R1221N47AE-TR [RICOH]

Voltage-Mode SMPS Controller ; 电压型开关电源控制器\n
R1221N47AE-TR
型号: R1221N47AE-TR
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

Voltage-Mode SMPS Controller
电压型开关电源控制器\n

开关 控制器
文件: 总21页 (文件大小:220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
99.12.8  
Step-down DC/DC Converter with Voltage Detector  
12345  
R1221N Series  
n OUTLINE  
The R1221N Series are PWM step-down DC/DC Converter controllers embedded with a voltage detector, with  
low supply current by CMOS process.  
Each step-down DC/DC converter in these ICs consists of an oscillator, a PWM control circuit, a reference  
voltage unit, an error amplifier, a soft-start circuit, a protection circuit, a PWM/VFM alternative circuit, a chip  
enable circuit, and resistors for voltage detection. A low ripple, high efficiency step-down DC/DC converter can be  
composed of this IC with only four external components, or a power-transistor, an inductor, a diode and a  
capacitor.  
The output voltage of DC/DC converter can be supervised by the built-in voltage detector.  
With a PWM/VFM alternative circuit, when the load current is small, the operation turns into the VFM oscillator  
from PWM oscillator automatically, therefore the efficiency at small load current is improved.  
And the PWM/VFM alternative circuit is an option, in terms of C version and D version, the circuit is not included.  
If the term of maximum duty cycle keeps on a certain time, the embedded protection circuit works. There are two  
types of protection function. One is latch-type protection circuit, and it works to latch an external Power MOS with  
keeping it disable. To release the condition of protection, after disable this IC with a chip enable circuit, enable it  
again, or restart this IC with power-on. The other is Reset-type protection circuit, and it works to restart the  
operation with soft-start and repeat this operation until maximum duty cycle condition is released. Either of these  
protection circuits can be designated by users’ request.  
n FEATURES  
l Wide Range of Input Voltage · · · · · · · · · · · · · 2.3V to 13.2V  
l Built-in Soft-start Function and two choices of Protection Function(Latch-type or Reset-type)  
l Two choices of Oscillator Frequency · · · · · · · · · · 300kHz, 500kHz  
l High Efficiency · · · · · · · · · · · · · · · · · · · · · · TYP. 90%  
l Standby Current · · · · · · · · · · · · · · · · · · · · · TYP. 0µA  
l Setting Output Voltage · · · · · · · · · · · · · · · · · Stepwise setting with a step of 0.1V in the range of  
1.5V to 5.0V  
l High Accuracy Output Voltage · · · · · · · · · · · · · · ±2.0%  
l Setting Detector Threshold Voltage · · · · · · · · · · · Stepwise setting with a step of 0.1V in the range of  
1.2V to 4.5V  
l High Accuracy Detector Threshold Voltage· · · · · · · ±2.0%  
l Low Temperature-Drift Coefficient of Output Voltage · TYP. ±100ppm/°C  
n APPLICATIONS  
l Power source for hand-held communication equipment, cameras, video instruments such as VCRs,  
camcorders.  
l Power source for battery-powered equipment.  
l Power source for household electrical appliances.  
12345  
Rev. 1.11  
- 1 -  
n BLOCK DIAGRAM  
OSC  
VOUT  
VIN  
Vref  
EXT  
Protection  
PWM/VFM  
CONTROL  
CE  
Soft Start  
Chip Enable  
Vref  
VDOUT  
GND  
n SELECTION GUIDE  
In the R1221N Series, the output voltage, the detector threshold, the oscillator frequency, the optional  
function, and the taping type for the ICs can be selected at the user’s request.  
The selection can be made by designating the part number as shown below;  
R1221NXXXX-TR  
• • •  
a b c  
Code  
Contents  
a
Setting Output Voltage(VOUT):  
Stepwise setting with a step of 0.1V in the range of 1.5V to 5.0V is possible.  
Setting Detector Threshold(-VDET)  
b
Stepwise setting with a step of 0.1V in the range of 1.2V to 4.5V is possible.  
A:3.0V  
c
Designation of Oscillator Frequency and Optional Function  
A:300kHz, with a PWM/VFM alternative circuit, Latch-type protection  
B:500kHz, with a PWM/VFM alternative circuit, Latch-type protection  
C:300kHz, without a PWM/VFM alternative circuit, Latch-type protection  
D:500kHz, without a PWM/VFM alternative circuit, Latch-type protection  
E:300kHz, with a PWM/VFM alternative circuit, Reset-type protection  
F:500kHz, with a PWM/VFM alternative circuit, Reset-type protection  
G:300kHz, without a PWM/VFM alternative circuit, Reset-type protection  
H:500kHz, without a PWM/VFM alternative circuit, Reset-type protection  
12345  
Rev. 1.11  
- 2 -  
n PIN CONFIGURATION  
l SOT-23-6W  
5
6
4
VOUT GND CE  
(mark side)  
OUT  
EXT VD  
IN  
V
3
1
2
n PIN DESCRIPTION  
Pin No.  
Symbol  
EXT  
Description  
1
2
3
4
5
6
External Transistor Drive Pin (Output Type ; CMOS)  
Voltage Detector Output Pin (Output Type ; Nch Open Drain )  
Power Supply Pin  
VD  
OUT  
V
IN  
CE  
Chip Enable Pin  
GND  
Ground Pin  
V
OUT  
Pin for Monitoring Output Voltage  
n ABSOLUTE MAXIMUM RATING  
Symbol  
Item  
Supply Voltage  
Rating  
15  
Unit  
V
V
IN  
V
IN  
V
EXT Pin Output Voltage  
CE Pin Input Voltage  
-0.3~V +0.3  
V
EXT  
IN  
V
-0.3~V +0.3  
V
CE  
IN  
VD  
V
VD  
V
Pin Output Voltage  
OUT  
-0.3~15  
V
OUT  
Pin Input Voltage  
-0.3~V +0.3  
V
OUT  
EXT  
OUT  
IN  
I
EXT Pin Inductor Drive Output Current  
Power Dissipation  
±25  
250  
mA  
mW  
°C  
°C  
P
D
Topt  
Tstg  
Operating Temperature Range  
Storage Temperature Range  
-40~+85  
-55~+125  
12345  
Rev. 1.11  
- 3 -  
n ELECTRICAL CHARACTERISTICS  
lR1221N***A(C,E,G) Output Voltage : Vo, Detector Threshold : VD  
(Topt=25°C)  
Symbol  
Item  
Conditions  
MIN. TYP. MAX.  
Unit  
V
Note*  
V
IN  
Operating Input Voltage  
Step-down Output Voltage  
2.3  
Vo´  
0.98  
13.2  
Vo´  
1.02  
V
OUT  
V =V =Vo+1.2V, I  
=-10mA  
Vo  
A
V
IN  
CE  
OUT  
DV  
/
Step-down Output Voltage  
Temperature Coefficient  
Oscillator Frequency  
Frequency Temperature  
Coefficient  
-40°C £ Topt £ 85°C  
±100  
ppm/  
°C  
OUT  
DT  
fosc  
V =V =Vo+1.2V, I =-100mA  
OUT  
240 300 360  
A
kHz  
%/  
°C  
IN  
CE  
Df  
/
-40°C £ Topt £ 85°C  
±0.3  
OSC  
DT  
I
Supply Current1  
V =13.2V,V =13.2V,V =13.2V  
OUT  
100 160  
B
C
D
D
E
E
F
mA  
mA  
mA  
mA  
mA  
mA  
V
DD1  
IN  
CE  
I
Standby Current  
V =13.2V,V =0V,V =0V  
OUT  
0
-10  
20  
0
0.5  
-6  
stb  
IN  
CE  
I
EXT "H" Output Current  
EXT "L" Output Current  
CE "H" Input Current  
CE "L" Input Current  
CE "H" Input Voltage  
CE "L" Input Voltage  
V =8V,V  
=7.9V,V  
=0.1V,V  
=8V,V =8V  
CE  
EXTH  
IN  
EXT  
OUT  
I
V =8V,V  
=0V,V =0V  
10  
EXTL  
IN  
EXT  
OUT  
CE  
I
V =13.2V,V =13.2V,V  
=13.2V  
0.5  
1.2  
CEH  
IN  
CE  
OUT  
I
V =13.2V,V =0V,V =13.2V  
OUT  
-0.5  
0
CEL  
IN  
CE  
V
V =8V,V =0V®1.5V  
0.8  
0.8  
CEH  
IN  
CE  
V
V =8V,V =1.5V®0V  
0.3  
F
V
CEL  
IN  
CE  
Maxdty Oscillator Maximum Duty Cycle  
VFMdty VFM Duty Cycle  
100  
%
Applied to B and F versions only  
25  
10  
%
T
Delay Time by Soft-Start  
function  
V =Vo+1.2V,V =0V®Vo+1.2V  
5
1
16  
F
ms  
start  
IN  
CE  
At 80% of rising  
T
Delay Time for protection circuit V =Vo+1.2V,V =Vo+1.2V®0V  
3
0
1
5
G
I
ms  
mA  
mA  
V
prot  
IN  
CE  
I
VD  
VD  
Output Leakage Current V =V  
=V =V =8V  
DOUT  
0.5  
VDLK  
OUT  
OUT  
IN  
OUT  
CE  
I
“L” Output Current  
V =V  
=2.3V, V =0V, V =0.1V 0.5  
DOUT  
I
VDL  
IN  
OUT  
CE  
-V  
tV  
V
Detector Threshold  
V =6V, V =6V, V  
=V ´1.2V®0V V ´  
V
D
V ´  
D
J
DET  
IN  
CE  
OUT  
OUT  
OUT  
D
D
0.98  
2
1.02  
10  
Output Delay Time for Released V =6V, V =6V, V  
=0V®V ´1.2V  
5
J
J
ms  
DET  
IN  
CE  
D
Voltage  
At 80% of rising  
Detector Threshold Hysteresis V =6V, V =6V, V  
=0V®V ´1.2V V ´ V ´ V ´  
mV  
HYS  
IN  
CE  
D
D
D
D
0.01 0.03 0.05  
D-V  
/
Detector Threshold  
-40°C £ Topt £ 85°C  
±100  
ppm/  
DET  
DT  
Temperature Coefficient  
°C  
Note: Refer to Test Circuits  
12345  
Rev. 1.11  
- 4 -  
lR1221N***B(D,F,H) Output Voltage : Vo, Detector Threshold : VD  
(Topt=25°C)  
Symbol  
Item  
Conditions  
MIN. TYP. MAX.  
Unit  
V
Note*  
V
IN  
Operating Input Voltage  
Step-down Output Voltage  
2.3  
Vo´  
0.98  
13.2  
Vo´  
1.02  
V
OUT  
V =V =Vo+1.2V, I  
=-10mA  
Vo  
A
V
IN  
CE  
OUT  
DV  
/
Step-down Output Voltage  
Temperature Coefficient  
Oscillator Frequency  
Frequency Temperature  
Coefficient  
-40°C £ Topt £ 85°C  
±100  
ppm/  
°C  
OUT  
DT  
fosc  
V =V =Vo+1.2V, I =-100mA  
OUT  
400 500 600  
A
kHz  
%/  
°C  
IN  
CE  
Df  
/
-40°C £ Topt £ 85°C  
±0.3  
OSC  
DT  
I
Supply Current1  
V =13.2V,V =13.2V,V =13.2V  
OUT  
140 200  
B
C
D
D
E
E
F
mA  
mA  
mA  
mA  
mA  
mA  
V
DD1  
IN  
CE  
I
Standby Current  
V =13.2V,V =0V,V =0V  
OUT  
0
-10  
20  
0
0.5  
-6  
stb  
IN  
CE  
I
EXT "H" Output Current  
EXT "L" Output Current  
CE "H" Input Current  
CE "L" Input Current  
CE "H" Input Voltage  
CE "L" Input Voltage  
V =8V,V  
=7.9V,V  
=0.1V,V  
=8V,V =8V  
CE  
EXTH  
IN  
EXT  
OUT  
I
V =8V,V  
=0V,V =0V  
10  
EXTL  
IN  
EXT  
OUT  
CE  
I
V =13.2V,V =13.2V,V  
=13.2V  
0.5  
1.2  
CEH  
IN  
CE  
OUT  
I
V =13.2V,V =0V,V =13.2V  
OUT  
-0.5  
0
CEL  
IN  
CE  
V
V =8V,V =0V®1.5V  
0.8  
0.8  
CEH  
IN  
CE  
V
V =8V,V =1.5V®0V  
0.3  
F
V
CEL  
IN  
CE  
Maxdty Oscillator Maximum Duty Cycle  
VFMdty VFM Duty Cycle  
100  
%
Applied to B and F versions only  
25  
6
%
T
Delay Time by Soft-Start  
function  
V =Vo+1.2V,V =0V®Vo+1.2V  
3
1
10  
F
ms  
start  
IN  
CE  
At 80% of rising  
T
Delay Time for protection circuit V =Vo+1.2V,V =Vo+1.2V®0V  
2
0
1
4
G
I
ms  
mA  
mA  
V
prot  
IN  
CE  
I
VD  
VD  
Output Leakage Current V =V  
=V =V =8V  
DOUT  
0.5  
VDLK  
OUT  
OUT  
IN  
OUT  
CE  
I
“L” Output Current  
V =V  
=2.3V,V =0V, V =0.1V 0.5  
DOUT  
I
VDL  
IN  
OUT  
CE  
-V  
tV  
V
Detector Threshold  
V =6V, V =6V, V  
=V ´1.2V®0V V ´  
V
D
V ´  
D
J
DET  
IN  
CE  
OUT  
OUT  
OUT  
D
D
0.98  
1.02  
6.0  
Output Delay Time for Released V =6V, V =6V, V  
=0V®V ´1.2V 1.5  
3.5  
J
J
ms  
DET  
IN  
CE  
D
Voltage  
At 80% of rising  
Detector Threshold Hysteresis V =6V, V =6V, V  
=0V®V ´1.2V V ´ V ´ V ´  
mV  
HYS  
IN  
CE  
D
D
D
D
0.01 0.03 0.05  
D-V  
/
Detector Threshold  
-40°C £ Topt £ 85°C  
±100  
ppm/  
DET  
DT  
Temperature Coefficient  
°C  
Note: Refer to Test Circuits  
