R1283K1B-TR [RICOH]

DC-DC Regulated Power Supply Module, 2.70 X 3 MM, DFN-12;
R1283K1B-TR
型号: R1283K1B-TR
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

DC-DC Regulated Power Supply Module, 2.70 X 3 MM, DFN-12

文件: 总22页 (文件大小:416K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R1283x series  
2ch DCDC for CCD & OLED  
NO.EA-157-071019  
OUTLINE  
The R1283X 2ch DC/DC converter is designed for CCD & OLED Display power source. It contains a step up  
DC/DC converter and an inverting DC/DC converter to generate two required voltages by CCD & OLED Display.  
Step up DC/DC converter generates boosted output voltage up to 20V. Inverting DC/DC converter generates  
negative voltage up to Vin voltage minus 20V independently. Start up sequence is internally made. Each of the  
R1283X series consists of an oscillator, a PWM control circuit, a voltage reference, error amplifiers, over current  
protection circuits, short protection circuits, an under voltage lockout circuit (UVLO), an Nch driver for boost  
operation, a Pch driver for inverting, and so on. A high efficiency boost and inverting DC/DC converter can be  
composed with external inductors, diodes, capacitors, and resistors.  
FEATURES  
Operating Voltage・・・・ 2.5V ~ 5.5V  
Step Up DC/DC (CH1)  
Internal Nch MOSFET Driver (Ron=400mTyp.)  
Adjustable Vout Up to 20V with external resistor  
Internal Soft start function (Typ. 4.5ms)  
Over Current Protection  
Maximum Duty Cycle: 91%(Typ.)  
Inverting DC/DC (CH2)  
Internal Pch MOSFET Driver (Ron=400mTyp.)  
Adjustable Vout Up to Vdd-20V with external resistor  
Auto Discharge function for negative output  
Internal Soft start function (Typ. 4.5ms)  
Over Current Protection  
Maximum Duty Cycle: 91%(Typ.)  
Short Protection with timer latch function (Typ. 50ms); Short condition for either or both two outputs  
makes all output drivers off and latches./ If the maximum duty cycle continues for a certain time, these  
output drivers will be turned off.  
CE with start up sequence function  
CH1CH2 (R1283K001X)/CH2->CH1(R1283K002X) Selectable  
UVLO function.  
Operating Frequency Selection・・・・ 300kHz / 700kHz / 1400kHz  
・・・・  
DFNPLP12 ( 2.7mm x 3.0mm ) or WLCSP11( 1.5mm x 2.4mm )  
Small package  
APPLICATION  
Fixed voltage power supply for portable equipment  
Fixed voltage power supply for CCD,OLED,LCD  
1
R1283x  
BLOCK DIAGRAM  
Timer  
Current Limit  
V
CC  
PVCC  
LX2  
UVLO  
PWM  
Control  
Maxduty  
VREF  
V
REF  
Discharge  
Control  
+
V
FB2  
V
FB1  
VOUTN  
+
LX1  
GND  
CE  
PWM  
Control  
Sequence  
Control  
PGND  
SELECTION GUIDE  
The mask option for the ICs can be selected at the user's request. The selection can be made with designating the  
part number as shown below.  
R 1 2 8 3 X 0 0 X X - X X  
Part Number  
a
c d  
b
code  
a
contents  
Designation of Package Type  
KDFN(PLP)-2730-12  
ZWLCSP11  
Designation of Start-up Sequence  
1: first CH1, second CH2.  
b
c
2: first CH2, second CH1.  
Designation of Oscillator Frequency  
A: 300kHz, B: 700kHz, C: 1400kHz  
Designation of Taping Type  
TRDFN(PLP)-2730-12  
E2WLCSP11  
d
*1The WLCSP11 package of the oscillation frequency 300kHz is being developed.  
2
R1283x  
PIN CONFIGURATION  
DFN(PLP)-2730-12  
WLCSP-11  
3
2
1
VFB1  
NC  
PGN  
PVCC  
GND  
VFB1  
VCC  
12  
11  
10  
9
8
7
1
2
3
4
5
6
PGND  
PVCC  
GND  
VCC  
LX1  
LX2  
VOUTN  
A
B
C
D
LX1  
LX2  
CE  
VOUTN  
VFB2  
CE  
VFB2  
VREF  
VREF  
Top View  
Mark Side  
Bump Side  
Bottom View  
PIN DESCRIPTIONS  
DFN(PLP)  
PIN No.  
NAME  
NC  
L
X
1  
L
X
2  
V
OUTN  
CE  
V
FB
2  
V
REF  
V
CC  
V
FB
1  
GND  
PV
CC  
PGND  
FUNCTION  
1
2
3
4
5
6
7
8
9
No Connect  
Switching pin for Step up DC/DC  
Switching pin for Inverting DC/DC  
Discharge pin for Negative output  
Chip enable pin for the R1283  
Feedback pin for Inverting DC/DC  
Reference voltage output pin  
Analog power source input pin  
Feedback pin for Step up DC/DC  
Analog GND pin  
10  
11  
12  
Power input pin  
Power GND pin  
WLCSP  
PIN No.  
NAME  
PGND  
V
FB
1  
L
X
1  
PV
CC  
CE  
FUNCTION  
Power GND pin  
Feedback pin for Step up DC/DC  
Switching pin for Step up DC/DC  
Power input pin  
Chip enable pin for the R1283  
Switching pin for Inverting DC/DC  
Analog GND pin  
Discharge pin for Negative output  
Analog power source input pin  
Reference voltage output pin  
Feedback pin for Inverting DC/DC  
A1  
A2  
A3  
B1  
B2  
B3  
C1  
C3  
L
X
2  
GND  
V
OUTN  
V
CC  
V
REF  
V
FB
2  
D1  
D2  
D3  
3
R1283x  
ABSOLUTE MAXIMUM RATINGS  
(GND / PGND=0V)  
Item  
Symbol  
VCC  
Rating  
6.5  
Unit  
V
VCC / PVCC pin Voltage  
V
FB
1 pin Voltage  
V
FB
2 pin Voltage  
CE pin Voltage  
V
REF
pin Voltage  
L
X
1 pin Voltage  
L
X
1 pin Current  
L
X
2 pin Voltage  
L
X
2 pin Current  
V
DTC  
V
FB  
V
CE  
V
REF  
V
LX
1  
I
LX
1  
V
LX
2  
I
LX
2  
V
NFB  
PD  
-0.3~VCC+0.3  
-0.7(*1)~VCC+0.3  
-0.3~VCC+0.3  
-0.7(*1)~VCC+0.3  
-0.3~24  
Internally Limited  
VCC-24 ~ VCC+0.3  
Internally Limited  
VCC-24 ~ VCC+0.3  
1000  
V
V
V
V
V
A
V
A
V
V
OUTN
pin Voltage  
Power Dissipation  
Operating
Temperature Range  
Storage Temperature Range  
mW  
ºC  
ºC  
Topt  
Ts
tg  
-40 ~ +85  
-55 ~ +125  
*1: In case the voltage range is from -0.7V to -0.3V, permissible current is 10mA or less.  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum ratings are threshold limit values that must not be exceeded ever for an  
instant under any conditions. Moreover, such values for any two items must not be reached  
simultaneously. Operation above these absolute maximum ratings may cause degradation or  
permanent damage to the device. These are stress ratings only and do not necessarily imply  
functional operation these limits.  
ELECTRICAL CHARACTERISTICS  
(Topt=25ºC)  
TYP. MAX. Unit.  
Symbol  
VCC  
Item  
Conditions  
MIN.  
2.5  
Operating Input Voltage  
5.5  
V
VCC=5.5V , FREQ=300kHz  
VCC=5.5V , FREQ=700kHz  
2.0  
4.0  
8.0  
250  
300  
350  
0.1  
mA  
mA  
mA  
uA  
uA  
uA  
uA  
V
CC consumption current  
ICC1  
ICC2  
(switching)  
VCC=5.5V , FREQ =1400 kHz  
VCC=5.5V , FREQ=300kHz  
VCC=5.5V , FREQ=700kHz  
VCC consumption current  
(at no switching)  
VCC=5.5V , FREQ =1400 kHz  
3
ISTB  
Standby current  
VCC=5.5V  
Falling  
VUVLO  
1
2.05  
2.15  
2.25  
V
UVLO detect voltage  
UVLO released voltage  
VUVLO1  
+0.16  
1.2  
2.48  
V
V
VUVLO2  
VREF  
Rising  
1.172  
1.228  
VCC=3.3V  
VREF voltage tolerance  
+VFB2 +VFB2 +VFB2  
VREF  
/T  
Ppm  
/ºC  
V
REF voltage  
temperature coefficient  
VCC=3.3V  
-40ºCTopt85ºC  
±150  
VREF  
/VCC  
5
mV  
VREF Line regulation  
2.5VCC5.5V  
4
R1283x  
VREF  
/IOUT  
VCC=3.3V  
5
mV  
VREF Load regulation  
0.1mAIOUT2mA  
15  
mA  
V
ILIMREF  
VFB1  
VCC=3.3V , VREF=0V  
V
REF short current limit  
FB1 voltage tolerance  
0.985  
1.0  
1.015  
VCC=3.3V  
V
VFB1  
/T  
VFB1 voltage  
temperature coefficient  
VCC=3.3V  
-40ºCTopt85ºC  
Ppm  
/ºC  
±150  
-0.1  
-25  
0.1  
25  
µA  
IFB1  
VFB2  
IFB2  
VCC=5.5V , VFB1=0V or 5.5V  
VCC=3.3V  
V
V
V
FB1 input current  
0
mV  
FB2 voltage tolerance  
FB2 input current  
-0.1  
0.1  
µA  
VCC=5.5V , VFB2=0V or 5.5V  
VCC=3.3V  
VCC=3.3V  
240  
600  
300  
700  
360  
800  
kHz  
kHz  
Fosc  
Oscillator frequency  
VCC=3.3V  
1200 1400 1600 kHz  
86  
91  
%
Maxduty1  
Maxduty2  
TSS1  
VCC=3.3V  
CH1 Max. Duty cycle  
CH2 Max. Duty cycle  
CH1 soft start time  
CH2 soft start time  
Delay time for protection  
LX1 ON resistance  
LX1 Leakage current  
LX1 current limit  
86  
91  
%
VCC=3.3V  
4.5  
4.5  
50  
ms  
ms  
ms  
mΩ  
uA  
A
VCC=3.3V , VFB1=0.9V  
VCC=3.3V , VFB2=0.12V  
VCC=3.3V  
TSS2  
20  
1.0  
1.0  
TDLY  
400  
RLX1  
VCC=3.3V  
5
5
I OFF LX1  
ILIMLX1  
RLX2  
VCC=5.5V , VLX1=20V  
VCC=3.3V  
1.5  
400  
mΩ  
uA  
A
VCC=3.3V  
LX2 ON resistance  
LX2 Leakage current  
LX2 current limit  
I OFF LX2  
ILIMLX2  
IVOUTN  
VCEL  
VCC=5.5V , VLX=-14.5V  
VCC=3.3V  
1.5  
10  
25  
VCC=3.3V , VOUTN=-0.3V  
VCC=2.5V  
VOUTNDischarge current  
0.3  
V
CE “L” input voltage  
CE “H” input voltage  
CE “L” input current  
CE “H” input current  
1.5  
-1.0  
-1.0  
V
VCEH  
VCC=5.5V  
1.0  
1.0  
uA  
uA  
ICEL  
VCC=5.5V  
ICEH  
VCC=5.5V  
5
R1283x  
TYPICAL APPLICATION  
C1  
L1  
D1  
VOUT  
1
LX1  
C2  
C3  
VCC  
R3  
C5  
R2  
PGND  
VFB1  
R1  
VOUTN  
LX2  
PVCC  
D2  
C1B  
VOUT  
2
R6  
C6  
L2  
R5  
EN  
CE  
VFB2  
R4  
GND  
VREF  
C4  
Step-up DC/DC converter output voltage setting  
The output voltage VOUT1 of the step-up DC/DC converter is controlled with maintaining the VFB1 as 1.0V.  
VOUT1 can be set with adjusting the values of R1 and R2 as in the next formula. VOUT1 can be set equal or  
less than 20V.  
VOUT1 = VFB1 x (R1+R2) / R1  
Inverting DC/DC converter output voltage setting  
The output voltage VOUT2 of the inverting DC/DC converter is controlled with maintaining the VFB2 as 0V.  
VOUT2 can be set with adjusting the values of R4 and R5as in the next formula.  
VOUT2 = VFB2 - (VREF-VFB2) x R5 / R4  
Auto Discharge Function  
When CE level turns from ‘H’ to ‘L’ level, the R1283 goes into standby mode and switching of the outputs of  
LX1 and LX2 will stop. Then dischage Tr. between VOUT2 and VCC turns on and discharges the negative  
output voltage. When the negative output voltage is discharged to 0V, the Tr. turns off and the negative  
output will be Hi-Z.  
When the Auto discharge function is unnecessary ,VOUTN connect to VCC or make be Hi-Z.  
CE  
0V  
Negative output  
Hi-Z  
Discharge  
6
R1283x  
Start up Sequence (R1283X001x)  
When CE level turns from ‘L’ to ‘H’ level, the softstart of CH1 starts the operation. After detecting output  
voltage of CH1VOUT1as the nominal level, the soft start of CH2 starts the operation.  
CE  
CH1 (VOUT1)  
Soft start CH1  
Soft Start CH2  
0V  
CH2 (VOUT2)  
Start up Sequence (R1283X002x)  
When CE level turns from ‘L’ to ‘H’ level, the softstart of CH2 starts the operation. After detecting output  
voltage of CH2VOUT2as the nominal level, the soft start of CH1 starts the operation.  
CE  
CH1(VOUT1)  
CH2(VOUT2)  
Soft Start CH2  
Soft start CH1  
0V  
Short protection circuit timer  
In case that the voltage of VFB1 drops, the error amplifier of CH1 outputs "H". In case that the voltage of  
VFB2 rises, the error amplifier of CH2 outputs "L". The built-in short protection circuit makes the ineternal  
timer operate with detecting the output of the error amplifier of CH1 as "H", or the output of the error  
amplifier of CH2 as "L". After the setting time will pass, the switching of LX1 and LX2 will stop.  
To release the latch operatoion, make the Vcc set equal or less than UVLO level and restart or set the CE  
pin as "L" and make it "H" again.  
During the softstart operation of CH1and CH2, the timer operates independently from the outputs of the  
error amplifiers. Therefore, even if the softstart cannot finish correctly because of the short circuit, the  
protection timer function will be able to work correctly.  
Phase Compensation of step-up DC/DC converter  
DC/DC converter's phase may lose 180 degree by external components of L and C and load current.  
Because of this, the phase margin of the system will be less and the stability will be worse. Therefore, the  
phase must be gained.  
A pole will be formed by external components, L and C.  
F
pole ~ 1 / {2×π×√(L1×C2)} CH1)  
pole ~ 1 / {2×π×√(L2×C3)} CH2)  
F
Zero will be formed with R2, C5, R5, and C6.  
F
zero ~ 1/(2×π×R2×C5)  
CH1)  
CH2)  
Fzero ~ 1/(2×π×R5×C6)  
Set the cut-off frequency of the Zero lower than the cut off frequency of the pole by L and C.  
7
R1283x  
To reduce the noise of Feedback voltage  
If the noise of the system is large, the output noise affects the feedback and the operation may be unstable.  
In that case, resistor values, R1, R2, R4, and R5 should be set lower and make the noise into the feedback  
pin reduce. Another method is set R3 and R6 . The appropriate value range is from 1kto 5k.  
Set a ceramic 1µF or more capacitor as C1B between VCC pin and GND. Set another 4.7µF or more  
capacitor between PVcc and GND as C1.  
Set a ceramic 1µF or more capacitor between VOUT1 and GND, and between VOUT2 and GND for each as  
C2 and C3.Recommendation value range is from 4.7µF to 22µF.  
Set a ceramic capacitor between VREF and GND as C4. Recommendation value range is from 0.1µF to  
2.2µF.  
Operation of Step-up DC/DC Converter and Output Current  
Basic Circuit>  
IL2  
Inductor  
Diode  
Lx Tr  
I
OUT  
V
OUT  
VIN  
IL1  
CL  
Current through L>  
Continuous Mode  
Discontinuous Mode  
ILxmax  
ILxmax  
IL  
IL  
ILxmin  
ILxmin  
Tf  
t
t
Ton  
Toff  
Ton  
T=1/fosc  
Toff  
T=1/fosc  
8
R1283x  
There are two operation modes for the PWM control step-up switching regulator, that is the continuous  
mode and the discontinuous mode.  
When the LX Tr. is on, the voltage for the inductor L will be VIN. The inductor current (IL1) will be;  
IL1 = VIN×Ton / ...................................................................................................................Formula1  
When the Lx transistor turns off, power will supply continuously. The inductor current at off (IL2) will be;  
IL2 = (VOUT-VIN)×Tf / L.........................................................................................................Formula2  
In terms of the PWM control, when the Tf=Toff, the inductor current will be continuous, the operation of the  
switching regulator will be continuous mode.  
In the continuous mode, the current variation of IL1 and IL2 are same, therefore  
VIN×Ton / L = (VOUT-VIN)×Toff / L.........................................................................................Formula3  
In the continuous mode, the duty cycle will be  
DUTY = Ton / (Ton+Toff) = (VOUT-VIN) / VOUT .........................................................................Formula4  
If the input power equals to output power,  
2
I
OUT = VIN ×Ton / (2×L×VOUT) ............................................................................................Formula5  
When IOUT becomes more then Formula5 ,it will be continuous mode.  
In this moment ,the peak current,Ilxmax flowing through the inductor is described as follows:  
ILxmax = IOUT×VOUT / VIN + VIN×Ton /2×L......................................................................Formula6  
ILxmax = IOUT×VOUT / VIN + VIN×Tx (VOUT-VIN) /2×L×VOUT...........................................Formula7  
Therefore,peak current is more than IOUT.Considering the value of Ilxmax,the condition of input and  
output,and external components should be selected.  
The explanation above is based on the ideal calculation,and the loss caused by Lx switch and external  
components is not included.  
The actual maximum output current is between 50% and 80% of the calculation.  
Especially,when the IL is large,or VIN is low,the loss of VIN is generated with on resistance of the switch.As  
for VOUT,VF(as much as 0.3V)of the diode should be considered.  
Operation of Inverting DC/DC Converter and Output Current  
Basic Circuit>  
Lx Tr  
Diode  
I
OUT  
V
OUT  
VIN  
IL1  
IL2  
CL  
Inductor  
9
R1283x  
Current through L>  
Discontinuous Mode  
ILxmax  
Continuous Mode  
ILxmax  
IL  
IL  
ILxmin  
ILxmin  
Tf  
t
t
Ton  
T=1/fosc  
Toff  
Ton  
Toff  
T=1/fosc  
There are also two operation modes for the PWM control inverting switching regulator, that is the continuous  
mode and the discontinuous mode.  
When the LX Tr. is on, the voltage for the inductor L will be VIN. The inductor current (IL1) will be;  
IL1 = VIN×Ton / L..................................................................................................................Formula8  
Inverting circuit saves energy during on time of Lx Tr,and supplies the energy to output during off time,output  
voltage opposed to input voltage is obtained. The inductor current at off (IL2) will be;  
IL2 = VOUT×Tf / L.................................................................................................................Formula9  
(The above formula and after, the absolute value of the negative output voltage is assumed to be  
VOUT.  
:Output voltage= -10V ,VOUT=10 )  
In terms of the PWM control, when the Tf=Toff, the inductor current will be continuous, the operation of the  
switching regulator will be continuous mode.  
In the continuous mode, the current variation of IL1 and IL2 are same, therefore  
VIN×Ton / L = VOUT×Toff / L .................................................................................................Formula10  
In the continuous mode, the duty cycle will be:  
DUTY = Ton / (Ton+Toff) = VOUT / (VOUT + VIN )......................................................................Formula11  
If the input power equals to output power,  
2
I
OUT = VIN ×Ton / (2×L×VOUT) ............................................................................................Formula12  
When IOUT becomes more then Formula12 ,it will be continuous mode.  
In this moment ,the peak current,Ilxmax flowing through the inductor is described as follows:  
ILxmax = IOUT×VOUT / VIN + VIN×Ton / 2×L........................................................................Formula13  
ILxmax = IOUT×VOUT / VIN + VIN×VOUT×T / { 2×L×(VOUT + VIN ) }........................................Formula14  
Therefore,peak current is more than IOUT.Considering the value of Ilxmax,the condition of input and  
output,and external components should be selected.  
The explanation above is based on the ideal calculation,and the loss caused by Lx switch and external  
components is not included.  
The actual maximum output current is between 50% and 80% of the calculation.  
Especially,when the IL is large,or VIN is low,the loss of VIN is generated with on resistance of the switch.As  
for VOUT,VF(as much as 0.3V)of the diode should be considered.  
10  
R1283x  
TYPCAL CHARACTERISTICS  
1) Output Voltage VS. Output Current  
R1283x001A  
R1283x001A  
Topt=25°C  
Topt=25°C  
4.8  
-4.2  
-4.3  
-4.4  
-4.5  
-4.6  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
4.7  
4.6  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
4.5  
4.4  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
IOUT2 [mA]  
OUT  
I
1 [mA]  
R1283x001A  
R1283x001A  
Topt=25°C  
Topt=25°C  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
12.6  
12.4  
12.2  
12.0  
11.8  
11.6  
11.4  
-7.2  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
-7.8  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
0
25  
50  
75  
100  
125  
150  
0
50  
100  
150  
200  
OUT  
I
1 [mA]  
OUT  
I
2 [mA]  
R1283x001B  
R1283x001B  
Topt=25°C  
Topt=25°  
C
4.8  
4.7  
4.6  
4.5  
4.4  
-5.2  
-5.3  
-5.4  
-5.5  
-5.6  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
0
50  
100  
150  
1 [mA]  
200  
250  
0
50  
100  
2 [mA]  
150  
200  
OUT  
I
OUT  
I
11  
R1283x  
R1283x001B  
R1283x001B  
Topt=25°C  
Topt=25°C  
12.6  
12.4  
12.2  
12.0  
11.8  
11.6  
11.4  
-7.2  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
-7.8  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
0
50  
100  
150  
200  
250  
0
100  
200  
300  
IOUT1 [mA]  
IOUT2 [mA]  
R1283x001C  
R1283x001C  
Topt=25°C  
Topt=25°C  
-4.2  
-4.3  
-4.4  
-4.5  
-4.6  
4.8  
4.7  
4.6  
4.5  
4.4  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
0
50  
100 150 200 250 300 350  
IOUT1 [mA]  
0
50  
100  
150  
IOUT2 [mA]  
200  
250  
300  
R1283x001C  
R1283x001C  
Topt=25°C  
Topt=25°C  
12.6  
12.4  
12.2  
12.0  
11.8  
11.6  
11.4  
-7.2  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
-7.8  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
0
50  
100  
IOUT1 [mA]  
150  
200  
250  
0
50 100 150 200 250 300 350  
IOUT2 [mA]  
12  
R1283x  
2) Efficiency VS. Output Current  
R1283x001A  
R1283x001A  
Topt=25, VOUT2=-4.4V  
Topt=25 , VOUT1=4.6V  
VOUT1=4.6V , IOUT1=0mA  
VOUT2=-4.4V , IOUT2=0mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
0
20 40 60 80 100 120 140 160  
IOUT2 [mA]  
0
20 40 60 80 100 120 140 160 180  
IOUT1 [mA]  
R1283x001A  
R1283x001A  
Topt=25°C , VOUT1=12V  
VOUT2=-7.5V , IOUT2=0mA  
Topt=25°C , VOUT2=-7.5V  
VOUT1=12V , IOUT1=0mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=5 [V]  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=5 [V]  
0
20 40 60 80 100 120 140 160  
IOUT1 [mA]  
0
20 40 60 80 100 120 140 160  
IOUT2 [mA]  
R1283x001B  
R1283x001B  
Topt=25°C , VOUT1=4.6V  
VOUT2=-5.4V , IOUT2=0mA  
Topt=25°C , VOUT2=-5.4V  
VOUT1=4.6V , IOUT1=0mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
0
30  
60  
90  
120 150 180  
0
50  
100  
150  
200  
250  
IOUT2 [mA]  
IOUT1 [mA]  
13  
R1283x  
R1283x001B  
R1283x001B  
Topt=25°C , VOUT1=12V  
VOUT2=-7.5V , IOUT2=0mA  
Topt=25°C, VOUT2=-7.5V  
VOUT1=12V , IOUT1=0mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=5 [V]  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=5 [V]  
0
40  
80 120 160 200 240 280  
0
30  
60  
90 120 150 180 210  
IOUT1 [mA]  
IOUT2 [mA]  
R1283x001C  
R1283x001C  
Topt=25°C , VOUT2=-4.4V  
Topt=25°C , VOUT1=4.6V  
VOUT2=-4.4V , IOUT2=0mA  
VOUT1=4.6V , IOUT1=0mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
0
40 80 120 160 200 240 280 320  
IOUT1 [mA]  
0
50  
100  
150  
200  
250  
300  
IOUT2 [mA]  
R1283x001C  
R1283x001C  
Topt=25°C , VOUT2=-7.5V  
VOUT1=12V , IOUT1=0mA  
Topt=25°C , VOUT1=12V  
VOUT2=-7.5V , IOUT2=0mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=5 [V]  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=5 [V]  
0
40 80 120 160 200 240 280 320  
IOUT2 [mA]  
0
30 60 90 120 150 180 210 240  
IOUT1 [mA]  
14  
R1283x  
3) CE "L" Input Voltage VS. Temparature  
R1283x00xx  
4) CE "H" Input Voltage VS. Temparature  
R1283x00xx  
VIN=5.5V  
VIN=2.5V  
1.1  
1
1.1  
1
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
5) VFB1 Voltage VS. RTe1m28p3axra0t0uxrex  
6) VFB2 Voltage VS. RTe1m28p3axra0t0uxrex  
1.02  
1.01  
1
0.01  
0.005  
0
0.99  
0.98  
0.97  
-0.005  
-0.01  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
7) VREF Voltage VS. Temparature  
R1283x00xx  
8) UVLO Voltage VS. Temparature  
R1283x00xx  
1.22  
1.21  
1.2  
2.4  
2.35  
2.3  
UVLO Release  
2.25  
1.19  
1.18  
1.17  
1.16  
2.2  
2.15  
UVLO  
0
2.1  
2.05  
-40  
-20  
20  
Topt [°C]  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
15  
R1283x  
9) LX1 ON Resistance VS. Temparature  
R1283x00xx  
10) LX2 ON Resistance VS. Temparature  
R1283x00xx  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
11) LX1 Limit Current VS. Temparature  
R1283x00xx  
12) LX2 Limit Current VS. Temparature  
R1283x00xx  
2
1.8  
1.6  
1.4  
1.2  
1
2
1.8  
1.6  
1.4  
1.2  
1
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
Topt [°C]  
40  
60  
80  
Topt [°C]  
13) Osillator Frequency VS. Temparature  
R1283x00xA  
R1283x00xB  
800  
750  
700  
650  
600  
350  
330  
310  
290  
270  
250  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
16  
R1283x  
R1283x00xC  
1600  
1500  
1400  
1300  
1200  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
14) Maxduty1 VS. Temparature  
R1283x00xA  
R1283x00xB  
94  
93  
92  
91  
90  
89  
88  
94  
93  
92  
91  
90  
89  
88  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
15) Maxduty2 VS. Temparature  
R1283x00xC  
R1283x00xA  
92  
91  
90  
89  
88  
87  
86  
94  
93  
92  
91  
90  
89  
88  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
17  
R1283x  
R1283x00xB  
R1283x00xC  
92  
91  
90  
89  
88  
87  
86  
92  
91  
90  
89  
88  
87  
86  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
16) CH1 Soft-start Time VS. Temparature  
R1283x00xx  
17) CH2 Soft-start Time VS. Temparature  
R1283x00xx  
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
18) Timer Latch Delay Time VS. Temparature  
R1283x00xx  
19) VOUTN Discharge Current VS. Temparature  
R1283x00xx  
0
-20  
-40  
-60  
-80  
100  
80  
60  
40  
20  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
18  
R1283x  
20) Startup Response  
R1283x001x  
R1283x002x  
IN  
Topt=25°C , V =3.6V  
Topt=25°C , VIN=3.6V  
VOUT1=12V , VOUT2=-7.5V  
OUT  
OUT  
V
1=12V , V 2=-7.5V  
6
4
2
0
6
4
2
0
15  
12  
9
CE  
15  
12  
9
CE  
VOUT1  
6
6
OUT  
V
1
3
0
3
0
-3  
-6  
-9  
OUT  
V
2
-3  
-6  
-9  
VOUT2  
0
5
10  
15  
20  
0
5
10  
Time [ms]  
15  
20  
Time [ms]  
21)Shut down Response  
R1283x001x  
R1283x001x (VOUTN=Open)  
Topt=25°C , VIN=3.6V  
VOUT1=12V , VOUT2=-7.5V  
IOUT1=10mA  
Topt=25°C , VIN=3.6V  
VOUT1=12V , VOUT2=-7.5V  
IOUT1=10mA  
6
6
CE  
4
2
0
4
2
0
CE  
15  
15  
12  
9
12  
9
VOUT1  
VOUT1  
6
6
3
0
3
0
VOUT2:not discharge  
-3  
-6  
-9  
-3  
-6  
-9  
VOUT2 :discharge  
0
5
10  
15  
20  
0
5
10  
15  
20  
Time [ms]  
Time [ms]  
R1283x002x  
R1283x002x (VOUTN=Open)  
Topt=25°C , VIN=3.6V  
VOUT1=12V , VOUT2=-7.5V  
Topt=25°C , VIN=3.6V  
VOUT1=12V , VOUT2=-7.5V  
IOUT1=10mA  
IOUT1=10mA  
6
6
4
2
0
4
CE  
CE  
2
0
15  
15  
12  
9
12  
9
VOUT1  
VOUT1  
6
6
3
0
-3  
-6  
-9  
3
0
VOUT2:not discharge  
-3  
-6  
-9  
VOUT2:discharge  
0
5
10  
15  
20  
0
5
10  
15  
20  
Time [ms]  
Time [ms]  
19  
R1283x  
22) Load Transient Response  
R1283x00xA  
R1283x00xA  
Topt=25°C , VIN=3.6V  
Topt=25°C , VIN=3.6V  
-
-
50  
200  
100  
0
0
-
-50  
-100  
-150  
12.6  
12.4  
12.2  
12.0  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
0
1
2
3
4
5
0
1
2
3
4
5
Time [ms]  
Time [ms]  
R1283x00xB  
R1283x00xB  
Topt=25°C , VIN=3.6V  
Topt=25°C , VIN=3.6V  
-
-
50  
12.5  
12.3  
12.1  
11.9  
11.7  
11.5  
200  
100  
0
0
-
-50  
-100  
-150  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
0
1
2
3
4
5
0
1
2
3
4
5
Time [ms]  
Time [ms]  
R1283x00xC  
R1283x00xC  
Topt=25°C , VIN=3.6V  
Topt=25°C , VIN=3.6V  
-
-
50  
12.5  
12.3  
12.1  
11.9  
11.7  
11.5  
200  
100  
0
0
-
-50  
-100  
-150  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
0
1
2
3
4
5
0
1
2
3
4
5
Time [ms]  
Time [ms]  
20  
R1283x  
APPLIED CIRCUIT  
1) Application with outputting power supply (+12V/-7.5V) for CCD from Li battery  
3.6V  
4.7uF  
L1  
SBD  
VOUT1= 12V  
10uF x 2  
LX1  
1kΩ  
VCC  
110kΩ  
PGND  
VFB  
C5  
1
10kΩ  
VOUTN  
LX2  
PVCC  
CE  
SBD  
-7.5V  
VOUT2=  
10uF  
L2  
1kΩ  
C6  
EN  
75kΩ  
VFB2  
Ω
12k  
GND  
VREF  
0.1uF  
L1  
15uH  
L2  
10uH  
C5  
220pF  
C6  
220pF  
Inductor  
SBD  
VLF3010(TDK)  
CR02(TOSHIBA)  
R1283x00xA  
R1283x00xB  
R1283x00xC  
6.8uH  
4.7uH  
6.8uH  
4.7uH  
150pF  
220pF  
150pF  
220pF  
2) Application with outputting power supply (+4.6V/-4.4V) for AMOLED from Li battery  
3.6V  
4.7uF  
L1  
SBD  
4.6  
V
VOUT1=  
LX1  
10uF  
10uF  
1kΩ  
VCC  
36k  
Ω
PGND  
C5  
VFB1  
10k  
Ω
VOUTN  
LX2  
PVCC  
CE  
SBD  
L2  
V
4.4  
VOUT2=  
-
1kΩ  
C6  
EN  
56kΩ  
VFB  
2
GND  
Ω
15k  
VREF  
0.1uF  
L1  
15uH  
L2  
10uH  
C5  
100pF  
C6  
100pF  
Inductor  
SBD  
VLF3010(TDK)  
CR02(TOSHIBA)  
R1283x00xA  
R1283x00xB  
R1283x00xC  
4.7uH  
4.7uH  
4.7uH  
4.7uH  
47pF  
68pF  
33pF  
47pF  
21  
R1283x  
3)Application with output disconnect and discharge.  
EN  
SBD  
VOUT  
1
LX1  
VCC  
PGND  
EN  
VFB1  
VOUTN  
LX2  
PVCC  
CE  
SBD  
VOUT  
2
EN  
VFB2  
GND  
VREF  
22  

相关型号:

R1283K1C-TR

DC-DC Regulated Power Supply Module, 2.70 X 3 MM, DFN-12
RICOH

R1283K2A-TR

DC-DC Regulated Power Supply Module, 2.70 X 3 MM, DFN-12
RICOH

R1283K2B-TR

DC-DC Regulated Power Supply Module, 2.70 X 3 MM, DFN-12
RICOH

R1283K2C-TR

DC-DC Regulated Power Supply Module, 2.70 X 3 MM, DFN-12
RICOH

R1283Z001A-E2-F

DC-DC Regulated Power Supply Module, MODULE-11
RICOH

R1283Z001B-E2

Switching Regulator/Controller
RICOH

R1283Z001B-E2-F

DC-DC Regulated Power Supply Module, MODULE-11
RICOH

R1283Z001C-E2-F

DC-DC Regulated Power Supply Module, MODULE-11
RICOH

R1283Z002B-E2

Switching Regulator/Controller
RICOH

R1283Z002B-E2-F

DC-DC Regulated Power Supply Module, MODULE-11
RICOH

R1283Z002C-E2-F

DC-DC Regulated Power Supply Module, MODULE-11
RICOH

R1283Z1B-E2

DC-DC Regulated Power Supply Module, 1.50 X 2.40 MM, WLCSP-11
RICOH