel 2 & 3 (at  
3 phase operation) to cancel the voltage drop caused by  
GM amplifier input bias current. IX is sampled and held just  
before low side MOSFET turns off (See Figure 2).  
Therefore,  
For OVP, the RT9247 detects the VCORE by VDIF pin voltage  
of the differential amplifier output. Eliminate the delay due  
to compensation network (compared to sensing FB voltage)  
for fast and accurate detection. The trip point of OVP is  
140% of normal output level. The PWM outputs are pulled  
low to turn on the low side MOSFET and turn off the high  
side MOSFET of the synchronous rectifier at OVP. The  
OVP latch can only be reset by VCC orDVDrestart power  
on reset sequence. The PGOOD detection trip point of  
VCORE is 92% lower than the normal level. The PGOOD  
open drain output pulls low when VCORE is lower than the  
trip point. For VID jumping issue, only power fail conditions  
(VCC & DVD are lower than trip point or OVP) reset the  
output low.  
I
L (S/H) × R  
V
O
T
OFF  
I
X (S/H)  
=
S , IL (S/H) = IL (AVG)  
×
,
R
SP  
L
2
V
IN V  
O
T
OFF  
=
× 5uS for fosc = 200kHz  
V
IN  
V
IN V  
O
V
O
× 5uS  
R
S
V
IN  
I
X (S/H) = IL(AVG)  
×
2L  
R
SP  
Falling Slope = Vo/L  
Inductor Current  
IL  
IL(AVG)  
Soft-start circuit generates a ramp voltage by charging  
external capacitor with 13μA current after IC POR acts.  
The PWM pulse width and VCORE are clamped by the rising  
ramp to reduce the inrush current and protect the power  
devices.  
IL(S/H)  
PWM Signal & High Side MOSFET Gate Signal  
Over-current protection trip point is set by the resistor RIMAX  
connected to IMAX pin. OCP is triggered if one channel  
0.6V  
S/H current signal IX >  
Controller forces  
×1.4.  
R
IMAX  
Low Side MOSFET Gate Signal  
PWM output latched at high impedance to turn off both  
high and low side MOSFETs in the power stage and initial  
the hiccup mode protection. The SS pin voltage is pulled  
low with a 13μAcurrent after it is less than 90% VCC. The  
converter restarts after SS pin voltage < 0.2V. Three times  
of OCP disable the converter and only release the latch by  
POR acts (see Figure 4).  
Figure 2. Inductor Current and PWM Signal  
DAC Offset Voltage & Droop Tuning  
The DAC offset voltage is set by compensation network  
1V  
Rf1  
×
& VOSS pin external resistors by  
.
RVOSS  
4
The S/H current signals from power channels are injected  
to ADJ pin to create droop voltage.  
VADJ = RADJ×  
2IX  
CCOoUuNntT==22 CCOoUuNntT==33  
Count =1
S.S  
The DAC output voltage decreases by VADJ to form the  
VCORE load droop (see Figure 3).  
V
DAC  
+
VCORE  
0V  
2I  
V
X1  
ADJ  
-
Overload  
Applied  
COMP  
+
-
2I  
2I  
X2  
X3  
EA  
Current  
Source  
>
IVOSS  
ILOAD  
0A  
1
4
1V  
IVOSS =  
RVOSS  
+
-
FB  
R
ADJ  
V
OSS  
T3,T4  
T2  
R
R
ADJ  
T0,T1  
VOSS  
F1  
TIME  
V
Figure 4.  
CORE  
Figure 3. DAC Offset Voltage & Droop Tune Circuit  
www.richtek.com  
10  
DS9247-05 March 2007  
Preliminary  
RT9247  
3-Phase Converter and Components Function Grouping  
12V  
VCC  
BST  
DRVH  
SW  
RT9603  
IN  
DRVL  
PGND  
SGND  
VSEN  
VDIF  
PWM1  
12V  
VID  
PGOOD  
ISP1  
ISN1  
VCC  
BST  
DRVH  
RT9247  
VCORE  
Compensation  
& Offset  
SW  
COMP  
FB  
RT9603  
PWM2  
IN  
DRVL  
PGND  
ADJ  
Droop Setting  
ISP2  
ISN23  
DVD  
12V  
12V  
Driver Power  
UVLO  
VOSS  
SS  
ISP3  
VCC  
BST  
DAC Offset  
Voltage Setting  
DRVH  
PWM3  
SW  
IMAX  
GND  
RT9603  
IN  
DRVL  
PGND  
OCP Setting  
Current Sense  
Components  
Design Procedure Suggestion  
Voltage Loop Setting  
VRM Load Line Setting  
a. Droop amplitude (ADJ pin resistor).  
a. Output filter pole and zero (Inductor, output capacitor  
value & ESR).  
b. No load offset (additional resistor in compensation  
network).  
b. Error amplifier compensation & sawtooth wave amp-  
litude (compensation network).  
c. DAC offset voltage setting (VOSS pin & compen-  
sation network resistor).  
c. Kelvin sense for VCORE  
.
Current Loop Setting  
Power Sequence & SS  
a. GM amplifier S/H current (current sense component  
RDS(ON), ISPx & ISNx pin external resistor value,  
keep ISPx current < 60μA at full load condition for  
better load line linearity).  
DVD pin external resistor and SS pin capacitor.  
PCB Layout  
a. Kelvin sense for current sense GM amplifier input.  
b. Refer to layout guide for other item.  
b. Over-current protection trip point (IMAX pin resistor,  
keep ISPx current < 90μA at OCP condition for  
precision issue).  
DS9247-05 March 2007  
www.richtek.com  
11  
Preliminary  
RT9247  
Design Example  
Given:  
Asymptotic Bode Plot of PWM Loop Gain  
100  
80  
60  
40  
20  
0
Apply for three phase converter  
VIN = 12V  
Uncompensated EA Gain  
VCORE = 1.5V  
ILOAD (max) = 60A  
VDROOP = 120mV at full load  
OCP trip point set at 30A for each channel (S/H)  
RDS(ON) = 6mΩ of low side MOSFET at 27°C  
L = 2μH  
Compensated EA Gain  
PWM Loop Gain  
-20  
-40  
-60  
Modulator Gain  
10  
100  
1K  
10K  
100K 1M 10M  
COUT = 9,000μF with 2mΩ ESR.  
Frequency (Hz)  
1. Compensation Setting  
Figure 6.  
a. ModulatorGain, Pole and Zero:  
2. Droop & DAC Offset Setting  
From the following formula:  
For each channel the load current is 60A / 3 = 20A  
and the ripple current, ΔIL, is given as:  
V
IN  
12V  
Modulator Gain =  
=
= 4.2 (12.46dB)  
3
2
V
RAMP  
1.9V×  
1.5V  
2uH  
1.5V  
12V  
5us x  
x 1−  
= 3.28A  
ΔIL  
where VRAMP : ramp amplitude of sawtooth wave  
1
LC Filter Pole =  
= 1.2kHz and  
= 8.8kHz  
The load current, IL, at S/H is20A −  
= 18.36A .  
2π x LC  
2
Using the following formula to select the appropriate  
1
ESR Zero =  
IX (MAX) for the S/H of GM amplifier:  
xESR x COUT  
R
DS(ON) × 18.36A  
I
X (MAX)  
=
b. EA Compensation Network:  
R
SP  
Select R1 = 2.4kΩ, R2 = 24kΩ, C1 = 6.6nF,  
C2 = 33pF and use the type 2 compensation  
scheme shown in Figure 5.  
The suggested IX is in the order of 40 to 50μA, select  
RSP = RSN = 2.4kΩ, then IX (MAX) will be 45.9μA.  
VDROOP = 120mV = 45.9μA × 2 × 3 (phase no.)×RADJ  
therefore RADJ will be 435Ω.  
,
C1  
C3  
R2  
C2  
R3  
The RDS(ON) of MOSFET varies with temperature rise.  
When the low side MOSFET working at 70°C and  
5000ppm/°C temperature coefficient of RDS(ON), the  
RDS(ON) at 70°C is given as:  
6mΩ × {1+ (70°C 27°C) × 5000ppm/°C} = 7.3mΩ.  
RADJ at 70°C is given as:  
R1  
VDIF  
>
COMP  
FB  
R3,C3 are used in type  
-
+
3 compensation scheme  
(left NC in type 2)  
DACOUT  
RADJ_27°C × (RDS(ON)_27°C / RDS(ON)_70°C) = 358Ω  
Figure 5.  
3. Over-Current Protection Setting  
From the following formulas:  
1
OCP trip point set at 30A for each channel,  
1
F
Z
=
, F =  
P
R
DS(ON) ×30A  
0.6V  
, RIMAX = 11.2kΩ  
IMAX  
I
X
=
=1.4 ×  
C
1
1
×C  
+ C  
2
2
2π x R  
2
x C  
1
2π x R x  
2
RSP  
R
R
R
2
C
Middle Band Gain =  
Take the temperature rise into account, the RIMAX at  
70°C will be:  
RIMAX_27°C × (RDS(ON)_27°C / RDS(ON)_70°C) = 9.2kΩ  
1
By calculation, the FZ = 1kHz, FP = 200kHz and  
Middle Band Gain is 10 (i.e 20dB).  
The asymptotic bode plot of EA compensation and  
PWM loop gain is shown as Figure 6.  
4. Soft-Start Capacitor Selection  
CSS = 0.1μF is the suitable value for most application.  
www.richtek.com  
12  
DS9247-05 March 2007  
Preliminary  
RT9247  
Layout Guide  
Place the high-power switching components first, and separate them from sensitive nodes.  
1. Most critical path: the current sense circuit is the most sensitive part of the converter. The current sense  
resistors tied to ISP1,2,3 and ISN1,ISN23 should be located not more than 0.5 inch from the IC and away  
from the noise switching nodes. The PCB trace of sense nodes should be parallel and as short as possible.  
Kelvin connection of the sense component (additional sense resistor or MOSFET RDS(ON)) ensures the accurate  
stable current sensing.  
Keep well Kelvin sense to ensure the stable operation!  
2. Switching ripple current path:  
a. Input capacitor to high side MOSFET.  
b. Low side MOSFET to output capacitor.  
c. The return path of input and output capacitor.  
d. Separate the power and signalGND.  
e. The switching nodes (the connection node of high/low side MOSFET and inductor) is the most noisy points.  
Keep them away from sensitive small-signal node.  
f. Reduce parasitic R, L by minimum length, enough copper thickness and avoiding of via.  
3. MOSFET driver should be close to MOSFET.  
4. The compensation, bypass and other function setting components should be near the IC and away from the noisy  
power path.  
L1  
SW1  
VOUT  
VIN  
RIN  
COUT  
RL  
CIN  
V
L2  
SW2  
Figure 7. Power Stage Ripple Current Path  
DS9247-05 March 2007  
www.richtek.com  
13  
Preliminary  
RT9247  
Next to IC  
+12V  
CBP  
+12V or +5V  
PWM  
+5VIN  
VCC  
CBP  
IMAX  
CBOOT  
VCC  
IN  
BST  
VOSS  
Next to IC  
COMP  
DRVH  
LO1  
COUT  
VCORE  
CC  
RC  
SW  
RT9247  
CIN  
RT9603  
DRVL  
Kelvin  
Sense  
Locate next  
to FB Pin  
RSIP  
FB  
PGND  
ISPx  
ISNx  
RFB  
RSIN  
Locate near MOSFETs  
VSEN  
ADJ  
GND  
For Thermal Couple  
Figure 8. Layout Consideration  
www.richtek.com  
14  
DS9247-05 March 2007  
Preliminary  
RT9247  
Outline Dimension  
D
L
E
E1  
e
A2  
A
A1  
b
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
0.850  
0.050  
0.800  
0.178  
9.601  
1.200  
0.152  
1.050  
0.305  
9.804  
0.033  
0.002  
0.031  
0.007  
0.378  
0.047  
0.006  
0.041  
0.012  
0.386  
D
e
0.650  
0.026  
E
6.300  
4.293  
0.450  
6.500  
4.496  
0.762  
0.248  
0.169  
0.018  
0.256  
0.177  
0.030  
E1  
L
28-Lead TSSOP Plastic Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
DS9247-05 March 2007  
www.richtek.com  
15  

相关型号:

RT9247PC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248A

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248AGC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248APC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248GC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248PC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9256

Actively Alternative Mode Two-Phase / Dual Switching PWM Controller
RICHTEK

RT9256GQV

Actively Alternative Mode Two-Phase / Dual Switching PWM Controller
RICHTEK

RT9256PQV

Actively Alternative Mode Two-Phase / Dual Switching PWM Controller
RICHTEK

RT9259

12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9259A

12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK