RH5RI521B-T2 [RICOH]

Switching Regulator, Voltage-mode, 0.25A, 100kHz Switching Freq-Max, CMOS, PSSO3, SOT-89, 3 PIN;
RH5RI521B-T2
型号: RH5RI521B-T2
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

Switching Regulator, Voltage-mode, 0.25A, 100kHz Switching Freq-Max, CMOS, PSSO3, SOT-89, 3 PIN

开关
文件: 总24页 (文件大小:210K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VFM STEP-UP DC/DC CONVERTER  
RH5RI××1B/××2B/××3B SERIES  
APPLICATION MANUAL  
NO.EA-025-0006  
VFM STEP-UP DC/DC CONVERTER  
RH5RI××1B/××2B/××3B SERIES  
OUTLINE  
The RH5RI××1B/××2B/××3B Series are VFM (Chopper) Step-up DC/DC converter ICs with ultra low supply  
current by CMOS process.  
The RH5RI××1B IC consists of an oscillator, a VFM control circuit, a driver transistor (Lx switch), a reference  
voltage unit, an error amplifier, resistors for voltage detection, and an Lx switch protection circuit. A low ripple,  
high efficiency step-up DC/DC converter can be constructed of this RH5RI××1B IC with only three external com-  
ponents, that is, an inductor, a diode and a capacitor.  
The RH5RI××2B IC uses the same chip as that employed in the RH5RI××1B IC and is provided with a drive  
pin (EXT) for an external transistor instead of an Lx pin, so that a power transistor with a low saturation voltage  
can be externally provided, whereby a large current can be caused to flow through the inductor and accordingly a  
large current can be obtained. Therefore, the RH5RI××2B IC is recommendable to the user who need a current  
as large as several tens mA toseveral hundreds mA.  
The RH5RI××3B IC also includes an internal chip enable circuit so that it is possible to set the standby sup-  
ply current at MAX. 0.5µA.  
These RH5RI××1B/××2B/××3B ICs are suitable for use with battery-powered instruments with low noise  
and ultra low supply current.  
FEATURES  
..........  
××  
Small Number of External Components  
Only an inductor, a diode and a capacitor (RH5RI 1B)  
...................................  
.........................  
Ultra Low Input Current  
TYP. 4µA (RH5RI301B/303B at no load,with 1.5V input)  
±2.5%  
High Output Voltage Accuracy  
Low Ripple and Low Noise  
......................  
Low Start-up Voltage (When the output current is 1mA)  
...................................................  
MAX. 0.9V  
High Efficiency  
TYP.80%  
..........................  
Low Temperature-Drift Coefficient of Output Voltage  
...................................................  
TYP. ±50 ppm/˚C  
××  
××  
Small Packages  
SOT-89 (RH5RI 1B, RH5RI 2B)  
SOT-89-5 (RH5RI××3B)  
APPLICATIONS  
Power source for battery-powered equipment.  
Power source for cameras, camcorders, VCRs, PDAs, electronic data banks,and hand-held communication  
equipment.  
Power source for appliances which require higher cell voltage than that of batteries used in the appliances.  
1
RH5RI  
BLOCK DIAGRAM  
VLX limiter  
Buffer  
Vref  
Lx  
LxSW  
OUT  
Vss  
VFM Control  
OSC 100kHz  
Chip Enable  
+
Error Amp.  
EXT  
CE  
............  
(Note) Lx Pin  
only for RH5RI××1B and RH5RI××3B  
only for RH5RI××2B and RH5RI××3B  
only for RH5RI××3B  
.........  
EXT Pin  
...........  
CE Pin  
SELECTION GUIDE  
In RH5RI Series, the output voltage, the driver, and the taping type for the ICs can be selected at the user's  
request. The selection can be made by designating the part number as shown below :  
RH5RI×××× ×× Part Number  
a b  
c
Code  
Contents  
Setting Output Voltage (VOUT):  
a
Stepwise setting with a step of 0.1V in the range of 2.5V to 7.5V is possible.  
Designation of Driver:  
1B: Internal Lx Tr. Driver (Oscillator Frequency 100kHz)  
2B: External Tr. Driver (Oscillator Frequency 100kHz)  
3B: Internal Tr./External Tr. (selectively available) (Oscillator Frequency 100kHz, with chip  
enable function)  
b
c
Designation of Taping type :  
Ex. SOT-89 : T1, T2  
SOT-89-5 : T1, T2  
(refer to Taping Specification)  
“T1” is prescribed as a standard.  
For example, the product with Output Voltage 5.0V, the External Driver (the Oscillator Frequency 100kHz)  
and Taping Type T1, is designated by Part Number RH5RI502B-T1.  
2
RH5RI  
PIN CONFIGURATION  
SOT-89-5  
SOT-89  
5
4
(mark side)  
2
(mark side)  
1 2  
1
3
3
××1A/××2B  
PIN DESCRIPTION  
Pin No.  
Symbol  
Description  
××1B  
××2B  
××3B  
1
2
1
2
5
2
4
3
1
VSS  
OUT  
Lx  
Ground Pin  
Step-up Output Pin, Power Supply (for device itself)  
Switching Pin (Nch Open Drain)  
3
3
EXT  
CE  
External Tr. Drive Pin (CMOS Output)  
Chip Enable Pin (Active Low)  
3
RH5RI  
ABSOLUTE MAXIMUM RATINGS  
Vss=0V  
Symbol  
VOUT  
VLX  
Item  
Rating  
+12  
Unit  
V
Note  
Output Pin Voltage  
Lx Pin Voltage  
+12  
V
Note1  
Note2  
Note3  
VEXT  
VCE  
EXT Pin Voltage  
–0.3 to VOUT+0.3  
–0.3 to VOUT+0.3  
250  
V
CE Pin Voltage  
V
ILX  
Lx Pin Output Current  
EXT Pin Current  
mA Note1  
IEXT  
±50  
mA Note2  
PD  
Power Dissipation  
500  
mW  
˚C  
Topt  
Tstg  
Tsolder  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering)  
–30 to +80  
–55 to +125  
260˚C,10s  
˚C  
(Note 1) Applicable to RH5RI××1A and RH5RI××3B.  
(Note 2) Applicable to RH5RI××2B and RH5RI××3B.  
(Note 3) Applicable to RH5RI××3B.  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any  
conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above  
these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress  
ratings only and do not necessarily imply functional operation below these limits.  
4
RH5RI  
ELECTRICAL CHARACTERISTICS  
• RH5RI301B  
VOUT=3.0V  
Symbol  
VOUT  
VIN  
Item  
Output Voltage  
Input Voltage  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
V
Note  
2.925 3.000 3.075  
8
V
Vstart  
Vhold  
Start-up Voltage  
Hold-on Voltage  
IOUT=1mA,VIN:02V  
IOUT=1mA,VIN:20V  
0.8  
0.9  
V
0.7  
V
To be measured at VIN  
at no load  
IIN1  
IIN2  
Input Current 1  
Input Current 2  
4
2
8
5
µA  
µA  
To be measured at VIN  
VIN=3.5V  
ILX  
Lx Switching Current  
Lx Leakage Current  
VLX=0.4V  
60  
80  
mA  
µA  
ILXleak  
VLX=6V,VIN=3.5V  
0.5  
Maximum Oscillator  
Frequency  
100  
120  
kHz  
fosc  
Maxdty  
Oscillator Duty Cycle  
Efficiency  
on (VLX “L” ) side  
Lx Switch On  
65  
70  
75  
80  
85  
%
%
V
η
VLXlim  
VLX Voltage Limit  
0.65  
0.8  
1.0  
Note  
Unless otherwise provided, VIN=1.8V, Vss=0V, IOUT=10mA, Topt=25˚C, and use External Circuit of Typical  
Application (FIG. 1).  
(Note) ILX is gradually increased by the external inductor after Lx Switch is turned ON. In accordance with the increase of ILX, VLX is also increased.  
When VLX reaches VLXlim, Lx Switch is turned OFF by Lx Switch Protection Circuit. The time period from the time at which VLX reaches VLXlim to  
the time at which Lx Switch is turned OFF is about 3µs.  
