R1232D301B [RICOH]

PWM STEP-DOWN DC/DC CONVERTER WITH SYNCHRONOUS RECTIFIER; PWM降压型DC / DC同步整流转换器
R1232D301B
型号: R1232D301B
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

PWM STEP-DOWN DC/DC CONVERTER WITH SYNCHRONOUS RECTIFIER
PWM降压型DC / DC同步整流转换器

转换器
文件: 总24页 (文件大小:844K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R1232D SERIES  
PWM STEP-DOWN DC/DC CONVERTER WITH SYNCHRONOUS RECTIFIER  
NO.EA-129-0606  
OUTLINE  
The R1232D Series are CMOS-based PWM step-down DC/DC converters with synchronous rectifier, low  
supply current. As an output capacitor, a 10µF or more ceramic capacitor can be used with the R1232D.  
Each of these ICs consists of an oscillator, a PWM control circuit, a voltage reference unit, an error amplifier, a  
soft-start circuit, protection circuits, a protection against miss operation under low voltage (UVLO), a chip enable  
circuit, a synchronous rectifier, Nch. driver transistor, and so on. A low ripple, high efficiency step-down DC/DC  
converter can be easily composed of this IC with only a few kinds of external components, or an inductor and  
capacitors. (As for R1232D001x type, divider resistors are also necessary.) In terms of the output voltage, it is  
fixed internally in the R1232Dxx1x types. While in the R1232D001x types, the output voltage is adjustable with  
external divider resistors.  
As protection circuits, current limit circuit which limits peak current of LX at each clock cycle, and latch type  
protection circuit exist. The latch protection works if the term of the over-current condition keeps on a certain time.  
Latch-type protection circuit works to latch an internal driver with keeping it disable. To release the condition of  
protection, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on or make  
the supply voltage at UVLO detector threshold level or lower than UVLO.  
FEATURES  
Two choices of Oscillator Frequency............................1MHz, 2.25MHz  
(Small inductors can be used. 4.7µH for 1MHz/2.2µH for 2.25MHz)  
Built-in Driver ON Resistance .......................................P-channel 0.2(at VIN=5.0V)  
Built-in Soft-start Function.............................................Typ. 1.0ms (fosc=1MHz type)  
Output Voltage ..............................................................0.9V to 3.3V (xx1x Type)  
0.8V to VIN (001x Type)  
High Accuracy Output Voltage ......................................±2.0%  
Built-in Current Limit Circuit ..........................................Typ. 1.4A  
Package ........................................................................SON-8 (t=0.9mm)  
APPLICATIONS  
Power source for portable equipment such as PDA, DSC, Notebook PC.  
Power source for HDD  
1
R1232D  
BLOCK DIAGRAMS  
R1232Dxx1A/B  
VDD  
AGND  
3
7
VIN  
2
8
Slope  
Current Limit  
Compensation  
5
4
VOUT  
Phase  
Compensation  
Q
R
Vref  
S
PWM  
Output  
Contorol  
Error  
LX  
Comparator  
Amplifer  
CE  
Oscillator  
Soft Start  
UVLO  
“H” Active  
TEST Circuit  
Chip Enable  
1
6
“L” or GND Fixed  
PGND  
TEST  
R1232D001C/D  
VDD  
AGND  
3
7
VIN  
2
8
Slope  
Current Limit  
Compensation  
5
4
VFB  
Phase  
Compensation  
Q
R
Vref  
S
PWM  
Output  
Error  
LX  
Comparator  
Contorol  
Amplifer  
CE  
Oscillator  
Soft Start  
UVLO  
“H” Active  
TEST Circuit  
Chip Enable  
1
6
“L” or GND Fixed  
PGND  
TEST  
2
R1232D  
SELECTION GUIDE  
In the R1232D Series, the output voltage, the oscillator frequency, and the taping type for the ICs can be  
selected at the user's request.  
The selection can be made with designating the part number as shown below;  
R1232Dxx1x-xx-xPart Number  
 ↑  
a b c  
d
e
Code  
Contents  
Setting Output Voltage(VOUT):  
Stepwise setting with a step of 0.1V in the range of 0.9V to 3.3V is possible for fixed  
output version."00" is for Output Voltage Adjustable version  
(0.8V as the feedback voltage.)  
a
b
1: fixed  
Designation of Optional Function  
A: 1MHz, Fixed Output Voltage  
c
B: 2.25MHz, Fixed Output Voltage  
C: 1MHz, Adjustable Output Voltage  
D: 2.25MHz, Adjustable Output Voltage  
Designation of Taping Type;  
d
e
(Refer to Taping Specification)"TR" is prescribed as a standard.  
Designation of Composition of pin plating  
-F : Lead free plating  
3
R1232D  
PIN CONFIGURATION  
SON-8  
Top View  
Bottom View  
8
7
6
5
5
6
7
8
1
2
3
4
4
3
2
1
PIN DESCRIPTIONS  
Pin No  
Symbol  
PGND  
VIN  
Pin Description  
1
2
3
4
5
6
7
8
Ground Pin  
Voltage Supply Pin  
Voltage Supply Pin  
VDD  
CE  
Chip Enable Pin (active with "H")  
Output/Feedback Pin  
VOUT/VFB  
TEST  
AGND  
LX  
Test Pin (Forced to the "L" or GND level.)  
Ground Pin  
LX Switching Pin (CMOS Output)  
Tab in the  
parts have GND level. (They are connected to the reverse side of this IC.)  
Do not connect to other wires or land patterns.  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Item  
Rating  
6.5  
Unit  
V
VIN  
VIN Supply Voltage  
VDD Pin Voltage  
VDD  
6.5  
V
VLX  
LX Pin Voltage  
V
0.3 to VIN + 0.3  
0.3 to VIN + 0.3  
0.3 to VIN + 0.3  
0.3 to VIN + 0.3  
VCE  
CE Pin Input Voltage  
TEST Pin Input Voltage  
VFB Pin Input Voltage  
LX Pin Output Current  
Power Dissipation (SON-8)*1  
Operating Temperature Range  
Storage Temperature Range  
V
VTEST  
VFB  
V
V
ILX  
V
±1.5  
480  
PD  
mW  
°C  
°C  
Topt  
Tstg  
40 to 85  
55 to 125  
1) For the power dissipation, refer to the package information on the website.  
4
R1232D  
ELECTRICAL CHARACTERISTICS  
R1232DxxxA/C  
Topt=25°C  
Unit  
Symbol  
Item  
Conditions  
Min.  
Typ. Max.  
VIN  
Operating Input Voltage  
2.6  
5.5  
V
VIN=VCE=5.0V, IOUT=10mA  
VIN=VCE=5.0V, IOUT=10mA  
Step-down Output Voltage  
Feedback Voltage  
V
VFB  
OUT  
×0.980  
0.784 0.800 0.816  
×1.020  
V
V
ppm/  
°C  
Step-down Output Voltage  
VOUT/Topt  
40°C Topt 85°C  
±150  
=
=
Temperature Coefficient  
fosc  
IDD  
Istandby  
Oscillator Frequency  
Supply Current  
Standby Current  
0.75  
70  
1.00  
140  
0.0  
1.25  
190  
5.0  
MHz  
µA  
µA  
VIN=VCE =VSET +1.5V  
VIN=VCE =5.5V, VOUT=5.5V  
VCE=VOUT=0V, VIN= 5.5V  
VIN=5.5V,VCE=0V  
VLX=0V/5.5V  
ILXleak  
LX Leakage Current  
0.0  
5.0  
5.0  
µA  
RONP  
RONN  
ON Resistance of Pch Transistor  
ON Resistance of Nch Transistor  
Oscillator Maximum Duty Cycle  
Soft-start Time  
0.20  
0.20  
0.35  
0.35  
VIN=5.0V, ILX=200mA  
VIN=5.0V, ILX=200mA  
Maxduty  
tstart  
100  
0.5  
%
ms  
1.0  
2.0  
1.4  
VIN=VCE =5.0V, at no load  
VIN=VCE =5.0V  
tprot  
Protection Delay Time  
0.1  
10.0  
ms  
A
ILXlimit  
VUVLO1  
Lx Current Limit  
1.0  
1.4  
VIN=VCE =5.0V  
UVLO Detector Threshold  
2.10  
2.25  
VUVLO1  
+0.10  
2.40  
2.50  
0.1  
V
VIN=VCE =2.6V-> 1.5V  
VUVLO2  
ICE  
UVLO Released Voltage  
CE Input Current  
2.20  
0.1  
0.1  
1.5  
V
VIN=VCE =1.5V-> 2.6V  
VIN=5.5V, VCE =5.5V/0V  
VIN=5.5V, VCE =0V,  
VOUT=5.5V/0V  
VIN=5.5V  
VIN=3.0V  
VIN=3.0V  
µA  
µA  
0.0  
IVOUT  
VOUT Leakage Current  
0.0  
0.1  
VCEH  
VCEL  
CE "H" Input Voltage  
CE "L" Input Voltage  
V
V
V
0.3  
0.3  
VTESTL  
TEST pin "L" Input Voltage  
5
R1232D  
R1232DxxxB/D  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
2.6  
×0.980  
Typ. Max.  
5.5  
Unit  
V
V
VIN  
VOUT  
VFB  
Operating Input Voltage  
Step-down Output Voltage  
Feedback Voltage  
VIN=VCE=5.0V,IOUT=10mA  
VIN=VCE=5.0V,IOUT=10mA  
×1.020  
0.784 0.800 0.816  
V
ppm/  
°C  
Step-down Output Voltage  
VOUT/Topt  
40°C Topt 85°C  
±150  
=
=
Temperature Coefficient  
fosc  
IDD  
Istandby  
Oscillator Frequency  
Supply Current  
Standby Current  
1.91  
170  
2.25  
240  
0.0  
2.58  
310  
5.0  
MHz  
µA  
µA  
VIN=VCE=VSET+1.5V  
VIN=VCE=5.5V, VOUT=5.5V  
VCE=VOUT=0V, VIN=5.5V  
VIN=5.5V, VCE=0V,  
VLX=0V/5.5V  
ILXleak  
LX Leakage Current  
0.0  
5.0  
5.0  
µA  
RONP  
RONN  
ON Resistance of Pch Transistor  
ON Resistance of Nch Transistor  
Oscillator Maximum Duty Cycle  
Soft-start Time  
0.20  
0.20  
0.35  
0.35  
VIN=5.0V, ILX=200mA  
VIN=5.0V, ILX=200mA  
Maxduty  
tstart  
100  
0.15  
0.1  
%
ms  
0.4  
2.0  
0.7  
VIN=VCE=5.0V, at no load  
VIN=VCE=5.0V  
tprot  
Protection Delay Time  
10.0  
ms  
A
ILXlimit  
VUVLO1  
LX Current Limit  
1.0  
1.4  
VIN=VCE=5.0V  
UVLO Detector Threshold  
2.10  
2.25  
VUVLO1  
+0.10  
2.40  
2.50  
0.1  
V
VIN=VCE=2.6V -> 1.5V  
VUVLO2  
ICE  
UVLO Released Voltage  
CE Input Current  
2.20  
0.1  
0.1  
1.5  
V
VIN=VCE =1.5V -> 2.6V  
VIN=5.5V, VCE =5.5V/0V  
VIN=5.5V, VCE=0V,  
VOUT=5.5V/0V  
VIN=5.5V  
VIN=3.0V  
VIN=3.0V  
µA  
µA  
0.0  
IVOUT  
VOUT Leakage Current  
0.0  
0.1  
VCEH  
VCEL  
CE "H" Input Voltage  
CE "L" Input Voltage  
TEST "L" Input Voltage  
V
V
V
0.3  
0.3  
VTESTL  
6
R1232D  
TEST CIRCUIT  
PGND  
VIN  
LX  
A
AGND  
VDD  
CE  
TEST  
VFB  
Test Circuit for Input Current and Leakage Current  
PGND  
VIN  
LX  
PGND  
VIN  
LX  
V
AGND  
AGND  
VDD  
CE  
VDD  
CE  
TEST  
VFB  
TEST  
VFB  
A
Test Circuit for Supply Current and Standby Current  
Test Circuit for ON resistance of LX  
PGND  
VIN  
LX  
OSCILLOSCOPE  
AGND  
VDD  
CE  
TEST  
VFB  
Input Voltage, Output Voltage, Frequency, Lx Current Limit,  
Protection Delay Time, UVLO Voltage Test Circuit  
PGND  
VIN  
LX  
OSCILLOSCOPE  
AGND  
VDD  
CE  
TEST  
VFB  
Soft Start Time Test Circuit  
The bypass capacitor between power supply and GND is a ceramic capacitor 10µF.  
7
R1232D  
TYPICAL APPLICATION AND TECHNICAL NOTES  
Fixed Output Voltage Type  
L
OUT  
V
PGND  
LX  
CIN  
VIN  
VDD  
CE  
AGND  
LOAD  
OUT  
C
TEST  
VFB  
Adjustable Output Type  
L
OUT  
V
PGND  
LX  
CIN  
VIN  
VDD  
CE  
AGND  
LOAD  
OUT  
C
TEST  
VFB  
Cb  
R1  
R2  
CIN  
COUT  
10µF C2012JB0J106MT (TDK), 10µF CM21B106M06AB (Kyocera)  
10µF C2012JB0J106MT (TDK), 10µF CM21B106M06AB (Kyocera)  
4.7µH/2.7µH VLP5610-4R7MR90, VLP5610-2R7M1R0 (TDK)  
*2.2µH is also suitable for B version.  
L
In terms of setting R1, R2, Cb, refer to the technical notes.  
8
R1232D  
When you use these ICs, consider the following issues;  
Input the same voltage into power supply pins, VIN and VDD. Set the same level as AGND and PGND.  
When you control the CE pin by another power supply, do not make its "H" level more than the voltage level  
of VIN / VDD pin.  
Set external components such as an inductor, CIN, COUT as close as possible to the IC, in particular,  
minimize the wiring to VIN pin and PGND pin.  
At stand by mode, (CE="L"), the LX output is Hi-Z, or both P-channel transistor and N-channel transistor of  
LX pin turn off.  
In terms of the protection circuits, current limit for the peak current of each cycle of Lx, and the latch  
protection circuit, which works if the over-limit current flows continuously for a certain time exist. To release  
the protection, once make this IC into be standby mode with chip enable pin, or make the supply voltage be  
down to UVLO threshold level or less.  
Reinforce the VIN, PGND, and VOUT lines sufficiently. Large switching current may flow in these lines. If the  
impedance of VIN and PGND lines is too large, the internal voltage level in this IC may shift caused by the  
switching current, and the operation might be unstable.  
Connect the TEST Pin to the "L" or GND level.  
The performance of power source circuits using these ICs extremely depends upon the peripheral circuits.  
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that  
the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their  
respected rated values.  
9
R1232D  
OPERATION of step-down DC/DC converter and Output Current  
The step-down DC/DC converter charges energy in the inductor when LX transistor is ON, and discharges the  
energy from the inductor when LX transistor is OFF and controls with less energy loss, so that a lower output  
voltage than the input voltage is obtained. The operation will be explained with reference to the following  
diagrams:  
<Basic Circuits>  
<Current through L>  
i1  
OUT  
I
L
Lx Tr  
SD  
OUT  
V
IN  
V
i2  
CL  
Step 1:P-channel Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment,  
IL increases from Ilmin (=0) to reach ILmax in proportion to the on-time period (ton) of P-channel Tr.  
Step 2:When P-channel Tr. turns off, Synchronous rectifier N-channel Tr. turns on in order that L maintains IL at  
ILmax, and current IL (=i2) flows.  
Step 3:IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and N-channel Tr.  
Turns off. Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff  
time is not enough. In this case, IL value increases from this Ilmin (>0).  
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton),  
with the oscillator frequency (fosc) being maintained constant.  
Continuous Conduction Mode  
The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the  
same as those when P-channel Tr. turns on and off.  
The difference between ILmax and ILmin, which is represented by I;  
I=ILmaxILmin=VOUT×topen/L=(VINVOUT)×ton/L ........................................................Equation 1  
Where,t=1/fosc=ton+toff  
duty (%)=ton/t×100=ton×fosc×100  
<
topen toff  
=
In Equation 1, VOUT×topen/L and (VINVOUT) ×ton/L are respectively shown the change of the current at ON,  
and the change of the current at OFF.  
Even if the output current (IOUT) is, topen < toff as illustrated in the above diagram is not realized with this IC. At  
least, topen is equal toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero  
(ILmin>0). The mode is referred to as the continuous mode.  
10  
R1232D  
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc  
tonc=t×VOUT/VIN............................................................................................................. Equation 2  
When the ton=tonc, the mode is the continuous mode.  
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS  
When P-channel Tr. of LX is ON:  
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of P-channel Tr. and N-channel Tr. of LX  
are respectively described as RONP and RONN, and the DC resistor of the inductor is described as RL.)  
VIN=VOUT+(RONP+RL)×IOUT+L×IRP/ton .............................................................................. Equation 3  
When P-channel Tr. of LX is "OFF"(N-channel Tr. is "ON"):  
L×IRP/toff=VF+VOUT+RONN×IOUT ....................................................................................... Equation 4  
Put Equation 4 to Equation 3 and solve for ON duty of P-channel transistor, Don=ton/(toff+ton),  
DON=(VOUTRONN×IOUT+RL×IOUT)/(VIN+RONN×IOUTRONP×IOUT) ........................................... Equation 5  
Ripple Current is as follows;  
IRP=(VINVOUTRONP×IOUTRL×IOUT)×DON/fosc/L .............................................................. Equation 6  
wherein, peak current that flows through L, and LX Tr. is as follows;  
ILmax=IOUT+IRP/2 .......................................................................................................... Equation 7  
Consider ILmax, condition of input and output and select external components.  
ÌThe above explanation is directed to the calculation in an ideal case in continuous mode.  
11  
R1232D  
How to Adjust Output Voltage and about Phase Compensation  
As for Adjustable Output type, feedback pin (VFB) voltage is controlled to maintain 0.8V.  
Output Voltage, VOUT is as following equation;  
VOUT R1+R2=VFB:R2  
VOUT=VFB×(R1+R2)/R2  
Thus, with changing the value of R1 and R2, output voltage can be set in the specified range.  
In the DC/DC converter, with the load current and external components such as L and C, phase might be  
behind 180 degree. In this case, the phase margin of the system will be less and stability will be worse. To  
prevent this, phase margin should be secured with proceeding the phase. A pole is formed with external  
components L and COUT.  
fpole ~1/2π LCOUT  
A zero (signal back to zero) is formed with R1 and Cb.  
fzero ~ 1/(2p×R1×Cb)  
First, choose the appropriate value of R1, R2 and Cb.  
Set R1+R2 value 100kor less.  
For example, if L=4.7µH, COUT =10µF, the cut off frequency of the pole is approximately 23kHz.  
To make the cut off frequency of the zero by R1, R2, and Cb be higher than 23kHz,  
set R1=33kand Cb=100pF.If VOUT is set at 2.0V, R2=22kis appropriate.  
12  
R1232D  
External Components  
1.Inductor  
Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows,  
magnetic saturation occurs and makes transform efficiency be worse.  
Supposed that the load current is at the same, the smaller value of L is used, the larger the ripple current is.  
Provided that the allowable current is large in that case and DC current is small, therefore, for large output  
current, efficiency is better than using an inductor with a large value of L and vice versa.  
2.Capacitor  
As for CIN, use a capacitor with low ESR (Equivalent Series Resistance) Ceramic type of a capacity at least  
10µF for stable operation.  
COUT can reduce ripple of the output voltage, therefore as much as 10µF ceramic type is recommended.  
TIMING CHART  
Output  
Short  
Output Short  
CE pin Voltage  
Intemal Opertional Intemal Soft-start  
Amplifier Output  
Set Voltage  
Intemal Oscillator Waveform  
Lx Pin Output  
Latched  
Delay Time of Protection  
Soft-start Time  
Stable  
The timing chart as shown above describes the waveforms starting from the IC is enabled with CE and latched  
with protection. During the soft-start time, until the level is rising up to the internal soft-start set voltage, the duty  
cycle of LX is gradually wider and wider to prevent the over-shoot of the voltage. During the term, the output of  
amplifier is "H". After the output voltage reaches the set output voltage, they are balanced well. Herein, if the  
output pin would be short circuit, the output of amplifier would become "H" again, and the condition would  
continue for 2.0ms (Typ.), latch circuit would work and the output of LX would be latched with "OFF". (Output  
="High-Z")  
If the output short is released before the latch circuit works (within 2ms after output shorted), the output of  
amplifier is balanced in the stable state again.  
Once the IC is latched, to release the protection, input "L" with CE pin, or make the supply voltage at UVLO  
level or less.  
13  
R1232D  
TYPICAL CHARACTERISTICS  
1) Output Voltage vs. Output Current (CIN = 10µF, COUT = 10µF)  
R1232D121A  
R1232D331A  
V
IN=5.0V  
VIN=5.0V  
1.300  
1.250  
1.200  
1.150  
1.100  
3.400  
3.350  
3.300  
3.250  
3.200  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1232D121B  
R1232D331B  
V
IN=5.0V  
V
IN=5.0V  
1.300  
1.250  
1.200  
1.150  
1.100  
3.400  
3.350  
3.300  
3.250  
3.200  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
2) Efficiency vs. Output Current (CIN = 10µF, COUT = 10µF)  
R1232D121A  
R1232D331A  
VIN=3.3V, 5.0V  
VIN=5.0V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
(VIN=5.0V)  
(VIN=3.3V)  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1232D121B  
R1232D331B  
14  
R1232D  
V
IN=3.3V, 5.0V  
VIN=5.0V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
(VIN=5.0V)  
(VIN=3.3V)  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
3) Output Waveform  
R1232D121A  
R1232D331A  
V
IN=5.0V, IOUT=600mA  
VIN=5.0V, IOUT=600mA  
0.04  
0.03  
0.02  
0.01  
0
0.04  
0.03  
0.02  
0.01  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.01  
-0.02  
-0.03  
-0.04  
-3  
-2  
-1  
0
1
2
3
-3  
-2  
-1  
0
1
2
3
Time t(ns)  
Time t(ns)  
R1232D121B  
R1232D331B  
V
IN=5.0V, IOUT=600mA  
VIN=5.0V, IOUT=600mA  
0.06  
0.04  
0.02  
0
0.04  
0.03  
0.02  
0.01  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.02  
-0.04  
-0.06  
-1.5 -1.0 -0.5  
0
0.5  
1.0  
1.5  
-1.5 -1.0 -0.5  
0
0.5  
1.0  
1.5  
Time t(ns)  
Time t(ns)  
15  
R1232D  
4) Load Transient Response  
R1232D121A  
R1232D121A  
V
IN=5.0V  
VIN=5.0V  
0.8  
0.6  
0.4  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Output Current 10mA600mA  
Output Current 600mA10mA  
0.2  
0
Output Voltage  
-0.1  
-0.2  
-0.3  
Output Voltage  
-0.1  
-50  
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
200  
Time t (µs)  
Time t (µs)  
R1232D121B  
R1232D121B  
V
IN=5.0V  
VIN=5.0V  
0.8  
0.6  
0.4  
0.2  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Output Current 10mA600mA  
Output Current 600mA10mA  
Output Voltage  
-0.1  
-0.2  
-0.3  
Output Voltage  
-0.1  
-50  
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
200  
Time t (µs)  
Time t (µs)  
5) Output Voltage vs. Input Voltage  
R1232D121A  
R1232D331A  
I
OUT=600mA  
I
OUT=600mA  
1.22  
1.21  
1.20  
1.19  
1.18  
3.32  
3.31  
3.30  
3.29  
3.28  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
6) Oscillator Frequency vs. Input Voltage  
R1232D121A  
R1232D121B  
16  
R1232D  
I
OUT=600mA  
IOUT=600mA  
1.10  
1.05  
1.00  
0.95  
0.90  
2.4  
2.3  
2.2  
2.1  
2.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
7) Lx Transistor On Resistance vs. Input Voltage  
Switching Tr. Pch on Resistance  
Synchronous Rectifier Tr. Nch on Resistance  
I
OUT=200mA  
IOUT=200mA  
0.14  
0.13  
0.12  
0.11  
0.10  
0.09  
0.14  
0.13  
0.12  
0.11  
0.10  
0.09  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
8) Turn-on speed by CE pin  
R1232D121A  
R1232D121A  
VIN=5.0V, L=4.7µH Rload=12Ω  
VIN=5.0V, L=4.7µH Rload=0Ω  
CE  
CE  
5V/div  
5V/div  
VOUT  
VOUT  
1V/div  
1V/div  
IL  
IL  
200mA/div  
200mA/div  
200µs/div  
200µs/div  
R1232D331B  
R1232D331B  
17  
R1232D  
VIN=5.0V, L=2.7µH Rload=0Ω  
VIN=5.0V, L=2.7µH Rload=33Ω  
CE  
CE  
5V/div  
5V/div  
VOUT  
V
OUT  
1V/div  
1V/div  
IL  
IL  
200mA/div  
200mA/div  
100µs/div  
100µs/div  
9) Output Voltage vs. Temperature  
R1232D121A  
R1232D331A  
V
IN=5.0V  
VIN=5.0V  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
3.40  
3.35  
3.30  
3.25  
3.20  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
10) Oscillator Frequency vs. Temperature  
R1232D121A  
R1232D331B  
V
IN=5.0V  
VIN=5.0V  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
2.50  
2.40  
2.30  
2.20  
2.10  
2.00  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
18  
R1232D  
11) Supply Current vs. Temperature  
R1232D121A  
R1232D331B  
V
IN=5.0V  
V
IN=5.0V  
130  
125  
120  
115  
110  
230  
225  
220  
215  
210  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
12) Soft-start time vs. Temperature  
R1232D121A  
R1232D331B  
V
IN=5.0V, Rload=0Ω  
VIN=5.0V, Rload=0Ω  
1300  
1100  
900  
600  
550  
500  
450  
400  
350  
300  
700  
500  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
13) UVLO Voltage vs. Temperature  
R1232D121A  
R1232D121A  
2.40  
2.50  
2.40  
2.30  
2.20  
2.30  
2.20  
2.10  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
19  
R1232D  
14) CE Input Voltage vs. Temperature  
R1232D121A  
R1232D121A  
V
IN=5.0V, CE=H Threshold  
VIN=5.0V, CE=L Threshold  
1.5  
1.3  
1.0  
0.8  
0.5  
1.5  
1.3  
1.0  
0.8  
0.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
15) TEST Input Voltage vs. Temperature  
R1232D121A  
VIN=5.0V  
1.5  
1.3  
1.0  
0.8  
0.5  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
16) Lx Transistor On Resistance vs. Temperature  
Driver Tr. Pch ON Resistance  
Rectifier Tr.Nch ON Resistance  
V
IN=5.0V  
V
IN=5.0V  
0.30  
0.20  
0.10  
0.00  
0.30  
0.20  
0.10  
0.00  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
20  
R1232D  
17) Current Limit vs. Temperature  
R1232D121A  
R1232D331B  
V
IN=5.0V  
V
IN=5.0V  
-0.80  
-1.05  
-1.30  
-1.55  
-1.80  
-0.80  
-1.05  
-1.30  
-1.55  
-1.80  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
18) Protection Delay Time vs. Temperatures  
R1232D121A  
R1232D331B  
V
IN=5.0V  
VIN=5.0V  
10.0  
7.5  
5.0  
2.5  
0.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
21  
PE-SON-8-0510  
PACKAGE INFORMATION  
SON-8  
Unit: mm  
PACKAGE DIMENSIONS  
2.9 0.2  
0.475TYP  
8
+0.1  
+0.1  
0.15  
0.15  
0.13 0.05  
0.15  
0.15  
5
1
4
Bottom View  
Attention : Tab suspension leads in the  
parts have VDD or GND level. (They are  
connected to the reverse side of this IC.)  
Refer to PIN DISCRIPTION.  
0.1  
0.65  
Do not connect to other wires or land patterns.  
0.3 0.1  
0.1 M  
TAPING SPECIFICATION  
4.0 0.1  
+0.1  
0
φ1.5  
0.2 0.1  
2.0 0.05  
3.3  
4.0 0.1  
2.0MAX.  
1.1 0.1  
TR  
User Direction of Feed  
TAPING REEL DIMENSIONS  
(1reel=3000pcs)  
11.4 1.0  
9.0 0.3  
21 0.8  
2 0.5  
PE-SON-8-0510  
PACKAGE INFORMATION  
POWER DISSIPATION (SON-8)  
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.  
This specification is based on the measurement at the condition below:  
Measurement Conditions  
Standard Land Pattern  
Environment  
Board Material  
Board Dimensions  
Copper Ratio  
Mounting on Board (Wind velocity=0m/s)  
Glass cloth epoxy plactic (Double sided)  
40mm × 40mm × 1.6mm  
Top side : Approx. 50% , Back side : Approx. 50%  
Through-hole  
φ0.5mm × 44pcs  
Measurement Result  
(Topt=25°C,Tjmax=125°C)  
Standard Land Pattern  
480mW  
Free Air  
300mW  
Power Dissipation  
Thermal Resistance  
θja=(12525°C)/0.48W=208°C/W  
333°C/W  
600  
On Board  
480  
500  
40  
400  
300  
200  
100  
0
Free Air  
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Power Dissipation  
Measurement Board Pattern  
IC Mount Area (Unit : mm)  
RECOMMENDED LAND PATTERN  
0.35 0.65  
(Unit: mm)  
ME-R1232D-0510  
MARK INFORMATION  
R1232D SERIES MARK SPECIFICATION  
SON-8  
1
5
4
to  
6
: Product Code (refer to Part Number vs. Product Code)  
: Lot Number  
,
1
2
3
5
4
6
R
Part Number vs. Product Code  
Product Code  
Product Code  
Product Code  
Part Number  
Part Number  
Part Number  
1
2
3
4
1
2
3
4
1
2
3
4
R1232D091A  
R1232D101A  
R1232D111A  
R1232D121A  
R1232D131A  
R1232D141A  
R1232D151A  
R1232D161A  
R1232D171A  
R1232D181A  
R1232D191A  
R1232D201A  
R1232D211A  
R1232D221A  
R1232D231A  
R1232D241A  
R1232D251A  
R1232D261A  
R1232D271A  
R1232D281A  
R1232D291A  
R1232D301A  
R1232D311A  
R1232D321A  
R1232D331A  
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
R1232D091B  
R1232D101B  
R1232D111B  
R1232D121B  
R1232D131B  
R1232D141B  
R1232D151B  
R1232D161B  
R1232D171B  
R1232D181B  
R1232D191B  
R1232D201B  
R1232D211B  
R1232D221B  
R1232D231B  
R1232D241B  
R1232D251B  
R1232D261B  
R1232D271B  
R1232D281B  
R1232D291B  
R1232D301B  
R1232D311B  
R1232D321B  
R1232D331B  
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
R1232D001C  
R1232D001D  
K
K
0
0
1
1
C
D

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY