RT9396 [RICHTEK]

I2C Interface PMIC with 6-Channel WLED Driver and 4-LDO; I2C接口PMIC采用6通道WLED驱动器和4 - LDO
RT9396
型号: RT9396
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

I2C Interface PMIC with 6-Channel WLED Driver and 4-LDO
I2C接口PMIC采用6通道WLED驱动器和4 - LDO

驱动器 白色LED灯 集成电源管理电路
文件: 总17页 (文件大小:376K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT9396  
I2C Interface PMIC with 6-Channel WLED Driver and 4-LDO  
General Description  
Features  
z Tri-Mode (x1/x1.5/x2) Charge Pump  
z Maximum 25mA x 6-Channel LED Backlighting  
Output Current  
The RT9396 is a power management IC (PMIC) for  
backlighting and phone camera applications. The PMIC  
contains a 6-Channel charge pump white LEDdriver and  
four low dropout linear regulators.  
z Support Main/Sub (4+2/5+1) LED Function  
z 64 Steps Programmable LED Current  
z Support PWM Dimming Function  
z Fade In/Out Via I2C Control  
The charge pump drives up to 6 white LEDs with regulated  
constant current for uniform intensity. Each channel  
(LED1 to LED6) supports up to 25mA of current. These  
6-Channels can be also programmed as 4 plus 2-Channels  
or 5 plus 1-Channel with different current setting for  
auxiliary LEDapplication. The RT9396 maintains highest  
efficiency by utilizing a x1/ x1.5/ x2 fractional charge pump  
and low dropout current regulators.An internal 6-bitDAC  
is used for backlight brightness control. Users can easily  
configure up to 64 steps of LEDcurrent via the I2C interface  
control.  
z 4 Low Dropout Regulators  
z Maximum 200mA x 4-Channel LDO Output Current  
z 16-Level LDO Output Voltage Setting  
z I2C Programmable Independent LDO Channel  
ON/OFF Control  
z Over Temperature Protection  
z Thin 24-Lead WQFN Package  
z RoHS Compliant and Halogen Free  
The RT9396 also comprises low noise, low dropout  
regulators, which provide up to 200mAof current for each  
of the four channels. The four LDOs deliver 3% output  
accuracy and low dropout voltage of 200mV @ 200mA.  
Users can easily configure LDO output voltage via the I2C  
interface control. The LDOs also provide current limiting  
and over temperature functions.  
Applications  
z Cellular Phones  
z PDAs and Smart Phones  
Pin Configurations  
(TOP VIEW)  
The RT9396 is available in a WQFN-24L 3x3 package.  
24 23 22 21 20 19 18  
1
2
3
17  
16  
15  
PGND  
C2N  
C1N  
C1P  
SCL  
SDA  
EN  
PWM  
CF  
Ordering Information  
RT9396  
4
5
14  
13  
Package Type  
C2P  
QW : WQFN-24L 3x3 (COL) (W-Type)  
6
7
8
9
10 11 12  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Note :  
WQFN-24L 3x3 (COL)  
Richtek products are :  
RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
Suitable for use in SnPb or Pb-free soldering processes.  
DS9396-01 April 2011  
www.richtek.com  
1
RT9396  
Marking Information  
JP= : Product Code  
YMDNN : Date Code  
JP=YM  
DNN  
Typical Application Circuit  
C
FLY2  
C
FLY1  
1µF  
1µF  
4
3
5
2
C1P C1N C2P C2N  
7
WLED  
VIN  
V
BAT  
C
2.2µF  
23  
22  
IN1  
LED1  
LED2  
RT9396  
8
LDOIN  
CF  
21  
20  
19  
18  
24  
12  
LED3  
LED4  
LED5  
LED6  
C
2.2µF  
IN2  
13  
C
1µF  
F
Chip Enable  
15  
17  
16  
VOUT  
LDO1  
LDO2  
LDO3  
LDO4  
EN  
C
OUT  
SCL  
SDA  
C
11  
10  
9
L1  
1µF  
2
I C  
C
L2  
1µF  
1µF  
C
14  
L3  
PWM  
PWM  
C
1µF  
L4  
AGND  
PGND  
1µF  
6
1
Timing Diagram  
2
010  
LED<1:6>  
On/Off  
I C  
01011111  
00000000  
00000000  
Reg. Addr.  
6CH PWM Mode  
2
I C  
Main BL  
01111101  
Fade in/out time = 8ms/step, I  
[1~6] = 62/64 x 25mA  
LED  
Reg. Data  
Current Level  
Internal  
PWMEN Reg.  
PWM control Backlight  
PWM Dimming  
Note:  
T
= 16ms  
SHD  
PWM signal rise after  
internal PWMEN is  
enabled  
PWM Pin  
T
> 0.5µs  
0.5µs < T < 500µs  
Hi  
LO  
Main I  
[1:6]  
LED  
I
[1~6] Current =  
LED  
62/64 x 25mA x PWM Duty  
Fade in  
time  
0
Time (s)  
Figure 1. TimingDiagram  
www.richtek.com  
2
DS9396-01 April 2011  
RT9396  
16-step Voltage  
Setting  
LDO  
Address  
Channel  
Selection  
I2C Writing Cycles of LDOX  
Start  
ON/OFF  
1
0
1
0
1
0
0
0
0
0
1
B4 B3 B2 B1 B0  
0
0
0
0
C3 C2 C1 C0  
Stop  
I2C Writing Cycles of Backlighting I (LED1~6)  
Backlight  
Address  
Channel  
ON/OFF  
Fade In/Out  
Setting  
64-step Current Setting  
Start  
1
0
1
0
1
0
0
0
0
1 0B4 B3 B2 B1 B0  
C7 C6 C5 C4 C3 C2 C1 C0  
Stop  
Fade In/Out Setting:  
01: Every Step of Fade In/Out = 8 ms  
10: Every Step of Fade In/Out = 16 ms  
11: Every Step of Fade In/Out = 32 ms  
I2C Writing Cycles of Backlighting II (Main: LED1~5, Sub: LED6)  
Backlight  
Address Main  
Channel  
ON/OFF  
Fade In/Out  
Setting  
Main 64-step Current Setting  
Start  
1
0
1
0
1
0
0
0
0
1 10B3 B2 B1 B0  
C7 C6 C5 C4 C3 C2 C1 C0  
Stop  
Main Fade In/Out Setting:  
01: Every Step of Fade In/Out = 8 ms  
10: Every Step of Fade In/Out = 16 ms  
11: Every Step of Fade In/Out = 32 ms  
Backlight  
Address  
Channel  
ON/OFF  
Fade In/Out  
Setting  
Sub 64-step Current Setting  
Sub  
Start  
1
0
1
0
1
0
0
0
0
1 11000B0  
C7 C6 C5 C4 C3 C2 C1 C0  
Stop  
Sub Fade In/Out Setting:  
01: Every Step of Fade In/Out = 8 ms  
10: Every Step of Fade In/Out = 16 ms  
11: Every Step of Fade In/Out = 32 ms  
I2C Writing Cycles of Backlighting III (Main: LED1~4, Sub: LED5~6)  
Backlight  
Channel  
ON/OFF  
Fade In/Out  
Setting  
Main 64-step Current Setting  
Address Main  
Start  
1
0
1
0
1
0
0
0
1
0
00B2 0B1 B0  
C7 C6 C5 C4 C3 C2 C1 C0  
Stop  
Main Fade In/Out Setting:  
01: Every Step of Fade In/Out = 8 ms  
10: Every Step of Fade In/Out = 16 ms  
11: Every Step of Fade In/Out = 32 ms  
Backlight  
Address  
Channel  
ON/OFF  
Fade In/Out  
Setting  
Sub 64-step Current Setting  
Sub  
Start  
1
0
1
0
1
0
0
0
1
0
01000B0  
C7 C6 C5 C4 C3 C2 C1 C0  
Stop  
Sub Fade In/Out Setting:  
01: Every Step of Fade In/Out = 8 ms  
10: Every Step of Fade In/Out = 16 ms  
11: Every Step of Fade In/Out = 32 ms  
Figure 2. Control Sequences of LDO Setting and LEDDimming  
DS9396-01 April 2011  
www.richtek.com  
3
RT9396  
Functional Pin Description  
Pin No.  
Pin Name  
PGND  
C2N  
Pin Function  
1
2
Charge Pump Ground.  
Fly Capacitor 2 Negative Connection.  
Fly Capacitor 1 Negative Connection.  
Fly Capacitor 1 Positive Connection.  
Fly Capacitor 2 Positive Connection.  
Ground for LDO1 to LDO4.  
3
C1N  
4
C1P  
5
C2P  
6
AGND  
VIN  
7
Charge Pump Power Input. Connect this pin to LDOIN pin.  
LDO Power Input. Connect this pin to VIN pin.  
LDO4 Output.  
8
LDOIN  
LDO4  
LDO3  
LDO2  
LDO1  
CF  
9
10  
11  
12  
13  
14  
15  
LDO3 Output.  
LDO2 Output.  
LDO1 Output.  
PWM Filter Capacitor Connection.  
PWM Dimming Control Input.  
Chip Enable (Active High).  
PWM  
EN  
16  
17  
SDA  
SCL  
I2C Data Input.  
I2C Clock Input.  
18  
19  
20  
21  
22  
23  
24  
LED6  
LED5  
LED4  
LED3  
LED2  
LED1  
VOUT  
Current Sink for LED6.  
Current Sink for LED5.  
Current Sink for LED4.  
Current Sink for LED3.  
Current Sink for LED2.  
Current Sink for LED1.  
Charge Pump Output. Connect a 1μF ceramic capacitor between VOUT and GND.  
www.richtek.com  
4
DS9396-01 April 2011  
RT9396  
Function Block Diagram  
x1/x1.5/x2  
Charge Pump  
VOUT  
VIN  
1MHz  
Oscillator  
OVP  
Gate Driver  
Mode  
Decision  
Soft Start  
LED1  
LED2  
LED3  
LED4  
LED5  
LED6  
PWM  
Dimming  
CF  
Current Setting  
Shutdown  
Delay  
PWM  
Current Source  
LED  
Ctrl.  
OR  
Gate  
OTP &  
Current Bias  
V
OUT  
LDO  
Ctrl.  
SDA  
SCL  
2
I C  
EN  
LDOIN  
POR  
LDOIN  
BandGap  
Reference  
-
+
LDO1 to  
LDO4  
AGND  
PGND  
RES Divider  
Voltage Setting  
x4  
Table 1. 16-Step LDO Output Voltage Setting  
LDO3 & LDO4  
LDO1 &  
C3 C2 C1 C0 LDO2 Output  
Voltage (V)  
LDO1 &  
LDO3 & LDO4  
Output  
Voltage (V)  
Output  
C3 C2 C1 C0 LDO2 Output  
Voltage (V)  
Voltage (V)  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1.1  
1.2  
1.4  
1.7  
1.8  
1.9  
2
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2.5  
2.6  
2.7  
2.8  
2.9  
3
2.2  
2.3  
2.4  
2.5  
2.8  
2.85  
3.2  
3.3  
1.1  
1.2  
1.3  
1.5  
1.6  
1.8  
2.1  
3.1  
3.3  
2.1  
DS9396-01 April 2011  
www.richtek.com  
5
RT9396  
Table 2. 64-Step WLED Current Setting  
WLED  
WLED  
Current (mA)  
C5  
C4  
C3  
C2  
C1  
C0  
C5  
C4  
C3  
C2  
C1  
C0  
Current (mA)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.39  
1
0
0
0
0
0
12.89  
0.78  
1.17  
1.56  
1.95  
2.34  
2.73  
3.13  
3.52  
3.91  
4.3  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
13.28  
14.06  
14.45  
14.84  
15.23  
15.63  
16.02  
16.41  
16.8  
17.19  
17.58  
17.97  
18.36  
18.75  
19.14  
19.53  
19.92  
20.31  
20.7  
4.69  
5.08  
5.47  
5.86  
6.25  
6.64  
7.03  
7.42  
7.81  
8.2  
21.09  
21.48  
21.88  
22.27  
22.66  
23.05  
23.44  
23.83  
24.22  
24.61  
25  
8.59  
8.98  
9.38  
9.77  
10.16  
10.55  
10.94  
11.33  
11.72  
12.11  
12.5  
www.richtek.com  
6
DS9396-01 April 2011  
RT9396  
Absolute Maximum Ratings (Note 1)  
z Supply Input Voltage, VIN ---------------------------------------------------------------------------------------------- 0.3V to 6V  
z Output Voltage, VOUT----------------------------------------------------------------------------------------------------------------------------------------------- 6V to 0.3V  
z Other Pins ----------------------------------------------------------------------------------------------------------------- 0.3V to 6V  
z PowerDissipation, PD @ TA = 25°C  
WQFN-24L 3x3 ----------------------------------------------------------------------------------------------------------- 1.667W  
z Package Thermal Resistance (Note 2)  
WQFN-24L 3x3, θJA ----------------------------------------------------------------------------------------------------- 60°C/W  
z Junction Temperature --------------------------------------------------------------------------------------------------- 150°C  
z Lead Temperature (Soldering, 10 sec.) ----------------------------------------------------------------------------- 260°C  
z StorageTemperature Range ------------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Mode) --------------------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ---------------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 4)  
z Supply Input Voltage, VIN, VLDOIN ------------------------------------------------------------------------------------ 2.8V to 5V  
z Junction Temperature Range ------------------------------------------------------------------------------------------ 40°C to 125°C  
z Ambient Temperature Range ------------------------------------------------------------------------------------------ 40°C to 85°C  
Electrical Characteristics  
(VIN = VLDOIN = 3.6V, CIN = 2.2μF, COUT = 1μF, CFLY1 = CFLY2 = 1μF, VF = 3.5V, ILEDx = 25mA, TA = 25°C, unless otherwise  
specification)  
Parameter  
Symbol  
Test Conditions  
Rising.  
IN  
Min  
Typ  
Max Unit  
Input Power Supply  
Under-Voltage Lockout Threshold  
V
V
1.8  
--  
2.1  
2.5  
--  
V
UVLO  
Under-Voltage Lockout Hysteresis ΔV  
200  
mV  
UVLO  
x1 Mode, V = 5V, No Load,  
LDO[1:4] OFF  
IN  
Quiescent of x1 Mode  
Quiescent of x2 Mode  
I
--  
1
2
mA  
Q_x1  
x2 Mode, V = 3.5V, No Load,  
IN  
I
I
--  
--  
3.5  
0.5  
5
1
mA  
Q_x2  
LDO[1:4] OFF  
Shutdown Current  
V
= 5V, V = 0V  
μA  
SHDN  
IN  
EN  
Charge Pump WLED Driver  
Backlight I  
Accuracy  
5  
3  
--  
0
0
5
3
%
%
LEDx  
Backlight Current Matching  
Dropout Voltage  
70  
--  
mV  
Charge Pump  
Oscillator Frequency  
--  
--  
1000  
3.6  
--  
kHz  
V
x1 Mode to x1.5 Mode  
Transition Voltage (V falling)  
V = 3.5V, I  
= 150mA  
= 150mA  
3.75  
f
OUT  
IN  
Mode Transition Hysteresis  
Over Voltage Protection  
V = 3.5V, I  
--  
250  
5.5  
--  
mV  
V
f
OUT  
V
= 4.5V  
5.2  
5.8  
IN  
To be continued  
DS9396-01 April 2011  
www.richtek.com  
7
RT9396  
Parameter  
Symbol  
Test Conditions  
Min  
Typ Max Unit  
LDO1 to LDO4  
Input Voltage  
V
V
= 2.8V to 5V  
2.8  
--  
--  
--  
5
V
IN  
IN  
Dropout Voltage  
2.8V, I  
= 200mA  
200 mV  
OUT  
2
Output voltage Range  
VOUT Accuracy  
By I C Setting  
1.1  
--  
3.3  
3
V
I
= 1mA  
3  
%
OUT  
V
V
= (V  
+ 0.3V) to 5V or  
IN  
IN  
OUT  
Line Regulation  
--  
--  
0.2 %/V  
0.6  
600 mA  
> 2.5V, whichever is larger  
Load Regulation  
1mA < I  
< 200mA  
--  
230  
--  
--  
%
OUT  
Current Limit  
I
I
I
R
= 1Ω  
LOAD  
350  
140  
--  
LIM  
Q
Quiescent Current  
Shutdown Current  
Thermal Shutdown  
Thermal Shutdown Hysteresis  
4-Channel All Turn On  
200  
1
μA  
μA  
°C  
°C  
--  
SHDN  
T
--  
160  
20  
--  
SD  
ΔT  
--  
--  
SD  
2
I C interface  
EN, SDA,SCL Pull Low Current  
I
--  
1.4  
--  
5
--  
--  
--  
--  
--  
--  
--  
--  
10  
--  
μA  
V
EN  
Logic-High  
Logic-Low  
V
EN, SDA, SCL  
Threshold Voltage  
IH  
V
V
0.4  
0.4  
V
IL  
SDA Output Low Voltage  
SCL Clock Frequency  
--  
V
CL  
f
t
t
t
t
t
t
t
--  
400 kHz  
SCL  
Low  
High  
HD_STR  
SCL Clock Low Period  
1.3  
0.6  
0.6  
0.6  
--  
--  
μs  
μs  
μs  
μs  
ns  
μs  
μs  
SCL Clock High Period  
Hold Time START Condition  
Setup Time for Repeat START  
SDA Data Setup Time  
--  
--  
SU_STR  
SU_DAT  
HD_DAT  
100  
0.05  
0.6  
--  
--  
--  
--  
SDA Data HOLD Time  
0.9  
--  
Setup Time for STOP Condition  
SU_STO  
BUF  
Bus Free Time Between STOP and  
START Condition  
t
1.3  
--  
--  
μs  
PWM Dimming Control  
PWM Dimming Frequency  
1
--  
200 kHz  
PWM Dimming High Time  
PWM Dimming Low Time  
Shutdown Delay  
0.5  
0.5  
16  
--  
--  
--  
--  
500  
--  
μs  
μs  
ms  
Note 1. Stresses listed as the above Absolute Maximum Ratingsmay cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. θJA is measured in the natural convection at TA = 25°C on a high effective thermal conductivity four-layer test board of  
JEDEC 51-7 thermal measurement standard.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
www.richtek.com  
8
DS9396-01 April 2011  
RT9396  
Typical Operating Characteristics  
For Charge Pump  
Efficiency vs. Input Voltage  
LED Current vs. Input Voltage  
100  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
90  
80  
70  
60  
50  
40  
30  
20  
LED1  
LED2  
LED3  
LED4  
LED5  
LED6  
10  
Vf = 3.5V, ILEDx = 25mA  
Vf = 3.5V  
5.5  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
x1 Mode Quiescent Current vs. Input Voltage  
3.0  
x2 Mode Quiescent Current vs. Input Voltage  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
Shutdown Current vs. Input Voltage  
x2 Mode Inrush Current Response  
0.650  
0.625  
0.600  
0.575  
0.550  
VOUT  
(1V/Div)  
C1P  
(2V/Div)  
IIN  
(500mA/Div)  
VIN = 2.8V, Vf = 3.5V, ILEDx = 25mA  
2.5  
3
3.5  
4
4.5  
5
5.5  
Time (100μs/Div)  
Input Voltage (V)  
DS9396-01 April 2011  
www.richtek.com  
9
RT9396  
Ripple & Spike  
x1.5 Mode Inrush Current Response  
VOUT  
(20mV/Div)  
VOUT  
(1V/Div)  
VIN  
(20mV/Div)  
C1P  
(2V/Div)  
VC1P  
(2V/Div)  
IIN  
(200mA/Div)  
VIN = 3V, Vf = 3.5V, ILEDx = 25mA  
VIN = 3.35V, Vf = 3.5V, ILEDx = 25mA  
Time (500ns/Div)  
Time (100μs/Div)  
www.richtek.com  
10  
DS9396-01 April 2011  
RT9396  
For LDO  
Output Voltage vs. Temperature  
Dropout Voltage vs. Load Current  
3.34  
250  
200  
150  
100  
50  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
LDO2  
LDO3  
LDO1  
LDO4  
LDO1  
LDO3  
LDO4  
LDO2  
VIN = 4.3V, VLDO = 3.3V  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
50  
100  
150  
200  
250  
Temperature (°C)  
Load Current (mA)  
Power On  
Power On  
SCL  
(5V/Div)  
SCL  
(5V/Div)  
VLDO1  
VLDO3  
(2V/Div)  
(2V/Div)  
VLDO2  
(2V/Div)  
VLDO4  
(2V/Div)  
IIN  
IIN  
(500mA/Div)  
(500mA/Div)  
VIN = 4.3V, VLDO1 = VLDO2 = 3.3V, ILOAD = 200mA  
VIN = 4.3V, VLDO3 = VLDO4 = 3.3V, ILOAD = 200mA  
Time (25μs/Div)  
Time (25μs/Div)  
Line Transient Response  
Line Transient Response  
4.8  
4.8  
VIN  
(V)  
VIN  
(V)  
3.8  
3.8  
VLDO4  
VLDO2  
(20mV/Div)  
(20mV/Div)  
VLDO3  
VLDO1  
(20mV/Div)  
(20mV/Div)  
VIN = 3.8V to 4.8V  
VIN = 3.8V to 4.8V  
VLDO3 = VLDO4 = 2.8V, ILOAD = 200mA  
VLDO1 = VLDO2 = 2.8V, ILOAD = 200mA  
Time (100μs/Div)  
Time (100μs/Div)  
DS9396-01 April 2011  
www.richtek.com  
11  
RT9396  
Load Transient Response  
Load Transient Response  
VLDO3  
VLDO1  
(100mV/Div)  
(100mV/Div)  
ILDO3  
(200mA/Div)  
ILDO1  
(200mA/Div)  
VLDO4  
VLDO2  
(100mV/Div)  
(100mV/Div)  
ILDO4  
(200mA/Div)  
ILDO2  
(200mA/Div)  
VIN = 4.3V, VLDO3 = VLDO4 = 3.3V  
VIN = 4.3V, VLDO1 = VLDO2 = 3.3V  
Time (10μs/Div)  
Time (10μs/Div)  
Noise  
PSRR  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
(0.2mV/Div)  
VIN = 4.3V, VLDO = 3.3V, No Load  
Time (50ms/Div)  
VIN = 4.3V, VLDO = 3.3V, ILOAD = 200mA  
-100  
10  
100  
1000  
10000  
100000 1000000  
Frequency (Hz)  
Noise  
(0.2mV/Div)  
VIN = 4.3V, VLDO = 3.3V, ILOAD = 50mA  
Time (50ms/Div)  
www.richtek.com  
12  
DS9396-01 April 2011  
RT9396  
Applications Information  
The RT9396 is an I2C interface PMIC with one 6-Channel  
charge pump white LEDdriver and four LDOs. The charge  
pump provides 6-Channel low dropout voltage current  
source to regulate up to 6 white LEDs. For high efficiency,  
the RT9396 implements a smart mode transition for charge  
pump operation. The four LDOs are capable of delivering  
low dropout voltage of 200mV @ 200mA with 3% output  
accuracy. The I2C dimming function allows for a 64 steps  
LEDbrightness control and 16 steps LDO voltage control.  
EN  
……………  
SDA  
SCL  
……………  
Figure 3. The Power Sequence  
I2C Compatible Interface  
Figure 4 shows the timing diagram of the I2C interface.  
The RT9396 communicates with a host (master) using  
the standard I2C 2-wire interface. The two bus lines of  
SCL and SDA must be pulled high when the bus is not in  
use. Internal pull-up resistors are installed.After the START  
condition, the I2C master sends 8-bits data, consisting of  
seven address bits and a following data direction bit (R/  
W). The RT9396 address is 1010100 (54h) and is a receive-  
only (slave) device. The second word selects the register  
to which the data will be written. The third word contains  
data to write to the selected register.  
Input UVLO  
An under voltage lockout (UVLO) function is provided to  
prevent unstable occurrences during start-up. The UVLO  
threshold is set at an input rising voltage of 2.1V typically  
with a hysteresis of 0.2V. The input operating voltage range  
of the RT9396 is from 2.8V to 5V.An input capacitor should  
be placed near the VIN pin to reduce ripple voltage. It is  
recommended to use a ceramic 2.2μF or larger capacitance  
as the input capacitor.  
Figure 2 shows the writing information for voltage of the  
four LDOs and current of the six LEDs. In the second  
word, the sub-address of the four LDOs is 001and the  
sub-address of the LEDDriver for different dimming modes  
are respectively 010, 011and 100. For the LDO  
output voltage setting, bits B1 to B4 represent each LDO  
channel respectively where a 1indicates selected and  
a 0means not selected. The B0 bit controls on/off (1/  
0) mode for the selected LDO channel(s). Then, in the  
third word, bits C0 to C3 control a 16-step setting of LDO1  
to LDO4. The voltage values are listed in Table 1.  
Soft-Start  
The RT9396 includes a soft-start circuit to limit the inrush  
current at power on and mode switching. The soft-start  
circuit limits the input current before the output voltage  
reaches a desired voltage level.  
Mode Decision  
The RT9396 uses a smart mode decision method to  
choose the working mode for maximum efficiency. The  
charge pump can operate at x1, x1.5 or x2 mode. The  
mode decision circuit senses the output voltage and LED  
voltage to determine the optimum working mode.  
For LED dimming, there are three operating modes  
(Backlight I, Backlight II and Backlight III) to select from  
by writing respectively 010, 011and 100into the  
first three bits of the second word. When Backlight I is  
selected, all six LEDs have the same behavior. Their 64-  
step dimming currents are set by bits C0 to C5, which  
are listed in Table 2. The bits C6 and C7 determine the  
fade in/out time of each step as shown in Figure 2. For  
Backlight II and Backlight III, two sets of LEDs, called  
main and Sub, can work separately and turn on solely. It  
should be noticed that no matter which mode is selected,  
the B0 bit must be a 1in order for te LEDs in the main  
set to be turned on.  
Power Sequence  
In order to assure normal operating condition, the input  
voltage and ENshould be active before the RT9396 receives  
the I2C signal, as shown in Figure 3. The RT9396 can be  
shut down by pulling EN low. When EN is reset, the I2C  
signal also needs to be re-applied to resume normal  
operating condition.  
DS9396-01 April 2011  
www.richtek.com  
13  
RT9396  
In Backlight II, the main set consists of LED1 to LED5  
and LED6 is the Sub set. In Backlight III, the main set  
consists of LED1 to LED4, while the Sub set comprises  
of LED5 and LED6. The RT9396 has another dimming  
function called PWM dimming, which can be enabled by  
selecting the B4 bit in Backlight I, B3 bit in Backlight II,  
and B2 bit in Backlight III. Once the function is enabled, a  
PWM signal is applied to the PWM pin to perform PWM  
dimming. The LED current value is the current value set  
by C0 to C5 multiplied by the duty cycle. It is important to  
note that the PWM dimming function applies only to the  
main set.  
The 2nd Word (Sub  
Address, Data)  
The 1st Word (Chip  
Address, R/W)  
The 3rd Word (data)  
Channel  
Sub  
Adress selection  
I2C Address  
R/W  
Test Mode  
Data II  
ON/OFF  
Start  
S
A6A5A4A3A2A1A0 0  
B7B6B5B4B3B2B1B0  
C7C6C5C4C3C2C1C0  
Stop  
4
P
SCL  
SDA  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
3
5
6
7
8
9
0
A6 A5 A4 A3 A2 A1 A0 0 ACK B7 B6 B5 B4 B3 B2 B1 B0 ACK C7 C6 C5 C4 C3 C2 C1 C0 ACK  
S
= Start Condition  
W
R
= Write (SDA =0)  
= Read (SDA =1)  
ACK = Acknowledge  
= Stop Condition  
P
Figure 4. I2C Communication Sequence  
capacitance larger than 1μF is placed close to the RT9396  
supply input to reduce ripple. The value of this capacitor  
can be increased without limit. The input capacitor must  
be located at a distance of not more than 0.5 inch away  
from the input pin of the IC and tied to a clean analog  
ground. Any good quality ceramic or tantalum capacitor  
can meet the requirement. The capacitor with larger value  
and lower ESR (equivalent series resistance) provides  
better PSRR power supply rejection ratio and line-transient  
response. The output capacitor must meet minimum  
requirement for both capacitance and ESR in all LDO's  
applications. For stability consideration, a ceramic  
capacitor with minimum capacitance of 1μF and minimum  
ESR of 20mΩ is recommended for the output capacitor.  
For space-saving and performance consideration, the  
RT9396 is designed to work with ceramic capacitor of low  
ESR. However, because of it's wide ESR range tolerance,  
the RT9396 can work stably with output capacitor of other  
types as well. Figure 5 shows the stable region for various  
load current and output capacitor conditions. Large output  
capacitance can reduce noise and improve load transient  
response, stability, and PSRR. The capacitor must be  
located at a distance not more than 0.5 inch away from  
the VOUT pin and tied to a clean analog ground.  
Flying Capacitors Selection  
To attain better performance of the RT9396, the selection  
of peripherally appropriate capacitor and value is very  
important. These capacitors determine some parameters  
such as input/output ripple voltage, power efficiency and  
maximum supply current by charge pump. To reduce the  
input and output ripple effectively, low ESR ceramic  
capacitors are recommended. For LEDdriver applications,  
the input voltage ripple is more important than the output  
voltage ripple. The input ripple is influenced by the input  
capacitor, CIN. Increasing the input capacitance can further  
reduce the ripple. The flying capacitors ,CFLY1 and CFLY2  
determine the supply current capability of the charge pump,  
which in turn influences the overall efficiency of the system.  
Alower capacitance will improve efficiency, but it will limit  
the LED's current at low input voltage. For a 6 x 25mA  
load over the entire input voltage range of 2.8V to 5V, it is  
recommended to use a 1μF ceramic capacitor for CFLY1  
CFLY2 and COUT  
,
.
LDO Capacitor Selection  
Like for any low dropout regulator, the external capacitors  
used for the RT9396 must be carefully selected for  
regulator stability and performance. A capacitor with  
www.richtek.com  
14  
DS9396-01 April 2011  
RT9396  
Region of Stable COUT ESR vs. Load Current  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
100  
Four- Layer PCB  
VIN = 5V  
IN = COUT1  
COUT2 = 1uF/X7R  
C
=
10  
1
Unstable Range  
Stable Range  
0.1  
0.01  
0.001  
Simulation Verify  
0
25  
50  
75  
100  
125  
0
50  
100  
150  
200  
250  
300  
Ambient Temperature (°C)  
Load Current (mA)  
Figure 5. Stable COUT ESR Range  
Figure 6.Derating Curve for RT9396 Package  
Thermal Considerations  
Layout Considerations  
For continuous operation, do not exceed absolute  
maximum junction temperature. The maximum power  
dissipation depends on the thermal resistance of IC  
package, PCB layout, rate of surrounding airflow and  
temperature difference between junction to ambient. The  
maximum power dissipation can be calculated by following  
the formula :  
The RT9396 is a high-frequency switched-capacitor  
converter. For best performance, careful PCB layout is  
necessary. Place all peripheral components as close as  
possible to the IC. Place CIN1, CIN2, COUT, CL1, CL2, CL3,  
CL4, CFLY1, and CFLY2 near to VIN, LDOIN, VOUT, LDO1,  
LDO2, LDO3, LDO4, C1P, C1N, C2P, C2N, andGNDpin  
respectively. Ashort connection is highly recommended.  
The following guidelines should be strictly followed when  
designing a PCB layout for the RT9396.  
P
D(MAX) = (TJ(MAX) TA ) / θJA  
Where TJ(MAX) is the maximum junction temperature, TAis  
the ambient temperature and θJAis the junction to ambient  
thermal resistance.  
The exposed GND pad must be soldered to a large  
ground plane for heat sinking and noise prevention. The  
through-hole vias located at the exposed pad is  
connected to the ground plane of internal layer.  
For recommended operating conditions specification of  
the RT9396, the maximum junction temperature is 125°C  
and TA is the ambient temperature. The junction to ambient  
thermal resistance θJA is layout dependent. For  
WQFN-24L 3x3 package, the thermal resistance θJA is  
60°C/W on the standard JEDEC 51-7 four-layer thermal  
test board. The maximum power dissipation at TA = 25°C  
can be calculated by the following formula :  
VIN traces should be wide enough to minimize  
inductance and handle high currents. The trace running  
from the battery to the IC should be placed carefully  
and shielded strictly.  
Input and output capacitors must be placed close to the  
IC. The connection between pins and capacitor pads  
should be copper traces without any through-hole via  
connection.  
PD(MAX) = (125°C 25°C) / (60°C/W) = 1.667W for  
WQFN-24L 3x3 package  
The flying capacitors must be placed close to the IC.  
The traces running from the pins to the capacitor pads  
should be as wide as possible. Long traces will also  
produce large noise radiation caused by the large dv/dt  
on these pins. Short trace is recommended.  
The maximum power dissipation depends on operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance θJA. For RT9396 package, the derating curve  
in Figure 6 allows the designer to see the effect of rising  
ambient temperature on the maximum power dissipation  
allowed.  
DS9396-01 April 2011  
www.richtek.com  
15  
RT9396  
All the traces of LEDs and VIN running from pins to  
LCM module should be shielded and isolated by the  
ground plane. The shielding prevents the interference of  
high frequency noise coupled from the charge pump.  
Output capacitor must be placed between  
GND and VOUT to reduce noise coupling  
from charge pump to LEDs.  
GND  
GND  
The flying capacitors  
must be placed close  
to the IC.  
24 23 22 21 20 19 18  
1
2
3
4
5
17  
16  
15  
14  
13  
PGND  
C2N  
C1N  
C1P  
SCL  
SDA  
EN  
PWM  
CF  
VIN traces should  
be wide enough.  
C2P  
6
7
8
9
10 11 12  
GND  
Battery  
GND  
Input capacitors must be  
placed close to the IC.  
Figure 7. PCB LayoutGuide  
www.richtek.com  
16  
DS9396-01 April 2011  
RT9396  
Outline Dimension  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
0.800  
0.050  
0.250  
0.250  
3.100  
3.100  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.150  
2.900  
2.900  
0.028  
0.000  
0.007  
0.006  
0.114  
0.114  
0.031  
0.002  
0.010  
0.010  
0.122  
0.122  
D
E
e
0.400  
0.016  
L
0.350  
0.950  
0.450  
1.050  
0.014  
0.037  
0.018  
0.041  
L1  
W-Type 24L QFN 3x3 (COL) Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
5F, No. 95, Minchiuan Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)86672399 Fax: (8862)86672377  
Email: marketing@richtek.com  
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit  
design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be  
guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.  
DS9396-01 April 2011  
www.richtek.com  
17  

相关型号:

RT93LC46

1.8V~6.0V|1K bit E2PROM
ETC

RT9401A

5Bit VID Reference Generator
RICHTEK

RT9401AGV8

5Bit VID Reference Generator
RICHTEK

RT9401APV8

5Bit VID Reference Generator
RICHTEK

RT9401B

暂无描述
RICHTEK

RT9401BGV8

5Bit VID Reference Generator
RICHTEK

RT9401BPV8

5Bit VID Reference Generator
RICHTEK

RT9401C

暂无描述
RICHTEK

RT9403

暂无描述
RICHTEK

RT9403B

暂无描述
RICHTEK

RT9403C

暂无描述
RICHTEK

RT9403D

暂无描述
RICHTEK