12345  
Rev. 1.11  
- 5 -  
n TEST CIRCUITS  
A)  
F)  
L
PMOS  
L
PMOS  
+
-
+
3
4
1
2
6
5
V
--  
SD  
CL  
+
+
-
3
4
6
5
1
2
VIN  
V
-CIN  
SD  
CIN  
C
L
IN  
V
OSCILLOSCOPE  
B)  
A
3
4
1
2
6
5
OSCILLOSCOPE  
G)  
+
VIN  
-
OSCILLOSCOPE  
3
4
1
2
6
5
IN  
A
C
OUT  
V
VIN  
C)  
3
1
6
H)  
VIN  
3
4
1
2
6
5
A
2
4
5
OUT  
V
VIN  
A
D)  
VEXT  
I)  
3
4
1
2
6
5
3
4
1
2
6
5
VIN  
VIN  
OUT  
V
VDOUT  
E)  
A
J)  
3
4
1
2
6
3
4
1
2
6
5
VIN  
VOUT  
IN  
V
A
5
R
OSCILLOSCOPE  
Inductor L : 27mH(Sumida Electronic, CD104)  
Capacitor CL: 47mF(Tantalum type)  
Power MOS PMOS : HAT1020R(Hitachi)  
Diode SD : RB491D (Rohm, Schottky type)  
CIN : 22mF(Tantalum type)  
Resistor R : 100kW  
12345  
Rev. 1.11  
- 6 -  
n TYPICAL APPLICATIONS AND APPLICATION HINTS  
PMOS  
L
EXT  
VIN  
Vcc  
OUT  
V
R1  
COUT  
SD1  
CIN  
CE  
VDOUT  
Reset/  
GND  
CE CONTROL  
CPU  
PMOS: HAT1020R (Hitachi), Si3443DV (Siliconix)  
SD1 : RB491D (Rohm)  
L : CD105(Sumida, 27mH)  
COUT : 47mF(Tantalum Type)  
R1 : 100kW  
CIN  
:10mF(Tantalum Type)  
When you use these ICs, consider the following issues;  
l As shown in the block diagram, a parasitic diode is formed in each terminal, each of these diodes is not formed  
for load current, therefore do not use it in such a way. When you control the CE pin by another power supply,  
do not make its "H" level more than the voltage level of VIN pin.  
l Detector threshold hysteresis is set at 3 percent of detector threshold voltage. (Min. 1 percent, Max. 5 percent)  
l Setting Detector threshold voltage range depends on Output voltage of DC/DC converter.  
Release Voltage from Reset condition must not be more than Output voltage of DC/DC converter.  
(Detector Threshold Voltage´1.07 < Output Voltage of DC/DC converter´0.98  
l When the R1221NXXXX is on stand-by mode, the output voltage of VDOUT is GND level, therefore if the pull-up  
resistor for VDOUT pin is pulled up another power supply, a certain amount of current is loading through the  
resistor.  
l The operation of Latch-type protection circuit is as follows;  
When the maximum duty cycle continues longer than the delay time for protection circuit, (Refer to the Electrical  
Characteristics) the protection circuit works to shut-down the external Power MOS with its latching operation.  
Therefore when an input/output voltage difference is small, the protection circuit may work even at small load  
current.  
To release the protection state, after disable this IC with a chip enable circuit, enable it again, or restart this IC  
with power-on. However, in the case of restarting this IC with power-on, after the power supply is turned off, if  
a certain amount of charge remains in C , or some voltage is forced to V from C , this IC might not be  
IN  
IN  
IN  
restarted even after power-on.  
If rising transition speed of supply voltage is too slow, or the time which is required for V voltage to reach  
IN  
Output Voltage of DC/DC converter is longer than soft-starting time plus delay time for protection circuit,  
protection circuit works before V voltage reaches Output Voltage of DC/DC converter. To avoid this condition,  
IN  
make this IC disable(CE=”L”) first, then force V voltage, and after V voltage becomes equal or more than  
IN  
IN  
V
OUT  
, make this IC enable(CE=“H”).  
l
Set external components as close as possible to the IC and minimize the connection between the components  
and the IC. In particular, a capacitor should be connected to VOUT pin with the minimum connection. And make  
sufficient grounding and reinforce supplying. A large switching current flows through the connection of power  
supply, an inductor and the connection of VOUT. If the impedance of power supply line is high, the voltage level of  
power supply of the IC fluctuates with the switching current. This may cause unstable operation of the IC.  
12345  
Rev. 1.11  
- 7 -  
l Use capacitors with a capacity of 22mF or more for VOUT Pin, and with good high frequency characteristics such  
as tantalum capacitors. We recommend you to use capacitors with an allowable voltage which is at least twice as  
much as setting output voltage. This is because there may be a case where a spike-shaped high voltage is  
generated by an inductor when an external transistor is on and off.  
l Choose an inductor that has sufficiently small D.C. resistance and large allowable current and is hard to reach  
magnetic saturation. And if the value of inductance of an inductor is extremely small, the ILX may exceed the  
absolute maximum rating at the maximum loading.  
Use an inductor with appropriate inductance.  
l Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity.  
l Do not use this IC under the condition at VIN voltage less than minimum operating voltage.  
P The performance of power source circuits using these ICs extremely depends upon the peripheral circuits.  
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that  
the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their  
respected rated values.  
n OPERATION of step-down DC/DC converter and Output Current  
The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy  
from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than the  
input voltage is obtained. The operation will be explained with reference to the following diagrams :  
<Basic Circuit>  
<Current through L>  
i1  
ILmax  
IOUT  
ILmin  
topen  
L
VIN  
Lx Tr  
SD  
VOUT  
i2  
CL  
ton  
toff  
T=1/fosc  
Step 1 : LxTr turns on and current IL(=i1) flows, and energy is charged into CL. At this moment, IL increases from  
ILmin(=0) to reach ILmax in proportion to the on-time period(ton) of LXTr.  
Step 2 : When LxTr turns off, Schottky diode(SD) turns on in order that L maintains IL at ILmax, and current IL(=i2)  
flows.  
Step 3 : IL decreases gradually and reaches ILmin after a time period of topen, and SD turns off, provided that  
in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this  
case, IL value is from this ILmin(>0).  
In the case of PWM control system, the output voltage is maintained by controlling the on-time period(ton), sith the  
oscillator frequency(fosc) being maintained constant.  
l Discontinuous Conduction Mode and Continuous Conduction Mode  
The maximum value(ILmax) and the minimum value(ILmin) of the current which flows through the inductor are the  
same as those when LxTr is ON and when it is OFF.  
The difference between ILmax and ILmin, which is represented by DI ;  
DI =ILmax –ILmin =VOUT´topen/L=(VIN-VOUT)´ton/L×××Equation 1  
wherein T=1/fosc=ton+toff  
duty(%)=ton/T´100=ton´fosc´100  
topen£toff  
12345  
Rev. 1.11  
- 8 -  
In Equation 1, VOUT´topen/L and (VIN-VOUT)´ton/L are respectively show the change of the current at ON, and the  
change of the current at OFF.  
When the output current(IOUT) is relatively small, topen<toff as illustrated in the above diagram. In this case, the  
energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time period  
of toff, therefore ILmin becomes to zero(ILmin=0). When Iout is gradually increased, eventually, topen becomes to  
toff (topen = toff), and when IOUT is further increased, ILmin becomes larger than zero(ILmin>0). The former mode  
is  
referred to as the discontinuous mode and the latter mode is referred to as continuous mode.  
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc,  
tonc =T´VIN/VOUT××× Equation 2  
When ton<tonc, the mode is the discontinuous mode, and when ton = tonc, the mode is the continuous mode.  
n OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS  
When LxTr is ON:  
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of LXTr is described as Rp the direct current  
of the inductor is described as RL.)  
VIN=VOUT+(Rp +RL)´IOUT+L´IRP/ton  
×××Equation 3  
When LxTr is OFF:  
L´IRP/ toff =VF+VOUT+RL´IOUT  
×××Equation 4  
Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON,  
DON=(VOUT+VF+RL´IOUT)/(VIN+VF-Rp´IOUT)×××Equation 5  
Ripple Current is as follows;  
IRP=(VIN-VOUT-Rp´IOUT-RL´IOUT)´DON/f/L ¼Equation 6  
wherein, peak current that flows through L, LxTr, and SD is as follows;  
ILmax=IOUT+IRP/2  
¼Equation 7  
Consider ILmax, condition of input and output and select external components.  
HThe above explanation is directed to the calculation in an ideal case in continuous mode.  
n External Components  
1. Inductor  
Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows,  
magnetic saturation occurs and make transform efficiency worse.  
When the load current is same, the smaller value of L, the larger the ripple current.  
Provided that the allowable current is large in that case and DC current is small, therefore, for large output current,  
efficiency is better than using an inductor with a large value of L and vice versa,  
2. Diode  
Use a diode with low VF (Schottky type is recommended.) and high switching speed.  
Reverse voltage rating should be more than VIN and current rating should be equal or more than ILmax.  
12345  
Rev. 1.11  
- 9 -  
3. Capacitor  
As for CIN, use a capacitor with low ESR(Equivalent Series Resistance) and a capacity of at least 10mF for stable  
operation.  
COUT can reduce ripple of Output Voltage, therefore 47mF to 100mF tantalum type is recommended.  
4. Lx Transistor  
Pch Power MOS FET is required for this IC.  
Its breakdown voltage between gate and source should be a few volt higher than Input Voltage.  
In the case of Input Voltage is low, to turn on MOS FET completely, select a MOS FET with low threshold voltage.  
If a large load current is necessary for your application and important, choose a MOS FET with low ON resistance  
for good efficiency.  
If a small load current is mainly necessary for your application, choose a MOS FET with low gate capacity for good  
efficiency.  
Maximum continuous drain current of MOS FET should be larger than peak current, ILmax.  
12345  
Rev. 1.11  
- 10 -  
n TYPICAL CHARACTERISTCS  
1) Output Voltage vs. Output Current  
L=27uH  
L=27uH  
R1221N33AH  
R1221N15XH  
3.400  
1.520  
1.515  
1.510  
1.505  
1.500  
1.495  
1.490  
1.485  
1.480  
3.380  
3.360  
3.340  
3.320  
3.300  
3.280  
3.260  
3.240  
3.220  
3.200  
13.2V  
12V  
8V  
8V  
5V  
4.5V  
2.3V  
1E-05 0.0001 0.001 0.01  
0.1  
1
1E-05 0.0001 0.001 0.01  
0.1  
IOUT(A)  
1
Output Current  
IOUT(A)  
Output Current  
2) Efficiency vs. Output Current  
CD104-27uH  
Si3443DV  
(VIN=12V)CD104-27uH  
(VIN=4.5V)  
R1221N33AA  
R1221N33AA  
Si3443DV  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
(mA)  
1000  
0.1  
1
10  
100  
IOUT(mA)  
1000  
Output Current OUT  
I
Output Current  
(VIN=4.5V) CD104-27uH  
(VIN=12V)CD104-27uH  
R1221N33AC  
R1221N33AB  
Si3443DV  
Si3443DV  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
0.1  
1
10  
100  
IOUT(mA)  
1000  
0.1  
1
10  
100  
(mA)  
1000  
Output Current  
Output Current IOUT  
12345  
Rev. 1.11  
- 11 -  
R1221N33AC  
(VIN=12V)CD104-27uH  
R1221N33AC  
CD104-27uH  
Si3443DV  
(VIN=4.5V)  
Si3443DV  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
(mA)  
1000  
Output Current IOUT(mA)  
Output Current  
OUT  
I
(VIN=6.0V) CD104-27uH  
CD104-27uH  
Si3443DV  
R1221N50XA  
R1221N50XA  
(VIN=12V)  
Si3443DV  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
IOUT(mA)  
1000  
Output Current  
Output Current IOUT(mA)  
CD104-27uH  
Si3443DV  
CD104-27uH  
(VIN=12V)  
Si3443DV  
R1221N50XB  
(VIN=6.0V)  
R1221N50XB  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
0.1  
1
10  
100  
1000  
Output Current IOUT(mA)  
0.1  
1
10  
100  
1000  
Output Current IOUT(mA)  
12345  
Rev. 1.11  
- 12 -  
(VIN=6.0V)CD104-27uH  
(VIN=12V) CD104-27uH  
R1221N50XC  
R1221N50XC  
Si3443DV  
Si3443DV  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current  
OUT  
I
(mA)  
3) Ripple Voltage vs. Output Current  
L=27uH  
C=47uF(Ta)  
L=27uH  
C=47uF(Ta)  
R1221N33AA  
R1221N50XA  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
VIN4.5V  
VIN8V  
VIN6V  
VIN8V  
VIN12V  
VIN12V  
60  
60  
40  
40  
20  
20  
0
0
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
L=27uH  
C=47uF(Ta)  
L=27uH  
C=47uF(Ta)  
R1221N33AB  
R1221N50XB  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
VIN6V  
VIN4.5V  
VIN8V  
VIN8V  
VIN12V  
VIN12V  
60  
60  
40  
40  
20  
20  
0
0
1
10  
Output Current  
100  
1000  
1
10  
Output Current  
100  
IOUT(mA)  
1000  
OUT  
I
(mA)  
12345  
Rev. 1.11  
- 13 -  
L=27uH  
C=47uF(Ta)  
L=27uH  
C=47uF(Ta)  
R1221N33AC  
R1221N50XC  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
VIN6V  
VIN4.5V  
VIN8V  
VIN8V  
VIN12V  
VIN12V  
60  
60  
40  
40  
20  
20  
0
0
1
10  
Output Current  
100  
IOUT(mA)  
1000  
1
10  
Output Current  
100  
IOUT(mA)  
1000  
4) Oscillator Frequency vs. Input Voltage  
L=27uH  
L=27uH  
R1221N15XB  
R1221N15XA  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
0
5
10  
VIN(V)  
15  
0
5
10  
15  
Input Voltage  
Input Voltage VIN(V)  
5) Output Voltage vs. Input Voltage  
L=27uH  
L=27uH  
R1221N15XB  
R1221N15XA  
1.53  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
0
5
10  
15  
0
5
10  
15  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
12345  
Rev. 1.11  
- 14 -  
L=27uH  
L=27uH  
R1221N33AA  
R1221N33AB  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
0
5
10  
IN  
V (V)  
15  
0
5
10  
15  
Input Voltage VIN(V)  
Input Voltage  
6) Output Voltage vs. Temperature  
L=27uH  
L=27uH  
R1221N15XB  
R1221N33AH  
3.31  
1.51  
3.30  
3.29  
3.28  
3.27  
1.50  
1.49  
1.48  
1.47  
-50  
0
50  
100  
-50  
0
50  
100  
Temperature Topt  
(°C)  
(°C)  
Temperature Topt  
7) Detector Threshold vs. Temperature  
VIN=6V  
VIN=6V  
(VD=2.0V)  
R1221N25XA  
(VD=1.2V)  
R1221N15XB  
1.22  
2.01  
2.00  
1.99  
1.98  
1.97  
1.21  
1.20  
1.19  
1.18  
-50  
0
50  
100  
-50  
0
50  
100  
Temperature Topt  
(°C)  
Temperature Topt(°C)  
12345  
Rev. 1.11  
- 15 -  
VIN=6V  
(VD=3.0V)  
R1221N33AB  
3.06  
3.04  
3.02  
3.00  
2.98  
2.96  
2.94  
-50  
0
50  
100  
Temperature Topt  
(°C)  
8) Oscillator Frequency vs. Temperature  
L=27uH  
VIN=4.5V  
L=27uH  
VIN=3.7V  
R1221N33AB  
R1221N25XA  
600  
550  
500  
450  
400  
360  
340  
320  
300  
280  
260  
240  
-50  
0
50  
100  
-50  
0
50  
100  
Temperature Topt  
(°C)  
°C)  
Temperature Topt(  
9) Supply Current vs. Temperature  
R1221N33AH  
R1221N33AG  
100  
90  
80  
70  
60  
50  
135  
130  
125  
120  
115  
110  
105  
100  
95  
VIN15V  
VIN13.2V  
VIN8V  
VIN15V  
VIN13.2V  
VIN8V  
90  
-50  
0
50  
100  
-50  
0
50  
100  
(°C)  
Temperature Topt  
(°C)  
Temperature Topt  
12345  
Rev. 1.11  
- 16 -  
10) Soft-start Time vs. Temperature  
R1221N33AB  
L=27uH  
VIN=4.5V  
L=27uH  
VIN=3.7V  
R1221N25XA  
12  
10  
8
10  
8
6
4
6
2
4
0
2
-50  
0
50  
100  
-50  
0
50  
100  
°C)  
Temperature Topt(  
Temperature Topt  
(°C)  
11) Delay Time for Latch-type Protection vs. Temperature  
VIN=4.5V  
R1221N33AB  
R1221N25XA  
VIN=3.7V  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
0
50  
100  
-50  
0
50  
100  
(°C)  
Temperature Topt  
Temperature Topt  
(°C)  
12) Delay Time for Reset-type Protection vs. Temperature  
VIN=4.5V  
VIN=4.5V  
R1221N33AH  
R1221N33AG  
5
5
4
3
2
1
0
4
3
2
1
0
-50  
0
50  
100  
-50  
0
50  
100  
(°C)  
Temperature Topt  
(°C)  
Temperature Topt  
12345  
Rev. 1.11  
- 17 -  
13) VD Output Delay Time vs. Temperature  
VIN=8.0V  
VIN=8.0V  
R1221N33AB  
R1221N25XA  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
-50  
0
50  
100  
-50  
0
50  
100  
Temperature Topt  
(°C)  
(°C)  
Temperature Topt  
14) EXT”H” Output Current vs. Temperature  
R1221N33AB  
16  
14  
12  
10  
8
6
4
2
0
-50  
0
50  
100  
Temperature Topt  
(°C)  
15) EXT ”L” Output Current vs. Temperature  
R1221N33AB  
30  
25  
20  
15  
10  
5
0
-50  
0
50  
(°C)  
100  
Temperature Topt  
12345  
Rev. 1.11  
- 18 -  
16) VDOUT “L” Output Current vs. Temperature  
R1221N33AD  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-50  
0
50  
100  
Temperature Top(t°C)  
17) Load Transient Response  
R1221N33AA  
VIN=5V  
L=27uH  
VIN=5V  
L=27uH  
R1221N33AA  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
3.4  
3.3  
3.2  
3.1  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
500  
500  
2.9  
2.8  
2.7  
2.6  
0.1  
0.1  
0.1  
0.001  
0
0.05  
0
0.0005  
Time (sec)  
Time (sec)  
VIN=5V  
L=27uH  
VIN=5V  
L=27uH  
R1221N33AB  
R1221N33AB  
3.4  
3.3  
3.2  
3.1  
3
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
500  
500  
2.9  
2.8  
2.7  
2.6  
0.1  
0.001  
0.1  
0.1  
0
0.05  
0
0.0005  
Time (sec)  
Time (sec)  
12345  
Rev. 1.11  
- 19 -  
VIN=5V  
L=27uH  
VIN=5V  
L=27uH  
R1221N33AC  
R1221N33AC  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
3.4  
3.3  
3.2  
3.1  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
500  
0.1  
500  
2.9  
2.8  
2.7  
2.6  
0.1  
0.001  
0
0.0005  
0
0.05  
0.1  
Time (sec)  
Time (sec)  
VIN=5V  
L=27uH  
VIN=5V  
L=27uH  
R1221N33AD  
R1221N33AD  
3.4  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
2.9  
2.8  
2.7  
2.6  
3.3  
3.2  
3.1  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
500  
500  
0.1  
0.001  
0.1  
0.1  
0
0.05  
0
0.0005  
Time (sec)  
Time (sec)  
18) Turn-on Waveform  
L=27uH  
L=27uH  
R1221N33AA IN  
(V =10V,I  
OUT  
R1221N33AA IN  
(V =5V,IOUT=0mA)  
=0mA)  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
10  
0
5
0
-0.01  
0
0.01  
Time (sec)  
0.02  
-0.01  
0
0.01  
Time (sec)  
0.02  
12345  
Rev. 1.11  
- 20 -  
L=27uH  
L=27uH  
R1221N33AB IN  
(V =5V,I  
OUT=0mA)  
R1221N33AB(VIN=10V,IOUT=0mA)  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
0.5  
0
1.5  
1
0.5  
0
5
-0.5  
-1  
-0.5  
-1  
10  
-1.5  
-2  
-1.5  
-2  
-2.5  
-3  
-3.5  
-2.5  
-3  
-3.5  
0
0
-0.01  
0
0.01  
Time (sec)  
0.02  
-0.01  
0
0.01  
0.02  
Time (sec)  
R1221N33AA IN  
(V =10V,IOUT=100mA)  
R1221N33AA(VIN=5V,IOUT=100mA)  
L=27uH  
L=27uH  
3.5  
3.5  
3
2.5  
2
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
1.5  
1
0.5  
0
10  
-0.5  
-1  
5
0
-1.5  
-2  
-2.5  
-3  
-2.5  
-3  
-3.5  
0
-3.5  
-0.01  
0
0.01  
0.02  
-0.01  
0
0.01  
Time (sec)  
0.02  
Time (sec)  
R1221N33AB(VIN=10V,IOUT=100mA)  
L=27uH  
R1221N33AB(VIN=5V,IOUT=100mA)  
L=27uH  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
10  
-0.5  
-1  
5
-1.5  
-2  
-1.5  
-2  
-2.5  
-3  
0
-2.5  
-3  
-3.5  
0
-3.5  
-0.01  
0
0.01  
Time (sec)  
0.02  
-0.01  
0
0.01  
Time (sec)  
0.02  
12345  
Rev. 1.11  
- 21 -  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY