R1211N002C-TR-FB [RICOH]

Switching Controller, 0.05A, 805kHz Switching Freq-Max, CMOS, PDSO6, SOT-23, 6 PIN;
R1211N002C-TR-FB
型号: R1211N002C-TR-FB
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

Switching Controller, 0.05A, 805kHz Switching Freq-Max, CMOS, PDSO6, SOT-23, 6 PIN

ISM频段 开关 光电二极管
文件: 总40页 (文件大小:516K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R1211x SERIES  
STEP-UP DC/DC CONTROLLER  
OUTLINE  
NO.EA-088-0604  
The R1211x Series are CMOS-based PWM step-up DC/DC converter controllers with low supply current.  
Each of the R1211x Series consists of an oscillator, a PWM control circuit, a reference voltage unit, an error  
amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low ripple,  
high efficiency step-up DC/DC converter can be composed of this IC with some external components, or an  
inductor, a diode, a power MOSFET, divider resisters, and capacitors.  
Phase compensation has been made internally in the R1211x002B/D Series, while phase compensation can  
be made externally as for R1211x002A/C Series. B/D version has stand-by mode.  
Max duty cycle is internally fixed typically at 90%. Soft start function is built-in, and Soft-starting time is set  
typically at 9ms(A/B, 700kHz version) or 10.5ms(C/D, 300kHz version). As for the protection circuit, after the  
soft-starting time, if the maximum duty cycle is continued for a certain period, the R1211x Series latch the  
external driver with its off state, or Latch-type protection circuit works.  
The delay time for latch the state can be set with an external capacitor.  
To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector  
threshold level), or once after making the circuit be stand-by with chip enable pin and enable the circuit again.  
FEATURES  
Standby Current................................................Typ. 0µA (for B/D version)  
Input Voltage Range .........................................2.5V to 6.0V  
Built-in Latch-type Protection Function (Output Delay Time can be set with an external capacitor)  
Two Options of Basic Oscillator Frequency......300kHz, 700kHz  
Max Duty Cycle.................................................Typ. 90%  
High Reference Voltage Accuracy ....................±1.5%  
U.V.L.O. Threshold level ...................................Typ. 2.2V (Hysteresis Typ. 0.13V)  
Small Packages ................................................SOT-23-6W or thin (package height Max. 0.85mm) SON-6  
APPLICATIONS  
Constant Voltage Power Source for portable equipment.  
Constant Voltage Power Source for LCD and CCD.  
1
R1211x  
BLOCK DIAGRAMS  
Version A/C  
Version B/D  
OSC  
OSC  
VFB  
EXT  
DTC  
DTC  
V
FB  
EXT  
V
IN  
AMPOUT  
+
-
+
-
-
-
V
IN  
-
-
-
-
Vref  
+
Vref  
+
GND  
GND  
UVLO  
UVLO  
+
+
-
DELAY  
DELAY  
-
+
-
+
-
Latch  
Latch  
Chip  
Enable  
CE  
SELECTION GUIDE  
In the R1211x Series, the oscillator frequency, the optional function, and the package type for the ICs can be  
selected at the user's request.  
The selection can be made with designating the part number as shown below;  
R1211x002x-TR Part Number  
a
b
Code  
Contents  
Designation of Package Type:  
D: SON-6  
a
N: SOT23-6W  
Designation of Optional Function  
A : 700kHz, with AMPOUT pin (External Phase Compensation Type)  
B : 700kHz, with CE pin (Internal Phase Compensation Type, with Stand-by)  
C : 300kHz, with AMPOUT pin (External Phase Compensation Type)  
D : 300kHz, with CE pin (Internal Phase Compensation Type, with Stand-by)  
b
2
R1211x  
PIN CONFIGURATIONS  
SON-6  
SOT-23-6W  
6
5
4
Top View  
Bottom View  
6
5
4
4
5
6
EXT  
GND  
V
IN  
(MARK SIDE)  
DELAY AMPOUT/CE  
V
FB  
1
2
3
3
2
1
1
2
3
PIN DESCRIPTIONS  
Pin No  
Symbol  
Pin Description  
SON6  
SOT23-6W  
Pin for External Capacitor  
(for Setting Output Delay of Protection)  
1
1
DELAY  
2
3
4
5
5
6
4
3
GND  
EXT  
VIN  
Ground Pin  
External FET Drive Pin (CMOS Output)  
Power Supply Pin  
VFB  
Feedback Pin for monitoring Output Voltage  
Amplifier Output Pin(A/C Version) or  
Chip Enable Pin(B/D Version, Active at "H")  
6
2
AMPOUT or CE  
* Tab in the  
parts have GND level. (They are connected to the reverse side of this IC.)  
Do not connect to other wires or land patterns.  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Item  
Rating  
6.5  
Unit  
V
VIN  
VIN Pin Voltage  
VEXT  
VDLY  
VAMP  
VCE  
EXT Pin Output Voltage  
DELAY Pin Voltage  
V
0.3 ~ VIN+0.3  
0.3 ~ VIN+0.3  
0.3 ~ VIN+0.3  
0.3 ~ VIN+0.3  
0.3 ~ VIN+0.3  
±10  
V
AMPOUT Pin Voltage  
V
CE Pin Input Voltage  
V
VFB  
VFB Pin Voltage  
V
IAMP  
AMPOUT Pin Current  
mA  
mA  
IEXT  
EXT Pin Inductor Drive Output Current  
Power Dissipation (SOT-23-6W)*  
Power Dissipation (SON-6)*  
Operating Temperature Range  
Storage Temperature Range  
±50  
430  
PD  
500  
mW  
°C  
Topt  
Tstg  
40 ~ +85  
55 ~ +125  
°C  
* ) For Power Dissipation, please refer to PACKAGE INFORMATION to be described.  
3
R1211x  
ELECTRICAL CHARACTERISTICS  
R1211x002A  
Topt=25°C  
Symbol  
VIN  
Item  
Conditions  
Min.  
2.5  
Typ.  
Max.  
6.0  
Unit  
Operating Input Voltage  
VFB Voltage Tolerance  
V
V
VFB  
0.985  
1.000  
1.015  
VIN=3.3V  
40°C Topt 85°C  
VFB Voltage  
VFB/T  
±150  
ppm/°C  
=
=
Temperature Coefficient  
IFB  
VFB Input Current  
0.1  
VIN=6V, VFB=0V or 6V  
VIN=3.3V, VDLY=VFB=0V  
0.1  
µA  
fOSc  
Oscillator Frequency  
595  
700  
805  
kHz  
Oscillator Frequency  
Temperature Coefficient  
fOSc/T  
IDD1  
40°C Topt 85°C  
±1.4  
kHz/°C  
µA  
=
=
VIN=6V, VDLY=VFB=0V,  
EXT at no load  
Supply Current 1  
600  
90  
900  
94  
VIN=3.3V,  
EXT "H" side  
maxdty  
Maximum Duty Cycle  
82  
%
REXTH  
REXTL  
IDLY1  
EXT "H" ON Resistance  
EXT "L" ON Resistance  
Delay Pin Charge Current  
5
3
10  
6
VIN=3.3V, IEXT=20mA  
VIN=3.3V, IEXT=20mA  
VIN=3.3V, VDLY=VFB=0V  
2.5  
2.5  
5.0  
7.5  
µA  
VIN=VFB=2.5V,  
VDLY=0.1V  
IDLY2  
VDLY  
Delay Pin Discharge Current  
Delay Pin Detector Threshold  
Soft-start Time  
5.5  
1.00  
9.0  
9.0  
1.05  
13.5  
2.3  
mA  
V
VIN=3.3V,  
VFB=0V,VDLY=0V2V  
0.95  
4.5  
VIN=3.3V at 90% of  
rising edge  
TSTART  
VUVLO1  
VUVLO2  
IAMP1  
ms  
V
VIN=3.3V0V,  
VDLY=VFB=0V  
UVLO Detector Threshold  
UVLO Detector Hysteresis  
AMP "H" Output Current  
AMP "L" Output Current  
2.1  
2.2  
VIN=0V3.3V,  
VDLY=VFB=0V  
0.08  
0.45  
30  
0.13  
0.90  
60  
0.18  
1.50  
90  
V
VIN=3.3V, VAMP=1V,  
VFB=0.9V  
mA  
µA  
VIN=3.3V, VAMP=1V,  
VFB=1.1V  
IAMP2  
4
R1211x  
R1211x002B  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VIN  
Operating Input Voltage  
VFB Voltage Tolerance  
2.5  
6.0  
V
V
VFB  
0.985 1.000 1.015  
VIN=3.3V  
40°C Topt 85°C  
VFB Voltage  
Temperature Coefficient  
VFB/T  
±150  
ppm/°C  
=
=
IFB  
VFB Input Current  
0.1  
VIN=6V, VFB=0V or 6V  
VIN=3.3V, VDLY=VFB=0V  
0.1  
µA  
fOSC  
Oscillator Frequency  
595  
700  
805  
kHz  
Oscillator Frequency  
Temperature Coefficient  
fOSC/ T  
40°C Topt 85°C  
±1.4  
kHz/°C  
µA  
=
=
VIN=6V, VDLY=VFB=0V,  
EXT at no load  
IDD1  
Supply Current 1  
600  
900  
maxdty  
REXTH  
REXTL  
IDLY1  
Maximum Duty Cycle  
82  
90  
5
94  
10  
6
%
VIN=3.3V, EXT "H" side  
VIN=3.3V, IEXT=−20mA  
VIN=3.3V, IEXT=20mA  
EXT "H" ON Resistance  
EXT "L" ON Resistance  
Delay Pin Charge Current  
Delay Pin Discharge Current  
3
2.5  
2.5  
5.0  
5.5  
7.5  
9.0  
VIN=3.3V, VDLY=VFB=0V  
VIN=VFB=2.5V, VDLY=0.1V  
µA  
mA  
IDLY2  
VIN=3.3V, VFB=0V,  
VDLY=0V2V  
VDLY  
Delay Pin Detector Threshold  
Soft-start Time  
0.95  
4.5  
1.00  
9.0  
1.05  
13.5  
2.3  
V
ms  
V
TSTART  
VUVLO1  
VIN=3.3V  
VIN=3.3V0V,  
VDLY=VFB=0V  
UVLO Detector Threshold  
2.1  
2.2  
VIN=0V3.3V,  
VDLY=VFB=0V  
VUVLO2  
UVLO Detector Hysteresis  
0.08  
0.13  
0
0.18  
V
ISTB  
ICEH  
ICEL  
Standby Current  
1
VIN=6V, VCE=0V  
µA  
µA  
µA  
V
CE "H" Input Current  
CE "L" Input Current  
CE "H" Input Voltage  
CE "L" Input Voltage  
0.5  
0.5  
VIN=6V, VCE=6V  
0.5  
0.5  
1.5  
VIN=6V, VCE=0V  
VCEH  
VCEL  
VIN=6V, VCE=0V6V  
VIN=2.5V, VCE=2V0V  
0.3  
V
5
R1211x  
R1211x002C  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VIN  
Operating Input Voltage  
VFB Voltage Tolerance  
2.5  
6.0  
V
V
VFB  
0.985 1.000 1.015  
VIN=3.3V  
40°C Topt 85°C  
VFB Voltage  
Temperature Coefficient  
ppm/°C  
VFB/T  
±150  
=
=
IFB  
VFB Input Current  
0.1  
VIN=6V, VFB=0V or 6V  
VIN=3.3V, VDLY=VFB=0V  
0.1  
µA  
fOSC  
Oscillator Frequency  
240  
300  
360  
kHz  
Oscillator Frequency  
Temperature Coefficient  
kHz/°C  
fOSC/T  
40°C Topt 85°C  
±0.6  
=
=
VIN=6V, VDLY=VFB=0V,  
EXT at no load  
IDD1  
Supply Current 1  
300  
500  
µA  
maxdty  
REXTH  
REXTL  
IDLY1  
Maximum Duty Cycle  
82  
90  
5
94  
10  
6
%
VIN=3.3V, EXT "H" side  
VIN=3.3V, IEXT=−20mA  
VIN=3.3V, IEXT=20mA  
VIN=3.3V, VDLY=VFB=0V  
VIN=VFB=2.5V, VDLY=0.1V  
EXT "H" ON Resistance  
EXT "L" ON Resistance  
Delay Pin Charge Current  
Delay Pin Discharge Current  
3
2.0  
2.5  
4.5  
5.5  
7.0  
9.0  
µA  
mA  
IDLY2  
VIN=3.3V, VFB=0V,  
VDLY=0V2V  
VDLY  
Delay Pin Detector Threshold  
Soft-start Time  
0.95  
5.0  
1.00  
10.5  
2.2  
1.05  
16.0  
2.3  
V
ms  
V
TSTART  
VUVLO1  
VIN=3.3V  
VIN=3.3V0V,  
VDLY=VFB=0V  
UVLO Detector Threshold  
2.1  
VIN=0V3.3V,  
VDLY=VFB=0V  
VUVLO2  
IAMP1  
UVLO Detector Hysteresis  
AMP "H" Output Current  
AMP "L" Output Current  
0.08  
0.45  
25  
0.13  
0.90  
50  
0.18  
1.50  
75  
V
VIN=3.3V, VAMP=1V,  
VFB=0.9V  
mA  
µA  
VIN=3.3V, VAMP=1V,  
VFB=1.1V  
IAMP2  
6
R1211x  
R1211x002D  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VIN  
Operating Input Voltage  
VFB Voltage Tolerance  
2.5  
6.0  
V
V
VFB  
0.985 1.000 1.015  
VIN=3.3V  
40°C Topt 85°C  
VFB Voltage  
Temperature Coefficient  
VFB/T  
±150  
ppm/°C  
=
=
IFB  
VFB Input Current  
0.1  
VIN=6V, VFB=0V or 6V  
VIN=3.3V, VDLY=VFB=0V  
0.1  
µA  
fOSC  
Oscillator Frequency  
240  
300  
360  
kHz  
Oscillator Frequency  
Temperature Coefficient  
fOSC/T  
40°C Topt 85°C  
±0.6  
kHz/°C  
µA  
=
=
VIN=6V, VDLY=VFB=0V,  
EXT at no load  
IDD1  
Supply Current 1  
300  
500  
maxdty  
REXTH  
REXTL  
IDLY1  
Maximum Duty Cycle  
82  
90  
5
94  
10  
6
%
VIN=3.3V, EXT "H" side  
VIN=3.3V, IEXT=−20mA  
VIN=3.3V, IEXT=20mA  
VIN=3.3V, VDLY=VFB=0V  
VIN=VFB=2.5V, VDLY=0.1V  
EXT "H" ON Resistance  
EXT "L" ON Resistance  
Delay Pin Charge Current  
Delay Pin Discharge Current  
3
2.0  
2.5  
4.5  
5.5  
7.0  
9.0  
µA  
mA  
IDLY2  
VIN=3.3V, VFB=0V,  
VDLY=0V2V  
VDLY  
Delay Pin Detector Threshold  
Soft-start Time  
0.95  
5.0  
1.00  
10.5  
2.2  
1.05  
16.0  
2.3  
V
ms  
V
TSTART  
VUVLO1  
VIN=3.3V  
VIN=3.3V0V,  
VDLY=VFB=0V  
UVLO Detector Threshold  
2.1  
VIN=0V3.3V,  
VDLY=VFB=0V  
VUVLO2  
UVLO Detector Hysteresis  
0.08  
0.13  
0
0.18  
V
ISTB  
ICEH  
ICEL  
Standby Current  
1
VIN=6V, VCE=0V  
µA  
µA  
µA  
V
CE "H" Input Current  
CE "L" Input Current  
CE "H" Input Voltage  
CE "L" Input Voltage  
0.5  
0.5  
VIN=6V, VCE=6V  
0.5  
0.5  
1.5  
VIN=6V, VCE=0V  
VCEH  
VCEL  
VIN=6V, VCE=0V6V  
VIN=2.5V, VCE=2V0V  
0.3  
V
7
R1211x  
TYPICAL APPLICATIONS AND TECHNICAL NOTES  
<R1211x002A/R1211x002C>  
Inductor  
Diode  
VOUT  
NMOS  
C4  
V
IN  
EXT  
R1  
C3  
DELAY  
C1  
V
FB  
C2  
R3  
R2  
AMPOUT  
GND  
C5 R4  
NMOS : IRF7601 (International Rectifier)  
Inductor : LDR655312T-100 10  
: LDR655312T-220 22  
µ
µ
H (TDK) for R1211x002A  
H (TDK) for R1211x002C  
Diode  
: CRS02 (Toshiba)  
C1 : 4.7  
C2 : 0.22  
µ
F (Ceramic)  
R1 : Output Voltage Setting Resistor 1  
R2 : Output Voltage Setting Resistor 2  
µF (Ceramic)  
C3 : 10 F (Ceramic)  
C4 : 680pF (Ceramic)  
µ
R3 : 30k  
R4 : 30k  
C5 : 2200pF (Ceramic)  
<R1211x002B/R1211x002D>  
Inductor  
Diode  
VOUT  
NMOS  
V
IN  
EXT  
C4  
R1  
C3  
C1  
DELAY  
GND  
VFB  
R3  
C2  
R2  
CE  
CE Control  
NMOS : IRF7601 (International Rectifier)  
Inductor : LDR655312T-100 10  
: LDR655312T-220 22  
µ
µ
H (TDK) for R1211x002B  
H (TDK) for R1211x002D  
Diode  
: CRS02 (Toshiba)  
C1 : 4.7  
µ
F (Ceramic)  
R1 : Setting Output Voltage Resistor 1  
R2 : Setting Output Voltage Resistor 2  
R3 : 30k  
C2 : 0.22  
C3 : 10 F (Ceramic)  
C4 : 680pF (Ceramic)  
µF (Ceramic)  
µ
[Note]  
These example circuits may be applied to the output voltage requirement is 15V or less. If the output voltage  
requirement is 15V or more, ratings of NMOS and diode as shown above is over the limit, therefore, choose  
other external components.  
8
R1211x  
Use a 1µF or more capacitance value of bypass capacitor between VIN pin and GND, C1 as shown in the  
typical applications above.  
In terms of the capacitor for setting delay time of the latch protection, C2 as shown in typical applications of  
the previous page, connect between Delay pin and GND pin of the IC with the minimum wiring distance.  
Connect a 1µF or more value of capacitor between VOUT and GND, C3 as shown in typical applications of the  
previous page. (Recommended value is from 10µF to 22µF.) If the operation of the composed DC/DC  
converter may be unstable, use a tantalum type capacitor instead of ceramic type.  
Connect a capacitor between VOUT and the dividing point, C4 as shown in typical applications of the previous  
page. The capacitance value of C4 depends on divider resistors for output voltage setting. Typical value is  
between 100pF and 1000pF.  
Output Voltage can be set with divider resistors for voltage setting, R1 and R2 as shown in typical  
applications of the previous page. Refer to the next formula.  
Output Voltage = VFB × (R1+R2)/R2  
R1+R2=100kis recommended range of resistances.  
The operation of Latch protection circuit is as follows: When the IC detects maximum duty cycle, charge to  
an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY  
pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power  
MOSFET.  
To release the latch protection operation, make the IC be standby mode with CE pin and make it active in  
terms of B/D version. Otherwise, restart with power on.  
The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in  
the next formula.  
t=C2×VDLY/IDLY1  
Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and  
delay pin outputs "L".  
As for R1211x002A/C version, the values and positioning of C4, C5, R3, and R4 shown in the above diagram  
are just an example combination. These are for making phase compensation. If the spike noise of VOUT may  
be large, the spike noise may be picked into VFB pin and make the operation unstable. In this case, a resistor  
R3, shown in typical applications of the previous page. The recommended resistance value of R3 is in the  
range from 10kto 50k. Then, noise level will be decreased.  
As for R1211x002B/D version, EXT pin outputs GND level at standby mode.  
Select the Power MOSFET, the diode, and the inductor within ratings (Voltage, Current, Power) of this IC.  
Choose the power MOSFET with low threshold voltage depending on Input Voltage to be able to turn on the  
FET completely. Choose the diode with low VF such as Shottky type with low reverse current IR, and with fast  
switching speed. When an external transistor is switching, spike voltage may be generated caused by an  
inductor, therefore recommended voltage tolerance of capacitor connected to VOUT is three times of setting  
voltage or more.  
The performance of power circuit with using this IC depends on external components. Choose the most  
suitable components for your application.  
9
R1211x  
Output Current and Selection of External Components  
<Basic Circuit>  
i2  
Inductor  
i1  
Diode  
I
OUT  
VIN  
VOUT  
LX Tr CL  
GND  
<Circuit through L>  
Discontinuous Mode  
Continuous Mode  
IL  
ILxmax  
IL  
ILxmax  
ILxmin  
ILxmin  
Tf  
Iconst  
t
t
Ton  
T=1/fosc  
Toff  
Ton  
T=1/fosc  
Toff  
There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator  
depending on the continuous characteristic of inductor current.  
During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is  
VIN×t/L. Therefore, the electric power, PON, which is supplied with input side, can be described as in next formula.  
Ton  
2
PON = V IN × t/L dt .............................................................................................................................. Formula 1  
0
With the step-up circuit, electric power is supplied from power source also during off time. In this case, input  
current is described as (VOUT VIN) ×t/L, therefore electric power, POFF is described as in next formula.  
POFF = Tf VIN ×(VOUT VIN)× t/L dt ........................................................................................................ Formula 2  
0
In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average  
electric power, PAV is described as in the next formula.  
2
PAV = 1/(TON + TOFF)× { TonVIN × t/L dt + Tf VIN ×(VOUT VIN)× t/L dt} ................................................... Formula 3  
0
0
In PWM control, when Tf = Toff is true, the inductor current becomes continuos, then the operation of  
switching regulator becomes continuous mode.  
In the continuous mode, the deviation of the current is equal between on time and off time.  
V
IN ×TON/L = (VOUT VIN)× Toff/L ................................................................................................... Formula 4  
Further, the electric power, PAV is equal to output electric power, VOUT × IOUT, thus,  
2
2
2
IOUT = fOSC × VIN ×TON /  
{
2×L×(VOUT VIN)  
}
= VIN ×TON/(2×L× VOUT) .................................................... Formula 5  
10  
R1211x  
When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes  
continuous. The continuous current through the inductor is described as Iconst, then,  
2
2
IOUT = fOSC × VIN ×TON / 2×L×(VOUT VIN) + VIN ×Iconst/VOUT ...............................................................Formula 6  
{ }  
In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as  
follows:  
ILxmax = Iconst + VIN×TON/L .................................................................................................................Formula 7  
With the formula 4,6, and ILxmax is,  
ILxmax = VOUT/VIN ×IOUT + VIN ×TON/(2×L) ..............................................................................................Formula 8  
Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output,  
and external components should be selected.  
In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula.  
The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external  
components is not included. The actual maximum output current is between 50% and 80% of the calculation.  
Especially, when the ILx is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As  
for VOUT, Vf (as much as 0.3V) of the diode should be considered.  
11  
R1211x  
TIMING CHART  
R1211x002A/R1211x002C  
DTC  
SS  
VREF  
-
+
-
EXT  
-
-
V
OUT  
AMPOUT  
VFB  
+
R1  
EXT  
PWM Comparator  
OP AMP  
R2  
R1211x002B/R1211x002D  
DTC  
SS  
V
REF  
-
-
+
+
-
EXT  
V
OUT  
AMPOUT  
-
V
FB  
R1  
EXT  
PWM Comparator  
R2  
OP AMP  
<Soft-start Operation>  
Soft-start operation is starting from power-on as follows:  
(Step1)  
The voltage level of SS is rising gradually by constant current circuit of the IC and a capacitor. VREF level which  
is input to OP AMP is also gradually rising. VOUT is rising up to input voltage level just after the power-on,  
therefore, VFB voltage is rising up to the setting voltage with input voltage and the ration of R1 and R2. AMPOUT  
is at "L", and switching does not start.  
(Step2)  
When the voltage level of SS becomes the setting voltage with the ration of R1 and R2 or more, switching  
operation starts. VREF level gradually increases together with SS level. VOUT is also rising with balancing VREF and  
VFB. Duty cycle depends on the lowest level among AMPOUT, SS, and DTC of the 4 input terminals in the PWM  
comparator.  
12  
R1211x  
(Step3)  
When SS reaches 1V, soft-start operation finishes. VREF becomes constant voltage (=1V). Then the switching  
operation becomes normal mode.  
SS  
SS,VREF  
VFB  
VFB,VREF  
DTC  
AMPOUT  
AMPOUT  
Step2  
Step1  
Step3  
V
V
OUT  
IN  
<Latch Protection Operation>  
The operation of Latch protection circuit is as follows: When AMPOUT becomes "H" and the IC detects  
maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle  
continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin  
and turns off the external power MOSFET.  
To release the latch protection operation, make the IC be standby mode with CE pin and make it active in  
terms of R1211x002B/D version. Otherwise, make supply voltage down to UVLO detector threshold or lower,  
and make it rise up to the normal input voltage.  
During the soft-start time, if the duty cycle may be the maximum, protection circuit does not work and DELAY  
pin is fixed at GND level.  
The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in  
the next formula.  
t=C2 × VDLY/IDLY1  
Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and  
delay pin outputs "L".  
Output Short  
AMPOUT  
AMPOUT  
VDLY  
DTC  
DELAY  
Normal  
Maxduty Operation  
Latched  
EXT  
13  
R1211x  
TEST CIRCUITS  
R1211x002A/R1211x002C  
Oscillator Frequency,  
Maximum Duty Cycle, VFB Voltage Test  
Consumption Current Test  
6V  
3.3V  
V
IN  
A
VIN  
EXT  
OSCILLOSCOPE  
VFB  
V
FB  
DELAY  
GND  
DELAY  
GND  
EXT "H" ON Resistance  
EXT "L" ON Resistance  
3.3V  
3.3V  
V
IN  
EXT  
VIN  
EXT  
150  
OSCILLOSCOPE  
150  
V
V
FB  
VFB  
DELAY  
DELAY  
GND  
GND  
DELAY Pin Charge Current  
DELAY Pin Discharge Current  
2.5V  
3.3V  
V
IN  
VIN  
V
FB  
VFB  
DELAY  
GND  
A
DELAY  
GND  
A
0.1V  
14  
R1211x  
DELAY Pin Detector Threshold Voltage Test  
AMP "H" Output Current/"L"  
Output Current Test  
3.3V  
3.3V  
V
IN  
EXT  
VIN  
OSCILLOSCOPE  
AMPOUT  
A
1V  
V
FB  
VFB  
0.9V/1.1V  
DELAY  
DELAY  
GND  
GND  
UVLO Detector Threshold/Hysteresis Range Test  
V
IN  
EXT  
OSCILLOSCOPE  
V
FB  
DELAY  
GND  
Soft-start Time Test  
Diode  
Coil  
V
OUT  
C5  
C2  
OSCILLOSCOPE  
Rout  
NMOS  
VIN  
EXT  
AMPOUT  
C1  
R1  
R2  
R4  
C3  
C4  
V
FB  
R3  
DELAY  
GND  
<Components>  
Inductor (L)  
Diode (SD)  
: 22µH (TDK LDR655312T-220)  
: CRS02 (Toshiba)  
Capacitors  
C1:680pF(Ceramic), C2:22µF (Tantalum)+2.2µF (Ceramic),  
C3:68µF (Tantalum)+2.2µF (Ceramic), C4:2200pF(Ceramic), C5:22µF(Tantalum)  
: IRF7601 (International Rectifier)  
NMOS Transistor  
Resistors  
: R1: 90k, R2:10k, R3:30k, R4:30k, Rout:1k/330Ω  
15  
R1211x  
R1211x002B/R1211x002D  
Oscillator Frequency,  
Consumption Current Test  
Maximum Duty Cycle, VFB Voltage Test  
6V  
3.3V  
V
IN  
A
VIN  
EXT  
CE  
CE  
OSCILLOSCOPE  
VFB  
V
FB  
DELAY  
GND  
DELAY  
GND  
EXT "H" ON Resistance  
EXT "L" ON Resistance  
3.3V  
3.3V  
V
IN  
EXT  
CE  
VIN  
EXT  
CE  
150  
OSCILLOSCOPE  
150  
V
VFB  
VFB  
DELAY  
DELAY  
GND  
GND  
DELAY Pin Charge Current  
DELAY Pin Discharge Current  
3.3V  
2.5V  
VIN  
VIN  
CE  
CE  
VFB  
VFB  
DELAY  
DELAY  
GND  
GND  
A
A
0.1V  
DELAY Pin Detector Threshold Voltage Test  
Standby Current Test  
6V  
3.3V  
V
IN  
A
VIN  
EXT  
CE  
CE  
OSCILLOSCOPE  
VFB  
VFB  
DELAY  
GND  
DELAY  
GND  
16  
R1211x  
UVLO Detector Threshold/  
CE "L" Input Current/"H" Input Current Test  
Hysteresis Range Test  
6V  
VIN  
VIN  
EXT  
CE  
OSCILLOSCOPE  
CE  
A
0V/6V  
VFB  
VFB  
DELAY  
DELAY  
GND  
GND  
CE "L" Input Voltage/"H" Input Voltage Test  
2.5V/6V  
V
IN  
EXT  
CE  
OSCILLOSCOPE  
V
FB  
DELAY  
GND  
Soft-start Time Test  
Diode  
Coil  
V
OUT  
C5  
C2  
OSCILLOSCOPE  
Rout  
NMOS  
C1  
V
IN  
EXT  
CE  
R1  
R2  
0V/3.3V  
C3  
VFB  
R3  
DELAY  
GND  
<Components>  
Inductor (L)  
Diode (SD)  
: 22µH (TDK LDR655312T-220)  
: CRS02 (Toshiba)  
Capacitors  
C1 : 680pF (Ceramic), C2: 22µF (Tantalum)+2.2µF (Ceramic),  
C3 : 68µF (Tantalum)+2.2µF (Ceramic), C5: 22µF (Tantalum)  
NMOS Transistor : IRF7601 (International Rectifier)  
Resistors : R1: 90k, R2: 10k, R3: 30kΩ  
17  
R1211x  
TYPICAL CHARACTERISTICS  
1) Output Voltage vs. Output Current  
R1211x002A  
R1211x002A  
L=10  
µH  
L=10  
µH  
VOUT=10V  
V
OUT=5V  
10.2  
5.1  
10.0  
9.8  
5.0  
4.9  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
V
V
IN=2.5V  
IN=3.3V  
1
1
1
10  
100  
1000  
1
1
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1211x002A  
R1211x002B  
L=10  
V
µH  
OUT=15V  
L=10  
V
µH  
OUT=5V  
15.3  
5.1  
5.0  
4.9  
15.0  
14.7  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
V
V
IN=2.5V  
IN=3.3V  
10  
100  
1000  
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1211x002B  
R1211x002B  
L=10  
V
µH  
OUT=10V  
L=10  
V
µH  
OUT=15V  
10.2  
15.3  
10.0  
9.8  
15.0  
14.7  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
10  
100  
1000  
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
18  
R1211x  
R1211x002C  
R1211x002C  
L=22  
µH  
L=22  
µH  
VOUT=10V  
V
OUT=5V  
10.2  
5.1  
5.0  
4.9  
10.0  
9.8  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
V
V
IN=2.5V  
IN=3.3V  
1
1
1
10  
100  
1000  
1
1
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1211x002C  
R1211x002D  
L=22  
V
µH  
OUT=15V  
L=22  
V
µH  
OUT=5V  
15.3  
5.1  
15.0  
14.7  
5.0  
4.9  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
V
V
IN=2.5V  
IN=3.3V  
10  
100  
1000  
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1211x002D  
R1211x002D  
L=22  
V
µH  
OUT=10V  
L=22  
V
µH  
OUT=15V  
10.2  
15.3  
10.0  
9.8  
15.0  
14.7  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
10  
100  
1000  
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
19  
R1211x  
2) Efficiency vs. Output Current  
R1211x002A  
R1211x002A  
L=10  
µH  
L=10µH  
VOUT=5V  
VOUT=10V  
100  
80  
100  
80  
60  
60  
40  
40  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
20  
0
20  
0
V
V
IN=2.5V  
IN=3.3V  
1
1
1
10  
100  
1000  
1
1
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1211x002A  
R1211x002B  
L=10  
V
µH  
OUT=15V  
L=10  
V
µH  
OUT=5V  
100  
80  
100  
80  
60  
60  
40  
40  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
20  
0
20  
0
V
V
IN=2.5V  
IN=3.3V  
10  
100  
1000  
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1211x002B  
R1211x002B  
L=10µH  
L=10  
V
µH  
OUT=15V  
VOUT=10V  
100  
80  
100  
80  
60  
60  
40  
40  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
20  
0
20  
0
10  
100  
1000  
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
20  
R1211x  
R1211x002C  
R1211x002C  
L=22  
µH  
L=22 H  
OUT=10V  
VOUT=5V  
V
100  
80  
100  
80  
60  
60  
40  
40  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
20  
0
20  
0
V
V
IN=2.5V  
IN=3.3V  
1
1
1
10  
100  
1000  
1
1
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1211x002C  
R1211x002D  
L=22  
V
µ
H
L=22  
V
µH  
OUT=15V  
OUT=5V  
100  
80  
100  
80  
60  
60  
40  
40  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
20  
0
20  
0
V
V
IN=2.5V  
IN=3.3V  
10  
100  
1000  
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1211x002D  
R1211x002D  
L=22  
µ
H
L=22  
V
µH  
OUT=15V  
V
OUT=10V  
100  
80  
100  
80  
60  
60  
40  
40  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
V
V
V
IN=2.5V  
IN=3.3V  
IN=5.0V  
20  
0
20  
0
10  
100  
1000  
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
21  
R1211x  
3) VFB Voltage vs. Input Voltage (Topt=25°C)  
R1211x002x  
Topt=25°C  
1015  
1010  
1005  
1000  
995  
990  
985  
2
3
4
5
6
Input Voltage VIN(V)  
4) Oscillator Frequency vs. Input Voltage (Topt=25°C)  
R1211x002A/B  
R1211x002C/D  
Topt=25°C  
Topt=25°C  
900  
400  
350  
800  
700  
600  
300  
250  
500  
200  
2
3
4
5
6
2
3
4
5
6
Input Voltage VIN(V)  
Input Voltage VIN(V)  
5) Supply Current vs. Input Voltage (Topt=25°C)  
R1211x002A  
R1211x002B  
Topt=25°C  
Topt=25°C  
600  
600  
500  
500  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
2
3
4
5
6
2
3
4
5
6
Input Voltage VIN(V)  
Input Voltage VIN(V)  
22  
R1211x  
R1211x002C  
R1211x002D  
Topt=25°C  
Topt=25°C  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
2
3
4
5
6
2
3
4
5
6
Input Voltage VIN(V)  
Input Voltage VIN(V)  
6) Maximum Duty Cycle vs. Input Voltage (Topt=25°C)  
R1211x002A/B  
R1211x002C/D  
Topt=25°C  
Topt=25°C  
96  
94  
92  
96  
94  
92  
90  
88  
86  
84  
90  
88  
86  
84  
82  
80  
82  
80  
2
3
4
5
6
2
3
4
5
6
Input Voltage VIN(V)  
Input Voltage VIN(V)  
7) VFB Voltage vs. Temperature  
R1211x002x  
V
IN=3.3V  
1015  
1010  
1005  
1000  
995  
990  
985  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
23  
R1211x  
8) Oscillator Frequency vs. Temperature  
R1211x002A/B  
R1211x002C/D  
VIN=3.3V  
VIN=3.3V  
900  
800  
700  
400  
350  
300  
600  
500  
250  
200  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
9) Supply Current vs. Temperature  
R1211x002A  
R1211x002B  
VIN=3.3V  
VIN=3.3V  
600  
500  
400  
600  
500  
400  
300  
200  
100  
0
300  
200  
100  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
R1211x002C  
R1211x002D  
VIN=3.3V  
VIN=3.3V  
400  
400  
300  
200  
100  
0
300  
200  
100  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
24  
R1211x  
10) Maximum Duty Cycle vs. Temperature  
R1211x002A/B  
R1211x002C/D  
V
IN=3.3V  
V
IN=3.3V  
96  
94  
92  
96  
94  
92  
90  
88  
86  
84  
90  
88  
86  
84  
82  
80  
82  
80  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
11) EXT "H" On Resistance vs. Temperature  
R1211x002x  
V
IN=3.3V  
8
7
6
5
4
3
2
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
12) EXT "L" On Resistance vs. Temperature  
R1211x002x  
V
IN=3.3V  
5
4
3
2
1
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
25  
R1211x  
13) Soft-start Time vs. Temperature  
R1211x002A/B  
R1211x002C/D  
V
IN=3.3V  
VIN=3.3V  
16  
16  
14  
12  
10  
14  
12  
10  
8
6
8
6
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
14) UVLO Detector Threshold vs. Temperature  
R1211x002x  
VIN=3.3V  
2300  
2250  
2200  
2150  
2100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
15) AMP "H" Output Current vs. Temperature  
R1211x002A/C  
V
IN=3.3V  
1600  
1400  
1200  
1000  
800  
600  
400  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
26  
R1211x  
16) AMP "L" Output Current vs. Temperature  
R1211x002A  
R1211x002C  
V
IN=3.3V  
V
IN=3.3V  
80  
80  
70  
60  
70  
60  
50  
40  
50  
40  
30  
20  
30  
20  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
17) DELAY Pin Charge Current vs. Temperature  
R1211x002A/B  
R1211x002C/D  
V
IN=3.3V  
V
IN=3.3V  
7
7
6
5
4
6
5
4
3
2
3
2
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
18) DELAY Pin Detector Threshold vs. Temperature  
R1211x002x  
VIN=3.3V  
1040  
1020  
1000  
980  
960  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
27  
R1211x  
19) DELAY Pin Discharge Current vs. Temperature  
R1211x002x  
V
IN=2.5V  
10  
8
6
4
2
0
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
20) CE "L" Input Voltage vs. Temperature  
R1211x002B/D  
V
IN=2.5V  
1200  
1100  
1000  
900  
800  
700  
600  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
21) CE "H" Input Voltage vs. Temperature  
R1211x002B/D  
V
IN=6.0V  
1200  
1100  
1000  
900  
800  
700  
600  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
28  
R1211x  
22) Standby Current vs. Temperature  
R1211x002B/D  
V
IN=6.0V  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
23) Load Transient Response  
R1211x002A  
L=10  
µ
H
V
IN=3.3V, C3=22  
µF  
VOUT=5V, IOUT=1-100mA  
5.6  
VOUT  
5.0  
4.4  
200  
100  
I
OUT  
0
Time (5ms/div)  
R1211x002A  
29  
R1211x  
R1211x002A  
L=10  
µ
H
V
IN=3.3V, C3=22  
µF  
V
OUT=15V, IOUT=1-50mA  
16.8  
15.0  
13.2  
300  
200  
100  
0
V
OUT  
I
OUT  
Time (5ms/div)  
R1211x002B  
L=10  
µ
H
V
IN=3.3V, C3=22  
µF  
VOUT=5V, IOUT=1-100mA  
5.6  
5.0  
4.4  
300  
200  
100  
0
VOUT  
I
OUT  
Time (5ms/div)  
R1211x002B  
L=10  
µ
H
V
IN=3.3V, C3=22  
µF  
V
OUT=10V, IOUT=1-100mA  
11.2  
10.0  
8.8  
300  
200  
100  
0
V
OUT  
I
OUT  
Time (5ms/div)  
30  
R1211x  
R1211x002B  
L=10  
µ
H
V
IN=3.3V, C3=22  
µF  
V
OUT=15V, IOUT=1-50mA  
16.8  
15.0  
13.2  
300  
200  
100  
0
V
OUT  
I
OUT  
Time (5ms/div)  
R1211x002C  
L=22  
µ
H
V
IN=3.3V, C3=22  
µF  
VOUT=5V, IOUT=1-100mA  
5.6  
5.0  
4.4  
VOUT  
200  
100  
I
OUT  
0
Time (5ms/div)  
R1211x002C  
L=22  
µ
H
V
IN=3.3V, C3=22  
µF  
V
OUT=10V, IOUT=1-100mA  
11.2  
10.0  
8.8  
V
OUT  
200  
100  
I
OUT  
0
Time (5ms/div)  
31  
R1211x  
R1211x002C  
L=22  
µ
H
V
IN=3.3V, C3=22  
µF  
V
OUT=15V, IOUT=1-50mA  
16.8  
15.0  
13.2  
300  
200  
100  
0
V
OUT  
I
I
I
OUT  
OUT  
OUT  
Time (5ms/div)  
R1211x002D  
L=22  
µ
H
V
IN=3.3V, C3=22  
µF  
VOUT=5V, IOUT=1-100mA  
5.6  
5.0  
4.4  
VOUT  
200  
100  
0
Time (5ms/div)  
R1211x002D  
L=22  
µH  
V
IN=3.3V, C3=22  
µF  
V
OUT=10V, IOUT=1-100mA  
11.2  
10.0  
8.8  
VOUT  
200  
100  
0
Time (5ms/div)  
32  
R1211x  
R1211x002D  
L=22  
µ
H
V
IN=3.3V, C3=22µF  
V
OUT=15V, IOUT=1-50mA  
16.8  
15.0  
300  
200  
100  
0
V
OUT  
I
OUT  
13.2  
Time (5ms/div)  
24) Power-on Response  
R1211x002A  
R1211x002B  
L=10  
µ
H
L=10  
µ
H
V
IN=3.3V, IOUT=10mA  
V
IN=3.3V, IOUT=10mA  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
(c)VOUT=15V  
(c)VOUT=15V  
(b)VOUT=10V  
(a)VOUT=5V  
(b)VOUT=10V  
(a)VOUT=5V  
6
6
4
4
2
2
V
IN  
VIN  
0
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Time (5ms/div)  
Time (5ms/div)  
R1211x002C  
R1211x002D  
L=22  
µ
H
L=22µH  
V
IN=3.3V, IOUT=10mA  
V
IN=3.3V, IOUT=10mA  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
(c)VOUT=15V  
(c)VOUT=15V  
(b)VOUT=10V  
(a)VOUT=5V  
(b)VOUT=10V  
(a)VOUT=5V  
6
6
4
4
V
IN  
2
2
V
IN  
0
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Time (5ms/div)  
Time (5ms/div)  
33  
R1211x  
25) Turn-on speed with CE pin  
R1211x002B  
R1211x002D  
L=22µH  
L=10µH  
V
IN=3.3V, IOUT=10mA  
V
IN=3.3V, IOUT=10mA  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
(c)VOUT=15V  
(c)VOUT=15V  
(b)VOUT=10V  
(b)VOUT=10V  
(a)VOUT=5V  
6
6
(a)VOUT=5V  
CE  
4
4
2
2
CE  
0
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Time (5ms/div)  
Time (5ms/div)  
34  
PE-SOT-23-6W-0512  
PACKAGE INFORMATION  
SOT-23-6W  
Unit: mm  
PACKAGE DIMENSIONS  
2.9 0.2  
1.9 0.2  
+0.2  
0.1  
1.1  
(0.95)  
(0.95)  
0.8 0.1  
6
5
4
0 to 0.1  
1
2
+0.1  
0.075  
+0.1  
0.2  
0.15  
0.4  
TAPING SPECIFICATION  
+0.1  
0
4.0 0.1  
1.5  
0.3 0.1  
2.0 0.05  
6
1
5
4
3.3  
2
3
4.0 0.1  
2.0MAX.  
1.1 0.1  
TR  
User Direction of Feed  
TAPING REEL DIMENSIONS  
(1reel=3000pcs)  
11.4 1.0  
9.0 0.3  
2 0.5  
21 0.8  
PE-SOT-23-6W-0512  
PACKAGE INFORMATION  
POWER DISSIPATION (SOT-23-6W)  
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.  
This specification is based on the measurement at the condition below:  
Measurement Conditions  
Standard Land Pattern  
Environment  
Board Material  
Board Dimensions  
Copper Ratio  
Mounting on Board (Wind velocity=0m/s)  
Glass cloth epoxy plactic (Double sided)  
40mm × 40mm × 1.6mm  
Top side : Approx. 50% , Back side : Approx. 50%  
Through-hole  
φ0.5mm × 44pcs  
Measurement Result  
(Topt=25°C,Tjmax=125°C)  
Standard Land Pattern  
430mW  
Power Dissipation  
Thermal Resistance  
θja=(12525°C)/0.43W=233°C/W  
600  
On Board  
40  
500  
430  
400  
300  
200  
100  
0
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Power Dissipation  
Measurement Board Pattern  
IC Mount Area Unit : mm  
RECOMMENDED LAND PATTERN (SOT-23-6W)  
0.7 MAX.  
0.95  
1.9  
0.95  
(Unit: mm)  
PE-SON-6-0510  
PACKAGE INFORMATION  
SON-6  
Unit: mm  
PACKAGE DIMENSIONS  
1.6 0.2  
6
4
3
1
Bottom View  
Attention: Tab suspension leads in the  
parts have VDD or GND level.(They are  
connected to the reverse side of this IC.)  
Refer to PIN DISCRIPTION.  
Do not connect to other wires or land patterns.  
0.1  
0.2 0.1  
0.5  
TAPING SPECIFICATION  
4.0 0.1  
+0.1  
0
1.5  
2.0 0.05  
0.2 0.1  
1.9  
4.0 0.1  
1.7MAX.  
1.1 0.1  
TR  
User Direction of Feed  
TAPING REEL DIMENSIONS  
(1reel=3000pcs)  
11.4 1.0  
9.0 0.3  
2 0.5  
21 0.8  
PE-SON-6-0510  
PACKAGE INFORMATION  
POWER DISSIPATION (SON-6)  
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.  
This specification is based on the measurement at the condition below:  
Measurement Conditions  
Standard Land Pattern  
Environment  
Board Material  
Board Dimensions  
Copper Ratio  
Mounting on Board (Wind velocity=0m/s)  
Glass cloth epoxy plactic (Double sided)  
40mm × 40mm × 1.6mm  
Top side : Approx. 50% , Back side : Approx. 50%  
Through-hole  
φ0.5mm × 44pcs  
Measurement Result  
(Topt=25°C,Tjmax=125°C)  
Standard Land Pattern  
500mW  
θja=(12525°C)/0.5W=200°C/W  
Free Air  
250mW  
-
Power Dissipation  
Thermal Resistance  
600  
On Board  
40  
500  
400  
300  
200  
100  
0
Free Air  
250  
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Power Dissipation  
Measurement Board Pattern  
IC Mount Area (Unit : mm)  
RECOMMENDED LAND PATTERN  
0.25  
0.5  
(Unit: mm)  
ME-R1211N-0310  
MARK INFORMATION  
R1211N SERIES MARK SPECIFICATION  
SOT-23-6W  
1
3
2
4
,
,
: Product Code (refer to Part Number vs. Product Code)  
: Lot Number  
1
2
3
4
Part Number vs. Product Code  
Product Code  
Part Number  
1
2
R1211N002A  
R1211N002B  
R1211N002C  
R1211N002D  
L
L
L
L
0
1
2
3
ME-R1211D-0310  
MARK INFORMATION  
R1211D SERIES MARK SPECIFICATION  
SON-6  
1
3
2
4
,
,
: Product Code (refer to Part Number vs. Product Code)  
: Lot Number  
1
3
2
4
Part Number vs. Product Code  
Product Code  
Product Code  
Part Number  
Part Number  
1
2
1
2
R1211D002A  
R1211D002B  
R1211D002C  
R1211D002D  
R1211D100A  
R1211D101A  
L
L
L
L
L
L
0
1
2
3
4
5
R1211D102A  
R1211D101C  
R1211D102C  
R1211D103A  
R1211D103C  
R1211D104A  
L
L
L
L
L
L
6
7
8
9
A
B

相关型号:

R1211N002C-TR-FE

Switching Controller, Current-mode, 360kHz Switching Freq-Max, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R1211N002D

Step-up DC/DC Controller
RICOH

R1211N002D-TR

Step-up DC/DC Controller
RICOH

R1211N002D-TR-FB

Switching Controller, 0.05A, 805kHz Switching Freq-Max, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R1211N002D-TR-FE

Switching Controller, Current-mode, 360kHz Switching Freq-Max, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R1211N002X

Power Management ICs
ETC

R1211NS10C

Silicon Controlled Rectifier, 1927000mA I(T), 1000V V(DRM),
LITTELFUSE

R1211NS10E

Silicon Controlled Rectifier, 2497A I(T)RMS, 1927000mA I(T), 1000V V(DRM), 1000V V(RRM), 1 Element, 101A223, 3 PIN
IXYS

R1211NS12C

Silicon Controlled Rectifier, 1927000mA I(T), 1200V V(DRM),
LITTELFUSE

R1211NS12D

Silicon Controlled Rectifier, 2497A I(T)RMS, 1927000mA I(T), 1200V V(DRM), 1200V V(RRM), 1 Element, 101A223, 3 PIN
LITTELFUSE

R1211NS12E

Silicon Controlled Rectifier, 2497A I(T)RMS, 1927000mA I(T), 1200V V(DRM), 1200V V(RRM), 1 Element, 101A223, 3 PIN
LITTELFUSE

R1211X

Step-up DC/DC Controller
RICOH