R5323N008B [RICOH]

150mA 2ch LDO REGULATOR; 150毫安2CH LDO稳压器
R5323N008B
型号: R5323N008B
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

150mA 2ch LDO REGULATOR
150毫安2CH LDO稳压器

稳压器
文件: 总31页 (文件大小:604K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R5323x SERIES  
150mA 2ch LDO REGULATOR  
OUTLINE  
NO.EA-089-0607  
The R5323x Series are CMOS-based voltage regulator ICs with high output voltage accuracy, low supply  
current, low dropout, and high ripple rejection. Each of these voltage regulator ICs consists of a voltage  
reference unit, an error amplifier, resistors for setting Output Voltage, a current limit circuit, and a chip enable  
circuit.  
These ICs perform with low dropout voltage due to built-in transistor with low ON resistance, and a chip enable  
function prolongs the battery life of each system. The line transient response and load transient response of the  
R5323x Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication  
equipment.  
The output voltage of these ICs is internally fixed with high accuracy. Since the packages for these ICs are  
SOT-23-6, PLP1820-6 and WL-CSP-6 package, 2ch LDO regulators are included in each package, high density  
mounting of the ICs on boards is possible.  
FEATURES  
Low Supply Current ......................................................Typ. 90µA (VR1, VR2)  
Standby Mode...............................................................Typ. 0.1µA (VR1, VR2)  
Low Dropout Voltage.....................................................Typ. 0.22V (IOUT=150mA , Output Voltage Type)  
<
High Ripple Rejection ...............................Typ. 75dB(VOUT 2.4V) , Typ. 70dB(VOUT 2.5V) (f=1kHz)  
=
=
<
Typ. 65dB(VOUT 2.4V) , Typ. 60dB(VOUT 2.5V) (f=10kHz)  
=
Low Temperature-drift Coefficient of Output Voltage....Typ. ±100ppm/°C  
Excellent Line Regulation .............................................Typ.0.02%/V  
High Output Voltage Accuracy ......................................±2.0%  
=
Small Packages ..........................................................SOT-23-6, PLP1820-6, WL-CSP-6  
Output Voltage ..............................................................Stepwise setting with a step of 0.1V in the range of  
1.5V to 4.0V is possible  
Built-in chip enable circuit (A/B: active high)  
Built-in fold-back protection circuit................................Typ. 40mA (Current at short mode)  
Ceramic Capacitor is recommended. (1.0µF or more)  
APPLICATIONS  
Power source for handheld communication equipment.  
Power source for electrical appliances such as cameras, VCRs and camcorders.  
Power source for battery-powered equipment.  
1
R5323x  
BLOCK DIAGRAMS  
R5323xxxxA  
R1_1  
R2_1  
Error Amp.  
Vref  
Current Limit  
R1_2  
Error Amp.  
Vref  
R2_2  
Current Limit  
R5323xxxxB  
R1_1  
Error Amp.  
Vref  
R2_1  
Current Limit  
R1_2  
Error Amp.  
Vref  
R2_2  
Current Limit  
2
R5323x  
SELECTION GUIDE  
The output voltage, mask option, and the taping type for the ICs can be selected at the user's request.  
The selection can be made with designating the part number as shown below;  
R5323xxxxx-xx-x Part Number  
↑ ↑ ↑  
a b  
c
d
e
Code  
Contents  
Designation of Package Type:  
N : SOT-23-6  
a
K : PLP1820-6  
Z : WL-CSP-6  
Setting combination of 2ch Output Voltage (VOUT) : Serial Number for Voltage Setting,  
b
c
d
e
Stepwise setting with a step of 0.1V in the range of 1.5V to 4.0V is possible for each channel.  
Designation of Mask Option:  
A version: without auto discharge function at OFF state.  
B version: with auto discharge function at OFF state.  
Designation of Taping Type:  
Ex. TR (refer to Taping Specifications; TR type is the standard direction.)  
Designation of composition of plating:  
F : Lead free plating (SOT-23-5,WL-CSP-6)  
None : Au plating (PLP1820-6)  
PIN CONFIGURATION  
SOT-23-6  
PLP1820-6  
Top View  
WLCSP-6  
Bottom View  
6
5
4
6
5
4
4
5
6
CE1  
GND  
CE2  
6
1
2
3
V
OUT1  
CE1  
GND  
CE2  
5
4
V
V
DD  
(mark side)  
V
OUT1  
V
DD  
VOUT2  
OUT2  
1
2
3
1
2
3
3
2
1
3
R5323x  
PIN DESCRIPTIONS  
SOT-23-6  
PLP1820-6  
Pin No.  
Symbol  
VOUT1  
VDD  
Description  
Output Pin 1  
Pin No.  
Symbol  
VOUT2  
VDD  
Description  
Output Pin 2  
1
2
3
4
5
6
1
Input Pin  
2
Input Pin  
VOUT2  
CE2  
Output Pin 2  
Chip Enable Pin 2  
Ground Pin  
3
VOUT1  
GND  
CE1  
Output Pin 1  
Ground Pin  
4
GND  
CE1  
5
Chip Enable Pin 1  
Chip Enable Pin 2  
Chip Enable Pin 1  
6
CE2  
* Tab in the  
parts have GND level.  
(They are connected to the reverse side of this IC.)  
Do not connect to other wires or land patterns.  
WLCSP-6  
Pin No.  
Symbol  
VOUT1  
VDD  
Description  
Output Pin 1  
1
2
3
4
5
6
Input Pin  
VOUT2  
CE2  
Output Pin 2  
Chip Enable Pin 2  
Ground Pin  
GND  
CE1  
Chip Enable Pin 1  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Item  
Rating  
6.5  
Unit  
V
VIN  
Input Voltage  
VCE  
Input Voltage (CE Pin)  
6.5  
V
VOUT  
IOUT1  
IOUT2  
Output Voltage  
V
0.3 to VIN + 0.3  
200  
Output Current 1  
mA  
mA  
Output Current 2  
200  
Power Dissipation (SOT-23-6)*1  
Power Dissipation (PLP1820-6) *1  
Power Dissipation (WL-CSP-6)  
Operating Temperature Range  
Storage Temperature Range  
420  
PD  
mW  
880  
633  
Topt  
Tstg  
40 to 85  
55 to 125  
°C  
°C  
1 For Power Dissipation, please refer to PACKAGE INFORMATION to be described.  
4
R5323x  
ELECTRICAL CHARACTERISTICS  
R5323xxxxA/B  
Topt=25°C  
Symbol  
VOUT  
Item  
Output voltage  
Conditions  
Min.  
VOUT  
×0.98  
Typ.  
Max.  
VOUT  
×1.02  
Unit  
VIN=Set VOUT+1V  
V
1mA  
IOUT  
30mA  
=
=
IOUT  
Output Current  
Load regulation  
150  
mA  
mV  
VINVOUT = 1.0V  
VIN=Set VOUT+1V  
15  
40  
VOUT/IOUT  
1mA  
IOUT  
150mA  
=
=
VDIF  
ISS  
Dropout Voltage  
Supply Current  
Refer to the Electrical Characteristics by Output Voltage  
90  
120  
VIN=Set VOUT+1V  
µA  
VIN=Set VOUT+1V  
VCE=GND  
Istandby  
Supply Current(Standby)  
Line regulation  
0.1  
1.0  
µA  
Set VOUT+0.5V VIN 6.0V  
=
=
0.02  
75  
0.10  
6.0  
%/V  
VOUT/VIN  
IOUT=30mA  
Ripple 0.5Vpp  
VIN=Set VOUT+1V  
IOUT=30mA  
Note1  
RR  
Ripple Rejection  
Input Voltage  
dB  
V
65  
(In case that VOUT 1.7V,  
Note2  
=
VIN=Set VOUT+1.2V)  
VIN  
2.0  
ppm  
/°C  
VOUT/  
Output Voltage  
IOUT=30mA  
±100  
Temperature Coefficient  
Topt  
40°C Topt 85°C  
=
=
Ilim  
RPD  
VCEH  
VCEL  
en  
Short Current Limit  
Pull-down resistance for CE pin  
CE Input Voltage “H”  
CE Input Voltage “L”  
Output Noise  
40  
mA  
MΩ  
V
VOUT=0V  
0.7  
1.5  
0.0  
2.0  
8.0  
6.0  
0.3  
V
30  
60  
BW=10Hz to 100kHz  
VCE=0V  
µVrms  
Low Output Nch Tr. ON  
RLOW  
Resistance (of B version)  
>
Note1: f=1kHz, 70dB as to VOUT 2.5V Output type.  
=
>
Note2: f=10kHz, 60dB as to VOUT 2.5V Output type.  
=
5
R5323x  
Electrical Characteristics by Output Voltage  
Dropout Voltage VDIF (V)  
Output Voltage  
VOUT (V)  
Condition  
Typ.  
Max.  
0.70  
0.65  
0.60  
0.55  
0.50  
0.35  
VOUT=1.5  
VOUT=1.6  
VOUT=1.7  
0.38  
0.35  
0.33  
0.32  
0.28  
0.22  
IOUT=150mA  
<
<
1.8V  
2.1V  
2.8V  
VOUT  
VOUT  
VOUT  
2.0V  
2.7V  
4.0V  
=
=
<
=
<
=
<
=
<
=
TYPICAL APPLIATION  
OUT2  
OUT2  
CE2  
V
R5323x  
Series  
3
C
IN  
DD  
V
GND  
1
C
OUT1  
OUT1  
V
CE1  
2
C
(External Components)  
Ceramic Capacitor Type C1,C2,C3  
Recommended Ceramic capacitor for Output: GRM219R61A105K (Murata)  
General Example of External Components  
Ceramic Capacitors: C1608X5R0J105K (TDK)  
GRM188R60J105K (Murata)  
6
R5323x  
TEST CIRCUIT  
CE2  
VOUT2  
CE2  
VOUT2  
VOUT2  
IOUT2  
C3  
R5323x  
C3  
R5323x  
V
Series  
VDD  
Series  
VDD  
GND  
VOUT1  
GND  
VOUT1  
ISS  
A
CE1  
IOUT1  
C1  
CE1  
VOUT1  
C2  
C1  
C2  
V
Fig.1 Standard test Circuit  
Fig.2 Supply Current Test Circuit  
CE2  
VOUT2  
C3  
R5323x  
CE2  
VOUT2  
IOUT2  
C3  
Series  
VDD  
R5323x  
IOUT2a  
Series  
VDD  
GND  
VOUT1  
GND  
VOUT1  
IOUT2b  
C2  
Pulse  
CE1  
Generator  
C1  
IOUT1b IOUT1a  
CE1  
IOUT1  
PG  
C2  
Fig.3 Ripple Rejection, Line Transient Response  
Test Circuit  
Fig.4 Load Transient Response Test Circuit  
7
R5323x  
TYPICAL CHARACTERISTICS  
1) Output Voltage vs. Output Current (Topt=25°C)  
1.5V (VR1)  
1.5V (VR2)  
1.6  
1.6  
1.4  
1.2  
1
V
IN=3.5V  
VIN=3.5V  
1.4  
1.2  
1
V
IN=1.8V  
V
IN=1.8V  
V
IN=2.0V  
V
IN=2.0V  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
V
IN=2.5V  
V
IN=2.5V  
0
0
0
100  
200  
300  
400  
0
0
0
100  
200  
300  
400  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
2.8V (VR1)  
2.8V (VR2)  
3
2.5  
2
3
2.5  
2
V
IN=3.1V  
V
IN=3.1V  
V
IN=4.8V  
V
IN=4.8V  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
100  
200  
300  
400  
100  
200  
300  
400  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
4.0V (VR1)  
4.0V (VR2)  
5
4
3
2
1
0
5
4
3
2
1
0
V
IN=6.0V  
V
IN=6.0V  
V
IN=4.3V  
V
IN=4.3V  
100  
200  
300  
400  
100  
200  
300  
400  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
8
R5323x  
2) Output Voltage vs. Input Voltage (Topt=25°C)  
1.5V (VR1)  
1.5V (VR2)  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.6  
1.5  
1.4  
1.3  
1.2  
1mA  
30mA  
50mA  
1mA  
30mA  
1.1  
50mA  
1
1
1
1
2
2
2
3
4
5
6
6
6
1
1
1
2
2
2
3
4
5
6
6
6
Input Voltage VIN(V)  
Input Voltage VIN(V)  
2.8V (VR1)  
2.8V (VR2)  
2.9  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
1mA  
30mA  
50mA  
1mA  
30mA  
50mA  
3
4
5
3
4
5
Input Voltage VIN(V)  
Input Voltage VIN(V)  
4.0V (VR1)  
4.0V (VR2)  
4.2  
4
4.2  
4
3.8  
3.6  
3.4  
3.2  
3
3.8  
3.6  
3.4  
3.2  
3
1mA  
30mA  
50mA  
1mA  
30mA  
50mA  
3
4
5
3
4
5
Input Voltage VIN(V)  
Input Voltage VIN(V)  
9
R5323x  
3) Dropout Voltage vs. Temperature  
1.5V (VR1)  
1.5V (VR2)  
0.6  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Topt= 85°C  
Topt= 85°C  
25°C  
25°C  
-40°C  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40°C  
0
25  
50  
75  
100 125 150  
0
25  
50  
75  
100 125 150  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
2.8V (VR1)  
2.8V (VR2)  
0.4  
0.4  
Topt= 85°C  
25°C  
Topt= 85°C  
25°C  
0.35  
0.3  
0.35  
0.3  
-40°C  
-40°C  
0.25  
0.2  
0.25  
0.2  
0.15  
0.1  
0.15  
0.1  
0.05  
0
0.05  
0
0
25  
50  
75  
100 125 150  
0
25  
50  
75  
100 125 150  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
4.0V (VR1)  
4.0V (VR2)  
0.4  
0.4  
Topt= 85°C  
25°C  
Topt= 85°C  
25°C  
0.35  
0.3  
0.35  
0.3  
-40°C  
-40°C  
0.25  
0.2  
0.25  
0.2  
0.15  
0.1  
0.15  
0.1  
0.05  
0
0.05  
0
0
25  
50  
75  
100 125 150  
0
25  
50  
75  
100 125 150  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
10  
R5323x  
4) Output Voltage vs. Temperature  
1.5V (VR1)  
1.5V (VR2)  
V
IN=2.5V, IOUT=30mA  
V
IN=2.5V, IOUT=30mA  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
-50  
-25  
-25  
-25  
0
25  
50  
75  
100  
-50  
-25  
-25  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C  
)
Temperature Topt(°C)  
2.8V (VR1)  
2.8V (VR2)  
V
IN=3.8V, IOUT=30mA  
V
IN=3.8V, IOUT=30mA  
2.86  
2.84  
2.82  
2.86  
2.84  
2.82  
2.80  
2.78  
2.76  
2.74  
2.80  
2.78  
2.76  
2.74  
-50  
0
25  
50  
75  
100  
-50  
0
25  
50  
75  
100  
Temperature Topt(°C  
)
Temperature Topt(°C  
)
4.0V (VR1)  
4.0V (VR2)  
V
IN=5.0V, IOUT=30mA  
VIN=5.0V, IOUT=30mA  
4.08  
4.06  
4.04  
4.02  
4.00  
3.98  
3.96  
3.94  
3.92  
4.08  
4.06  
4.04  
4.02  
4.00  
3.98  
3.96  
3.94  
3.92  
-50  
0
25  
50  
75  
100  
-50  
0
25  
50  
75  
100  
Temperature Topt(°C  
)
Temperature Topt(°C  
)
11  
R5323x  
5) Supply Current vs. Input Voltage (Topt=25°C)  
1.5V  
2.8V  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
VR1  
VR1  
VR2  
VR2  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage VIN(V)  
Input Voltage VIN(V)  
4.0V  
100  
80  
60  
40  
20  
0
VR1  
VR2  
0
1
2
3
4
5
6
Input Voltage VIN(V)  
6) Supply Current vs. Temperature  
1.5V (VR1)  
1.5V (VR2)  
V
IN=2.5V  
VIN=2.5V  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C  
)
Temperature Topt(°C  
)
12  
R5323x  
2.8V (VR1)  
2.8V (VR2)  
V
IN=3.8V  
VIN=3.8V  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C  
)
Temperature Topt(°C)  
4.0V (VR1)  
4.0V (VR2)  
V
IN=5.0V  
VIN=5.0V  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C  
)
Temperature Topt(°C)  
7) Dropout Voltage vs. Set Output Voltage (Topt=25°C)  
VR1  
VR2  
0.6  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
10mA  
30mA  
50mA  
10mA  
30mA  
50mA  
0.5  
0.4  
0.3  
0.2  
0.1  
150mA  
150mA  
0
0
1
2
3
4
1
2
3
4
Set Output Voltage Vreg(  
V
)
Set Output Voltage Vreg(V)  
13  
R5323x  
8) Ripple Rejection vs. Frequency (Topt=25°C)  
1.5V (VR1)  
1.5V (VR2)  
V
IN=2.5V+0.5Vp-p, COUT=Ceramic 1.0µF  
V
IN=2.5V+0.5Vp-p, COUT=Ceramic 1.0µF  
90  
80  
70  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
I
I
I
OUT=1mA  
OUT=30mA  
OUT=150mA  
I
I
I
OUT=1mA  
OUT=30mA  
OUT=150mA  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency f(kHz)  
Frequency f(kHz)  
1.5V (VR1)  
1.5V (VR2)  
V
IN=2.5V+0.5Vp-p, COUT=Ceramic 2.2µF  
VIN=2.5V+0.5Vp-p, COUT=Ceramic 2.2µF  
90  
90  
80  
70  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
I
I
I
OUT=1mA  
OUT=30mA  
OUT=150mA  
I
I
I
OUT=1mA  
OUT=30mA  
OUT=150mA  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency f(kHz)  
Frequency f(kHz)  
2.8V (VR1)  
2.8V (VR2)  
V
IN=3.8V+0.5Vp-p, COUT=Ceramic 1.0µF  
VIN=3.8V+0.5Vp-p, COUT=Ceramic 1.0µF  
90  
80  
70  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
I
I
I
OUT=1mA  
OUT=30mA  
OUT=150mA  
I
I
I
OUT=1mA  
OUT=30mA  
OUT=150mA  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency f(kHz)  
Frequency f(kHz)  
14  
R5323x  
2.8V (VR1)  
2.8V (VR2)  
IN=3.8V+0.5Vp-p, COUT=Ceramic 2.2µF  
V
IN=3.8V+0.5Vp-p, COUT=Ceramic 2.2µF  
V
90  
80  
70  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
I
I
I
OUT=1mA  
OUT=30mA  
OUT=150mA  
I
I
I
OUT=1mA  
OUT=30mA  
OUT=150mA  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency f(kHz)  
Frequency f(kHz)  
4.0V (VR1)  
4.0V (VR2)  
V
IN=5.0V+0.5Vp-p, COUT=Ceramic 1.0µF  
VIN=5.0V+0.5Vp-p, COUT=Ceramic 1.0µF  
90  
90  
80  
70  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
I
I
I
OUT=1mA  
OUT=30mA  
OUT=150mA  
I
I
I
OUT=1mA  
OUT=30mA  
OUT=150mA  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency f(kHz)  
Frequency f(kHz)  
4.0V (VR1)  
4.0V (VR2)  
V
IN=5.0V+0.5Vp-p, COUT=Ceramic 2.2µF  
VIN=5.0V+0.5Vp-p, COUT=Ceramic 2.2µF  
90  
80  
70  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
I
I
I
OUT=1mA  
OUT=30mA  
OUT=150mA  
I
I
I
OUT=1mA  
OUT=30mA  
OUT=150mA  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency f(kHz)  
Frequency f(kHz)  
15  
R5323x  
9) Ripple Rejection vs. Input Voltage (DC bias) COUT = Ceramic 1.0µF (Topt=25°C)  
2.8V (VR1)  
2.8V (VR2)  
I
OUT=1mA  
IOUT=1mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f=1kHz  
f=10kHz  
f=100kHz  
f=1kHz  
f=10kHz  
f=100kHz  
2.9  
3
3.1  
3.2  
3.3  
2.9  
3
3.1  
3.2  
3.3  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
2.8V (VR1)  
2.8V (VR2)  
I
OUT=30mA  
I
OUT=30mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f=1kHz  
f=10kHz  
f=100kHz  
f=1kHz  
f=10kHz  
f=100kHz  
2.9  
3
3.1  
3.2  
3.3  
2.9  
3
3.1  
3.2  
3.3  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
2.8V (VR1)  
2.8V (VR2)  
I
OUT=50mA  
I
OUT=50mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f=1kHz  
f=10kHz  
f=100kHz  
f=1kHz  
f=10kHz  
f=100kHz  
2.9  
3
3.1  
3.2  
3.3  
2.9  
3
3.1  
3.2  
3.3  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
16  
R5323x  
10) Input Transient Response  
R5323N001x(2.8V, VR1)  
I
OUT=30mA, tr=tf=5µs, COUT=Ceramic 1.0µF  
2.85  
2.84  
6
5
V
IN  
2.83  
2.82  
4
3
2.81  
2.80  
2.79  
2
1
0
V
OUT  
0
0
0
10  
10  
10  
20  
20  
20  
30  
40  
50  
Time T(µs)  
60  
70  
80  
90  
100  
R5323N001x(2.8V, VR1)  
Topt=25°C, COUT=Ceramic 2.2µF  
2.85  
2.84  
6
5
VIN  
2.83  
2.82  
4
3
2.81  
2.80  
2.79  
2
1
0
VOUT  
30  
40  
50  
60  
70  
80  
90  
100  
Time T(µs)  
R5323N001x(2.8V, VR1)  
Topt=25°C, COUT=Ceramic 4.4µF  
2.85  
2.84  
6
5
VIN  
2.83  
2.82  
4
3
2.81  
2.80  
2.79  
2
1
0
VOUT  
30  
40  
50  
60  
70  
80  
90  
100  
Time T(µs)  
17  
R5323x  
R5323N001x(2.8V, VR2)  
Topt=25°C, COUT=Ceramic 1.0µF  
2.85  
2.84  
6
5
VIN  
2.83  
2.82  
4
3
2.81  
2.80  
2.79  
2
1
0
VOUT  
0
0
0
10  
10  
10  
20  
20  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Time T(µs)  
R5323N001x(2.8V, VR2)  
Topt=25°C, COUT=Ceramic 2.2µF  
2.85  
2.84  
6
5
VIN  
2.83  
2.82  
4
3
2.81  
2.80  
2.79  
2
1
0
VOUT  
30  
40  
50  
60  
70  
80  
90  
100  
Time T(µs)  
R5323N001x(2.8V, VR2)  
Topt=25°C, COUT=Ceramic 4.4µF  
2.85  
2.84  
6
5
VIN  
2.83  
2.82  
4
3
2.81  
2.80  
2.79  
2
1
0
VOUT  
30  
40  
50  
60  
70  
80  
90  
100  
Time T(µs)  
18  
R5323x  
11) Load Transient Response  
2.8V (VR1)  
2.8V (VR2)  
C
IN=Ceramic 1.0µF, COUT=Ceramic 1.0µF  
C
IN=Ceramic 1.0µF, COUT=Ceramic 1.0µF  
150  
100  
50  
150  
100  
50  
I
OUT1  
IOUT2  
2.85  
2.80  
2.75  
0
2.85  
2.80  
2.75  
0
V
V
OUT1  
V
V
OUT1  
I
OUT1=30mA  
2.85  
2.80  
2.75  
2.85  
2.80  
2.75  
OUT2  
OUT2  
I
OUT2=30mA  
15  
0
5
10  
20  
0
5
10  
15  
20  
Time T(µs)  
Time T(µs)  
2.8V (VR1)  
2.8V (VR2)  
C
IN=Ceramic 1.0µF, COUT=Ceramic 4.4µF  
CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
2.85  
2.80  
2.75  
2.70  
150  
100  
50  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
2.85  
2.80  
2.75  
2.70  
150  
100  
50  
I
OUT1  
IOUT2  
0
0
V
V
OUT1  
V
V
OUT1  
I
OUT1=30mA  
OUT2  
OUT2  
I
OUT2=30mA  
15  
0
5
10  
20  
0
5
10  
15  
20  
Time T(µs)  
Time T(µs)  
2.8V (VR2)  
2.8V (VR2)  
C
IN=Ceramic 1.0µF, COUT=Ceramic 2.2µF  
CIN=Ceramic 1.0µF, COUT=Ceramic 4.4µF  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
2.85  
2.80  
2.75  
2.70  
150  
100  
50  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
2.85  
2.80  
2.75  
2.70  
150  
100  
50  
I
OUT2  
IOUT2  
0
0
V
V
OUT1  
V
V
OUT1  
I
OUT1=30mA  
IOUT1=30mA  
OUT2  
OUT2  
0
5
10  
15  
20  
0
5
10  
15  
20  
Time T(µs)  
Time T(µs)  
19  
R5323x  
12) Minimum Operating Voltage  
1.5V Minimum Operating Voltage Range  
2.3  
2.2  
2.1  
2
1.9  
1.8  
1.7  
V
V
DD  
1.6  
1.5  
IN(MIN)  
0
75  
Output Current IOUT(mA)  
150  
TECHNICAL NOTES  
When using these ICs, consider the following points:  
In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For  
this purpose, be sure to use a 1.0µF or more capacitance COUT with good frequency characteristics and ESR  
(Equivalent Series Resistance) of which is in the range described as follows:  
The relations between IOUT (Output Current) and ESR of Output Capacitor are shown in the typical  
characteristics above. The conditions when the white noise level is under 40µV (Avg.) are marked as the  
hatched area in the graph.  
Test these ICs with as same external components as ones to be used on the PCB.  
Make VDD and GND lines sufficient. When their impedance is high, the noise pick-up or incorrect operation may  
result.  
Connect the capacitor with a capacitance of 1µF or more between VDD and GND as close as possible.  
Set external components, especially Output Capacitor, as close as possible to the ICs and make wiring as  
short as possible.  
20  
R5323x  
ESR vs. Output Current  
R5323N/K 1.5V (VR1)  
R5323N/K 1.5V (VR2)  
Topt=25°C, CIN=COUT=Ceramic 1.0µF,  
Topt=25°C, CIN=COUT=Ceramic 1.0µF,  
IN=25V, f=10Hz to 2MHz(BW=30Hz)  
V
IN=25V, f=10Hz to 2MHz(BW=30Hz)  
V
100  
10  
100  
10  
1
0.1  
1
0.1  
0.01  
0.01  
0
50  
100  
150  
0
50  
100  
150  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R5323N/K 2.8V (VR1)  
R5323N/K 2.8V (VR2)  
C
IN=COUT=Ceramic 1.0µF, VIN=2.5V,  
C
IN=COUT=Ceramic 1.0µF, VIN=2.5V,  
f=10Hz to 2MHz(BW=30Hz)  
f=10Hz to 2MHz(BW=30Hz)  
100  
10  
100  
10  
1
0.1  
1
0.1  
0.01  
0.01  
0
50  
100  
150  
0
50  
100  
150  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R5323Z 1.5V (VR1/VR2)  
R5323Z 2.8V (VR1/VR2)  
CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF  
CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF  
100  
100  
10  
1
10  
1
0.1  
0.01  
0.1  
0.01  
0
50  
100  
150  
0
50  
100  
150  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
21  
PE-SOT-23-6-0510  
PACKAGE INFORMATION  
SOT-23-6 (SC-74)  
Unit: mm  
PACKAGE DIMENSIONS  
2.9 0.2  
1.9 0.2  
+0.2  
1.1  
0.1  
(0.95)  
(0.95)  
0.8 0.1  
6
5
4
0 to 0.1  
1
2
+0.1  
0.05  
+0.1  
0.15  
0.4  
0.2  
TAPING SPECIFICATION  
+0.1  
0
4.0 0.1  
φ1.5  
0.3 0.1  
2.0 0.05  
6
1
5
4
3.3  
2
3
2.0MAX.  
4.0 0.1  
1.1 0.1  
TR  
User Direction of Feed  
TAPING REEL DIMENSIONS  
(1reel=3000pcs)  
11.4 1.0  
9.0 0.3  
2 0.5  
21 0.8  
PE-SOT-23-6-0510  
PACKAGE INFORMATION  
POWER DISSIPATION (SOT-23-6)  
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.  
This specification is based on the measurement at the condition below:  
Measurement Conditions  
Standard Land Pattern  
Environment  
Board Material  
Board Dimensions  
Copper Ratio  
Mounting on Board (Wind velocity=0m/s)  
Glass cloth epoxy plactic (Double sided)  
40mm × 40mm × 1.6mm  
Top side : Approx. 50% , Back side : Approx. 50%  
Through-hole  
φ0.5mm × 44pcs  
Measurement Result  
(Topt=25°C,Tjmax=125°C)  
Standard Land Pattern  
420mW  
Free Air  
250mW  
Power Dissipation  
Thermal Resistance  
θja=(12525°C)/0.42W=263°C/W  
400°C/W  
600  
40  
500  
On Board  
420  
400  
300  
200  
100  
0
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Power Dissipation  
Measurement Board Pattern  
IC Mount Area Unit : mm  
RECOMMENDED LAND PATTERN  
0.7 MAX.  
0.95  
1.9  
0.95  
(Unit: mm)  
PE-PLP1820-6-0611  
PACKAGE INFORMATION  
PLP1820-6  
Unit: mm  
PACKAGE DIMENSIONS  
1.6 0.1  
0.20 0.1  
1.80  
B
A
0.05 M AB  
6
4
× 4  
0.05  
INDEX  
3
1
0.5  
0.1NOM.  
0.3 0.1  
Bottom View  
Attention: Tabs or Tab suspension leads in the  
parts have VDD or GND level.(They are  
connected to the reverse side of this IC.)  
Refer to PIN DISCRIPTION.  
0.05  
Do not connect to other wires or land patterns.  
TAPING SPECIFICATION  
+0.1  
0
4.0 0.1  
1.5  
0.25 0.1  
2.0 0.05  
1.1 0.1  
2.2  
1.1Max.  
4.0 0.1  
TR  
User Direction of Feed  
TAPING REEL DIMENSIONS REUSE REEL (EIAJ-RRM-08Bc)  
(1reel=5000pcs)  
11.4 1.0  
(R5323K,R5325K : 1reel=3000pcs)  
9.0 0.3  
2 0.5  
21 0.8  
PE-PLP1820-6-0611  
PACKAGE INFORMATION  
POWER DISSIPATION (PLP1820-6)  
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.  
This specification is based on the measurement at the condition below:  
Measurement Conditions  
Standard Land Pattern  
Environment  
Board Material  
Board Dimensions  
Copper Ratio  
Mounting on Board (Wind velocity=0m/s)  
Glass cloth epoxy plactic (Double sided)  
40mm × 40mm × 1.6mm  
Top side : Approx. 50% , Back side : Approx. 50%  
φ0.54mm × 30pcs  
Through-hole  
Measurement Result  
(Topt=25°C,Tjmax=125°C)  
Standard Land Pattern  
880mW  
Power Dissipation  
Thermal Resistance  
θja=(12525°C)/0.88W=114°C/W  
1200  
40  
On Board  
1000  
880  
800  
600  
400  
200  
0
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Power Dissipation  
Measurement Board Pattern  
IC Mount Area Unit : mm  
RECOMMENDED LAND PATTERN  
0.5 0.5  
1.60  
0.35  
0.25  
(Unit: mm)  
PE-WLCSP-6-P1-0606  
PACKAGE INFORMATION  
WLCSP-6-P1  
Unit: mm  
PACKAGE DIMENSIONS  
B
1.29  
0.5  
0.5  
A
X4  
0.05  
INDEX  
0.16±0.03  
0.05  
M
S AB  
0.10  
S
Bottom View  
0.06  
S
S
TAPING SPECIFICATION(TR: Standard Type)  
4.0±0.1  
+0.1  
0
1.5  
2.0±0.05  
0.18±0.1  
2.0±0.05  
1.38  
0.7  
0.95  
0.5±0.1  
4.0±0.1  
Dummy Pocket  
1.2MAX.  
User Direction of Feed  
TAPING REEL DIMENSIONS  
(1reel=3000pcs)  
11.4±1.0  
9.0±0.3  
2±0.5  
21±0.8  
PE-WLCSP-6-P1-0606  
PACKAGE INFORMATION  
POWER DISSIPATION (WLCSP-6-P1)  
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.  
This specification is based on the measurement at the condition below:  
Measurement Conditions  
Standard Land Pattern  
Environment  
Board Material  
Board Dimensions  
Copper Ratio  
Mounting on Board (Wind velocity=0m/s)  
Glass cloth epoxy plactic (Double sided)  
40mm × 40mm × 1.6mm  
Top side : Approx. 50% , Back side : Approx. 50%  
Through-hole  
Measurement Result  
(Topt=25°C,Tjmax=125°C)  
Standard Land Pattern  
Power Dissipation  
633mW  
Thermal Resistance  
θja=(12525°C)/0.633W=158°C/W  
633  
600  
40  
On Board  
500  
400  
300  
200  
100  
0
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Measurement Board Pattern  
Power Dissipation  
IC Mount Area (Unit : mm)  
PE-WLCSP-6-P1-0606  
PACKAGE INFORMATION  
RECOMMENDED LAND PATTERN (WLCSP)  
Solder Mask  
(resist)  
Copper Pad  
Substrate  
NSMD  
SMD  
NSMD and SMD Pad Definition  
Copper Pad  
Unit : mm)  
Pad definition  
Solder Mask Opening  
NSMD (Non-Solder Mask defined)  
SMD (Solder Mask defined)  
0.20mm  
Min. 0.30mm  
Min. 0.30mm  
0.20mm  
*
*
*
*
Pad layout and size can be modified by customers material, equipment, method.  
Please adjust pad layout according to your conditions.  
Recommended Stencil Aperture Size....ø0.3mm  
Since lead free WL-CSP components are not compatible with the tin/lead solder process, you shall not mount lead free WL-CSP  
components using the tin/lead solder paste.  
ME-R5323N-0610  
MARK INFORMATION  
R5323N SERIES MARK SPECIFICATION  
SOT-23-6 (SC-74)  
1
3
2
4
,
,
: Product Code (refer to Part Number vs. Product Code)  
: Lot Number  
1
2
3
4
Part Number vs. Product Code  
Product Code  
Product Code  
Product Code  
Part Number  
Part Number  
Part Number  
1
2
1
2
1
2
R5323N001B  
R5323N002B  
R5323N003B  
R5323N004B  
R5323N005B  
R5323N006B  
R5323N007B  
R5323N008B  
R5323N009B  
R5323N010B  
R5323N011B  
R5323N012B  
R5323N013B  
R5323N014B  
R5323N015B  
R5323N016B  
R5323N017B  
R5323N018B  
R5323N019B  
R5323N020B  
R5323N021B  
R5323N022B  
R5323N023B  
R5323N024B  
R5323N025B  
R5323N026B  
R5323N027B  
R5323N028B  
R5323N029B  
N
N
N
N
N
N
N
N
N
N
U
N
N
N
N
N
N
N
N
N
N
N
N
U
U
N
N
U
N
0
1
2
3
4
5
6
7
R5323N030B  
R5323N031B  
R5323N032B  
R5323N033B  
R5323N034B  
R5323N035B  
R5323N036B  
R5323N037B  
R5323N038B  
R5323N039B  
R5323N040B  
R5323N041B  
R5323N042B  
R5323N043B  
R5323N044B  
N
U
U
U
U
U
U
U
U
U
U
U
U
U
U
Z
0
1
2
3
4
5
7
8
9
A
B
C
H
J
R5323N001A  
R5323N002A  
R5323N003A  
R5323N013A  
R5323N019A  
R5323N020A  
R5323N023A  
R5323N024A  
R5323N030A  
U
N
N
N
N
N
N
N
N
G
9
A
C
J
L
Q
S
Y
8
B
6
W
T
D
E
F
G
H
K
M
N
P
R
D
E
X
U
F
V
ME-R5323K-0610  
MARK INFORMATION  
R5323K SERIES MARK SPECIFICATION  
PLP1820-6  
1
5
4
to  
6
: Product Code (refer to Part Number vs. Product Code)  
,
: Lot Number  
1
4
2
5
3
6
Part Number vs. Product Code  
Product Code  
Product Code  
Product Code  
Part Number  
Part Number  
Part Number  
1
2
3
4
1
2
3
4
1
2
3
4
R5323K001B  
R5323K002B  
R5323K003B  
R5323K004B  
R5323K005B  
R5323K006B  
R5323K007B  
R5323K008B  
R5323K009B  
R5323K010B  
R5323K011B  
R5323K012B  
R5323K013B  
R5323K014B  
R5323K015B  
R5323K016B  
R5323K017B  
R5323K018B  
R5323K019B  
R5323K020B  
R5323K021B  
R5323K022B  
R5323K023B  
R5323K024B  
R5323K025B  
R5323K026B  
R5323K027B  
R5323K028B  
R5323K029B  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
4
3
2
1
1
1
1
1
2
2
2
2
2
4
4
3
2
5
3
1
2
3
4
5
6
7
8
9
2
1
1
8
4
5
6
7
8
0
2
3
4
6
8
9
2
9
0
0
R5323K030B  
R5323K031B  
R5323K032B  
R5323K033B  
R5323K034B  
R5323K035B  
R5323K036B  
R5323K037B  
R5323K038B  
R5323K039B  
R5323K040B  
R5323K041B  
R5323K042B  
R5323K043B  
R5323K044B  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
3
3
3
3
3
4
4
4
4
4
4
4
5
5
4
5
6
7
8
9
0
2
3
4
5
6
7
2
3
R5323K001A  
R5323K002A  
R5323K003A  
R5323K013A  
R5323K019A  
R5323K020A  
R5323K023A  
R5323K024A  
R5323K030A  
C
C
C
C
C
C
C
C
C
0
0
0
0
0
0
0
0
0
5
1
1
1
1
2
2
2
3
1
0
1
3
9
1
5
7
3
ME-R5323Z-0505  
MARK INFORMATION  
R5323Z SERIES MARK SPECIFICATION  
WLCSP-6-P1  
1
: G (Fixed)  
1
2
3
2
3
,
: Lot Number  
Product Code vs. Marking  
Product Code  
Product Code  
Product Code  
Product Code  
Part Number  
Part Number  
Part Number  
Part Number  
1
1
1
1
R5323Z001A  
R5323Z002A  
R5323Z003A  
R5323Z004A  
R5323Z005A  
R5323Z006A  
R5323Z007A  
R5323Z008A  
R5323Z009A  
R5323Z010A  
R5323Z011A  
R5323Z012A  
R5323Z013A  
R5323Z014A  
R5323Z015A  
R5323Z016A  
R5323Z017A  
R5323Z018A  
R5323Z019A  
R5323Z020A  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
R5323Z021A  
R5323Z022A  
R5323Z023A  
R5323Z024A  
R5323Z025A  
R5323Z026A  
R5323Z027A  
R5323Z028A  
R5323Z029A  
R5323Z030A  
R5323Z031A  
R5323Z032A  
R5323Z033A  
R5323Z034A  
R5323Z035A  
R5323Z036A  
R5323Z037A  
R5323Z038A  
R5323Z039A  
R5323Z040A  
R5323Z041A  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
R5323Z001B  
R5323Z002B  
R5323Z003B  
R5323Z004B  
R5323Z005B  
R5323Z006B  
R5323Z007B  
R5323Z008B  
R5323Z009B  
R5323Z010B  
R5323Z011B  
R5323Z012B  
R5323Z013B  
R5323Z014B  
R5323Z015B  
R5323Z016B  
R5323Z017B  
R5323Z018B  
R5323Z019B  
R5323Z020B  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
R5323Z021B  
R5323Z022B  
R5323Z023B  
R5323Z024B  
R5323Z025B  
R5323Z026B  
R5323Z027B  
R5323Z028B  
R5323Z029B  
R5323Z030B  
R5323Z031B  
R5323Z032B  
R5323Z033B  
R5323Z034B  
R5323Z035B  
R5323Z036B  
R5323Z037B  
R5323Z038B  
R5323Z039B  
R5323Z040B  
R5323Z041B  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY