AD5247BKS5-RL7 [ROCHESTER]

5K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO6, MO-203AB, SC-70, 6 PIN;
AD5247BKS5-RL7
型号: AD5247BKS5-RL7
厂家: Rochester Electronics    Rochester Electronics
描述:

5K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO6, MO-203AB, SC-70, 6 PIN

光电二极管 转换器 电阻器
文件: 总21页 (文件大小:2544K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
128-Position I2C®-Compatible  
Digital Potentiometer  
AD5247  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
DD  
128 positions  
End-to-end resistance: 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ  
Ultracompact, SC70-6 (2 mm × 2.1 mm) package  
I2C-compatible interface  
A
SDA  
SCL  
2
I C INTERFACE  
Full read/write of wiper register  
Power-on preset to midscale  
W
Single-supply 2.7 V to 5.5 V  
Low temperature coefficient: 45 ppm/°C  
Low power, IDD = 3 μA typical  
WIPER  
REGISTER  
B
Wide operating temperature range: –40°C to +125°C  
Available in Pb–free package  
Evaluation board available  
GND  
Figure 1.  
APPLICATIONS  
Mechanical potentiometer replacement in new designs  
Transducer adjustment of pressure, temperature, position,  
chemical, and optical sensors  
RF amplifier-biasing  
LCD brightness and contrast adjustment  
Automotive electronics adjustment  
Gain control and offset adjustment  
have three hard-coded slave address options available to allow  
users access to three of these devices on one I2C bus (see Table 8  
for a full list of slave address locations).  
GENERAL DESCRIPTION  
The AD5247 provides a compact, 2 mm × 2.1 mm, packaged  
solution for 128-position adjustment applications. This device  
performs the same electronic adjustment function as a mechanical  
potentiometer or a variable resistor. Available in four different  
end-to-end resistance values (5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ),  
these low temperature coefficient devices are ideal for high  
accuracy and stability variable resistance adjustments.  
The wiper settings are controllable through the I2C-compatible  
digital interface, which can also be used to read back the present  
wiper register control word. The 10 kꢀ and 100 kꢀ options each  
The resistance between the wiper and either end point of  
the fixed resistor varies linearly with respect to the digital  
code transferred into the RDAC latch. Note the terms digital  
potentiometer, VR (variable resistor), and RDAC are used  
interchangeably in this document.  
Operating from a 2.7 V to 5.5 V power supply and consuming  
3 μA allows the AD5247 to be used in portable battery-operated  
applications.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2003–2007 Analog Devices, Inc. All rights reserved.  
 
 
AD5247  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 14  
Programming the Variable Resistor......................................... 14  
Programming the Potentiometer Divider............................... 15  
I2C-Compatible 2-Wire Serial Bus........................................... 15  
Level Shifting for Bidirectional Interface................................ 16  
ESD Protection ........................................................................... 16  
Terminal Voltage Operating Range ......................................... 16  
Maximum Operating Current .................................................. 16  
Power-Up Sequence ................................................................... 16  
Layout and Power Supply Bypassing ....................................... 17  
Constant Bias to Retain Resistance Setting............................. 17  
Evaluation Board........................................................................ 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 kΩ Version.................................. 3  
Electrical Characteristics—10 kΩ, 50 kΩ, and 100 kΩ  
Versions.......................................................................................... 4  
Timing Characteristics—5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ  
Versions.......................................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits..................................................................................... 12  
I2C Interface..................................................................................... 13  
REVISION HISTORY  
3/07—Rev. A to Rev. B  
Changes to General Description Section ...................................... 1  
Added Table 8.................................................................................. 13  
Changes to I2C-Compatible 2-Wire Serial Bus Section............. 15  
Changes to Ordering Guide .......................................................... 18  
7/06—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Changes to Absolute Maximum Ratings section ......................... 6  
Changes to Ordering Guide .......................................................... 18  
9/03—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
 
AD5247  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 kΩ VERSION  
VDD = 5 V 10% or 3 V 10%, VA = VDD, −40°C < TA < +125°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol Conditions  
Min Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient3  
Output Resistance  
R-DNL  
R-INL  
∆RAB  
∆RAB/∆T  
RWB  
RWB, VA = no connect  
RWB, VA = no connect  
−1.5  
−4  
−30  
0.1  
0.ꢀ5  
+1.5  
+4  
+30  
LSB  
LSB  
%
ppm/°C  
Ω
45  
ꢀ5  
Code = 0x00  
300  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
∆VW/∆T  
VWFSE  
VWZSE  
−1  
−1  
0.1  
0.2  
15  
−2  
1
+1  
+1  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = 0x40  
Code = 0xꢀF  
Code = 0x00  
−3  
0
0
2
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range5  
VA, VW  
CA  
GND  
VDD  
V
Capacitance A6  
f = 1 MHz, measured to GND,  
code = 0x40  
f = 1 MHz, measured to GND,  
code = 0x40  
45  
pF  
Capacitance W6  
CW  
ICM  
60  
1
pF  
nA  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance6  
VA = VDD/2  
VIH  
VIL  
VIH  
VIL  
IIL  
VDD = 5 V  
VDD = 5 V  
VDD = 3 V  
VDD = 3 V  
2.4  
2.1  
V
V
V
V
μA  
pF  
0.8  
0.6  
1
VIN = 0 V or 5 V  
CIL  
5
3
POWER SUPPLIES  
Power Supply Range  
Supply Current  
Power Dissipationꢀ  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
5.5  
8
40  
V
μA  
μW  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V, VDD = 5 V  
Power Supply Sensitivity  
PSSR  
VDD = 5 V 10%,  
code = midscale  
0.003  
0.05 %/%  
DYNAMIC CHARACTERISTICS6, 8  
Bandwidth –3 dB  
Total Harmonic Distortion  
VW Settling Time  
BW_5 K  
THDW  
tS  
RAB = 5 kΩ, code = 0x40  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA = 5 V, 1 LSB error band  
RWB = 2.5 kΩ, RS = 0 Ω  
1.2  
0.05  
1
MHz  
%
μs  
Resistor Noise Voltage Density  
eN_WB  
6
nV/√Hz  
1 Typical specifications represent average readings at 25°C and VDD = 5 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VA = VDD, wiper (VW) = no connect.  
4 INL and DNL are measured at VW, with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic under operating conditions.  
5 Resistor Terminal A and Resistor Terminal W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
8 All dynamic characteristics use VDD = 5 V.  
Rev. B | Page 3 of 20  
 
 
 
AD5247  
ELECTRICAL CHARACTERISTICS—10 kΩ, 50 kΩ, AND 100 kΩ VERSIONS  
VDD = 5 V 10% or 3 V 10%, VA = VDD, −40°C < TA < +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol Conditions  
Min Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient3  
Output Resistance  
R-DNL  
R-INL  
∆RAB  
∆RAB/∆T  
RWB  
RWB, VA = no connect  
RWB, VA = no connect  
−1  
−2  
−20  
0.1  
0.25  
+1  
+2  
+20  
LSB  
LSB  
%
ppm/°C  
Ω
45  
ꢀ5  
Code = 0x00  
300  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error (50 kΩ, 100 kΩ)  
Zero-Scale Error (50 kΩ, 100 kΩ)  
Full-Scale Error (10 kΩ)  
DNL  
INL  
−1  
−1  
0.1  
0.2  
15  
+1  
+1  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
∆VW/∆T  
VWFSE  
VWZSE  
VWFSE  
VWZSE  
Code = 0x40  
Code = 0xꢀF  
Code = 0x00  
Code = 0xꢀF  
Code = 0x00  
−1  
0
−2  
0
−1  
0
1
0
1
0.4  
−0.5  
0.5  
LSB  
LSB  
Zero-Scale Error (10 kΩ)  
RESISTOR TERMINALS  
Voltage Range5  
VA, VW  
CA  
GND  
VDD  
V
Capacitance A6  
f = 1 MHz, measured to GND,  
code = 0x40  
f = 1 MHz, measured to GND,  
code = 0x40  
45  
pF  
Capacitance W6  
CW  
ICM  
60  
1
pF  
nA  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance6  
VA = VDD/2  
VIH  
VIL  
VIH  
VIL  
IIL  
VDD = 5 V  
VDD = 5 V  
VDD = 3 V  
VDD = 3 V  
2.4  
2.1  
V
V
V
V
μA  
pF  
0.8  
0.6  
1
VIN = 0 V or 5 V  
CIL  
5
3
POWER SUPPLIES  
Power Supply Range  
Supply Current  
Power Dissipationꢀ  
Power Supply Sensitivity  
DYNAMIC CHARACTERISTICS6, 8  
Bandwidth –3 dB  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
5.5  
8
40  
V
μA  
μW  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V, VDD = 5 V  
VDD = 5 V 10%, code = midscale  
PSSR  
0.01  
0.02 %/%  
BW  
RAB = 10 kΩ/50 kΩ/100 kΩ,  
code = 0x40  
VA =1 V rms, f = 1 kHz, RAB = 10 kΩ  
VA = 5 V 1 LSB error band  
RWB = 5 kΩ, RS = 0  
600/100/40  
kHz  
%
μs  
Total Harmonic Distortion  
VW Settling Time (10 kΩ/50 kΩ/100 kΩ)  
Resistor Noise Voltage Density  
THDW  
tS  
eN_WB  
0.05  
2
9
nV/√Hz  
1 Typical specifications represent average readings at 25°C and VDD = 5 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VA = VDD, wiper (VW) = no connect.  
4 INL and DNL are measured at VW, with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A and Resistor Terminal W have no limitations on polarity with respect to each other.  
6 Guaranteed by design, not subject to production test.  
PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
8 All dynamic characteristics use VDD = 5 V.  
Rev. B | Page 4 of 20  
 
 
 
 
AD5247  
TIMING CHARACTERISTICS—5 kΩ, 10 kΩ, 50 kΩ, AND 100 kΩ VERSIONS  
VDD = 5 V 10% or 3 V 10%, VA = VDD, −40°C < TA < +125°C, unless otherwise noted.  
Table 3.  
Parameter1, 2, 3  
Symbol  
Min  
Typ4  
Max  
Unit  
kHz  
μs  
SCL Clock Frequency  
Bus Free Time Between Stop and Start, tBUF  
Hold Time (Repeated Start), tHD;STA  
fSCL  
t1  
t2  
400  
1.3  
0.6  
1.3  
0.6  
0.6  
5
μs  
μs  
μs  
μs  
Low Period of SCL Clock, tLOW  
High Period of SCL Clock, tHIGH  
Setup Time for Repeated Start Condition, tSU;STA  
Data Hold Time, tHD;DAT  
t3  
t4  
t5  
t6  
50  
0.9  
μs  
Data Setup Time, tSU;DAT  
tꢀ  
t8  
t9  
t10  
100  
0.6  
ns  
ns  
ns  
μs  
Fall Time of Both SDA and SCL Signals, tF  
Rise Time of Both SDA and SCL Signals, tR  
Setup Time for Stop Condition, tSU;STO  
300  
300  
1 Specifications apply to all parts.  
2 Guaranteed by design, not subject to production test.  
3 See timing diagrams (Figure 2, Figure 33, and Figure 34) for locations of measured values.  
4 Typical specifications represent average readings at 25°C and VDD = 5 V.  
5 After this period, the first clock pulse is generated.  
t8  
t2  
t9  
t6  
SCL  
t5  
t2  
t3  
t4  
t7  
t10  
t9  
t8  
SDA  
t1  
P
P
S
S
Figure 2. I2C Interface, Detailed Timing Diagram  
Rev. B | Page 5 of 20  
 
 
 
 
AD5247  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Rating  
VDD to GND  
VA, VW to GND  
–0.3 V to +ꢀ V  
VDD  
Terminal Current, Ax to Bx, Ax to Wx, Bx to Wx  
Pulsed1  
20 mA  
5 mA  
ESD CAUTION  
Continuous  
Digital Inputs and Output Voltage to GND  
Operating Temperature Range  
0 V to VDD + 0.3 V  
–40°C to +125°C  
150°C  
–65°C to +150°C  
340°C/W  
Maximum Junction Temperature (TJMAX  
Storage Temperature Range  
Thermal Resistance θJA2: (SCꢀ0-6)  
Reflow Soldering Peak Temperature  
SnPb  
)
240°C  
260°C  
Pb-Free  
1 Maximum terminal current is bounded by the maximum current handling  
of the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Package power dissipation = (TJMAX – TA)/θJA.  
Rev. B | Page 6 of 20  
 
 
 
AD5247  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1
2
3
6
5
4
A
DD  
AD5247  
GND  
SCL  
W
TOP VIEW  
(Not to Scale)  
SDA  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
VDD  
GND  
SCL  
SDA  
W
Positive Power Supply.  
Digital Ground and B Termination Voltage.  
Serial Clock Input; Positive Edge Triggered.  
Serial Data Input/Output.  
Terminal W.  
A
Terminal A.  
Rev. B | Page ꢀ of 20  
 
AD5247  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1.0  
V = 2.7V  
DD  
T
R
= 25°C  
–40°C  
+25°C  
+85°C  
+125°C  
A
0.8  
R = 10k  
= 10k  
AB  
AB  
0.6  
V
= 2.7V  
DD  
0.4  
0.2  
T
= –40°C, +25°C, +85°C, +125°C  
A
0
V
= 5.5V  
DD  
–0.05  
–0.2  
–0.10  
–0.15  
–0.20  
–0.25  
–0.4  
–0.6  
–0.8  
–1.0  
0
16  
32  
48  
64  
80  
96  
112  
128  
0
16  
32  
48  
64  
80  
96  
112  
128  
CODE (Decimal)  
CODE (Decimal)  
Figure 4. R-INL vs. Code vs. Supply Voltages  
Figure 7. DNL vs. Code vs. Temperature  
0.5  
0.25  
T
R
= 25°C  
A
T
R
= 25°C  
A
0.20  
0.15  
0.4  
0.3  
0.2  
= 10kΩ  
AB  
= 10k  
AB  
0.10  
0.05  
V
= 2.7V  
DD  
V
= 2.7V  
DD  
0.1  
0
0
–0.1  
–0.2  
V = 5.5V  
DD  
–0.05  
V
= 5.5V  
DD  
–0.10  
–0.15  
–0.20  
–0.3  
–0.4  
–0.25  
–0.5  
0.25  
0
16  
32  
48  
64  
80  
96  
112  
128  
0
16  
32  
48  
64  
80  
96  
112  
128  
CODE (Decimal)  
CODE (Decimal)  
Figure 5. R-DNL vs. Code vs. Supply Voltages  
Figure 8. INL vs. Code vs. Supply Voltages  
0.25  
V
R
= 2.7V  
= 10k  
T
R
= 25°C  
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +125°C  
DD  
A
A
A
A
A
V
V
= 2.7V  
= 5.5V  
0.20  
0.15  
0.20  
0.15  
DD  
DD  
= 10k  
AB  
AB  
T
= +25°C, +85°C, +125°C  
0.10  
0.05  
0.10  
0.05  
A
V
= 2.7V  
DD  
0
0
–0.05  
–0.05  
T
= –40°C  
V
= 5.5V  
A
DD  
–0.10  
–0.15  
–0.20  
–0.10  
–0.15  
–0.20  
–0.25  
–0.25  
0
16  
32  
48  
64  
80  
96  
112  
128  
0
16  
32  
48  
64  
80  
96  
112  
128  
CODE (Decimal)  
CODE (Decimal)  
Figure 6. INL vs. Code vs. Temperature  
Figure 9. DNL vs. Code vs. Supply Voltages  
Rev. B | Page 8 of 20  
 
AD5247  
1.0  
0.8  
1.50  
T
= –40°C  
A
T
= +85°C  
1.25  
1.00  
0.75  
A
0.6  
0.4  
0.2  
V
= 5.5V, V = 5.5V  
A
DD  
T
= +25°C  
0
A
T
= +125°C  
A
–0.2  
0.50  
–0.4  
–0.6  
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +125°C  
A
A
A
A
0.25  
0
V
= 2.7V, V = 2.7V  
A
DD  
–0.8  
–1.0  
–40 –25 –10  
5
20  
35  
50  
65 80  
95 110 125  
0
16  
32  
48  
64  
80  
96  
112  
128  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 10. R-INL vs. Code vs. Temperature  
Figure 13. Zero-Scale Error vs. Temperature  
100  
10  
1
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
R
= 2.7V  
= 10kΩ  
DD  
–40°C  
+25°C  
+85°C  
+125°C  
DIGITAL INPUTS = 0V  
CODE = 0x40  
AB  
V
= 5.5V  
DD  
T
= –40°C, +25°C, +85°C, +125°C  
A
–0.1  
V
= 2.7V  
DD  
–0.2  
–0.3  
–0.4  
–0.5  
0.1  
0.01  
–40 –25 –10  
5
20  
35 50  
65  
80  
95 110 125  
0
16  
32  
48  
64  
80  
96  
112  
128  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 11. R-DNL vs. Code vs. Temperature  
Figure 14. Supply Current vs. Temperature  
500  
400  
300  
200  
100  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
V
R
= 2.7V  
= 10kΩ  
DD  
AB  
T = –40°C to +85°C  
A
V
= 5.5V, V = 5.5V  
DD  
A
–100  
–200  
–300  
–400  
–500  
V
= 2.7V, V = 2.7V  
A
DD  
65  
T
= –40°C to +125°C  
A
–40 –25 –10  
5
20 35  
50  
80  
95 110 125  
0
16  
32  
48  
64  
80  
96  
112  
128  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 15. ∆RWB/∆T vs. Code  
Figure 12. Full-Scale Error vs. Temperature  
Rev. B | Page 9 of 20  
AD5247  
0
–6  
30  
0x40  
0x20  
V
R
= 2.7V  
= 10kΩ  
DD  
25  
20  
AB  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x10  
0x08  
0x04  
0x02  
0x01  
15  
10  
5
T
= –40°C TO +85°C  
A
0
–5  
T
= –40°C TO +125°C  
A
–10  
0
1k  
10k  
100k  
1M  
10M  
16  
32  
48  
64  
80  
96  
112  
128  
10M  
10M  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 16. ∆VWB/∆T vs. Code  
Figure 19. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
0
–6  
0
–6  
0x40  
0x20  
0x40  
0x20  
0x10  
0x08  
0x04  
0x02  
0x01  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x10  
0x08  
0x04  
0x02  
0x01  
–60  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Gain vs. Frequency vs. Code, RAB = 5 kΩ  
Figure 20. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
0
–6  
0
–6  
0x40  
0x20  
5k  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
10kΩ  
0x10  
0x08  
0x04  
100kΩ  
50kΩ  
0x02  
0x01  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. −3 dB Bandwidth @ Code = 0x80  
Figure 18. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
Rev. B | Page 10 of 20  
AD5247  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
T
= 25°C  
A-V  
CODE = 0x55  
= 5.5V  
A
DD  
V
V
V
= 5.5V  
= 5.0V  
= 0V  
DD  
T
R
= 25°C  
A
A
B-V = 5.5V  
CODE = 0x7F  
= 10kΩ  
DD  
AB  
B
CODE 0x40 TO CODE 0x3F  
C-V = 2.7V  
CODE = 0x55  
DD  
D-V = 2.7V  
CODE = 0x7F  
DD  
A
V
W
B
C
D
0
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
200ns/DIV  
Figure 22. IDD vs. Frequency  
Figure 25. Midscale Glitch, Code 0x40 to Code 0x3F  
150  
125  
100  
75  
T
R
= 25°C  
A
= 50k  
AB  
V
V
V
= 5.5V  
= 5.0V  
= 0V  
T = 25°C  
A
DD  
R
= 10k  
A
B
AB  
CODE 0x00 TO CODE 0x7F  
V
= 2.7V  
DD  
V
W
50  
25  
V
= 5.5V  
64  
DD  
0
0
16  
32  
48  
80  
96  
112  
128  
CODE (Decimal)  
4µs/DIV  
Figure 23. Wiper Resistance vs. Code vs. VDD  
Figure 26. Large Signal Settling Time  
T
= 25°C  
V
V
V
= 5.5V  
= 5.0V  
= 0V  
A
DD  
R
F
= 10k  
AB  
A
B
= 100kHz  
CLK  
V
W
5V  
0V  
CLK  
1µs/DIV  
Figure 24. Digital Feedthrough  
Rev. B | Page 11 of 20  
AD5247  
TEST CIRCUITS  
Figure 27 to Figure 32 define the test conditions used in the Specifications section.  
V
A
V+ = V ± 10%  
DD  
DUT  
DUT  
A
V+ = V  
1LSB = V+/2  
DD  
ΔV  
%
%
MS  
N
PSSR (%/%) =  
V
DD  
A
ΔV  
DD  
W
W
V+  
V+  
B
B
V
V
MS  
MS  
Figure 27. Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 30. Power Supply Sensitivity (PSS, PSSR)  
NO CONNECT  
DUT  
DUT  
I
W
+15V  
A
A
W
V
IN  
W
B
OP27  
–15V  
V
OUT  
B
V
MS  
Figure 28. Resistor Position Nonlinearity Error (R-INL, R-DNL)  
Figure 31. Gain vs. Frequency  
NC  
DUT  
DUT  
I
= V /R  
DD NOMINAL  
W
V
DD  
A
I
A
B
V
CM  
W
W
W
V
MS2  
B
GND  
V
CM  
V
R
= [V  
MS1  
– V ]/I  
MS2 W  
MS1  
W
NC  
Figure 29. Wiper Resistance  
Figure 32. Common-Mode Leakage Current  
Rev. B | Page 12 of 20  
 
 
 
AD5247  
I2C INTERFACE  
The following abbreviations are used in this section:  
W
= write  
S = start condition  
P = stop condition  
A = acknowledge  
X = don’t care  
R = read  
A6, A5, A4, A3, A2, A1, A0 = address bits  
D6, D5, D4, D3, D2, D1, D0 = data bits  
Table 6. Write Mode  
A6 A5  
S
A4  
A3  
A2  
A1  
A1  
A0  
A0  
W
R
A
A
X
0
D6  
D6  
D5  
D5  
D4  
D3  
D2  
D1  
D1  
D0  
D0  
A
A
P
P
Slave Address Byte  
Data Byte  
Table 7. Read Mode  
A6 A5  
S
A4  
A3  
A2  
D4  
D3  
D2  
Slave Address Byte  
Data Byte  
1
9
1
9
1
SCL  
A6 A5  
A4  
A3 A2 A1 A0  
R/W  
ACK  
X
D6 D5 D4  
D3  
D2 D1 D0  
SDA  
ACK BY  
AD5247  
ACK BY  
AD5247  
FRAME 2  
DATA BYTE  
STOP BY  
MASTER  
FRAME 1  
SLAVE ADDRESS BYTE  
START BY  
MASTER  
Figure 33. Writing to the RDAC Register  
1
9
1
0
9
SCL  
A6  
A5 A4  
A3 A2 A1  
A0  
D6 D5  
D4  
D3  
D2  
D1  
D0  
R/W  
S
ACK BY  
AD5247  
NO ACK BY  
MASTER  
FRAME 1  
SLAVE ADDRESS BYTE  
FRAME 2  
RDAC REGISTER  
STOP BY  
MASTER  
START BY  
MASTER  
Figure 34. Reading from the RDAC Register  
Table 8. I2C Slave Addresses  
Slave Addresses  
Slave Address  
A6 A5 A4 A3 A2 A1 A0  
Model  
Model  
A6 A5 A4 A3 A2 A1 A0  
AD524ꢀBKS5-R2  
AD524ꢀBKS5-RLꢀ  
AD524ꢀBKSZ5-RLꢀ  
AD524ꢀBKS10-R2  
AD524ꢀBKS10-RLꢀ  
AD524ꢀBKSZ10-RLꢀ  
AD524ꢀBKSZ10-1RLꢀ  
AD524ꢀBKSZ10-2RLꢀ  
AD524ꢀBKS50-R2  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
1
0
0
0
0
0
0
1
1
0
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
0
0
AD524ꢀBKS50-RLꢀ  
AD524ꢀBKSZ50-RLꢀ  
AD524ꢀBKS100-R2  
AD524ꢀBKSZ100-R2  
AD524ꢀBKS100-RLꢀ  
AD524ꢀBKSZ100-RLꢀ  
AD524ꢀBKSZ100-1RLꢀ  
AD524ꢀBKSZ100-2RLꢀ  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
0
Rev. B | Page 13 of 20  
 
 
 
 
 
 
 
AD5247  
THEORY OF OPERATION  
The AD5247 is a 128-position, digitally-controlled variable  
resistor (VR) device. An internal power-on preset places the  
wiper at midscale during power-on, which simplifies the  
default condition recovery at power-up.  
The general equation determining the digitally programmed  
output resistance between W and B is  
D
RWB(D) =  
×RAB +2×RW  
(1)  
128  
PROGRAMMING THE VARIABLE RESISTOR  
where:  
Rheostat Operation  
D is the decimal equivalent of the binary code loaded in the  
The nominal resistance (RAB) of the RDAC between Terminal A  
and Terminal B is available in 5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ.  
The final two or three digits of the part number determine the  
nominal resistance value; for example, 10 kΩ = 10 and 50 kΩ =  
50. The RAB of the VR has 128 contact points accessed by the  
wiper terminal, plus the B terminal contact. The 7-bit data in  
the RDAC latch is decoded to select one of the 128 possible  
settings.  
7-bit RDAC register.  
R
AB is the end-to-end resistance.  
R
W is the wiper resistance contributed by the on resistance of  
the internal switch.  
In summary, if RAB = 10 kΩ and the Terminal A is open-circuited,  
the output resistance RWB, shown in Table 9, is set for the indicated  
RDAC latch codes.  
Table 9. Codes and Corresponding RWB Resistance  
Assuming a 10 kΩ part is used, the wipers first connection starts  
at the B terminal for Data 0x00. Because there is a 50 Ω wiper  
contact resistance, such a connection yields a minimum of 100 Ω  
(2 × 50 Ω) resistance between Terminal W and Terminal B. The  
second connection is the first tap point, corresponding to 178 Ω  
(RWB = RAB/128 + RW = 78 Ω + 2 × 50 Ω) for Data 0x01. The third  
connection is the next tap point, representing 256 Ω (2 × 78 Ω  
+ 2 × 50 Ω) for Data 0x02, and so on. Each LSB data value increase  
moves the wiper up the resistor ladder until the last tap point is  
reached at 10,100 Ω (RAB + 2 × RW).  
D (Decimal)  
RWB (Ω)  
10,100  
5100  
1ꢀ8  
Output State  
12ꢀ  
64  
1
Full scale (RAB + 2 × RW)  
Midscale  
1 LSB  
0
100  
Zero scale (wiper contact resistance)  
Note that in the zero-scale condition, a finite resistance of  
100 Ω between Terminal W and Terminal B is present. Care  
should be taken to limit the current flow between W and B in  
this state to a maximum pulse current of no more than 20 mA.  
Otherwise, degradation or possible destruction of the internal  
switch contact can occur.  
Figure 35 shows a simplified diagram of the equivalent RDAC  
circuit where the last resistor string is not accessed.  
Ax  
Similar to the mechanical potentiometer, the resistance of  
the RDAC between Wiper W and Terminal A also produces a  
digitally controlled complementary resistance, RWA. When  
these terminals are used, the Terminal B can be opened. Set the  
resistance value for RWA to start at a maximum value of resistance  
and to decrease the data loaded in the latch increases in value.  
The general equation for this operation is  
R
R
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S
S
Wx  
Bx  
128 D  
128  
RWA(D) =  
× RAB + 2×RW  
(2)  
RDAC  
LATCH  
AND  
DECODER  
R
If RAB = 10 kΩ and the B terminal is open-circuited, the output  
resistance, RWA, shown in Table 10, is set for the indicated RDAC  
latch codes.  
S
Table 10. Codes and Corresponding RWA Resistance  
Figure 35. AD5247 Equivalent RDAC Circuit  
D (Decimal)  
RWA (Ω)  
Output State  
Full scale  
Midscale  
1 LSB  
12ꢀ  
64  
1
1ꢀ8  
5100  
9961  
0
10,100  
Zero scale  
Rev. B | Page 14 of 20  
 
 
 
AD5247  
The 2-wire I2C serial bus protocol operates as follows:  
Typical device-to-device matching is process lot dependent  
and can vary by up to 30%. Because the resistance element  
is processed in thin film technology, the change in RAB with  
temperature has a very low 45 ppm/°C temperature coefficient.  
1. The master initiates a data transfer by establishing a start  
condition, which is when a high-to-low transition on the  
SDA line occurs while SCL is high (see Figure 33). The  
following byte is the slave address byte, consisting of the  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
W
7-bit slave address followed by an R/ bit (this bit determines  
whether data is read from or written to the slave device). The  
slave, whose address corresponds to the transmitted address,  
responds by pulling the SDA line low during the ninth clock  
pulse (this is termed the acknowledge bit). At this stage, all  
other devices on the bus remain idle while the selected  
device waits for data to be written to or read from its serial  
The digital potentiometer easily generates a voltage divider at  
wiper-to-B and wiper-to-A, proportional to the input voltage  
at A-to-B. Unlike the polarity of VDD to GND, which must be  
positive, voltage across A-to-B, W-to-A, and W-to-B can be at  
either polarity.  
W
register. If the R/ bit is high, the master reads from the  
If ignoring the effect of the wiper resistance for approximation,  
connecting the Terminal A to 5 V and the Terminal B to ground  
produces an output voltage at the wiper-to-B starting at 0 V up  
to 1 LSB less than 5 V. Each LSB of voltage is equal to the voltage  
applied across Terminal A and Terminal B divided by the 128  
positions of the potentiometer divider. The general equation  
defining the output voltage at VW with respect to ground for any  
valid input voltage applied to Terminal A and Terminal B is  
W
slave device. If the R/ bit is low, the master writes to the  
slave device.  
2. In write mode, after acknowledgement of the slave address  
byte, the next byte is the data byte. Data is transmitted over  
the serial bus in sequences of nine clock pulses (eight data  
bits followed by an acknowledge bit). The transitions on  
the SDA line must occur during the low period of SCL  
and remain stable during the high period of SCL (see  
Figure 33).  
D
(3)  
VW (D) =  
×VA  
128  
A more accurate calculation that includes the effect of wiper  
resistance, VW, is  
3. In read mode, after acknowledgment of the slave address  
byte, data is received over the serial bus in sequences of  
nine clock pulses (a slight difference from write mode,  
where eight data bits are followed by an acknowledge bit).  
Similarly, the transitions on the SDA line must occur  
during the low period of SCL and remain stable during  
the high period of SCL (see Figure 34).  
RWB(D)  
RAB  
VW (D) =  
×VA  
(4)  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
rheostat mode, divider mode makes the output voltage mainly on  
the ratio of Internal Resistor RWA to Internal Resistor RWB, and  
not the absolute values. Therefore, the temperature drift reduces  
to 15 ppm/°C.  
I2C-COMPATIBLE 2-WIRE SERIAL BUS  
The first byte of the AD5247 is a slave address byte (see the I2C  
4. When all data bits have been read or written, a stop con-  
dition is established by the master. A stop condition is  
defined as a low-to-high transition on the SDA line while  
SCL is high. In write mode, the master pulls the SDA line  
high during the 10th clock pulse to establish a stop condition  
(see Figure 33). In read mode, the master issues a no  
acknowledge for the ninth clock pulse (that is, the SDA  
line remains high). The master then brings the SDA line  
low before the 10th clock pulse, which goes high to establish  
a stop condition (see Figure 34).  
W
Interface section). It has a 7-bit slave address and an R/ bit.  
The 5 kꢀ and 50 kꢀ options support one 7-bit slave address  
while the 10 kꢀ and 100 kꢀ options each have three hard-coded  
slave address options available (see Table 8 for a full list of slave  
address locations). The extra hard coded slave addresses on the  
10 kꢀ and 100 kꢀ options allow users to employ up to three of  
these devices on one I2C bus. The seven MSBs of the slave address  
are followed by 0 for a write command or 1 to place the device  
in read mode.  
A repeated write function gives the user flexibility to update the  
RDAC output a number of times after addressing the part only  
once. For example, after the RDAC has acknowledged its slave  
address in the write mode, the RDAC output updates on each  
successive byte. If different instructions are needed, the write/read  
mode has to start again with a new slave address and data byte.  
Similarly, a repeated read function of the RDAC is also allowed.  
Rev. B | Page 15 of 20  
 
 
AD5247  
LEVEL SHIFTING FOR BIDIRECTIONAL INTERFACE  
MAXIMUM OPERATING CURRENT  
While most legacy systems can be operated at one voltage, a  
new component can be optimized at another voltage. When  
two systems operate the same signal at two different voltages,  
proper level shifting is needed. For instance, users can employ  
a 3.3 V E2PROM to interface with a 5 V digital potentiometer. A  
level shifting scheme is needed to enable a bidirectional commu-  
nication so that the setting of the digital potentiometer can be  
stored in and retrieved from the E2PROM. Figure 36 shows one  
of the level-shifting implementations. M1 and M2 can be any  
N-channel signal FETs, or if VDD falls below 2.5 V, M1 and M2  
can be low threshold FETs such as the FDV301N.  
At low code values, the user should be aware that, due to low  
resistance values, the current through the RDAC might exceed  
the 5 mA limit. In Figure 39, a 5 V supply is placed on the wiper,  
and the current through Terminal W and Terminal B is plotted  
with respect to code. A line is also drawn denoting the 5 mA  
current limit. Note that at low code values (particularly for the  
5 kꢀ and 10 kꢀ options), the current level increases signifi-  
cantly. Care should be taken to limit the current flow between  
W and B in this state to a maximum continuous current of  
5 mA and a maximum pulse current of no more than 20 mA.  
Otherwise, degradation or possible destruction of the internal  
switch contacts can occur.  
V
= 3.3V  
V
= 5V  
DD1  
DD2  
100  
R
R
R
R
P
P
P
P
G
S
D
SDA2  
SDA1  
SCL1  
10  
G
5mA CURRENT LIMIT  
M1  
S
D
SCL2  
R
= 5k  
AB  
M2  
3.3V  
5V  
1
R
= 10kΩ  
AB  
2
AD5247  
E PROM  
R
= 50kΩ  
AB  
0.1  
Figure 36. Level-Shifting for Operation at Different Potentials  
R
= 100kΩ  
ESD PROTECTION  
AB  
All digital inputs are protected with a series input resistor and  
parallel Zener ESD structures as shown in Figure 37. This applies  
to digital input pins (SDA and SCL).  
0.01  
64  
80  
96  
112  
128  
0
16  
32  
48  
CODE (Decimal)  
Figure 39. Maximum Operating Current  
340  
SDA/  
SCL  
LOGIC  
POWER-UP SEQUENCE  
Because the ESD protection diodes limit the voltage compliance  
at Terminal A and Terminal W (see Figure 38), it is important  
to power VDD/GND before applying any voltage to Terminal A  
and Terminal W; otherwise, the diode is forward-biased such  
that VDD is powered unintentionally and can affect the rest of the  
users circuit. The ideal power-up sequence is in the following  
order: GND, VDD, digital inputs, VA, and VW. The relative order  
of powering VA and VW and the digital inputs is not important  
as long as they are powered after VDD/GND.  
GND  
Figure 37. ESD Protection of Digital Pins  
TERMINAL VOLTAGE OPERATING RANGE  
The AD5247 VDD and GND power supply defines the boundary  
conditions for proper 3-terminal digital potentiometer operation.  
Supply signals present on Terminal A and Terminal W that exceed  
V
DD or GND are clamped by the internal forward biased diodes  
(see Figure 38).  
V
DD  
A
W
GND  
Figure 38. Maximum Terminal Voltages Set by VDD and GND  
Rev. B | Page 16 of 20  
 
 
 
 
 
 
 
AD5247  
110%  
108%  
106%  
104%  
102%  
100%  
98%  
LAYOUT AND POWER SUPPLY BYPASSING  
T
= 25°C  
A
It is good practice to employ a compact, minimum lead-length  
layout design. The leads to the inputs should be as direct as pos-  
sible with minimum conductor length. Ground paths should  
have low resistance and low inductance.  
Similarly, it is good practice to bypass the power supplies with  
quality capacitors for optimum stability. Supply leads to the device  
should be bypassed with 0.01 μF to 0.1 μF disc or chip ceramic  
capacitors. Low ESR 1 μF to 10 μF tantalum or electrolytic capaci-  
tors should also be applied at the supplies to minimize any transient  
disturbance and low frequency ripple (see Figure 40). Note that the  
digital ground should also be joined remotely to the analog ground  
at one point to minimize the ground bounce.  
96%  
94%  
92%  
90%  
0
5
10  
15  
20  
25  
30  
DAYS  
Figure 41. Battery Operating Life Depletion  
V
V
DD  
DD  
C3  
10µF  
This demonstrates that constantly biasing the potentiometer  
is a practical approach. Most portable devices do not require  
the removal of batteries for charging. Although the resistance  
setting of the AD5247 is lost when the battery needs replace-  
ment, such events occur rather infrequently. As a result, this  
inconvenience is justified by the lower cost and smaller size  
offered by the AD5247. If total power is lost, the user should  
be provided with a means to adjust the setting accordingly.  
+
C1  
0.1µF  
AD5247  
GND  
Figure 40. Power Supply Bypassing  
EVALUATION BOARD  
CONSTANT BIAS TO RETAIN RESISTANCE SETTING  
An evaluation board, along with all necessary software, is avail-  
able to program the AD5247 from any PC running Windows® 98,  
Windows 2000, or Windows XP. The graphical user interface,  
shown in Figure 42, is straightforward and easy to use. More  
detailed information is available in the data sheet that comes  
with the board.  
For users who desire nonvolatility but cannot justify the additional  
cost for the EEMEM, the AD5247 can be considered a low cost  
alternative because it maintains a constant bias to retain the  
wiper setting. The AD5247 is specifically designed with low  
power in mind, which allows low power consumption even in  
battery-operated systems.  
Figure 41 demonstrates the power consumption from a 3.4 V  
450 mA/hr Li-Ion cell phone battery, which is connected to the  
AD5247. The measurement over time shows that the device  
draws approximately 1.3 μA and consumes negligible power.  
Over a course of 30 days, the battery was depleted by less than  
2%, the majority of which was due to the intrinsic leakage  
current of the battery itself.  
Figure 42. AD5247 Evaluation Board Software  
Rev. B | Page 1ꢀ of 20  
 
 
 
 
 
AD5247  
OUTLINE DIMENSIONS  
2.20  
2.00  
1.80  
2.40  
2.10  
1.80  
6
1
5
2
4
3
1.35  
1.25  
1.15  
PIN 1  
1.30 BSC  
0.65 BSC  
1.00  
0.90  
0.70  
0.40  
0.10  
1.10  
0.80  
0.46  
0.36  
0.26  
0.30  
0.15  
0.22  
0.08  
0.10 MAX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203-AB  
Figure 43. 6-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD524ꢀBKS5-R2  
RAB (kΩ)  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
6-lead SCꢀ0  
Evaluation Board  
Package Option  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
Branding  
D1E  
D1E  
D96  
D19  
D19  
D95  
D5E  
DAK  
D18  
D18  
D9ꢀ  
D1ꢀ  
D1ꢀ  
D98  
D98  
DAJ  
5
5
5
AD524ꢀBKS5-RLꢀ  
AD524ꢀBKSZ5-RLꢀ1  
AD524ꢀBKS10-R2  
AD524ꢀBKS10-RLꢀ  
AD524ꢀBKSZ10-RLꢀ1  
AD524ꢀBKSZ10-1RLꢀ1  
AD524ꢀBKSZ10-2RLꢀ1  
AD524ꢀBKS50-R2  
AD524ꢀBKS50-RLꢀ  
AD524ꢀBKSZ50-RLꢀ1  
AD524ꢀBKS100-R2  
AD524ꢀBKS100-RLꢀ  
AD524ꢀBKSZ100-R2  
AD524ꢀBKSZ100-RLꢀ1  
AD524ꢀBKSZ100-1RLꢀ1  
AD524ꢀBKSZ100-2RLꢀ1  
AD524ꢀEVAL2  
10  
10  
10  
10  
10  
50  
50  
50  
100  
100  
100  
100  
100  
100  
KS-6  
DAL  
1 Z = RoHS compliant part.  
2 The evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with all available resistor value options.  
Rev. B | Page 18 of 20  
 
 
 
AD5247  
NOTES  
Rev. B | Page 19 of 20  
AD5247  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2003–2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C03876-0-3/07(B)  
Rev. B | Page 20 of 20  

相关型号:

AD5247BKS50-R2

128-Position I2C Compatible Digital Potentiometer
ADI

AD5247BKS50-R2

50K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO6, MO-203AB, SC-70, 6 PIN
ROCHESTER

AD5247BKS50-RL7

128-Position I2C Compatible Digital Potentiometer
ADI

AD5247BKS50-RL7

50K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO6, MO-203AB, SC-70, 6 PIN
ROCHESTER

AD5247BKSZ10-1RL7

128-Position I2C-Compatible Digital Potentiometer
ADI

AD5247BKSZ10-2RL7

128-Position I2C-Compatible Digital Potentiometer
ADI

AD5247BKSZ10-RL7

128-Position I2C-Compatible Digital Potentiometer
ADI

AD5247BKSZ100-1RL7

128-Position I2C-Compatible Digital Potentiometer
ADI

AD5247BKSZ100-2RL7

128-Position I2C-Compatible Digital Potentiometer
ADI

AD5247BKSZ100-R2

128-Position I2C-Compatible Digital Potentiometer
ADI

AD5247BKSZ100-RL7

128-Position I2C-Compatible Digital Potentiometer
ADI

AD5247BKSZ5-RL7

128-Position I2C-Compatible Digital Potentiometer
ADI