5
RH5RI  
RH5RI501B  
VOUT=5.0V  
Symbol  
VOUT  
VIN  
Item  
Output Voltage  
Input Voltage  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
V
Note  
4.875 5.000 5.125  
8
V
Vstart  
Vhold  
Start-up Voltage  
Hold-on Voltage  
IOUT=1mA,VIN:0 2V  
0.8  
0.9  
V
IOUT=1mA,VIN:2 0V  
0.7  
V
To be measured at VIN  
at no load  
IIN1  
IIN2  
Input Current 1  
Input Current 2  
6
2
12  
5
µA  
µA  
To be measured at VIN  
VIN=5.5V  
ILX  
Lx Switching Current  
Lx Leakage Current  
VLX=0.4V  
80  
80  
mA  
µA  
ILXleak  
VLX=6V,VIN=5.5V  
0.5  
Maximum Oscillator  
Frequency  
fosc  
100  
120  
kHz  
Maxdty  
Oscillator Duty Cycle  
Efficiency  
on (VLX “L” ) side  
Lx Switch On  
65  
70  
75  
80  
85  
%
%
V
η
VLX  
lim  
VLX Voltage Limit  
0.65  
0.8  
1.0  
Note2  
Unless otherwise provided, VIN=3V, Vss=0V, IOUT=10mA, Topt=25˚C, and use External Circuit of Typical  
Application (FIG. 1).  
(Note) ILX is gradually increased by the external inductor after Lx Switch is turned ON. In accordance with the increase of ILX, VLX is also increased.  
When VLX reaches VLXlim, Lx Switch is turned OFF by Lx Switch Protection Circuit. The time period from the time at which VLX reaches VLXlim to  
the time at which Lx Switch is turned OFF is about 3µs.  
6
RH5RI  
• RH5RI302B  
VOUT=3.0V  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
V
Note  
Symbol  
VOUT  
VIN  
Item  
Output Voltage  
2.925 3.000 3.075  
8
Input Voltage  
V
Vstart  
Oscillator Start-up Voltage  
Supply Current 1  
EXT at no load,VOUT:0 2V  
EXT at no load,VOUT=2.88V  
EXT at no load,VOUT=3.5V  
VEXT=VOUT–0.4V  
0.7  
30  
2
0.8  
50  
V
IDD  
µA  
µA  
mA  
mA  
1
2
IDD  
Supply Current 2  
5
IEXTH  
IEXTL  
EXT “H” Output Current  
EXT “L” Output Current  
–1.5  
VEXT=0.4V  
1.5  
80  
Maximum Oscillator  
Frequency  
fosc  
100  
75  
120  
85  
kHz  
%
Maxdty  
Oscillator Duty Cycle  
VEXT “H” side  
65  
Unless otherwise provided, VIN=1.8V, Vss=0V, IOUT=10mA, Topt=25˚C, and use External Circuit of Typical  
Application (FIG. 2).  
• RH5RI502B  
VOUT=5.0V  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
V
Note  
Symbol  
VOUT  
VIN  
Item  
Output Voltage  
4.875 5.000 5.125  
8
Input Voltage  
V
Vstart  
Oscillator Start-up Voltage  
Supply Current 1  
EXT at no load,VOUT:0 2V  
EXT at no load,VOUT=4.8V  
EXT at no load,VOUT=5.5V  
VEXT=VOUT–0.4V  
0.7  
60  
2
0.8  
90  
5
V
IDD  
µA  
µA  
mA  
mA  
1
2
IDD  
Supply Current 2  
IEXTH  
IEXTL  
EXT “H” Output Current  
EXT “L” Output Current  
–2  
VEXT=0.4V  
2
Maximum Oscillator  
Frequency  
fosc  
80  
100  
75  
120  
85  
kHz  
%
Maxdty  
Oscillator Duty Cycle  
VEXT “H” side  
65  
Unless otherwise provided, VIN=3V, Vss=0V, IOUT=10mA, Topt=25˚C, and use External Circuit of Typical  
Application (FIG. 2).  
7
RH5RI  
• RH5RI303B  
Symbol  
VOUT=3.0V  
Item  
Output Voltage  
Input Voltage  
Start-up Voltage  
Hold-on Voltage  
Efficiency  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
V
Note  
VOUT  
VIN  
2.925 3.000 3.075  
8
V
Vstart  
Vhold  
η
IOUT=1mA,VIN:02V  
IOUT=1mA,VIN:20V  
0.8  
0.9  
V
0.7  
70  
V
80  
4
%
To be measured at VIN  
at no load  
IIN1  
IIN2  
Input Current 1  
Input Current 2  
8
5
µA  
To be measured at VIN  
VIN=3.5V  
µ
A
2
ILX  
Lx Switching Current  
Lx Leakage Current  
EXT “H” Output Current  
EXT “L” Output Current  
CE “H” Level 1  
VLX=0.4V  
VLX=6V,VIN=3.5V  
VEXT=VOUT–0.4V  
VEXT=0.4V  
60  
mA  
µA  
mA  
mA  
V
ILXleak  
IEXTH  
IEXTL  
VCEH1  
VCEL1  
VCEH2  
VCEL2  
ICEH  
0.5  
–1.5  
1.5  
VOUT1.5V  
VOUT0.4  
CE “L” Level 1  
VOUT1.5V  
0.4  
V
CE “H” Level 2  
0.8VVOUT<1.5V  
0.8VVOUT<1.5V  
CE=3V  
V
OUT–0.1  
V
CE “L” Level 2  
0.1  
0.5  
V
CE “H” Input Current  
CE “L” Input Current  
µA  
µA  
ICEL  
CE=0V  
0.5  
80  
Maximum Oscillator  
Frequency  
fosc  
100  
120  
kHz  
Maxdty  
VLXlim  
Oscillator Duty Cycle  
VLX Voltage Limit  
on (VLX “L” )side  
Lx Switch on  
65  
75  
85  
%
V
0.65  
0.8  
1.0  
Note  
Unless otherwise provided, VIN=1.8V, VSS=0V, IOUT=10mA, Topt=25˚C, and use External Circuit of Typical  
Application (FIG. 3).  
(Note) ILX is gradually increased by the external inductor after Lx Switch is turned ON. In accordance with the increase of ILX, VLX is also increased.  
When VLX reaches VLXlim, Lx Switch is turned OFF by Lx Switch Protection Circuit. The time period from the time at which VLX reaches VLXlim to  
the time at which Lx Switch is turned OFF is about 3µs.  
8
RH5RI  
• RH5RI503B  
Symbol  
VOUT=5.0V  
Item  
Output Voltage  
Input Voltage  
Start-up Voltage  
Hold-on Voltage  
Efficiency  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
V
Note  
VOUT  
VIN  
4.875 5.000 5.125  
8
V
Vstart  
Vhold  
η
IOUT=1mA,VIN:02V  
IOUT=1mA,VIN:20V  
0.8  
0.9  
V
0.7  
70  
V
85  
6
%
To be measured at VIN  
at no load  
IIN1  
IIN2  
Input Current 1  
Input Current 2  
12  
5
µA  
µA  
To be measured at VIN  
VIN=5.5V  
2
ILX  
Lx Switching Current  
Lx Leakage Current  
EXT “H” Output Current  
EXT “L” Output Current  
CE “H” Level 1  
VLX=0.4V  
VLX=6V,VIN=5.5V  
VEXT=VOUT–0.4V  
VEXT=0.4V  
80  
mA  
µA  
mA  
mA  
V
ILXleak  
IEXTH  
IEXTL  
VCEH1  
VCEL1  
VCEH2  
VCEL2  
ICEH  
0.5  
–2.0  
2.0  
VOUT1.5V  
VOUT0.4  
CE “L” Level 1  
VOUT1.5V  
0.4  
V
CE “H” Level 2  
0.8VVOUT<1.5V  
0.8VVOUT<1.5V  
CE=5V  
V
OUT–0.1  
V
CE “L” Level 2  
0.1  
0.5  
V
CE “H” Input Current  
CE “L” Input Current  
µA  
µA  
ICEL  
CE=0V  
–0.5  
80  
Maximum Oscillator  
Frequency  
fosc  
100  
120  
kHz  
Maxdty  
VLXlim  
Oscillator Duty Cycle  
VLX Voltage Limit  
on (VLX “L” )side  
Lx Switch on  
65  
75  
85  
%
V
0.65  
0.8  
1.0  
Note  
Unless otherwise provided, VIN=3V, VSS=0V, IOUT=10mA, Topt=25˚C and use External Circuit of Typical  
Application (FIG. 3).  
(Note) ILX is gradually increased by the external inductor after Lx Switch is turned ON. In accordance with the increase of ILX, VLX is also increased.  
When VLX reaches VLXlim, Lx Switch is turned OFF by Lx Switch Protection Circuit. The time period from the time at which VLX reaches VLXlim to  
the time at which Lx Switch is turned OFF is about 3µs.  
9
RH5RI  
OPERATION OF STEP-UP DC/DC CONVERTER  
Step-up DC/DC Converter charges energy in the inductor when Lx Transistor (LxTr) is on, and discharges the  
energy with the addition of the energy from Input Power Source thereto, so that a higher output voltage than the  
input voltage is obtained.  
The operation will be explained with reference to the following diagrams :  
< Basic Circuits >  
< Current through L >  
IL  
i2  
SD  
ILmax  
ILmin  
IOUT  
topen  
L
VIN  
VOUT  
i1  
t
Lx Tr  
CL  
toff  
ton  
T=1/fosc  
Step 1 : LxTr is turned ON and current IL (=i1 ) flows, so that energy is charged in L. At this moment, IL(=i1 )  
is increased from ILmin (=0) to reach ILmax in protection to the on-time period (ton) of LxTr.  
Step 2 : When LxTr is turned OFF, Schottky diode (SD) is turned on in order that L maintains IL at ILmax, so that  
current IL (=i2) is released.  
Step 3 : IL (=i2) is gradually decreased, and IL reaches ILmin (=0) after a time period of topen, so that SD is  
turned OFF.  
In the case of VFM control system, the output voltage is maintained constant by controlling the oscillator fre-  
quency (fosc) with the on-time period (ton) being maintained constant.  
In the above two diagrams, the maximum value (ILmax) and the minimum value (ILmin) of the current which  
flows through the inductor are the same as those when LxTr is ON and also when LxTr is OFF.  
The difference between ILmax and ILmin, which is represented by I, is:  
..........................................  
Equation 1  
I=ILmax–ILmin=VIN · ton/L=(VOUT–VIN) · topen/L  
wherein T=1/fosc=ton+toff  
duty (%)=ton/T · 100=ton · fosc · 100  
topentoff  
In Equation 1,VIN · ton/L and (VOUT–VIN) · topen/L are respectively the change in the current at ON, and the  
change in the current at OFF.  
In the VFM system, topen < toff as illustrated in the above diagram. In this case, the energy charged in the  
inductor during the time period of ton is discharged in its entirely during the time period of toff, so that ILmin  
becomes zero (ILmin=0).  
10  
RH5RI  
SELECTION OF PERIPHERAL COMPONENTS  
When LxTr is on, the energy PON charged in the inductor is provided by Equation 2 as follows :  
ton  
2
PON=0ton (VIN · IL (t)) dt=0 (VIN · t/L) dt  
2
2
....................................................................................................  
=VIN · ton /(2 · L)  
Equation 2  
In the case of the step-up DC/DC converter, the energy is also supplied from the input power source at the time  
of OFF.  
Thus, POFF =0topen(VIN · IL (t)) dt=0topen (VIN · (VOUT–VIN) · t/L)dt  
=VIN · (VOUT–VIN) · topen2/(2 · L)  
Here, topen=VIN · ton/(VOUT–VIN) from Equation 1, and when this is substituted into the above equation.  
3
2
............................................................................  
=VIN · ton /(2 · L · (VOUT–VIN))  
Input power PIN is (PON+POFF)/T. When this is converted in its entirely to the output.  
PIN=(PON+POFF)/T=VOUT · IOUT=POUT .........................................................................  
Equation 3  
Equation 4  
Equation 5 can be obtained as follows by solving Equation 4 for IOUT by substituting Equation 2 and 3 into  
Equation 4 :  
IOUT=VIN · ton2/(2 · L · T · (VOUT–VIN)  
2
2
2
...................................................  
=VIN · maxdty /(20000 · fosc · L · (VOUT–VIN))  
Equation 5  
The peak current which flows through L · LxTr · SD is  
..........................................................................................................  
ILmax=VIN · ton/L  
Equation 6  
Therefore, it is necessary that the setting of the input/output conditions and the selection of peripheral compo-  
nents be made with ILmax taken into consideration.  
HINTS  
The above explanation is directed to the calculation in an ideal case where it is supposed that there is no  
energy loss in the external components and LxSW. In an actual case, the maximum output current will be 50  
to 80% of the above calculated maximum output current. In particular, care must be taken because VIN is  
decreased in an amount corresponding to the voltage reduction caused by LxSW when IL is large or VIN is  
small. Furthermore, It is required that with respect to VOUT, Vf of the diode (about 0.3V in the case of a  
Schottky type diode) be taken into consideration.  
When ILX and VLX exceed their respective ratings, use RH5RI××2B and RH5RI××3B ICs with the attach-  
ment of an external transistor with a low saturation voltage thereto.  
11  
RH5RI  
TYPICAL CHARACTERISTICS  
1) Output Voltage vs. Output Current  
RH5RI351B  
RH5RI351B  
L=82µH  
L=120µH  
3.0V  
4.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0V  
3.0  
2.0V  
1.0V  
2.5  
1.0V  
VIN=0.9V  
2.0V  
VIN=0.9V  
2.0  
1.5  
1.0  
0.5  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
0
Output Current IOUT(mA)  
Output Current IOUT(mA)  
RH5RI501B  
RH5RI501B  
L=82µH  
L=120µH  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
4.0V  
3.0V  
4.0V  
3.0V  
1.5V  
1.5V  
2.0V  
2.0V  
VIN=0.9V  
VIN=0.9V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
RH5RI352B  
RH5RI502B  
L=28µH  
3.0V  
L=28µH  
4.0V  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
6
5
4
3
2.0V  
1.0V  
VIN=0.9V  
3.0V  
2.0V  
VIN=0.9V  
1.5V  
2
1
0
0.5  
0
0
200  
400  
600  
0
200  
400  
600  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
12  
RH5RI  
2) Efficiency vs. Output Current  
RH5RI351B  
RH5RI351B  
L=82µH  
3.0V  
L=120µH  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
3.0V  
70  
2.0V  
2.0V  
1.0V  
VIN=0.9V  
60  
50  
40  
30  
20  
10  
0
1.0V  
VIN=0.9V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
RH5RI501B  
RH5RI501B  
L=120µH  
4.0V  
L=82µH  
4.0V  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
50  
40  
3.0V  
3.0V  
1.5V  
VIN=0.9V  
1.5V  
2.0V  
2.0V  
50  
40  
VIN=0.9V  
30  
20  
10  
0
30  
20  
10  
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
RH5RI352B  
RH5RI502B  
L=28µH  
L=28µH  
4.0V  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
3.0V  
3.0V  
2.0V  
1.0V  
VIN=0.9V  
2.0V  
1.5V  
50  
40  
30  
20  
VIN=0.9V  
10  
0
10  
0
0
200  
400  
600  
0
200  
400  
Output Current IOUT(mA)  
600  
Output Current IOUT(mA)  
13  
RH5RI  
3) Output Current vs.Ripple Voltage  
RH5RI351A  
RH5RI351B  
L=82µH  
3.0V  
L=120µH  
3.0V  
120  
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
2.0V  
1.5V  
1.5V  
40  
2.0V  
20  
VIN=0.9V  
0
VIN=0.9V  
20  
0
20  
40  
60  
80  
100  
0
40  
60  
80  
100  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
RH5RI501B  
RH5RI501B  
L=82µH  
4.0V  
L=120µH  
4.0V  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
3.0V  
3.0V  
60  
2.0V  
2.0V  
40  
20  
VIN=0.9V  
20  
VIN=0.9V  
20  
0
0
0
40  
60  
80  
100  
40  
60  
80  
100  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
RH5RI352B  
RH5RI502B  
L=28µH  
3.0V  
L=28µH  
4.0V  
200  
180  
160  
140  
120  
100  
80  
250  
200  
150  
100  
50  
2.0V  
1.5V  
3.0V  
2.0V  
60  
40  
20  
VIN=0.9V  
VIN=0.9V  
100  
Output Current IOUT(mA)  
0
0
0
200  
300  
400  
0
200  
400  
600  
Output Current IOUT(mA)  
14  
RH5RI  
4) Start-up/Hold-on Voltage vs. Output Current  
RH5RI351B  
RH5RI501B  
L=82µH  
L=82µH  
1.6  
1.4  
1.2  
1.2  
1.0  
Vstart  
0.8  
1.0  
0.8  
0.6  
0.4  
0.2  
0
Vstart  
0.6  
Vhold  
0.4  
Vhold  
0.2  
0
5
0
10  
15  
0
5
10  
15  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
RH5RI352B  
RH5RI502B  
L=28µH  
L=28µH  
2.5  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
Vstart  
Vhold  
Vstart  
Vhold  
0.5  
0
0
100  
150  
200  
50  
150  
Output Current IOUT(mA)  
200  
0
50  
100  
Output Current IOUT(mA)  
5) Output Voltage vs. Temperature  
6) Start-up Voltage vs. Temperature  
RH5RI501B  
RH5RI501B  
5.20  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
–40  
–20  
0
20  
40  
60  
80  
–40 –20  
0
20  
40  
60  
80  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
15  
RH5RI  
7) Hold-on Voltage vs. Temperature  
8) Supply Current 1 vs.Temperature  
RH5RI501B  
RH5RI502B  
60  
0.8  
50  
0.7  
0.6  
0.5  
40  
30  
20  
10  
0
0.4  
0.3  
0.2  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
10) Lx Switching Current vs.Temperature  
9) Input Current 2 vs.Temperature  
RH5RI501B  
RH5RI501B  
1.8  
200  
180  
160  
140  
120  
100  
80  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
60  
40  
20  
0
–40  
–20  
0
20  
40  
60  
80  
–40 –20  
0
20  
40  
60  
80  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
11) Lx Leakage Current vs.Temperature  
12) Maximum Oscillator Frequency vs.Temperature  
RH5RI501B  
RH5RI501B  
160  
0.30  
140  
120  
100  
80  
0.25  
0.20  
0.15  
0.10  
0.05  
0
60  
40  
20  
0
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
16  
RH5RI  
13) Oscillatar Duty Cycle vs. Temperature  
14) Vlx Voltage Limit vs. Temperature  
RH5RI501B  
RH5RI501B  
100  
1.00  
0.95  
0.90  
90  
80  
70  
60  
50  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
15) Output Current vs. Temperature  
16) Output Current vs. Temperature  
RH5RI502B  
RH5RI502B  
5.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–20  
0
20  
40  
60  
80  
–40  
–40  
–20  
0
20  
Temperature Topt(˚C)  
40  
60  
80  
Temperature Topt(˚C)  
17  
RH5RI  
TYPICAL APPLICATIONS  
• RH5RI××1B  
Diode  
Inductor  
VOUT  
Lx  
OUT  
Vss  
+
VIN  
Capacitor  
Components Inductor (L)  
Diode (D)  
: 82µH (Sumida Electric Co., Ltd.)  
: MA721 (Matsushita Electronics Corporation, Schottky Type)  
Capacitor (CL) : 22µF (Tantalum Type)  
FIG. 1  
• RH5RI××2B  
Inductor  
Diode  
VOUT  
Cb  
Rb  
OUT  
EXT  
Vss  
+
VIN  
Capacitor  
Tr  
Components Inductor (L)  
Diode (D)  
: 28µH (Troidal Core)  
: HRP22 (Hitachi, Schottky Type)  
: 100µF (Tantalum Type)  
: 2SD1628G  
Capacitor (CL)  
Transistor (Tr)  
Base Resistor (Rb)  
: 300Ω  
Base Capacitor (Cb) : 0.01µF  
FIG. 2  
18  
RH5RI  
• RH5RI××3B  
Diode  
Inductor  
VOUT  
Lx  
OUT  
NC  
EXT  
CE  
Vss  
+
VIN  
Capacitor  
Components Inductor (L)  
Diode (D)  
: 82µH (Sumida Electric Co., Ltd.)  
: MA721 (Matsushita Electronics Corporation, Schottky Type)  
Capacitor (CL) : 22µF (Tantalum Type)  
FIG. 3  
Inductor  
Diode  
VOUT  
NC  
Lx  
Cb  
OUT  
EXT  
CE Vss  
+
VIN  
Rb  
Capacitor  
Tr  
Components Inductor (L)  
Diode (D)  
: 28µH (Troidal Core)  
: HRP22 (Hitachi, Schottky Type)  
: 100µF (Tantalum Type)  
: 2SD1628G  
Capacitor (CL)  
Transistor (Tr)  
Base Resistor (Rb) : 300Ω  
Base Capacitor (Cb) : 0.01µF  
FIG. 4  
19  
RH5RI  
• CE pin Drive Circuit  
Diode  
Inductor  
RH5RI××3B  
VOUT  
Lx  
OUT  
NC  
EXT  
CE  
Vss  
Pull-up  
resistor  
+
Capacitor  
VIN  
CE  
Tr  
FIG. 5  
20  
RH5RI  
APPLICATION CIRCUITS  
• 12V Step-up Circuit  
Inductor  
Diode  
VOUT  
ZD:6.8V  
RH5RI502B  
Cb  
Rb  
OUT  
+
Capacitor  
VIN  
EXT  
Vss  
RZD  
Tr  
Starter Circuit  
(Note) When the Output Current is small or the Output Voltage is unstable,use the Rzd for flowing the bias current through the Zener diode ZD.  
FIG. 6  
• Step-down Circuit  
Inductor  
VOUT  
PNP  
Tr  
Diode  
RH5RI××1B  
OUT  
Rb2  
Lx  
VIN  
Rb1  
+
Vss  
Capacitor  
Starter Circuit  
(Note) When the Lx pin Voltage is over the rating at the time PNP Tr is OFF,use a RH5RI××2B and drive the PNP Tr. by the external NPN Tr.  
FIG. 7  
21  
RH5RI  
• Step-up/Step-down Circuit with Flyback  
Diode  
VOUT  
Trance1:1  
RH5RI××1B  
OUT  
Lx  
VIN  
+
Vss  
Capacitor  
Starter Circuit  
(Note) Use a RH5RI××2B,depend on the Output Current.  
FIG. 8  
The Starter Circuit is necessary for all above circuits.  
*
1.For Step-up Circuit.  
VOUT side  
VIN side  
Starter Circuit  
1.For Step-down and Step-up/Step-down Circuit.  
VIN side  
VOUT side  
Tr  
RST  
Starter Circuit  
ZDST  
ZDst 2.5VZDSTDesignation of Output Voltage  
Rst Input Bias Current of ZDST and Tr.  
(several kto several hundreds k)  
22  
RH5RI  
APPLICATION HINTS  
When using these ICs, be sure to take care of the following points :  
• Set external components as close as possible to the IC and minimize the connection between the com-  
ponents and the IC. In particular, when an external component is connected to OUT Pin, make mini-  
mum connection with the capacitor.  
• Make sufficient grounding. A large current flows through Vss Pin by switching. When the impedance  
of the Vss connection is high, the potential within the IC is varied by the switching current. This  
mayresult in unstable operation of the IC.  
• Use capacitor with a capacity of 10µF or more, and with good high frequency characteristics such as  
tantalum capacitor. We recommend the use of a capacitor with an allowable voltage which is at least  
three times the output set voltage. This is because there may be the case where a spike-shaped high  
voltage is generated by the inductor when Lx transistor is turned off.  
• Take the utmost care when choosing an inductor. Namely, choose such an inductor that has sufficient-  
ly small d.c. resistance and large allowable current, and hardly reaches magnetic saturation. When  
the inductance value of the inductor is small, there may be the case where ILX exceeds the absolute  
maximum ratings at the maximum load. Use an inductor with an appropriate inductance (refer to  
Selectionof peripheral components).  
• Use a diode of a Schottky type with high switching speed, and also take care of the rated current (refer  
to Selection of peripheral components).  
The performance of power source circuits using these ICs largely depends upon the peripheral components. Take the utmost care  
in the selection of the peripheral components. In particular, design the peripheral circuits in such a manner that the values such as volt-  
age, current and power of each component, PCB patterns and the IC do not exceed their respective rated values.  
23  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY