R1245S003C-E2-FE [RICOH]

Switching Regulator, Current-mode, 2.7A, 550kHz Switching Freq-Max, CMOS, PDSO8, ANTIMONY AND HALOGEN FREE, ROHS COMPLIANT, HSOP-8;
R1245S003C-E2-FE
型号: R1245S003C-E2-FE
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

Switching Regulator, Current-mode, 2.7A, 550kHz Switching Freq-Max, CMOS, PDSO8, ANTIMONY AND HALOGEN FREE, ROHS COMPLIANT, HSOP-8

开关 光电二极管 输出元件
文件: 总38页 (文件大小:960K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R1245x SERIES  
1.2A, 30V Step Down DC/DC converter  
NO.EA-269-130322  
OUTLINE  
The R1245x series are CMOS-based Step-down DC/DC converter with internal N-channel high side Tr. The  
ON resistance of the built-in high-side transistor is 0.35Ω and the R1245 can provide the maximum 1.2A output  
current. Each of the ICs consists of an oscillator, a PWM control circuit, a voltage reference unit, an error  
amplifier, a phase compensation circuit, a slope compensation circuit, a soft-start circuit, protection circuits, an  
internal voltage regulator, and a switch for bootstrap circuit. The ICs can make up a step-down DC/DC converter  
with an inductor, resistors, a diode, and capacitors.  
The R1245x series are current mode operating type DC/DC converters without an external current sense  
resistor, and realizes fast response and high efficiency. As an output capacitor, a ceramic type capacitor can be  
used with the R1245X series. The options of the internal oscillator frequency are preset at 330kHz for version A  
and B, 500kHz for version C and D, 1000kHz for version E and F, 2400kHz for version G and H.  
As for protection, an Lx peak current limit circuit cycle by cycle, a thermal shutdown function and an under  
voltage lockout (UVLO) function are built in. Furthermore, there are two types for short protection, for A/C/E/G  
version, a latch protection function which makes the output latch off if the output voltage keeps lower than the set  
output voltage for a certain time after detecting current limit is built in, for B/D/F/H version, a fold-back protection  
function which changes the oscillator frequency slower after detecting short circuit or equivalent.  
As for the packages of the R1245 series, HSOP-8E, DFN(PLP)2020-8, SOT23-6W are available.  
FEATURES  
Operating Voltage ················································ 4.5V~30V  
Internal N-channel MOSFET Driver························· RON=0.35Ω Typ.  
Adjustable output voltage with external resistor ······ 0.8V or more  
Feedback voltage and tolerance ····························· 0.8V±1.0%  
Peak current limit····················································· Typ. 2.0A  
UVLO function released voltage······························ Typ. 4.0V  
Operating frequency················································ 330kHz (A/B version), 500kHz (C/D version),  
1000kHz (E/F version), 2400kHz (G/H version)  
Fold-back protected frequency································ 170kHz (B/D version), 250kHz (F version),  
400kHz (H version)  
Latch protection delay time······································ Typ. 4ms for A/C/E/G version  
Ceramic capacitors recommended for input and output.  
Stand-by current ······················································ Typ. 0μA  
Packages································································· SOT-23-6W, DFN(PLP)2020-8, HSOP-8E  
APPLICATIONS  
Power source for digital home appliance such as digital TV, DVD players.  
Power source for 5V PSU or 2-cell or more Li-ion battery powered communication equipment, cameras,  
video instruments such as VCRs, camcorders.  
Power source for high voltage battery-powered equipment.  
Power source for office equipment such as printers and fax machines.  
1
R1245x  
BLOCK DIAGRAMS  
V IN  
Thermal Shutdown  
5V  
CE  
UVLO  
Regulator  
Regulator  
BST  
Shutdown  
SETPULSE  
S
D
Oscil lator  
*1  
FB  
Lx  
MAXDUTY  
R
-
+
Reference  
-
+
Soft Start  
0.8V  
Circuit(1ms)  
Limit Latch  
Circuit (4ms)  
*1  
Current Slope  
Circui  
t
GND  
Peak Current  
Limit Circuit  
*1  
Version  
Oscillator frequency  
Short protection type  
A
B
C
D
E
F
330kHz  
330kHz  
500kHz  
500kHz  
1000kHz  
1000kHz  
2400kHz  
2400kHz  
Latch  
Fold-back  
Latch  
Fold-back  
Latch  
Fold-back  
Latch  
G
H
Fold-back  
2
R1245x  
SELECTION GUIDE  
In the R1245x Series, the package, type of short protection (Latch or Fold back), and the oscillator frequency  
can be selected with the user’s request.  
Product code  
R1245S003-E2-FE  
R1245K003-TR  
Package  
HSOP-8E  
Quantity per reel  
1,000  
Pb free  
Yes  
Halogen free  
Yes  
Yes  
DFN(PLP)2020-8  
5,000  
Yes  
SOT-23-6W  
3,000  
Yes  
Yes  
R1245N001-TR-FE  
: Designation of the oscillator frequency and the protection function option.  
Oscillator  
frequency  
Latch  
protection  
Fold back  
protection  
Symbol  
A
B
C
D
E
F
330kHz  
330kHz  
500kHz  
500kHz  
1000kHz  
1000kHz  
2400kHz  
2400kHz  
9
9
9
9
9
9
9
9
G
H
3
R1245x  
PIN CONFIGURATION  
DFN(PLP)2020-8  
Bottom View  
6 7 8  
Top View  
7 6  
8
5
5
1
2
3
4
4
3
2
1
HSOP-8E  
Bottom View  
SOT-23-6W  
Top View  
Top View  
8
7
6
5
5
6 7 8  
6
5
4
1
2
3
1
2
3
4
4
3 2 1  
*Connect the backside heat radiation tub to GND or same as GND level (recommendation). The tub is connected  
to the GND pin.  
PIN DESCRIPTION  
z R1245S(HSOP-8E)  
Pin No.  
Symbol  
LX  
Description  
1
2
3
4
5
6
7
8
LX Switching Pin  
Power Supply Pin  
VIN  
CE  
Chip Enable Pin (Active with ”H”)  
TEST pin (must be open for user side.)  
Ground Pin  
TEST  
GND  
FB  
Feedback Pin  
NC  
No connection  
BST  
Bootstrap Pin  
*Connect the backside heat radiation tub to GND or same as GND level (recommendation). The tub is connected  
to the GND pin.  
4
R1245x  
z R1245K (DFN(PLP)2020-8)  
Pin No.  
Symbol  
LX  
Description  
1
2
3
4
5
6
7
8
LX Switching Pin  
Power Supply Pin  
Power Supply Pin  
VIN  
VIN  
CE  
Chip Enable Pin (Active with ”H” )  
Ground Pin  
GND  
FB  
Feedback Pin  
TEST  
BST  
Test Pin ( must be open for user side.)  
Bootstrap Pin  
*Connect the backside heat radiation tub to GND or same as GND level (recommendation). The tub is connected  
to the GND pin.  
z R1245N (SOT23-6W)  
Pin No.  
Symbol  
BST  
GND  
FB  
Description  
1
2
3
4
5
6
Bootstrap Pin  
Ground Pin  
Feedback Pin  
CE  
Chip Enable Pin (Active with ”H” )  
Power Supply Pin  
VIN  
LX  
LX Switching Pin  
ABSOLUTE MAXMUM RATINGS  
(GND=0V)  
Symbol  
VIN  
Item  
Rating  
-0.3 to 32.0  
Unit  
Input Voltage  
V
V
V
V
V
V
VBST  
VLX  
BST Pin Voltage  
LX Pin Voltage  
VLX-0.3 to VLX+6.0  
-0.3 to VIN+0.3  
-0.3 to VIN+0.3  
-0.3 to VIN+0.3  
-0.3 to 6.0  
VCE  
CE Pin Input Voltage  
CE Pin input Voltage  
Feedback Pin Voltage  
VCE  
VFB  
HSOP-8E  
Standard Land Pattern*  
2900  
880  
PD  
Power Dissipation DFN(PLP)2020-8  
SOT-23-6W  
Standard Land Pattern*  
Standard Land Pattern*  
mW  
430  
Ta  
Operating Temperature Range  
Storage Temperature Range  
-40 to 105  
-55 to 125  
ºC  
ºC  
Tstg  
*For Power Dissipation, refer to the PACKAGE INFORMATION on the web site.  
ABSOLUTE MAXIMUM RATINGS  
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent  
damages and may degrade the lifetime and safety for both device and system using the device in the field.  
The functional operation at or over these absolute maximum ratings is not assured.  
5
R1245x  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified, VIN= 12V, Ta=25ºC)  
Symbol  
VIN  
Item  
Conditions  
MIN.  
TYP. MAX. Unit  
4.5  
30  
V
Operating Input Voltage  
VIN Consumption Current  
IIN  
0.5  
1.0  
mA  
VIN=30V, VFB=1.0V  
VUVLO2 VUVLO2  
Specified VIN falling  
edge  
VUVLO1  
VUVLO2  
3.6  
3.8  
V
V
UVLO Detect Voltage  
-0.2  
-0.1  
4.0  
4.2  
UVLO Released Voltage  
Specified rising edge  
VFB  
0.792 0.800 0.808  
±100  
V
VFB Voltage Tolerance  
VFB/T  
ppm/ºC  
VFB Voltage Temperature Coefficient  
-40ºC Ta 105ºC  
Version A/B  
Version C/D  
Version E/F  
Version G/H  
Version B/D  
300  
450  
900  
330  
500  
360  
550  
fosc  
kHz  
kHz  
Oscillator Frequency  
1000  
1100  
2600  
2200 2400  
170  
fFLB  
Fold back Frequency  
VFB<0.56V  
Version F  
250  
400  
Version H  
Version A/B/C/D  
Version E/F  
92  
88  
76  
1
Maxduty  
%
Oscillator Maximum. Duty Cycle  
Version G/H  
tSS  
tDLY  
ms  
ms  
Ω
Soft-start Time  
VFB=0.72V  
4
Delay Time for Latch Protection  
LX High Side Switch ON Resistance  
Version A/C/E/G  
VBST-VLX=4.5V  
RLXH  
ILXHOFF  
ILIMLXH  
VCEL  
VCEH  
IFB  
0.35  
0
5
μA  
A
LX High Side Switch Leakage Current VIN=30V, VCE=0V  
1.5  
2.0  
2.7  
0.3  
LX High Side Switch Limited Current  
CE “L” Input Voltage  
VBST-VLX=4.5V  
VIN=30V  
V
1.6  
-1.0  
-1.0  
-1.0  
V
CE “H” Input Voltage  
VFB Input Current  
VIN=30V  
1.0  
1.0  
1.0  
μA  
μA  
μA  
VIN=30.0V, VFB=1.0V  
VIN=30V, VCE=0V  
VIN=30V, VCE=30V  
ICEL  
CE “L” Input Current  
ICEH  
CE “H” Input Current  
Thermal Shutdown Detect  
Temperature  
TTSD  
160  
0
ºC  
Hysteresis 30ºC  
VIN=30V  
Istandby  
5
μA  
Standby Current  
RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)  
All of electronic equipment should be designed that the mounted semiconductor devices operate within the  
recommended operating conditions. The semiconductor devices cannot operate normally over the recommended  
operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the  
semiconductor devices may receive serious damage when they continue to operate over the recommended operating  
conditions.  
6
R1245x  
TYPICAL APPLICATION  
R1245x00xA/B 330kHz VOUT=1.2V VIN=24V  
V
IN  
V
IN  
BST  
24V  
R1  
6kΩ  
C
BST  
C
470pF  
SPD  
C
10µF  
IN  
0.47µF  
L 10µH  
FB  
Lx  
C
47µF  
OUT  
D
R2  
12kΩ  
TEST  
CE  
R
CE  
“H”active  
10kΩ  
GND  
(recommended)  
R1245x00xC/D 500kHz VOUT=3.3V VIN=24V  
V
24V  
IN  
V
IN  
BST  
C
SPD  
C
BST  
R1  
3.75kΩ  
C
10µF  
IN  
1000pF  
0.47µF  
L 10µH  
FB  
Lx  
C
22µF  
OUT  
D
R2  
1.2kΩ  
TEST  
CE  
RCE  
“H”active  
10kΩ  
(recommended)  
GND  
*TEST pin must be open.  
7
R1245x  
R1245x00xE/F 1000kHz VOUT=3.3V VIN=12V  
V
IN  
12V  
V
IN  
BST  
C
470pF  
SPD  
R1  
3.75kΩ  
C
BST  
CIN  
0.47µF  
4.7µF  
L 4.7µH  
FB  
Lx  
C
10µF  
OUT  
D
R2  
TEST  
CE  
1.2kΩ  
RCE  
“H”active  
10kΩ  
(recommended)  
GND  
R1245x00xG/H 2400kHz VOUT=5.0V VIN=12V  
V
IN  
V
IN  
BST  
12V  
C
470pF  
SPD  
C
BST  
R1  
6.3kΩ  
CIN  
0.47µF  
L 2.2µH  
2.2µF  
FB  
Lx  
C
4.7µF  
OUT  
D
R2  
1.2kΩ  
TEST  
CE  
R
10kΩ  
CE  
“H”active  
GND  
(recommended)  
*TEST pin must be open.  
TECHNICAL NOTES  
*External components must be connected as close as possible to the ICs and make wiring as short as possible.  
Especially, the capacitor connected in between VIN pin and GND pin must be wiring the shortest. If their  
impedance is high, internal voltage of the IC may shift by the switching current, and the operating may be  
unstable. Make the power supply and GND lines sufficient. In the wiring of the power supply, GND, LX, VOUT and  
the inductor, large current by switching may flow. To avoid the bad influence, the wiring between the resistance,  
“Rup” for setting the output voltage and loading, and the wiring between the inductor and loading must be  
separated.  
*The ceramic capacitors have low ESR (Equivalent Series Resistance) and recommended for the ICs. The  
recommendation of CIN capacitor between VIN and GND is 10μF or more for A/B/C/D version, 4.7μF or more for  
E/F version, and 2.2μF or more for G/H version. Verify the bias dependence and the temperature characteristics  
of the ceramic capacitors. Recommendation conditions are written based on the case which the  
recommendation parts are used with the R1245.  
*The R1245 series are designed with the recommendation inductance value and ceramic capacitor value and  
phase compensation has been made. If the inductance value is large, due to the lack of current sensing amount  
of the current mode, unstable operation may result. On the contrary, if the inductance value is small, the current  
sensing amount may increase too much, low frequency oscillation may occur when the on duty ratio is beyond  
8
R1245x  
50%. Not only that, if the inductance value is small, according to the increase of the load current, the peak  
current of the switching may increase, as a result, the current may reach the current limit value and the current  
limit may work.  
*As for the diode, use the Schottky diode with small capacitance between terminals. The reference characteristic  
of the capacitance between terminals is around 100pF or less at 10V. If the capacitance between terminals is  
large, excess switching current may flow and the operation of the IC may be unstable. If the capacitance  
between terminals of the Scottky diode is beyond 100pF at 10V or unknown, verify the load regulation, line  
regulation, and the load transient response.  
*Output voltage can be set by adjustment of the values of R1 and R2. The equation of setting the output voltage  
is VOUT=VFB × (R1+R2)/R2. If the values of R1 and R2 are large, the impedance of FB pin increases, and pickup  
the noise may result. The recommendation value range of R2 is approximately between 1.0kto 16k. If the  
operation may be unstable, reduce the impedance of FB pin.  
*For the CE pin, as an ESD protection element, a diode to VIN pin is formed internal of the IC. If CE pin voltage  
may become higher than VIN pin voltage, to prevent flowing large current from CE pin to VIN pin, connect 10kΩ or  
more resistor between CE and VIN pin.  
*Connect the backside heat radiation tub of the DFN(PLP)2020-9/HSOP-8E to the GND. As for multi-layered  
boards, to make better power dissipation, putting some thermal vias on the thermal pad in the land pattern and  
radiation of the heat to another layer is effective.  
*After the soft-start operation, the latch function is enabled for version A/C/E/G. The latch protection starts the  
internal counter when the internal current limit protection circuit detects the current limit. When the internal  
counter counts up to the latch timer limit, typically 4ms, the output is latched off. To reset the latch function, make  
the CE pin “L”, or make VIN pin voltage lower than UVLO detector threshold. Then in the case that the output  
voltage or FB voltage becomes setting voltage within the latch timer preset time, counter is initialized. If the slew  
rate of the power supply is too slow and after the soft-start time, the output voltage does not reach the set output  
voltage even if the latch timer preset time is over, the latch function may work unexpectedly.  
*After the soft-start operation, fold back protection function is enabled for version B/D/F/H. The fold back function  
will limit the oscillator frequency if the FB pin voltage becomes lower than typically 0.56V. For B/D version, the  
oscillator frequency will be reduced typically into 170kHz, for F version, into 250kHz, for H version, into 400kHz.  
If the slew rate of the power supply is too slow, and even after the soft-start time, the output voltage is still less  
than 70% of the set output voltage, or FB pin voltage is less than typically 0.56V, then this function may work  
unexpectedly.  
The performance of power circuit using this IC largely depends on external components. Selection of external  
components is very important, especially, do not exceed each rating value (voltage/current/power).  
9
R1245x  
Recommended values for each output voltage  
R1245x00xA/B: 330kHz  
0.8 to  
1.2  
1.2 to  
2.5  
2.5 to  
5.0  
VOUT (V)  
5.0 ≤  
R1(RUP) (k)  
R2(RBOT) (k)  
CSPD (pF)  
=(VOUT / 0.8-1) × R2  
16  
12  
1.20  
1.20  
open  
470  
2200  
1000  
COUT (μF)  
47  
47  
10  
22  
15  
22  
33  
L(μH)  
4.7  
R1245x00xC/D500kHz  
0.8 to  
1.2  
1.2 to  
1.5  
1.5 to  
2.0  
2.0 to  
5.0  
5.0 to  
12.0  
VOUT (V)  
12.0 ≤  
R1(RUP) (k)  
=(VOUT / 0.8-1) × R2  
R2(RBOT) (k)  
CSPD (pF)  
COUT (μF)  
L(μH)  
16  
open  
100  
4.7  
16  
100  
100  
4.7  
16  
100  
22  
1.2  
1000  
22  
1.2  
1000  
22  
1.2  
470  
22  
10  
10  
15  
15  
R1245x00xE/F1000kHz  
0.8 to  
1.0  
1.0 to  
1.2  
1.2 to  
1.5  
1.5 to  
2.5  
2.5 to  
5.0  
VOUT (V)  
5.0 ≤  
R1(RUP) (k)  
=(VOUT / 0.8-1) × R2  
R2(RBOT) (k)  
CSPD (pF)  
COUT (μF)  
L(μH)  
16  
open  
100  
2.2  
16  
100  
100  
2.2  
16  
100  
47  
16  
100  
22  
1.2  
470  
10  
1.2  
470  
10  
2.2  
2.2  
4.7  
10  
R1245x00xG/H2400kHz  
1.2 to  
1.8  
1.8 to  
2.5  
2.5 to  
5.0  
VOUT (V)  
5.0 ≤  
R1(RUP) (k)  
=(VOUT / 0.8-1) × R2  
R2(RBOT) (k)  
CSPD (pF)  
COUT (μF)  
L(μH)  
16  
100  
10  
12  
100  
10  
1.2  
470  
4.7  
2.2  
1.2  
470  
4.7  
4.7  
1.0  
1.5  
10  
R1245x  
*Divider resisters values and possible setting range of input /output  
Input Voltage range [V]  
VOUT  
R1(RUP)  
R2(RBOT)  
[V]  
[k]  
[k]  
Ver.AB  
Ver.CD  
Ver.EF  
4.5 to 7  
Ver.GH  
-
0
0
open  
16  
4.5 to  
13.5  
0.8  
4.5 to 20  
4.5 to  
25.5  
4.5 to 17  
4.5 to 20  
4.5 to 8.5  
4.5 to 10  
-
-
1
4
8
16  
16  
12  
12  
16  
16  
12  
16  
1.2  
16  
12  
1.2  
1.2  
4.5 to 30  
4.5 to 30  
4.5 to 30  
4.5 to 30  
6
4.5 to  
12.5  
4.5 to  
5.5  
10.5  
14  
1.5  
1.8  
2
4.5 to 25  
4.5 to 30  
4.5 to 30  
20  
4.5 to  
6.5  
4.5 to 15  
4.5 to 17  
15  
24  
4.5 to 7  
1.8  
34  
2.5  
4.5 to 30  
4.5 to 30  
4.5 to 30  
4.5 to 30  
4.5 to 21  
4.5 to 9  
25.5  
2.55  
4.5 to  
27.5  
4.5 to  
12  
3.3  
5
3.75  
6.3  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
5.5 to 30  
6.5 to 30  
10 to 30  
13 to 30  
5.5 to 30  
6.5 to 30  
10 to 30  
13 to 30  
6 to 30  
7 to 30  
7 to 17  
8 to 20  
6
7.8  
11 to 30  
14 to 30  
17 to 30  
12 to 30  
16 to 30  
20 to 30  
30  
9
12.3  
16.8  
12  
15  
24  
16.5 to 30 16.5 to 30  
21.3  
34.8  
26.5 to 30 26.5 to 30 27.5 to 30  
11  
R1245x  
Recommended external Components examples (Considering all the range)  
Characteristics  
Value  
Parts Name  
MFR  
Symbol  
TAIYO YUDEN  
MURATA  
CIN  
50V/X5R  
50V/X7R  
10μF  
4.7μF  
2.2μF  
10μF  
UMK325BJ106MM-T  
GRM31CR71H475KA12L  
GRM31CR71H225KA88L  
UMK325BJ106MM-T  
MURATA  
50V/X7R  
50V/X5R  
TAIYO YUDEN  
COUT  
50V/X7R  
25V/X7R  
10V/X7R  
Nippon Chemi-Con  
MURATA  
10μF  
10μF  
KTS500B106M55N0T00  
GRM31CR71E106K  
GRM31CR71A226M  
MURATA  
22μF  
GRM32EB31C476KE15  
GRM32ER71A476KE15  
MURATA  
MURATA  
16V B  
10V/X7R  
47μF  
47μF  
NOTE: The value of COUT depends on the setting  
output voltage.  
TAIYO YUDEN  
TDK  
CBST  
16V/X7R  
1.8A  
0.47μF  
10μH  
EMK212B7474KD-T  
SLF6045T-100M1R6-3PF  
SLF7045T-4R7M2R0-PF  
NR4018T-4R7M2R0-PF  
NR6020T4R7M  
L
1.65A  
1.7A  
TDK  
4.7μH  
4.7μH  
4.7μH  
10μH  
15μH  
22μH  
33μH  
2.2μH  
2.2μH  
1.5μH  
TDK  
2.4A  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
TDK  
1.9A  
NR6028T100M  
2.3A  
NR6045T150M  
1.9A  
NR6045T220M  
1.9A  
NR8040T330M  
1.7A  
VLCF4020T-2R2N1R7  
NR4012T2R2M  
1.65A  
1.8A  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
Panasonic  
TOSHIBA  
NR3015T1R5N  
1.8A  
1.0μH  
0.42V  
0.37V  
0.55V  
NR4010T1R0N  
30V/1.5A  
30V/2.0A  
40V/2.0A  
40V/2.0A  
D
MA22D28  
CMS06  
TOSHIBA  
CMS11  
0.43V  
0.32V  
MA24D60  
Panasonic  
15V/2.0A  
SBS010M  
SANYO  
RCE  
An UP DIODE is formed between the CE pin and the VIN pin as an ESD protection element.  
If the CE pin may become higher than the voltage of the VIN pin, connect the 10kohm resistance between the  
CE pin and VIN pin, to prevent a large current from flowing into the VIN pin from the CE pin.  
12  
R1245x  
Operation of the Buck Converter and the Output Current  
The DC/DC converter charges energy in the inductor when the switch turns on, and discharges the energy from  
the inductor when the switch turns off and controls with less energy loss, so that a lower output voltage than the  
input voltage is obtained. Refer to the following figures.  
<Basic Circuit>  
<Current through the inductor>  
IL  
ILmax  
i1  
VOUT  
ILmin  
topen  
L
Switch  
Diode  
VIN  
i2  
COUT  
GND  
ton  
toff  
T=1/fosc  
Step 1: The switch turns on and current IL (=i1) flows, and energy is charged into COUT. At this moment, IL  
increases from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of the switch.  
Step 2: When the switch turns off, the diode turns on in order to maintain IL at ILmax, and current IL (=i2)  
flows.  
Step 3: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and the diode  
turns off. This case is called as discontinuous mode. If the output current becomes large, next switching  
cycle starts before IL becomes 0 and the diode turns off. In this case, IL value increases from ILmin (>0),  
and this case is called continuous mode.  
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with  
the oscillator frequency (fosc) being maintained constant.  
Output Current and Selection of External Components  
The relation between the output current and external components is as follows:  
When the switch of LX turns on:  
(Wherein, the peak to peak value of the ripple current is described as IRP, the ON resistance of the switch is  
described as RONH, and the diode forward voltage as VF, and the DC resistance of the inductor is described as  
RL, and on time of the switch is described as ton)  
VIN = VOUT + (RONH + RL) × IOUT + L × IRP / ton ································································ Equation 1  
When the switch turns off (the diode turns on) as toff:  
L × IRP / toff = VF + VOUT + RL × IOUT ··············································································· Equation 2  
Put Equation 2 to Equation 1 and solve for ON duty of the switch, ton / ( toff + ton) = DON,  
DON = (VOUT + VF + RL × IOUT)/(VIN + VF - RONH × IOUT)···················································· Equation 3  
13  
R1245x  
Ripple Current is as follows:  
IRP = (VIN VOUT RONH × IOUT RL × IOUT) × DON / fosc / L·············································Equation 4  
wherein, peak current that flows through L, and the peak current ILmax is as follows:  
ILmax = IOUT + IRP / 2······································································································Equation 5  
As for the valley current ILmin,  
ILmin = IOUT - IRP / 2 ·······································································································Equation 6  
If ILmin<0, the step-down DC/DC converter operation becomes current discontinuous mode.  
Therefore the current condition of the current discontinuous mode, the next formula is true.  
IOUT < IRP / 2 ··················································································································Equation 7  
Consider ILmax and ILmin, conditions of input and output and select external components.  
*The above explanation is based on the calculation in an ideal case in continuous mode.  
14  
R1245x  
Ripple Current and Lx current limit  
The ripple current of the inductor may change according to the various reasons. In the R1245x series, as an  
Lx current limit, Lx peak current limit is used. Therefore the upper limit of the inductor current is fixed.  
The peak current limit is not the average current of the inductor (output current). If the ripple current is large,  
peak current becomes also large. The characteristic is used for the fold back current limit of version B/D/F/H.  
In other words, the peak current limit is maintained and the switching frequency is reduced, as a result, the  
average current of the inductor is reduced. To release this condition, at 170kHz for version B/D, at 250kHz  
for version F, at 400kHz for version H must not be beyond the peak current limit. In the fig.1, the sequence of  
the Lx current limit function is described.  
Fig.1 LX Limit function sequence  
Latch protection function for version A/C/E/G  
The latch function works after detecting current limit and if the output voltage becomes low for a certain time,  
the output is latched off. Refer to the TECHNICAL NOTES.  
Fold back protection function for version B/D/F/H  
If FB voltage becomes lower than approximately 0.56V, the fold back protection function limits the oscillator  
frequency to typically 170kHz for version B/D, typically 250kHz fir version F, typically 400kHz for version H.  
By reducing frequency, the ripple current increases. The R1245x has the peak current limit function,  
therefore as in the equation 8, the Lx average current decreases by the increase of the ripple current.  
IOUT =ILmax + IRP / 2  
Equation 8  
If FB voltage becomes less than 0.56V, the oscillator frequency is reduced. At heavy load, if the R1245x  
becomes into the fold back protection mode, the situation may not be released by increase the ripple current.  
In terms of other notes on this protection function, refer to the TECHNICAL NOTES.  
15  
R1245x  
MAXIMUM OUTPUT CURRENT  
The output current of the R1245x is limit by the power dissipation PD of the package and the maximum  
specification 1.2A. The loss of the IC includes the switching loss, and it is difficult to estimate. To estimate the  
maximum output, using the efficiency data is one method.  
By using the efficiency data, the loss including the external components can be calculated with the equation,  
(100/efficiency(%)-1)x(VOUT(V)xIOUT(V)). From this equation, by reducing the loss of external components, the  
loss of the IC can be estimated. The main loss of the external components is composed by the rectifier diode  
and DCR of the inductor. Supposed that the forward voltage of the diode is described as VF, the loss of the  
diode can be described as follows:  
(VIN(V)-RON(Ω)xIOUT(A)-VOUT(V)-VF(V)))/VIN(V)xVF(V)xIOUT(A)  
The loss by the DCR of the inductor can be calculated by the formula DCR(Ω)xIOUT2(A).  
Thus,  
The loss of the IC = (100 / efficiency(%) -1) x (VOUT(V) x IOUT(A) - (VIN(V) - RON(Ω) x IOUT(A) - VOUT(V) -VF(V)) /  
VIN(V) x VF(V) xIOUT(A) - DCR(Ω) x IOUT2(A)  
The efficiency of the R1245 at Ta=25°C, VIN=12V, VOUT=3.3V, IOUT=600mA is approximately 89.5% for version  
A/B(Oscillator frequency 330kHz). Supposed that the On resistance of the internal driver is 0.35Ω, the DCR of  
the inductor is 65mΩ, the VF of the rectifier diode is 0.3V and applied to the formula above,  
The loss of the IC = (100% / 89.5% - 1) x (3.3V x 0.6A) - (12V - 0.35Ω x 0.6A - 3.3V - 0.3V) / 12V x 0.3V x 0.6A  
- 0.065Ωx0.62A=86mW  
The power dissipation PD of the package is specified at Ta=25°C based on the Tjmax=125°C. Thus the thermal  
resistance of the package θja=(Tjmax(°C)-Ta(°C))/PD(W), therefore the thermal resistance of the each  
available package is as follows:  
HSOP-8E: (125°C-25°C)/2.9W=34.5°C/W  
DFN(PLP)2020-8: (125°C-25°C)/0.88W=114°C/W  
SOT-23-6W: (125°C-25°C)/0.43W=233°C/W  
Due to the loss of the IC is 86mW for this example, therefore Tj increase of the each package is as follows:  
HSOP-8E: 34.5°C/Wx86mW=2.96°C  
DFN(PLP)2020-8: 114°C/Wx86mW=9.80°C  
SOT-23-6W: 233°C/Wx86mW=20.0°C  
For all the packages, even if the ambient temperature is at 105°C, Tj can be suppressed less than 125°C. By  
the increase of the temperature, on resistance and switching loss increases, therefore, temperature margin is  
not enough, measure the efficiency at the actual maximum temperature and recalculation is necessary.  
At the same condition, if the preset frequency is 2400kHz, the efficiency will be down to approximately 81%.  
The result of the loss calculation is 310mW, therefore the Tj increase of each package is,  
HSOP-8E: 34.5°C/Wx310mW=11°C  
DFN(PLP)2020-8: 114°C/Wx310mW=35°C  
SOT-23-6W: 233°C/Wx310mW=72°C  
HSOP-8E can be used at the ambient temperature 105°C, DFN(PLP)2020-8 can be used at the ambient  
temperature up to 90°C, SOT-23-6W can be used at the ambient temperature up to 53°C. Note that the result  
is different by the frequency.  
16  
R1245x  
The next graphs are the output current and estimated ambient temperature limit.  
Maximum output current  
VIN=12V , VOUT=3.3V , fosc=330kHz  
-40°C  
105°C  
1400  
1200  
1000  
800  
600  
400  
200  
0
SOT-23-6W  
DFN2020-8  
HSOP-8E  
-50  
0
50  
100  
150  
Ta[°C]  
VIN=12V , VOUT=3.3V , fosc=2400kHz  
-40°C  
1400  
105°C  
1200  
1000  
800  
600  
400  
200  
0
SOT-23-6W  
DFN2020-8  
HSOP-8E  
-50  
0
50  
100  
150  
Ta[°C]  
17  
R1245x  
INTERNAL EQUIVALENT CIRCUIT FOR EACH PIN  
<BST pin>  
<Lx pin>  
Regulator  
VIN  
BST  
LX  
LX  
<FB pin>  
<CE pin>  
Regulator  
VIN  
CE  
FB  
<TEST pin>  
Regulator  
TEST  
18  
R1245x  
TYPICAL CHARACTERISTICS  
1) FB voltage vs. Temperature  
2)Driver On resistance vs. Temperature  
R1245x00xx  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
R1245x00xx  
(VIN=12V)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(VIN=12V)  
500  
450  
400  
350  
300  
250  
200  
0.808  
0.806  
0.804  
0.802  
0.8  
0.798  
0.796  
0.794  
0.792  
-50 -25  
0
25 50 75 100 125  
Ta (  
-50 -25  
0
25 50 75 100 125  
Ta (  
)
)
3) Oscillator frequency vs. Temperature  
R1245x00xA/R1245x00xB  
R1245x00xC/R1245x00xD  
(VIN=12V)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(VIN=12V)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
550  
360  
350  
340  
330  
320  
310  
300  
525  
500  
475  
450  
-50 -25  
0
25 50 75 100 125  
Ta (  
-50 -25  
0
25 50 75 100 125  
Ta (  
)
)
R1245x00xE/R1245x00xF  
(VIN=12V)  
R1245x00xG/R1245x00xH  
(VIN=12V)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
2640  
2560  
2480  
2400  
2320  
2240  
2160  
1100  
1050  
1000  
950  
900  
-50 -25  
0
25 50 75 100 125  
Ta (  
-50 -25  
0
25 50 75 100 125  
Ta (  
)
)
19  
R1245x  
4) Maximum duty cycle vs. Temperature  
R1245x00xA/R1245x00xB  
R1245x00xC/R1245x00xD  
(VIN=12V)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(VIN=12V)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
99  
98  
97  
96  
95  
94  
93  
92  
99  
98  
97  
96  
95  
94  
93  
92  
-50 -25  
0
25 50 75 100 125  
Ta (  
-50 -25  
0
25 50 75 100 125  
Ta (  
)
)
R1245x00xE/R1245x00xF  
(VIN=12V)  
R1245x00xG/R1245x00xH  
(VIN=12V)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
96  
95  
94  
93  
92  
91  
90  
89  
86  
85  
84  
83  
82  
81  
80  
79  
-50 -25  
0
25 50 75 100 125  
Ta (  
-50 -25  
0
25 50 75 100 125  
Ta (  
)
)
20  
R1245x  
5) Fold back frequency vs. Temperature  
R1245x00xB  
R1245x00xD  
(VIN=12V)  
(VIN=12V)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
240  
220  
200  
180  
160  
140  
120  
100  
80  
240  
220  
200  
180  
160  
140  
120  
100  
80  
-50 -25  
0
25 50 75 100 125  
Ta (  
-50 -25  
0
25 50 75 100 125  
Ta (  
)
)
R1245x00xF  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
R1245x00xH  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(VIN=12V)  
(VIN=12V)  
420  
370  
320  
270  
220  
170  
120  
720  
620  
520  
420  
320  
220  
120  
-50 -25  
0
25 50 75 100 125  
Ta (  
-50 -25  
0
25 50 75 100 125  
Ta (  
)
)
6) High side switch current limit vs. Temperature  
R1245x00xx  
(VIN=12V)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
-50 -25  
0
25 50 75 100 125  
Ta (  
)
21  
R1245x  
7) UVLO detector threshold vs. Temperature  
8) UVLO released voltage vs. Temperature  
R1245x00xx  
R1245x00xx  
4.1  
4
4.2  
4.1  
4
3.9  
3.8  
3.7  
3.6  
3.9  
3.8  
-50 -25  
0
25 50 75 100 125  
Ta (  
-50 -25  
0
25 50 75 100 125  
Ta (  
)
)
9) Soft-start time vs. Temperature  
10) Timer latch delay vs. Temperature  
R1245x00xx  
R1245x00xx  
(VIN=12V)  
(VIN=6V)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
1.8  
1.6  
1.4  
1.2  
1
6
5
4
3
2
1
0.8  
0.6  
0.4  
-50 -25  
0
25 50 75 100 125  
Ta (  
-50 -25  
0
25 50 75 100 125  
Ta (  
)
)
11) CE “H” Input voltage vs. Temperature  
12) CE “L” Input voltage vs. Temperature  
R1245x00xx  
R1245x00xx  
(VIN=12V)  
(VIN=12V)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0.5  
-50 -25  
0
25 50 75 100 125  
Ta (  
-50 -25  
0
25 50 75 100 125  
Ta (  
)
)
22  
R1245x  
13) Soft-start waveform  
R1245x00xA/R1245x00xB  
VOUT=3.3V , VIN=12V , IOUT=0mA , Ta=25°C  
R1245x00xA/R1245x00xB  
VOUT=3.3V , VIN=12V , IOUT=600mA , Ta=25°C  
V
CE  
V
CE  
(5V/div)  
(5V/div)  
V
OUT  
V
OUT  
(1V/div)  
(1V/div)  
I
LX  
I
LX  
(200mA/div)  
(200mA/div)  
LX  
V
LX  
V
(10V/div)  
(10V/div)  
200µs/div  
200µs/div  
14) Switching operation waveform  
R1245x00xA/R1245x00xB  
R1245x00xA/R1245x00xB  
VOUT=3.3V , VIN=12V , IOUT=0mA , Ta=25°C  
VOUT=3.3V , VIN=12V , IOUT=600mA , Ta=25°C  
OUT (AC)  
OUT  
V
V
(AC)  
(20mV/div)  
(20mV/div)  
LX  
I
ILX  
(200mA/div)  
(200mA/div)  
LX  
LX  
V
V
(5V/div)  
(5V/div)  
2µs/div  
2µs/div  
R1245x00xG/R1245x00xH  
R1245x00xG/R1245x00xH  
VOUT=3.3V , VIN=12V , IOUT=20mA , Ta=25°C  
VOUT=3.3V , VIN=12V , IOUT=600mA , Ta=25°C  
V
OUT (AC)  
VOUT (AC)  
(20mV/div)  
(20mV/div)  
I
LX  
I
LX  
(200mA/div)  
(200mA/div)  
V
LX  
VLX  
(5V/div)  
(5V/div)  
200ns/div  
200ns/div  
23  
R1245x  
15) Loaf transient response waveform  
R1245x00xA/R1245x00xB  
R1245x00XA/R1245x00xB  
VOUT=0.8V , VIN=12V , IOUT=6001200mA , Ta=25°C  
VOUT=3.3V , VIN=12V , IOUT=6001200mA , Ta=25°C  
VOUT  
VOUT  
(100mV/div)  
(200mV/div)  
IOUT  
IOUT  
(500mA/div)  
(500mA/div)  
100µs/div  
100µs/div  
R1245x00xG/R1245x00xH  
R1245x00xG/R1245x00xH  
VOUT=1.5V , VIN=4.5V , IOUT=6001200mA , Ta=25°C  
VOUT=3.3V , VIN=12V , IOUT=6001200mA , Ta=25°C  
V
OUT  
V
OUT  
( 100mV /div )  
( 100mV /div )  
I
OUT  
I
OUT  
( 500mA /div )  
( 500mA /div )  
50us/div  
50us/div  
24  
R1245x  
16) Limit latch operation waveform  
R1245x00xA  
17) Released waveform from limit latch  
R1245x00xA  
VOUT=3.3V , VIN=12V , ROUT=5.50.05, Ta=25°C  
VOUT=3.3V , VIN=12V , ROUT=5.50.055.5Ω  
, Ta=25°C  
V
OUT  
VOUT  
(2V/div)  
(2V/div)  
V
LX  
VLX  
(10V/div)  
(10V/div)  
I
LX  
I
LX  
(1A/div)  
(1A/div)  
1ms/div  
1ms/div  
18) Fold back operation waveform  
R1245x00xB  
19) Released waveform from fold back  
R1245x00xB  
VOUT=3.3V , VIN=12V , ROUT=5.50.05Ω  
Ta=25°C  
VOUT=3.3V , VIN=12V , ROUT=5.50.055.5Ω  
Ta=25°C  
V
OUT  
V
OUT  
(2V/div)  
(2V/div)  
LX  
LX  
V
V
(10V/div)  
(10V/div)  
LX  
I
LX  
I
(1A/div)  
(1A/div)  
20µs/div  
20µs/div  
20) Switching waveform at fold back operation  
R1245x00xB  
VOUT=3.3V , VIN=12V , ROUT=0.05, Ta=25°C  
OUT  
V
(2V/div)  
V
LX  
(10V/div)  
I
LX  
(1A/div)  
2µs/div  
25  
R1245x  
21) Output current vs. Efficiency (Version A/B)  
R1245x00xA/R1245x00xB  
R1245x00xA/R1245x00xB  
OUT=3.3V  
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
V
OUT=0.8V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
V
(Ta=25  
)
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN = 4.5V  
VIN = 6.0V  
VIN = 18V  
VIN = 4.5 V  
VIN = 12 V  
VIN = 24 V  
0.01  
0.1  
1
10  
100 1000 10000  
0.01  
0.1  
1
10  
100 1000 10000  
IOUT (mA)  
IOUT (mA)  
R1245x00xA/R1245x00xB  
OUT=5.0V  
R1245x00xA/R1245x00xB  
OUT=12V  
V
V
(Ta=25  
)
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN = 12V  
VIN = 24V  
VIN = 30V  
VIN = 18V  
VIN = 24V  
VIN = 30V  
0.01  
0.1  
1
10  
100 1000 10000  
0.01  
0.1  
1
10  
100 1000 10000  
IOUT (mA)  
IOUT (mA)  
R1245x00xA/R1245x00xB  
OUT=15V  
R1245x00xA/R1245x00xB  
OUT=24V  
V
V
(Ta=25  
)
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN = 24V  
VIN = 30V  
VIN=30V  
0.01  
0.1  
1
10  
100 1000 10000  
0.01  
0.1  
1
10  
100 1000 10000  
IOUT (mA)  
IOUT (mA)  
26  
R1245x  
22) Output Current vs. Efficiency (Version C/D)  
R1245x00xC/R1245x00xD  
VOUT=0.8V  
R1245x00xC/R1245x00xD  
OUT=3.3V  
V
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(Ta=25  
)
(Ta=25  
)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN = 4.5V  
VIN = 12V  
VIN = 24V  
VIN = 4.5V  
VIN = 6.0V  
VIN = 12V  
0.01  
0.1  
1
10  
100 1000 10000  
0.01  
0.1  
1
10  
100 1000 10000  
IOUT (mA)  
IOUT (mA)  
R1245x00xC/R1245x00xD  
OUT=5.0V  
R1245x00xC/R1245x00xD  
OUT=12V  
V
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
V
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(Ta=25  
)
(Ta=25  
)
100  
100  
80  
60  
40  
20  
0
VIN = 12V  
VIN = 24V  
VIN = 30V  
VIN = 18V  
VIN = 24V  
VIN = 30V  
80  
60  
40  
20  
0
0.01  
0.1  
1
10  
100 1000 10000  
0.01  
0.1  
1
10  
100 1000 10000  
IOUT (mA)  
IOUT (mA)  
R1245x00xC/R1245x00xD  
OUT=15V  
R1245x00xC/R1245x00xD  
OUT=24V  
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
V
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
V
(Ta=25  
)
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN = 24V  
VIN = 30V  
VIN = 30V  
0.01  
0.1  
1
10  
100 1000 10000  
0.01  
0.1  
1
10  
100 1000 10000  
IOUT (mA)  
IOUT (mA)  
27  
R1245x  
23) Output current vs. Efficiency (Version E/F)  
R1245x00xE/R1245x00xF  
R1245x00xE/R1245x00xF  
VOUT=3.3V  
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
V
OUT=0.8V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(Ta=25  
)
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN = 4.5V  
VIN = 12V  
VIN = 24V  
VIN = 4.5V  
VIN = 6.0V  
0.01  
0.1  
1
10  
100 1000 10000  
0.01  
0.1  
1
10  
100 1000 10000  
IOUT (mA)  
IOUT (mA)  
R1245x00xE/R1245x00xF  
VOUT=5.0V  
R1245x00xE/R1245x00xF  
VOUT=12V  
(Ta=25  
)
(Ta=25  
)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN = 12V  
VIN = 24V  
VIN = 30V  
VIN = 24V  
VIN = 30V  
0.01  
0.1  
1
10  
100 1000 10000  
0.01  
0.1  
1
10  
100 1000 10000  
IOUT (mA)  
IOUT (mA)  
R1245x00xE/R1245x00xF  
VOUT=15V  
R1245x00xE/R1245x00xF  
VOUT=24V  
(Ta=25  
)
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN = 24V  
VIN = 30V  
VIN = 30V  
0.01  
0.1  
1
10  
100 1000 10000  
0.01  
0.1  
1
10  
100 1000 10000  
IOUT (mA)  
IOUT (mA)  
28  
R1245x  
24) Output current vs. Efficiency (Version G/H)  
R1245x00xG/R1245x00xH  
OUT=3.3V  
R1245x00xG/R1245x00xH  
VOUT=1.5V  
V
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(Ta=25  
)
(Ta=25  
)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN = 6V  
VIN = 10V  
VIN = 12V  
VIN = 4.5V  
0.01  
0.1  
1
10  
100 1000 10000  
0.01  
0.1  
1
10  
100 1000 10000  
IOUT (mA)  
IOUT (mA)  
R1245x00xG/R1245x00xH  
VOUT=5.0V  
R1245x00xG/R1245x00xH  
VOUT=12V  
(Ta=25  
)
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
VIN = 8.0V  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN = 24V  
VIN = 12V  
VIN = 30V  
0.01  
0.1  
1
10  
100 1000 10000  
0.01  
0.1  
1
10  
100 1000 10000  
IOUT (mA)  
IOUT (mA)  
29  
R1245x  
25) Output current vs Output voltage (Version A/B)  
R1245x00xA/R1245x00xB  
OUT=3.3V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
R1245x00xA/R1245x00xB  
V
VOUT=0.8V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(Ta=25  
)
(Ta=25  
)
ꢀꢀꢀ  
0.808  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
VIN=4.5V  
VIN=18V  
VIN=6.0V  
VIN = 4.5 V  
VIN = 24 V  
VIN = 12 V  
0.806  
0.804  
0.802  
0.800  
0.798  
0.796  
0.794  
0.792  
0
200  
400  
600  
800 1000 1200  
0
200 400 600 800 1000 1200  
IOUT (mA)  
IOUT (mA)  
R1245x00xA/R1245x00xB  
R1245x00xA/R1245x00xB  
VOUT=12V  
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
V
OUT=5.0V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(Ta=25  
)
5.05  
5.03  
5.01  
4.99  
4.97  
4.95  
12.30  
12.20  
12.10  
12.00  
11.90  
VIN = 12V  
VIN = 30V  
VIN = 24V  
VIN = 18V  
VIN = 30V  
VIN = 24V  
0
200 400 600 800 1000 1200  
IOUT (mA)  
0
200  
400  
600  
800 1000 1200  
IOUT (mA)  
R1245x00xA/R1245x00xB  
R1245x00xA/R1245x00xB  
VOUT=24V  
V
OUT=15V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(Ta=25  
)
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
15.60  
15.40  
15.20  
15.00  
14.80  
24.70  
24.50  
24.30  
24.10  
23.90  
VIN = 24V  
VIN = 30V  
VIN = 30V  
0
200 400 600 800 1000 1200  
IOUT (mA)  
0
200  
400  
600  
800 1000 1200  
IOUT (mA)  
30  
R1245x  
26) Output current vs. Output voltage (Version C/D)  
R1245x00xC/R1245x00xD  
R1245x00xC/R1245x00xD  
V
OUT=0.8V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
VOUT=3.3V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(Ta=25 )  
(Ta=25  
)
0.808  
0.806  
0.804  
0.802  
0.800  
0.798  
0.796  
0.794  
0.792  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
VIN = 4.5V  
VIN = 12V  
VIN = 6.0V  
VIN = 4.5V  
VIN = 24V  
VIN = 12V  
0
200 400 600 800 1000 1200  
IOUT (mA)  
0
200  
400  
600  
800 1000 1200  
IOUT (mA)  
R1245x00xC/R1245x00xD  
VOUT=5.0V  
R1245x00xC/R1245x00xD  
VOUT=12V  
(Ta=25  
)
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
5.05  
5.03  
5.01  
4.99  
4.97  
4.95  
12.20  
12.10  
12.00  
11.90  
11.80  
VIN = 12V  
VIN = 30V  
VIN = 24V  
VIN = 18V  
VIN = 30V  
VIN = 24V  
0
200 400 600 800 1000 1200  
IOUT (mA)  
0
200  
400  
600  
800 1000 1200  
IOUT (mA)  
R1245x00xC/R1245x00xD  
VOUT=15V  
R1245x00xC/R1245x00xD  
VOUT=24V  
(Ta=25  
)
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
15.40  
15.20  
15.00  
14.80  
14.60  
24.40  
24.20  
24.00  
23.80  
23.60  
VIN = 24V  
VIN = 30V  
VIN = 30V  
0
200 400 600 800 1000 1200  
IOUT (mA)  
0
200  
400  
600  
800 1000 1200  
IOUT (mA)  
31  
R1245x  
27) Output current vs. Output voltage (Version E/F)  
R1245x00xE/R1245x00xF  
VOUT=3.3V  
R1245x00xE/R1245x00xF  
VOUT=0.8V  
(Ta=25  
)
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
ꢀꢀꢀ  
0.808  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
VIN = 4.5V  
VIN = 24V  
VIN = 12V  
0.806  
0.804  
0.802  
0.800  
0.798  
0.796  
0.794  
0.792  
VIN = 4.5V  
0
200  
400  
600  
800 1000 1200  
0
200 400 600 800 1000 1200  
IOUT (mA)  
IOUT (mA)  
R1245x00xE/R1245x00xF  
VOUT=5.0V  
R1245x00xE/R1245x00xF  
VOUT=12V  
(Ta=25  
)
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
5.05  
5.03  
5.01  
4.99  
4.97  
4.95  
12.20  
12.10  
12.00  
11.90  
11.80  
VIN = 12V  
VIN = 30V  
VIN = 24V  
VIN = 24V VIN = 30V  
0
200 400 600 800 1000 1200  
IOUT (mA)  
0
200  
400  
600  
800 1000 1200  
IOUT (mA)  
R1245x00xE/R1245x00xF  
VOUT=15V  
R1245x00xE/R1245x00xF  
VOUT=24V  
(Ta=25  
)
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
15.60  
15.40  
15.20  
15.00  
14.80  
24.40  
24.20  
24.00  
23.80  
23.60  
VIN = 24V  
VIN = 30V  
VIN = 30V  
0
200 400 600 800 1000 1200  
IOUT (mA)  
0
200  
400  
600  
800 1000 1200  
IOUT (mA)  
32  
R1245x  
28) Output current vs. Output voltage (Version G/H)  
R1245x00xG/R1245x00xH  
R1245x00xG/R1245x00xH  
V
OUT=1.5V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
VIN = 4.5V  
VOUT=3.3V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(Ta=25 )  
(Ta=25  
)
1.515  
1.510  
1.505  
1.500  
1.495  
1.490  
1.485  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
VIN = 6V  
VIN = 10V  
VIN = 12V  
0
200  
400  
600  
800 1000 1200  
0
200  
400  
600  
800 1000 1200  
IOUT (mA)  
IOUT (mA)  
R1245x00xG/R1245x00xH  
OUT=5.0V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
R1245x00xG/R1245x00xH  
VOUT=12V  
V
(Ta=25 )  
(Ta=25  
)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
5.05  
5.03  
5.01  
4.99  
4.97  
4.95  
12.20  
12.10  
12.00  
11.90  
11.80  
VIN = 8.0V VIN = 12V  
VIN = 24V VIN = 30V  
0
200  
400  
600  
800 1000 1200  
0
200  
400  
600  
800 1000 1200  
IOUT (mA)  
IOUT (mA)  
33  
R1245x  
29) Input voltage vs. Output voltage (Version A/B)  
R1245x00xA/R1245x00xB  
R1245x00xA/R1245x00xB  
OUT=3.3V  
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
V
OUT=0.8V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
V
(Ta=25  
)
0.808  
0.806  
0.804  
0.802  
0.800  
0.798  
0.796  
0.794  
0.792  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
IOUT=1mA  
IOUT=10mA  
IOUT=1200mA  
IOUT=1mA  
IOUT=100mA  
IOUT=1200mA  
IOUT=100mA  
IOUT=500mA  
4
6
8
10  
(V)  
12  
14  
16  
18  
4
8
12  
16  
(V)  
20  
24  
28  
V
IN  
V
IN  
R1245x00xA/R1245x00xB  
VOUT=5.0V  
R1245x00xA/R1245x00xB  
VOUT=12V  
(Ta=25  
)
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
5.05  
5.03  
5.01  
4.99  
4.97  
4.95  
12.20  
12.15  
12.10  
12.05  
12.00  
11.95  
IOUT=1mA  
IOUT=100mA  
IOUT=1200mA  
IOUT=100mA  
IOUT=1200mA  
IOUT=500mA  
IOUT=500mA  
4
6
8 10 12 14 16 18 20 22 24 26 28 30  
(V)  
12 14 16 18 20 22 24 26 28 30  
(V)  
V
IN  
V
IN  
R1245x00xA/R1245x00xB  
OUT=15V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
R1245x00xA/R1245x00xB  
OUT=24V  
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
V
V
(Ta=25  
)
15.30  
15.20  
15.10  
15.00  
14.90  
24.20  
24.10  
24.00  
23.90  
23.80  
IOUT=100mA  
IOUT=1200mA  
IOUT=500mA  
IOUT=100mA  
IOUT=1200mA  
IOUT=500mA  
14 16 18 20 22 24 26 28 30  
(V)  
24  
25  
26  
27  
(V)  
28  
29  
30  
V
IN  
V
IN  
34  
R1245x  
30) Input voltage vs. Output voltage (Version C/D)  
R1245x00xC/R1245x00xD  
R1245x00xC/R1245x00xD  
V
OUT=0.8V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
VOUT=3.3V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(Ta=25 )  
(Ta=25  
)
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
0.81  
0.81  
0.80  
0.80  
0.80  
0.80  
0.80  
0.79  
0.79  
1mA  
500mA  
100mA  
1200mA  
1mA  
500mA  
100mA  
1200mA  
4.5  
6
7.5  
V
9
10.5  
12  
13.5  
4
8
12  
16  
(V)  
20  
24  
28  
(V)  
IN  
V
IN  
R1245x00xC/R1245x00xD  
OUT=5.0V  
R1245x00xC/R1245x00xD  
OUT=12V  
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
V
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
V
(Ta=25  
)
5.05  
5.03  
5.01  
4.99  
4.97  
4.95  
12.20  
12.10  
12.00  
11.90  
11.80  
1mA  
100mA  
100mA  
500mA  
500mA  
1200mA  
1200mA  
4
6
8 10 12 14 16 18 20 22 24 26 28 30  
(V)  
12 14 16 18 20 22 24 26 28 30  
(V)  
V
IN  
V
IN  
R1245x00xC/R1245x00xD  
OUT=15V  
R1245x00xC/R1245x00xD  
OUT=24V  
V
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
V
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(Ta=25  
)
(Ta=25  
)
15.40  
15.30  
15.20  
15.10  
15.00  
14.90  
14.80  
14.70  
14.60  
24.20  
24.10  
24.00  
23.90  
23.80  
100mA  
500mA  
100mA  
500mA  
1200mA  
1200mA  
14 16 18 20 22 24 26 28 30  
(V)  
24  
25  
26  
27  
(V)  
28  
29  
30  
V
IN  
V
IN  
35  
R1245x  
31) Input voltage vs. Output voltage (Version E/F)  
R1245x00xE/R1245x00xF  
R1245x00xE/R1245x00xF  
OUT=3.3V  
V
OUT=0.8V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
V
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(Ta=25  
100mA  
)
(Ta=25  
)
0.808  
0.806  
0.804  
0.802  
0.800  
0.798  
0.796  
0.794  
0.792  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
1mA  
1mA  
100mA  
500mA  
1200mA  
500mA  
1200mA  
4.5  
5
5.5  
(V)  
6
6.5  
4
8
12  
16  
(V)  
20  
24  
28  
V
IN  
V
IN  
R1245x00xE/R1245x00xF  
OUT=5.0V  
R1245x00xE/R1245x00xF  
OUT=12V  
V
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
V
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(Ta=25  
)
(Ta=25  
)
5.05  
5.03  
5.01  
4.99  
4.97  
4.95  
12.20  
12.10  
12.00  
11.90  
11.80  
1mA  
500mA  
100mA  
1200mA  
100mA  
1200mA  
500mA  
5
10  
15  
(V)  
20  
25  
30  
12 14 16 18 20 22 24 26 28 30  
(V)  
V
IN  
V
IN  
R1245x00xE/R1245x00xF  
OUT=15V  
R1245x00xE/R1245x00xF  
OUT=24V  
V
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
V
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
(Ta=25  
)
(Ta=25  
)
15.40  
15.20  
15.00  
14.80  
14.60  
24.40  
24.20  
24.00  
23.80  
23.60  
100mA  
1200mA  
500mA  
100mA  
1200mA  
500mA  
16  
18  
20  
22  
(V)  
24  
26  
28  
30  
26  
27  
28  
(V)  
29  
30  
V
IN  
V
IN  
36  
R1245x  
32) Input voltage vs. Output voltage (Version G/H)  
R1245x00xG/R1245x00xH  
R1245x00xG/R1245x00xH  
OUT=3.3V  
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
V
OUT=1.5V  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
V
(Ta=25  
100mA  
)
1.515  
1.510  
1.505  
1.500  
1.495  
1.490  
1.485  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
1mA  
500mA  
1mA  
100mA  
1200mA  
1200mA  
500mA  
4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5  
(V)  
4.5  
4.7  
4.9  
(V)  
5.1  
5.3  
5.5  
V
V
IN  
IN  
R1245x00xG/R1245x00xH  
OUT=5.0V  
R1245x00xG/R1245x00xH  
OUT=12V  
(Ta=25 )  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ℃  
V
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
V
(Ta=25  
)
5.05  
5.03  
5.01  
4.99  
4.97  
4.95  
12.20  
12.10  
12.00  
11.90  
11.80  
1mA  
500mA  
100mA  
1200mA  
100mA  
1200mA  
500mA  
6
8
10  
12  
(V)  
14  
16  
18  
14 16 18 20 22 24 26 28 30  
(V)  
V
V
IN  
IN  
37  
1.The products and the product specifications described in this document are subject to change or  
discontinuation of production without notice for reasons such as improvement. Therefore, before  
deciding to use the products, please refer to Ricoh sales representatives for the latest  
information thereon.  
2.The materials in this document may not be copied or otherwise reproduced in whole or in part  
without prior written consent of Ricoh.  
3.Please be sure to take any necessary formalities under relevant laws or regulations before  
exporting or otherwise taking out of your country the products or the technical information  
described herein.  
4.The technical information described in this document shows typical characteristics of and  
example application circuits for the products. The release of such information is not to be  
construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual  
property rights or any other rights.  
5.The products listed in this document are intended and designed for use as general electronic  
components in standard applications (office equipment, telecommunication equipment,  
measuring instruments, consumer electronic products, amusement equipment etc.). Those  
customers intending to use a product in an application requiring extreme quality and reliability,  
for example, in a highly specific application where the failure or misoperation of the product  
could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system,  
traffic control system, automotive and transportation equipment, combustion equipment, safety  
devices, life support system etc.) should first contact us.  
6.We are making our continuous effort to improve the quality and reliability of our products, but  
semiconductor products are likely to fail with certain probability. In order to prevent any injury to  
persons or damages to property resulting from such failure, customers should be careful enough  
to incorporate safety measures in their design, such as redundancy feature, firecontainment  
feature and fail-safe feature. We do not assume any liability or responsibility for any loss or  
damage arising from misuse or inappropriate use of the products.  
7.Anti-radiation design is not implemented in the products described in this document.  
8.Please contact Ricoh sales representatives should you have any questions or comments  
concerning the products or the technical information.  
For the conservation of the global environment, Ricoh is advancing the decrease of the negative environmental impact material.  
After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.  
Basically after Apr. 1, 2012, we will ship out the Power Management ICs of the Halogen Free products only. (Ricoh Halogen Free products are  
also Antimony Free.)  
Halogen Free  
RICOH COMPANY, LTD.  
Electronic Devices Company  
http://www.ricoh.com/LSI/  
RICOH COMPANY, LTD.  
Electronic Devices Company  
● Higashi-Shinagawa Office (International Sales)  
3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan  
Phone: +81-3-5479-2857 Fax: +81-3-5479-0502  
RICOH EUROPE (NETHERLANDS) B.V.  
● Semiconductor Support Centre  
“Nieuw KronenburgProf. W.H. Keesomlaan 1, 1183 DJ, Amstelveen, The Netherlands  
P.O.Box 114, 1180 AC Amstelveen  
Phone: +31-20-5474-309 Fax: +31-20-5474-791  
RICOH ELECTRONIC DEVICES KOREA Co., Ltd.  
11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea  
Phone: +82-2-2135-5700 Fax: +82-2-2135-5705  
RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd.  
Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203,  
People's Republic of China  
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299  
RICOH COMPANY, LTD.  
Electronic Devices Company  
● Taipei office  
Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)  
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY