AD5336BRU-REEL7 [ROCHESTER]

QUAD, PARALLEL, 8 BITS INPUT LOADING, 7 us SETTLING TIME, 10-BIT DAC, PDSO24, TSSOP-28;
AD5336BRU-REEL7
型号: AD5336BRU-REEL7
厂家: Rochester Electronics    Rochester Electronics
描述:

QUAD, PARALLEL, 8 BITS INPUT LOADING, 7 us SETTLING TIME, 10-BIT DAC, PDSO24, TSSOP-28

输入元件 光电二极管 转换器
文件: 总21页 (文件大小:1092K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V to 5.5 V, 500 A, Parallel Interface  
Quad Voltage-Output 8-/10-/12-Bit DACs  
a
AD5334/AD5335/AD5336/AD5344*  
FEATURES  
GENERAL DESCRIPTION  
AD5334: Quad 8-Bit DAC in 24-Lead TSSOP  
AD5335: Quad 10-Bit DAC in 24-Lead TSSOP  
AD5336: Quad 10-Bit DAC in 28-Lead TSSOP  
AD5344: Quad 12-Bit DAC in 28-Lead TSSOP  
The AD5334/AD5335/AD5336/AD5344 are quad 8-, 10-, and  
12-bit DACs. They operate from a 2.5 V to 5.5 V supply con-  
suming just 500 µA at 3 V, and feature a power-down mode that  
further reduces the current to 80 nA. These devices incorporate  
Low Power Operation: 500 A @ 3 V, 600 A @ 5 V  
Power-Down to 80 nA @ 3 V, 200 nA @ 5 V via PD Pin  
2.5 V to 5.5 V Power Supply  
an on-chip output buffer that can drive the output to both sup-  
ply rails.  
The AD5334/AD5335/AD5336/AD5344 have a parallel interface.  
CS selects the device and data is loaded into the input registers  
on the rising edge of WR.  
Double-Buffered Input Logic  
Guaranteed Monotonic by Design Over All Codes  
Output Range: 0–VREF or 0–2 VREF  
Power-On Reset to Zero Volts  
The GAIN pin on the AD5334 and AD5336 allows the output  
Simultaneous Update of DAC Outputs via LDAC Pin  
Asynchronous CLR Facility  
Low Power Parallel Data Interface  
On-Chip Rail-to-Rail Output Buffer Amplifiers  
Temperature Range: –40؇C to +105؇C  
range to be set at 0 V to VREF or 0 V to 2 × VREF  
.
Input data to the DACs is double-buffered, allowing simultaneous  
update of multiple DACs in a system using the LDAC pin.  
On the AD5334, AD5335 and AD5336 an asynchronous CLR  
input is also provided. This resets the contents of the Input  
Register and the DAC Register to all zeros. These devices also  
incorporate a power-on-reset circuit that ensures that the DAC  
output powers on to 0 V and remains there until valid data is  
written to the device.  
APPLICATIONS  
Portable Battery-Powered Instruments  
Digital Gain and Offset Adjustment  
Programmable Voltage and Current Sources  
Programmable Attenuators  
The AD5334/AD5335/AD5336/AD5344 are available in Thin  
Shrink Small Outline Packages (TSSOP).  
Industrial Process Control  
AD5334 FUNCTIONAL BLOCK DIAGRAM  
(Other Diagrams Inside)  
V
REF  
A/B  
V
DD  
POWER-ON  
RESET  
AD5334  
GAIN  
DAC  
INPUT  
DB  
8-BIT  
DAC  
7
.
BUFFER  
V
V
A
B
REGISTER  
REGISTER  
OUT  
.
.
DB  
0
CS  
WR  
A0  
DAC  
REGISTER  
INPUT  
REGISTER  
8-BIT  
DAC  
BUFFER  
OUT  
INTER-  
FACE  
LOGIC  
DAC  
INPUT  
8-BIT  
A1  
BUFFER  
BUFFER  
V
V
C
D
REGISTER  
REGISTER  
OUT  
DAC  
DAC  
REGISTER  
INPUT  
REGISTER  
8-BIT  
DAC  
OUT  
TO ALL DACS  
AND BUFFERS  
CLR  
LDAC  
POWER-DOWN  
LOGIC  
V
REF  
C/D  
GND  
PD  
*Protected by U.S. Patent Number 5,969,657  
.
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
AD5334/AD5335/AD5336/AD5344–SPECIFICATIONS  
(VDD = 2.5 V to 5.5 V, VREF = 2 V. RL = 2 kto GND; CL =200 pF to GND; all specifications TMIN to TMAX unless otherwise noted.)  
B Version2  
Typ  
Parameter1  
Min  
Max  
Unit  
Conditions/Comments  
DC PERFORMANCE3, 4  
AD5334  
Resolution  
8
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5335/AD5336  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
AD5344  
0.15  
0.02  
1
0.25  
Guaranteed Monotonic By Design Over All Codes  
Guaranteed Monotonic By Design Over All Codes  
Guaranteed Monotonic By Design Over All Codes  
10  
Bits  
LSB  
LSB  
0.5  
0.05  
4
0.5  
Resolution  
12  
2
0.2  
0.4  
0.1  
Bits  
LSB  
LSB  
% of FSR  
Relative Accuracy  
Differential Nonlinearity  
Offset Error  
16  
1
3
Gain Error  
1
% of FSR  
Lower Deadband5  
Upper Deadband  
Offset Error Drift6  
Gain Error Drift6  
DC Power Supply Rejection Ratio6  
DC Crosstalk6  
10  
10  
–12  
–5  
–60  
200  
60  
60  
mV  
mV  
Lower Deadband Exists Only if Offset Error Is Negative  
VDD = 5 V. Upper Deadband Exists Only if VREF = VDD  
ppm of FSR/°C  
ppm of FSR/°C  
dB  
µV  
VDD = 10%  
RL = 2 kto GND, 2 kto VDD; CL = 200 pF to GND;  
Gain = 0  
DAC REFERENCE INPUT6  
VREF Input Range  
0.25  
VDD  
V
VREF Input Impedance  
180  
90  
90  
45  
–90  
–90  
kΩ  
kΩ  
kΩ  
kΩ  
dB  
dB  
Gain = 1. Input Impedance = RDAC (AD5336/AD5344)  
Gain = 2. Input Impedance = RDAC (AD5336)  
Gain = 1. Input Impedance = RDAC (AD5334/AD5335)  
Gain = 2. Input Impedance = RDAC (AD5334)  
Frequency = 10 kHz  
Reference Feedthrough  
Channel-to-Channel Isolation  
Frequency = 10 kHz  
OUTPUT CHARACTERISTICS6  
Minimum Output Voltage4, 7  
Maximum Output Voltage4, 7  
DC Output Impedance  
0.001  
VDD – 0.001  
V min  
V max  
Rail-to-Rail Operation  
0.5  
50  
20  
2.5  
5
Short Circuit Current  
mA  
mA  
µs  
VDD = 5 V  
VDD = 3 V  
Power-Up Time  
Coming Out of Power-Down Mode. VDD = 5 V  
Coming Out of Power-Down Mode. VDD = 3 V  
µs  
LOGIC INPUTS6  
Input Current  
VIL, Input Low Voltage  
1
µA  
V
0.8  
VDD = 5 V 10%  
VDD = 3 V 10%  
VDD = 2.5 V  
0.6  
0.5  
V
V
VIH, Input High Voltage  
Pin Capacitance  
2.4  
2.1  
2.0  
V
V
V
pF  
VDD = 5 V 10%  
VDD = 3 V 10%  
VDD = 2.5 V  
3.5  
POWER REQUIREMENTS  
VDD  
2.5  
5.5  
V
IDD (Normal Mode)  
VDD = 4.5 V to 5.5 V  
All DACs active and excluding load currents.  
VIH = VDD, VIL = GND.  
IDD increases by 50 µA at VREF > VDD – 100 mV.  
600  
500  
900  
700  
µA  
µA  
V
DD = 2.5 V to 3.6 V  
IDD (Power-Down Mode)  
VDD = 4.5 V to 5.5 V  
VDD = 2.5 V to 3.6 V  
0.2  
0.08  
1
1
µA  
µA  
NOTES  
1See Terminology section.  
2Temperature range: B Version: –40°C to +105°C; typical specifications are at 25°C.  
3Linearity is tested using a reduced code range: AD5334 (Code 8 to 255); AD5335/AD5336 (Code 28 to 1023); AD5344 (Code 115 to 4095).  
4DC specifications tested with outputs unloaded.  
5This corresponds to x codes. x = Deadband voltage/LSB size.  
6Guaranteed by design and characterization, not production tested.  
7In order for the amplifier output to reach its minimum voltage, Offset Error must be negative. In order for the amplifier output to reach its maximum voltage, VREF = VDD and  
“Offset plus Gain” Error must be positive.  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
(VDD = 2.5 V to 5.5 V. RL = 2 kto GND; CL = 200 pF to GND. All specifications TMIN to TMAX unless other-  
AC CHARACTERISTICS1 wise noted.)  
B Version3  
Typ  
Parameter2  
Min  
Max  
Unit  
Conditions/Comments  
Output Voltage Settling Time  
AD5334  
VREF = 2 V. See Figure 20  
6
8
µs  
1/4 Scale to 3/4 Scale Change (40 H to C0 H)  
1/4 Scale to 3/4 Scale Change (100 H to 300 H)  
1/4 Scale to 3/4 Scale Change (100 H to 300 H)  
1/4 Scale to 3/4 Scale Change (400 H to C00 H)  
AD5335  
7
9
µs  
AD5336  
AD5344  
Slew Rate  
Major Code Transition Glitch Energy  
Digital Feedthrough  
Digital Crosstalk  
Analog Crosstalk  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Total Harmonic Distortion  
7
8
0.7  
8
0.5  
3
0.5  
3.5  
200  
–70  
9
10  
µs  
µs  
V/µs  
nV-s  
nV-s  
nV-s  
nV-s  
nV-s  
kHz  
dB  
1 LSB Change Around Major Carry  
VREF = 2 V 0.1 V p-p. Unbuffered Mode  
VREF = 2.5 V 0.1 V p-p. Frequency = 10 kHz  
NOTES  
1Guaranteed by design and characterization, not production tested.  
2See Terminology section.  
3Temperature range: B Version: –40°C to +105°C; typical specifications are at 25°C.  
Specifications subject to change without notice.  
TIMING CHARACTERISTICS1, 2, 3  
(VDD = 2.5 V to 5.5 V, All specifications TMIN to TMAX unless otherwise noted.)  
Parameter  
Limit at TMIN, TMAX  
Unit  
Condition/Comments  
t1  
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
CS to WR Setup Time  
t2  
0
CS to WR Hold Time  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
t15  
20  
5
4.5  
5
5
4.5  
5
4.5  
20  
20  
50  
20  
0
WR Pulsewidth  
Data, GAIN, HBEN Setup Time  
Data, GAIN, HBEN Hold Time  
Synchronous Mode. WR Falling to LDAC Falling.  
Synchronous Mode. LDAC Falling to WR Rising.  
Synchronous Mode. WR Rising to LDAC Rising.  
Asynchronous Mode. LDAC Rising to WR Rising.  
Asynchronous Mode. WR Rising to LDAC Falling.  
LDAC Pulsewidth  
CLR Pulsewidth  
Time Between WR Cycles  
A0, A1 Setup Time  
A0, A1 Hold Time  
NOTES  
1Guaranteed by design and characterization, not production tested.  
2All input signals are specified with tr = tf = 5 ns (10% to 90% of VDD  
and timed from a voltage level of (VIL + VIH)/2.  
3See Figure 1.  
t2  
t1  
)
CS  
t13  
t3  
Specifications subject to change without notice.  
WR  
t5  
t4  
DATA,  
GAIN,  
HBEN  
t8  
t6  
t7  
t9  
1
LDAC  
t11  
t10  
2
LDAC  
t12  
t15  
t14  
CLR  
A0,  
A1  
NOTES:  
1
SYNCHRONOUS LDAC UPDATE MODE  
ASYNCHRONOUS LDAC UPDATE MODE  
2
Figure 1. Parallel Interface Timing Diagram  
–3–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C unless otherwise noted)  
Reflow Soldering  
Peak Temperature . . . . . . . . . . . . . . . . . . . . . . 220 +5/–0°C  
Time at Peak Temperature . . . . . . . . . . . . .10 sec to 40 sec  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Digital Input Voltage to GND . . . . . . . .0.3 V to VDD + 0.3 V  
Digital Output Voltage to GND . . . . . .0.3 V to VDD + 0.3 V  
Reference Input Voltage to GND . . . . –0.3 V to VDD + 0.3 V  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
VOUT to GND . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating Temperature Range  
Industrial (B Version) . . . . . . . . . . . . . . . –40°C to +105°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
TSSOP Package  
Power Dissipation . . . . . . . . . . . . . . . (TJ max – TA)/θJA mW  
θ
JA Thermal Impedance (24-Lead TSSOP) . . . . . 128°C/W  
θ
θ
θ
JA Thermal Impedance (28-Lead TSSOP) . . . . . 97.9°C/W  
JC Thermal Impedance (24-Lead TSSOP) . . . . . . 42°C/W  
JC Thermal Impedance (28-Lead TSSOP) . . . . . . 14°C/W  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD5334BRU  
AD5335BRU  
AD5336BRU  
AD5344BRU  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
RU-24  
RU-24  
RU-28  
RU-28  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD5334/AD5335/AD5336/AD5344 features proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
4–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
AD5334 FUNCTIONAL BLOCK DIAGRAM  
AD5334 PIN CONFIGURATION  
V
REF  
A/B  
V
DD  
V
V
C/D  
A/B  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
CLR  
REF  
POWER-ON  
RESET  
GAIN  
REF  
AD5334  
V
V
V
V
A
B
C
D
DB  
DB  
DB  
DB  
DB  
OUT  
OUT  
OUT  
OUT  
7
6
5
4
3
2
1
0
GAIN  
DAC  
INPUT  
REGISTER  
DB  
8-BIT  
DAC  
8-BIT  
AD5334  
TOP VIEW  
(Not to Scale)  
7
.
BUFFER  
V
V
A
B
REGISTER  
OUT  
.
.
DB  
0
GND  
CS  
CS  
WR  
A0  
DAC  
REGISTER  
INPUT  
REGISTER  
17 DB  
16 DB  
15 DB  
14  
8-BIT  
DAC  
BUFFER  
OUT  
WR  
INTER-  
FACE  
LOGIC  
A0 10  
11  
A1  
V
DD  
DAC  
REGISTER  
INPUT  
REGISTER  
8-BIT  
12  
13  
PD  
A1  
LDAC  
BUFFER  
BUFFER  
V
V
C
D
OUT  
DAC  
DAC  
REGISTER  
INPUT  
REGISTER  
8-BIT  
DAC  
OUT  
TO ALL DACS  
AND BUFFERS  
CLR  
LDAC  
POWER-DOWN  
LOGIC  
V
REF  
C/D  
GND  
PD  
AD5334 PIN FUNCTION DESCRIPTIONS  
Pin  
No.  
Mnemonic  
Function  
1
2
3
4
5
6
7
8
VREFC/D  
Unbuffered Reference Input for DACs C and D.  
Unbuffered Reference Input for DACs A and B.  
V
V
V
V
V
REFA/B  
OUTA  
OUTB  
OUTC  
OUTD  
Output of DAC A. Buffered Output with Rail-to-Rail Operation.  
Output of DAC B. Buffered Output with Rail-to-Rail Operation.  
Output of DAC C. Buffered Output with Rail-to-Rail Operation.  
Output of DAC D. Buffered Output with Rail-to-Rail Operation.  
Ground Reference Point for All Circuitry on the Part.  
Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
LSB Address Pin for Selecting which DAC Is to Be Written to.  
GND  
CS  
9
WR  
A0  
A1  
10  
11  
12  
MSB Address Pin for Selecting which DAC Is to Be Written to.  
Active Low Control Input that Updates the DAC Registers with the Contents of the Input Registers.  
This allows all DAC outputs to be simultaneously updated.  
LDAC  
13  
14  
PD  
Power-Down Pin. This active low control pin puts all DACs into power-down mode.  
Power Supply Pin. This part can operate from 2.5 V to 5.5 V and the supply should be decoupled with a  
VDD  
10 µF capacitor in parallel with a 0.1 µF capacitor to GND.  
15–22  
23  
24  
DB0–DB7  
GAIN  
CLR  
Eight Parallel Data Inputs. DB7 is the MSB of these eight bits.  
Gain Control Pin. This controls whether the output range from the DAC is 0–VREF or 0–2 VREF  
Asynchronous Active Low Control Input that Clears All Input Registers and DAC Registers to Zeros.  
5–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
AD5335 FUNCTIONAL BLOCK DIAGRAM  
AD5335 PIN CONFIGURATION  
V
A/B  
V
DD  
REF  
V
V
C/D  
A/B  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
CLR  
REF  
POWER-ON  
RESET  
HBEN  
REF  
AD5335  
V
V
V
V
A
B
C
D
DB  
DB  
DB  
DB  
DB  
OUT  
OUT  
OUT  
OUT  
7
6
5
4
HIGH BYTE  
REGISTER  
10-BIT  
AD5335  
TOP VIEW  
(Not to Scale)  
DB  
7
.
.
.
.
.
.
LOW BYTE  
REGISTER  
DAC  
10-BIT  
DAC  
BUFFER  
V
OUT  
A
REGISTER  
GND  
CS  
3
2
1
0
DB  
0
17 DB  
16 DB  
15 DB  
14  
CS  
WR  
A0  
WR  
HIGH BYTE  
REGISTER  
A0 10  
11  
A1  
V
DD  
12  
13  
PD  
LDAC  
LOW BYTE  
REGISTER  
DAC  
REGISTER  
10-BIT  
DAC  
BUFFER  
BUFFER  
BUFFER  
V
OUT  
B
C
INTER-  
FACE  
LOGIC  
A1  
HIGH BYTE  
REGISTER  
HBEN  
DAC  
REGISTER  
LOW BYTE  
REGISTER  
10-BIT  
DAC  
V
OUT  
HIGH BYTE  
REGISTER  
LOW BYTE  
REGISTER  
DAC  
REGISTER  
10-BIT  
DAC  
V
D
OUT  
TO ALL DACS  
AND BUFFERS  
RESET  
CLR  
POWER-DOWN  
LDAC  
LOGIC  
V
C/D  
REF  
GND  
PD  
AD5335 PIN FUNCTION DESCRIPTIONS  
Pin  
No.  
Mnemonic  
Function  
1
2
3
4
5
6
7
8
V
V
V
V
V
V
REFC/D  
REFA/B  
OUTA  
OUTB  
OUTC  
Unbuffered Reference Input for DACs C and D.  
Unbuffered Reference Input for DACs A and B.  
Output of DAC A. Buffered output with rail-to-rail operation.  
Output of DAC B. Buffered output with rail-to-rail operation.  
Output of DAC C. Buffered output with rail-to-rail operation.  
Output of DAC D. Buffered output with rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Part.  
Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
LSB Address Pin for Selecting which DAC Is to Be Written to.  
OUTD  
GND  
CS  
9
WR  
A0  
A1  
10  
11  
12  
MSB Address Pin for Selecting which DAC Is to Be Written to.  
Active Low Control Input that Updates the DAC Registers with the Contents of the Input Registers.  
This allows all DAC outputs to be simultaneously updated.  
LDAC  
13  
14  
PD  
Power-Down Pin. This active low control pin puts all DACs into power-down mode.  
Power Supply Pin. This part can operate from 2.5 V to 5.5 V and the supply should be decoupled with a  
10 µF capacitor in parallel with a 0.1 µF capacitor to GND.  
VDD  
15–22  
23  
DB0–DB7  
HBEN  
Eight Parallel Data Inputs. DB7 is the MSB of these eight bits.  
This pin is used when writing to the device to determine if data is written to the high byte register or the  
low byte register.  
24  
CLR  
Asynchronous Active Low Control Input that Clears All Input Registers and DAC Registers to Zeros.  
6–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
AD5336 PIN CONFIGURATION  
AD5336 FUNCTIONAL BLOCK DIAGRAM  
V
A
V
B
V
DD  
REF  
REF  
V
V
V
V
V
D
C
B
A
A
B
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
CLR  
REF  
REF  
REF  
REF  
POWER-ON  
RESET  
GAIN  
AD5336  
3
DB  
DB  
DB  
9
8
7
GAIN  
4
DAC  
INPUT  
REGISTER  
DB  
9
10-BIT  
DAC  
.
.
.
BUFFER  
V
V
A
B
REGISTER  
5
OUT  
OUT  
10-BIT  
DB  
6
V
DB  
DB  
DB  
DB  
0
OUT  
OUT  
OUT  
6
5
AD5336  
TOP VIEW  
(Not to Scale)  
7
V
V
C
D
CS  
WR  
A0  
DAC  
REGISTER  
INPUT  
REGISTER  
8
10-BIT  
DAC  
4
BUFFER  
OUT  
GND  
9
3
INTER-  
FACE  
LOGIC  
10  
11  
12  
13  
14  
19 DB  
18 DB  
17 DB  
CS  
WR  
A0  
2
1
DAC  
INPUT  
10-BIT  
DAC  
A1  
BUFFER  
BUFFER  
0
V
V
C
D
REGISTER  
OUT  
REGISTER  
A1  
16  
15  
V
DD  
LDAC  
PD  
DAC  
REGISTER  
INPUT  
REGISTER  
10-BIT  
DAC  
OUT  
TO ALL DACS  
AND BUFFERS  
CLR  
RESET  
LDAC  
POWER-DOWN  
LOGIC  
V
D
V
C
GND  
PD  
REF  
REF  
AD5336 PIN FUNCTION DESCRIPTIONS  
Pin  
No.  
Mnemonic  
VREF  
Function  
1
D
Unbuffered Reference Input for DAC D.  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
V
V
V
V
V
V
V
REFC  
REFB  
REFA  
OUTA  
OUTB  
OUTC  
OUTD  
Unbuffered Reference Input for DAC C.  
Unbuffered Reference Input for DAC B.  
Unbuffered Reference Input for DAC A.  
Output of DAC A. Buffered output with rail-to-rail operation.  
Output of DAC B. Buffered output with rail-to-rail operation.  
Output of DAC C. Buffered output with rail-to-rail operation.  
Output of DAC D. Buffered output with rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Part.  
Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
LSB Address Pin for Selecting which DAC Is to Be Written to.  
GND  
CS  
WR  
A0  
A1  
MSB Address Pin for Selecting which DAC is to Be Written to.  
Active Low Control Input that Updates the DAC Registers with the Contents of the Input Registers.  
This allows all DAC outputs to be simultaneously updated.  
LDAC  
15  
16  
PD  
Power-Down Pin. This active low control pin puts all DACs into power-down mode.  
Power Supply Pin. This part can operate from 2.5 V to 5.5 V and the supply should be decoupled with a  
VDD  
10 µF capacitor in parallel with a 0.1 µF capacitor to GND.  
17–26  
27  
DB0–DB9  
GAIN  
10 Parallel Data Inputs. DB9 is the MSB of these 10 bits.  
Gain Control Pin. This controls whether the output range from the DAC is 0–VREF or 0–2 VREF  
.
28  
CLR  
Asynchronous Active Low Control Input that Clears All Input Registers and DAC Registers to Zeros.  
7–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
AD5344 PIN CONFIGURATION  
AD5344 FUNCTIONAL BLOCK DIAGRAM  
V
A
V
B
V
DD  
REF  
REF  
V
V
V
V
V
D
C
B
A
A
1
2
28  
27  
26  
25  
24  
23  
22  
21  
DB  
DB  
REF  
REF  
REF  
REF  
11  
10  
9
POWER-ON  
RESET  
AD5344  
3
DB  
DB  
DB  
DB  
DB  
DB  
4
8
DB  
11  
.
.
.
.
.
.
DAC  
REGISTER  
5
INPUT  
REGISTER  
OUT  
7
12-BIT  
DAC  
BUFFER  
BUFFER  
V
V
A
B
OUT  
12-BIT  
6
V
B
C
D
OUT  
OUT  
OUT  
6
DB  
AD5344  
TOP VIEW  
(Not to Scale)  
0
7
V
V
5
CS  
WR  
A0  
8
4
INPUT  
REGISTER  
DAC  
REGISTER  
12-BIT  
DAC  
OUT  
9
GND  
20 DB  
19 DB  
18 DB  
17 DB  
3
INTER-  
FACE  
LOGIC  
10  
11  
12  
13  
14  
CS  
WR  
A0  
2
1
0
DAC  
REGISTER  
INPUT  
REGISTER  
12-BIT  
DAC  
A1  
BUFFER  
BUFFER  
V
V
C
D
OUT  
A1  
16  
15  
V
DD  
LDAC  
PD  
DAC  
REGISTER  
INPUT  
REGISTER  
12-BIT  
DAC  
OUT  
TO ALL DACS  
AND BUFFERS  
LDAC  
POWER-DOWN  
LOGIC  
V
D
V
C
GND  
PD  
REF  
REF  
AD5344 PIN FUNCTION DESCRIPTIONS  
Pin  
No.  
Mnemonic  
Function  
1
VREF  
D
Unbuffered Reference Input for DAC D.  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
V
V
V
V
V
V
V
REFC  
REFB  
REFA  
OUTA  
OUTB  
OUTC  
OUTD  
Unbuffered Reference Input for DAC C.  
Unbuffered Reference Input for DAC B.  
Unbuffered Reference Input for DAC A.  
Output of DAC A. Buffered output with rail-to-rail operation.  
Output of DAC B. Buffered output with rail-to-rail operation.  
Output of DAC C. Buffered output with rail-to-rail operation.  
Output of DAC D. Buffered output with rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Part.  
Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
LSB Address Pin for Selecting which DAC Is to Be Written to.  
GND  
CS  
WR  
A0  
A1  
MSB Address Pin for Selecting which DAC Is to Be Written to.  
Active Low Control Input that Updates the DAC Registers with the Contents of the Input Registers.  
This allows all DAC outputs to be simultaneously updated.  
LDAC  
15  
16  
PD  
Power-Down Pin. This active low control pin puts all DACs into power-down mode.  
Power Supply Pin. This part can operate from 2.5 V to 5.5 V and the supply should be decoupled with a  
VDD  
10 µF capacitor in parallel with a 0.1 µF capacitor to GND.  
17–28  
DB0–DB11  
12 Parallel Data Inputs. DB11 is the MSB of these 12 bits.  
8–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
TERMINOLOGY  
RELATIVE ACCURACY  
GAIN ERROR  
AND  
OFFSET  
ERROR  
For the DAC, Relative Accuracy or Integral Nonlinearity (INL)  
is a measure of the maximum deviation, in LSBs, from a straight  
line passing through the actual endpoints of the DAC transfer  
function. Typical INL versus Code plot can be seen in Figures  
5, 6, and 7.  
ACTUAL  
OUTPUT  
VOLTAGE  
IDEAL  
DIFFERENTIAL NONLINEARITY  
Differential Nonlinearity (DNL) is the difference between the  
measured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of 1 LSB  
maximum ensures monotonicity. This DAC is guaranteed mono-  
tonic by design. Typical DNL versus Code plot can be seen in  
Figures 8, 9, and 10.  
POSITIVE  
OFFSET  
OFFSET ERROR  
This is a measure of the offset error of the DAC and the output  
amplifier. It is expressed as a percentage of the full-scale range.  
DAC CODE  
Figure 3. Positive Offset Error and Gain Error  
If the offset voltage is positive, the output voltage will still be  
positive at zero input code. This is shown in Figure 3. Because  
the DACs operate from a single supply, a negative offset cannot  
appear at the output of the buffer amplifier. Instead, there will  
be a code close to zero at which the amplifier output saturates  
(amplifier footroom). Below this code there will be a deadband  
over which the output voltage will not change. This is illustrated  
in Figure 4.  
GAIN ERROR  
AND  
OFFSET  
ERROR  
IDEAL  
OUTPUT  
VOLTAGE  
GAIN ERROR  
This is a measure of the span error of the DAC (including any  
error in the gain of the buffer amplifier). It is the deviation in  
slope of the actual DAC transfer characteristic from the ideal  
expressed as a percentage of the full-scale range. This is illus-  
trated in Figure 2.  
ACTUAL  
NEGATIVE  
DAC CODE  
OFFSET  
POSITIVE  
GAIN ERROR  
NEGATIVE  
GAIN ERROR  
ACTUAL  
DEADBAND CODES  
AMPLIFIER  
FOOTROOM  
(~1mV)  
OUTPUT  
VOLTAGE  
IDEAL  
NEGATIVE  
OFFSET  
DAC CODE  
Figure 4. Negative Offset Error and Gain Error  
Figure 2. Gain Error  
9–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
OFFSET ERROR DRIFT  
DIGITAL FEEDTHROUGH  
This is a measure of the change in Offset Error with changes in  
temperature. It is expressed in (ppm of full-scale range)/°C.  
Digital Feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital input pins of the  
device but is measured when the DAC is not being written to  
(CS held high). It is specified in nV-secs and is measured with a  
full-scale change on the digital input pins, i.e. from all 0s to all  
1s and vice versa.  
GAIN ERROR DRIFT  
This is a measure of the change in Gain Error with changes in  
temperature. It is expressed in (ppm of full-scale range)/°C.  
DC POWER-SUPPLY REJECTION RATIO (PSRR)  
This indicates how the output of the DAC is affected by changes in  
the supply voltage. PSRR is the ratio of the change in VOUT to a  
change in VDD for full-scale output of the DAC. It is measured  
in dBs. VREF is held at 2 V and VDD is varied 10%.  
DIGITAL CROSSTALK  
This is the glitch impulse transferred to the output of one DAC  
at midscale in response to a full-scale code change (all 0s to all  
1s and vice versa) in the input register of another DAC. It is  
expressed in nV secs.  
DC CROSSTALK  
ANALOG CROSSTALK  
This is the dc change in the output level of one DAC at mid-  
scale in response to a full-scale code change (all 0s to all 1s and  
vice versa) and output change of another DAC. It is expressed  
in µV.  
This is the glitch impulse transferred to the output of one DAC  
due to a change in the output of another DAC. It is measured  
by loading one of the input registers with a full-scale code change  
(all 0s to all 1s and vice versa) while keeping LDAC high. Then  
pulse LDAC low and monitor the output of the DAC whose  
digital code was not changed. The area of the glitch is expressed  
in nV secs.  
REFERENCE FEEDTHROUGH  
This is the ratio of the amplitude of the signal at the DAC output  
to the reference input when the DAC output is not being updated  
(i.e., LDAC is high). It is expressed in dBs.  
DAC-TO-DAC CROSSTALK  
This is the glitch impulse transferred to the output of one DAC  
due to a digital code change and subsequent output change of  
another DAC. This includes both digital and analog crosstalk. It  
is measured by loading one of the DACs with a full-scale code  
change (all 0s to all 1s and vice versa) with the LDAC pin set  
low and monitoring the output of another DAC. The energy of  
the glitch is expressed in nV secs.  
CHANNEL-TO-CHANNEL ISOLATION  
This is a ratio of the amplitude of the signal at the output of one  
DAC to a sine wave on the reference inputs of the other DACs.  
It is measured by grounding one VREF pin and applying a 10 kHz,  
4 V peak-to-peak sine wave to the other VREF pins. It is expressed  
in dBs.  
MAJOR-CODE TRANSITION GLITCH ENERGY  
Major-Code Transition Glitch Energy is the energy of the  
impulse injected into the analog output when the DAC changes  
state. It is normally specified as the area of the glitch in nV secs  
and is measured when the digital code is changed by 1 LSB at  
the major carry transition (011 . . . 11 to 100 . . . 00 or 100 . . . 00  
to 011 . . . 11).  
MULTIPLYING BANDWIDTH  
The amplifiers within the DAC have a finite bandwidth. The  
Multiplying Bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output. The Multiplying Bandwidth is the frequency at which  
the output amplitude falls to 3 dB below the input.  
TOTAL HARMONIC DISTORTION  
This is the difference between an ideal sine wave and its attenuated  
version using the DAC. The sine wave is used as the reference  
for the DAC and the THD is a measure of the harmonics present  
on the DAC output. It is measured in dBs.  
10–  
REV. 0  
Typical Performance CharacteristicsAD5334/AD5335/AD5336/AD5344  
12  
1.0  
0.5  
3
T
V
= 25؇C  
A
T
V
= 25؇C  
T
= 25؇C  
A
A
= 5V  
DD  
= 5V  
V
= 5V  
DD  
8
2
1
DD  
4
0
0
0
–0.5  
–1.0  
4  
8  
1  
2  
3  
12  
0
4000  
50  
100  
150  
CODE  
200  
250  
1000  
2000  
3000  
0
0
200  
400  
CODE  
600  
800  
1000  
CODE  
Figure 7. AD5336 Typical INL Plot  
Figure 5. AD5334 Typical INL Plot  
Figure 6. AD5335 Typical INL Plot  
0.3  
1
0.6  
T
= 25؇C  
T
V
= 25؇C  
T
V
= 25؇C  
A
A
A
V = 5V  
DD  
= 5V  
= 5V  
DD  
DD  
0.2  
0.1  
0.4  
0.2  
0.5  
0
0
0.5  
1  
0
0.1  
0.2  
0.3  
0.2  
0.4  
0.6  
0
50  
100  
150  
200  
250  
0
1000  
2000  
3000  
4000  
0
200  
400  
600  
800  
1000  
CODE  
CODE  
CODE  
Figure 10. AD5336 Typical DNL Plot  
Figure 8. AD5334 Typical DNL Plot  
Figure 9. AD5335 Typical DNL Plot  
1
0.5  
0.5  
V
T
= 5V  
V
V
= 5V  
= 2V  
V
V
= 5V  
= 2V  
DD  
DD  
DD  
0.4  
0.3  
0.2  
0.1  
= 25؇C  
REF  
REF  
A
MAX INL  
MAX INL  
0.5  
0.25  
0
MAX DNL  
MAX DNL  
GAIN ERROR  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
MIN DNL  
MIN INL  
3
OFFSET ERROR  
MIN DNL  
0.5  
0.25  
0.5  
MIN INL  
80  
1  
0
1
2
V
4
5
؊40  
0
40  
80  
120  
؊40  
0
40  
120  
V  
TEMPERATURE ؇C  
REF  
TEMPERATURE ؇C  
Figure 13. AD5334 Offset Error  
and Gain Error vs. Temperature  
Figure 11. AD5334 INL and DNL  
Error vs. VREF  
Figure 12. AD5334 INL Error and  
DNL Error vs. Temperature  
11–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
600  
500  
400  
300  
200  
100  
0
5
0.2  
V
V
= 5.5V  
= 3.6V  
T
V
= 25؇C  
DD  
A
0.1  
5V SOURCE  
3V SOURCE  
= 2V  
REF  
4
GAIN ERROR  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
DD  
3
2
1
0
T
= 25؇C  
A
V
= 2V  
OFFSET ERROR  
REF  
3V SINK  
5V SINK  
ZERO-SCALE  
FULL SCALE  
0
1
2
3
4
5
6
DAC CODE  
0
1
2
3
4
5
6
SINK/SOURCE CURRENT mA  
V
Volts  
DD  
Figure 16. Supply Current  
vs. DAC Code  
Figure 15. VOUT Source and Sink  
Current Capability  
Figure 14. Offset Error and Gain  
Error vs. VDD  
1800  
0.5  
600  
T
= 25؇C  
T
= 25؇C  
A
A
1600  
1400  
1200  
500  
0.4  
0.3  
0.2  
400  
300  
1000  
800  
600  
400  
200  
0
200  
100  
V
= 5V  
DD  
0.1  
0
V
= 3V  
DD  
0
0
2.5  
3.0  
3.5  
4.0  
V  
4.5  
5.0  
5.5  
1
2
3
V  
4
5
2.5  
3.0  
3.5  
4.0  
V  
4.5  
5.0  
5.5  
V
V
V
DD  
LOGIC  
DD  
Figure 17. Supply Current vs. Supply  
Voltage  
Figure 19. Supply Current  
vs. Logic Input Voltage  
Figure 18. Power-Down Current vs.  
Supply Voltage  
T
V
V
= 25؇C  
T
V
V
= 25؇C  
T
V
V
= 25؇C  
A
A
A
= 5V  
= 5V  
= 2V  
= 5V  
DD  
DD  
DD  
= 5V  
= 2V  
REF  
REF  
REF  
CH1  
CH2  
CH1  
CH2  
V
A
V
CH1  
CH2  
OUT  
DD  
V
A
OUT  
LDAC  
V
A
PD  
OUT  
CH1 1V, CH2 5V, TIME BASE= 1s/DIV  
CH1 2V, CH2 200mV, TIME BASE = 200s/DIV  
CH1 500mV, CH2 5V, TIME BASE = 1s/DIV  
Figure 20. Half-Scale Settling (1/4 to  
3/4 Scale Code Change)  
Figure 22. Exiting Power-Down  
to Midscale  
Figure 21. Power-On Reset to 0 V  
12–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
0.929  
0.928  
0.927  
0.926  
0.925  
0.924  
0.923  
0.922  
0.921  
0.920  
0.919  
10  
0
10  
20  
30  
V
= 3V  
V
= 5V  
DD  
DD  
40  
50  
60  
500ns/DIV  
0.01  
0.1  
1
10  
100  
1k  
10k  
300  
350  
400  
450  
A  
500  
550  
600  
FREQUENCY kHz  
I
DD  
Figure 23. IDD Histogram with VDD  
3 V and VDD = 5 V  
=
Figure 25. Multiplying Bandwidth  
(Small-Signal Frequency Response)  
Figure 24. AD5344 Major-Code Tran-  
sition Glitch Energy  
0.4  
V
T
= 5V  
= 25؇C  
DD  
A
0.3  
0.2  
0.1  
0
0.1  
0.2  
0
1
2
3
REF  
4
5
6
750ns/DIV  
V
V  
Figure 27. DAC-DAC Crosstalk  
Figure 26. Full-Scale Error vs. VREF  
FUNCTIONAL DESCRIPTION  
where:  
The AD5334/AD5335/AD5336/AD5344 are quad resistor-  
string DACs fabricated on a CMOS process with resolutions of  
8, 10, 10, and 12 bits, respectively. They are written to using a  
parallel interface. They operate from single supplies of 2.5 V to  
5.5 V and the output buffer amplifiers offer rail-to-rail output  
swing. The gain of the buffer amplifiers in the AD5334 and  
AD5336 can be set to 1 or 2 to give an output voltage range of  
0 to VREF or 0 to 2 VREF. The AD5335 and AD5344 have out-  
put buffers with unity gain.  
D = decimal equivalent of the binary code which is loaded to  
the DAC register:  
0–255 for AD5334 (8 Bits)  
0–1023 for AD5335/AD5336 (10 Bits)  
0–4095 for AD5344 (12 Bits)  
N = DAC resolution  
Gain = Output Amplifier Gain (1 or 2)  
The devices have a power-down feature that reduces current  
consumption to only 80 nA @ 3 V.  
V
REF  
GAIN  
Digital-to-Analog Section  
RESISTOR  
STRING  
DAC  
REGISTER  
INPUT  
REGISTER  
The architecture of one DAC channel consists of a reference  
buffer and a resistor-string DAC followed by an output buffer  
amplifier. The voltage at the VREF pin provides the reference  
voltage for the DAC. Figure 28 shows a block diagram of the  
DAC architecture. Since the input coding to the DAC is  
straight binary, the ideal output voltage is given by:  
V
OUT  
OUTPUT  
BUFFER AMPLIFIER  
Figure 28. Single DAC Channel Architecture  
D
2N  
VOUT = VREF  
×
× Gain  
13–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
Access to the DAC register is controlled by the LDAC function.  
When LDAC is high, the DAC register is latched and the input  
register may change state without affecting the contents of the  
DAC register. However, when LDAC is brought low, the DAC  
register becomes transparent and the contents of the input  
register are transferred to it. The gain control signal is also  
double-buffered and is only updated when LDAC is taken low.  
Resistor String  
The resistor string section is shown in Figure 29. It is simply a  
string of resistors, each of value R. The digital code loaded  
to the DAC register determines at what node on the string the  
voltage is tapped off to be fed into the output amplifier. The  
voltage is tapped off by closing one of the switches connecting  
the string to the amplifier. Because it is a string of resistors, it is  
guaranteed monotonic.  
This is useful if the user requires simultaneous updating of all  
DACs and peripherals. The user may write to all input registers  
individually and then, by pulsing the LDAC input low, all out-  
puts will update simultaneously.  
V
REF  
R
R
Double-buffering is also useful where the DAC data is loaded in  
two bytes, as in the AD5335, because it allows the whole data  
word to be assembled in parallel before updating the DAC register.  
This prevents spurious outputs that could occur if the DAC  
register were updated with only the high byte or the low byte.  
TO OUTPUT  
AMPLIFIER  
R
These parts contain an extra feature whereby the DAC register  
is not updated unless its input register has been updated since  
the last time that LDAC was brought low. Normally, when  
LDAC is brought low, the DAC registers are filled with the  
contents of the input registers. In the case of the AD5334/  
AD5335/AD5336/AD5344, the part will only update the DAC  
register if the input register has been changed since the last  
time the DAC register was updated. This removes unnecessary  
crosstalk.  
R
R
Figure 29. Resistor String  
DAC Reference Input  
The DACs operate with an external reference. The reference  
inputs are unbuffered and have an input range of 0.25 V to VDD  
The impedance per DAC is typically 180 kfor 0–VREF mode  
and 90 kfor 0–2 VREF mode. The AD5336 and AD5344 have  
separate reference inputs for each DAC, while the AD5334 and  
AD5335 have a reference inputs for each pair of DACS (A/B  
and C/D).  
Clear Input (CLR)  
CLR is an active low, asynchronous clear that resets the input and  
DAC registers. Note that the AD5344 has no CLR function.  
.
Chip Select Input (CS)  
CS is an active low input that selects the device.  
Write Input (WR)  
WR is an active low input that controls writing of data to the  
device. Data is latched into the input register on the rising edge  
of WR.  
Output Amplifier  
The output buffer amplifier is capable of generating output  
voltages to within 1 mV of either rail. Its actual range depends  
on VREF, GAIN, the load on VOUT, and offset error.  
Load DAC Input (LDAC)  
LDAC transfers data from the input register to the DAC register  
(and hence updates the outputs). Use of the LDAC function  
enables double buffering of the DAC and GAIN data. There  
are two LDAC modes:  
If a gain of 1 is selected (GAIN = 0), the output range is 0.001 V  
to VREF  
.
If a gain of 2 is selected (GAIN = 1), the output range is 0.001 V  
to 2 VREF. However because of clamping the maximum output  
is limited to VDD – 0.001 V.  
Synchronous Mode: In this mode the DAC register is updated  
after new data is read in on the rising edge of the WR input.  
LDAC can be tied permanently low or pulsed as in Figure 1.  
The output amplifier is capable of driving a load of 2 kto  
GND or VDD, in parallel with 500 pF to GND or VDD. The  
source and sink capabilities of the output amplifier can be seen  
in Figure 15.  
Asynchronous Mode: In this mode the outputs are not updated  
at the same time that the input register is written to. When LDAC  
goes low the DAC register is updated with the contents of the  
input register.  
The slew rate is 0.7 V/µs with a half-scale settling time to 0.5 LSB  
(at 8 bits) of 6 µs with the output unloaded. See Figure 20.  
High-Byte Enable Input (HBEN)  
High-Byte Enable is a control input on the AD5335 only that  
determines if data is written to the high-byte input register or  
the low-byte input register.  
PARALLEL INTERFACE  
The AD5334, AD5336, and AD5344 load their data as a single  
8-, 10-, or 12-bit word, while the AD5335 loads data as a low  
byte of 8 bits and a high byte containing 2 bits.  
The low data byte of the AD5335 consists of data bits 0 to 7 at  
data inputs DB0 to DB7, while the high byte consists of Data  
Bits 8 and 9 at data inputs DB0 and DB1. DB2 to DB7 are  
ignored during a high byte write. See Figure 30.  
Double-Buffered Interface  
The AD5334/AD5335/AD5336/AD5344 DACs all have double-  
buffered interfaces consisting of an input register and a DAC  
register. DAC data and GAIN inputs (when available) are written  
to the input register under control of the Chip Select (CS) and  
Write (WR).  
14–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
When the PD pin is high, the DACs work normally with a typical  
power consumption of 600 µA at 5 V (500 µA at 3 V). In power-  
down mode, however, the supply current falls to 200 nA at 5 V  
(80 nA at 3 V) when the DACs are powered down. Not only  
does the supply current drop, but the output stage is also internally  
switched from the output of the amplifier, making it open-circuit.  
This has the advantage that the outputs are three-state while  
the part is in power-down mode, and provides a defined input  
condition for whatever is connected to the outputs of the  
DAC amplifiers. The output stage is illustrated in Figure 31.  
HIGH BYTE  
X
DB9  
DB8  
X
X
X
X
X
LOW BYTE  
DB5 DB4  
DB7  
DB2 DB1 DB0  
DB3  
DB6  
X = UNUSED BIT  
Figure 30. Data Format For AD5335  
POWER-ON RESET  
The AD5334/AD5335/AD5336/AD5344 are provided with a  
power-on reset function, so that they power up in a defined state.  
The power-on state is:  
• Normal operation  
• 0 – VREF output range  
• Output voltage set to 0 V  
RESISTOR  
AMPLIFIER  
V
OUT  
STRING DAC  
POWER-DOWN  
CIRCUITRY  
Both input and DAC registers are filled with zeros and remain  
so until a valid write sequence is made to the device. This is  
particularly useful in applications where it is important to know  
the state of the DAC outputs while the device is powering up.  
Figure 31. Output Stage During Power-Down  
The bias generator, the output amplifier, the resistor string, and  
all other associated linear circuitry are all shut down when the  
power-down mode is activated. However, the contents of the  
registers are unaffected when in power-down. The time to exit  
power-down is typically 2.5 µs for VDD = 5 V and 5 µs when  
VDD = 3 V. This is the time from a rising edge on the PD pin  
to when the output voltage deviates from its power-down volt-  
age. See Figure 22.  
POWER-DOWN MODE  
The AD5334/AD5335/AD5336/AD5344 have low power con-  
sumption, dissipating typically 1.5 mW with a 3 V supply and  
3 mW with a 5 V supply. Power consumption can be further  
reduced when the DACs are not in use by putting them into  
power-down mode, which is selected by taking pin PD low.  
Table I. AD5334/AD5336/AD5344 Truth Table  
CLR  
LDAC  
CS  
WR  
A1  
A0  
Function  
1
1
0
1
1
1
1
1
1
1
X
1
1
1
1
0
1
X
1
X
01  
01  
01  
01  
X
X
X
X
0
0
1
X
X
X
0
1
0
No Data Transfer  
No Data Transfer  
Clear All Registers  
Load DAC A Input Register, GAIN A (AD5334/AD5336)  
Load DAC B Input Register, GAIN B (AD5334/AD5336)  
Load DAC C Input Register, GAIN C (AD5334/AD5336)  
Load DAC D Input Register, GAIN D (AD5334/AD5336)  
Update DAC Registers  
X
X
0
0
0
0
X
1
X
1
X
X = don’t care.  
Table II. AD5335 Truth Table  
CLR  
LDAC  
CS  
WR  
A1  
A0  
HBEN  
Function  
1
1
0
1
1
1
1
1
1
1
1
1
1
1
X
1
1
1
1
1
1
1
1
0
1
X
1
X
X
X
X
0
0
0
0
1
1
1
X
X
X
0
0
1
1
0
0
1
X
X
X
0
1
0
1
0
1
0
No Data Transfer  
No Data Transfer  
Clear All Registers  
X
X
0
0
0
0
0
0
0
01  
01  
01  
01  
01  
01  
01  
01  
X
Load DAC A Low Byte Input Register  
Load DAC A High Byte Input Register  
Load DAC B Low Byte Input Register  
Load DAC B High Byte Input Register  
Load DAC C Low Byte Input Register  
Load DAC C High Byte Input Register  
Load DAC D Low Byte Input Register  
Load DAC D High Byte Input Register  
Update DAC Registers  
0
X
1
X
1
X
1
X
X = don’t care.  
15–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
SUGGESTED DATABUS FORMATS  
6V TO 16V  
In many applications the GAIN input of the AD5334 and  
AD5336 may be hard-wired. However, if more flexibility is  
required, it can be included in a data bus. This enables the user  
to software program GAIN, giving the option of doubling the  
resolution in the lower half of the DAC range. In a bused system  
GAIN may be treated as a data input since it is written to the  
device during a write operation and takes effect when LDAC is  
taken low. This means that the output amplifier gain of multiple  
DAC devices can be controlled using a common GAIN line.  
10F  
0.1F  
V
IN  
ADM663/ADM666  
SENSE  
V
DD  
V
V
*
OUT(2)  
REF  
V
*
OUT  
VSET GND SHDN  
0.1F  
AD5334/AD5335/  
AD5336/AD5344  
The AD5336 databus must be at least 10 bits wide and is best  
suited to a 16-bit databus system.  
GND  
Examples of data formats for putting GAIN on a 16-bit databus  
are shown in Figure 32. Note that any unused bits above the  
actual DAC data may be used for GAIN.  
*ONLY ONE CHANNEL OF V  
AND V  
SHOWN  
REF  
OUT  
Figure 34. Using an ADM663/ADM666 as Power and  
Reference to AD5334/AD5335/AD5336/AD5344  
AD5336  
X
X
DB2 DB1  
DB6 DB5 DB4 DB3 DB0  
X
X
DB9 DB8  
DB7  
X
GAIN  
Bipolar Operation Using the AD5334/AD5335/AD5336/AD5344  
The AD5334/AD5335/AD5336/AD5344 have been designed  
for single supply operation, but bipolar operation is achievable  
using the circuit shown in Figure 35. The circuit shown has been  
configured to achieve an output voltage range of –5 V < VO <  
+5 V. Rail-to-rail operation at the amplifier output is achievable  
using an AD820 or OP295 as the output amplifier.  
X = UNUSED BIT  
Figure 32. AD5336 Data Format for Byte Load with GAIN  
Data on 8-Bit Bus  
APPLICATIONS INFORMATION  
Typical Application Circuits  
The AD5334/AD5335/AD5336/AD5344 can be used with a  
wide range of reference voltages and offer full, one-quadrant  
multiplying capability over a reference range of 0.25 V to VDD  
More typically, these devices may be used with a fixed, preci-  
sion reference voltage. Figure 33 shows a typical setup for the  
devices when using an external reference connected to the refer-  
The output voltage for any input code can be calculated as  
follows:  
VO = [(1 + R4/R3) × (R2/(R1 + R2) × (2 × VREF × D/2N)] – R4 × VREF/R3  
.
where:  
ence inputs. Suitable references for 5 V operation are the AD780  
and REF192. For 2.5 V operation, a suitable external reference  
would be the AD589, a 1.23 V bandgap reference.  
D is the decimal equivalent of the code loaded to the DAC, N is  
DAC resolution and VREF is the reference voltage input.  
With:  
VREF = 2.5 V  
V
DD  
= 2.5V TO 5.5V  
R1 = R3 = 10 kΩ  
R2 = R4 = 20 kand VDD = 5 V.  
OUT = (10 × D/2N) – 5  
10F  
0.1F  
V
V
IN  
V
= 5V  
V
DD  
DD  
EXT  
REF  
V
*
R4  
20k⍀  
V
OUT  
REF  
V
*
OUT  
GND  
10F  
0.1F  
AD5334/AD5335/  
AD5336/AD5344  
+5V  
R3  
10k⍀  
AD780/REF192  
V
؎5V  
IN  
WITH V = 5V  
DD  
V
DD  
GND  
EXT  
V
OR  
V
*
REF  
REF  
OUT  
AD589 WITH V = 2.5V  
DD  
5V  
0.1F  
AD5334/AD5335/  
AD5336/AD5344  
*ONLY ONE CHANNEL OF V  
AND V  
SHOWN  
GND  
REF  
OUT  
R1  
10k⍀  
V
*
Figure 33. AD5334/AD5335/AD5336/AD5344 Using  
External Reference  
OUT  
AD780/REF192  
WITH V = 5V  
R2  
20k⍀  
DD  
OR  
Driving VDD from the Reference Voltage  
GND  
AD589 WITH V = 2.5V  
DD  
If an output range of zero to VDD is required, the simplest  
solution is to connect the reference inputs to VDD. As this supply  
*ONLY ONE CHANNEL OF V  
AND V  
SHOWN  
REF  
OUT  
may not be very accurate, and may be noisy, the devices  
may be powered from the reference voltage, for example  
using a 5 V reference such as the ADM663 or ADM666,  
as shown in Figure 34.  
Figure 35. Bipolar Operation using the AD5334/AD5335/  
AD5336/AD5344  
16–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
Decoding Multiple AD5334/AD5335/AD5336/AD5344  
The CS pin on these devices can be used in applications to decode  
a number of DACs. In this application, all DACs in the system  
receive the same data and WR pulses, but only the CS to one of  
the DACs will be active at any one time, so data will only be  
written to the DAC whose CS is low. If multiple AD5343s are  
being used, a common HBEN line will also be required to  
determine if the data is written to the high-byte or low-byte  
register of the selected DAC.  
used for some other purpose. The AD5336 and AD5344 have  
separate reference inputs for each DAC.  
The upper and lower limits for the test are loaded to DACs A  
and B which, in turn, set the limits on the CMP04. If a signal at  
the VIN input is not within the programmed window, an LED  
will indicate the fail condition.  
5V  
10F  
0.1F  
1k⍀  
1k⍀  
V
IN  
FAIL  
PASS  
The 74HC139 is used as a 2- to 4-line decoder to address any  
of the DACs in the system. To prevent timing errors from oc-  
curring, the enable input should be brought to its inactive state  
while the coded address inputs are changing state. Figure 36 shows  
a diagram of a typical setup for decoding multiple devices in a  
system. Once data has been written sequentially to all DACs in  
a system, all the DACs can be updated simultaneously using a  
common LDAC line. A common CLR line can also be used to  
reset all DAC outputs to zero (except on the AD5344).  
V
DD  
V
V
A
B
REF  
REF  
V
A
OUT  
V
REF  
PASS/  
1/2  
CMP04  
FAIL  
AD5336/AD5344  
V
B
OUT  
1/6 74HC05  
GND  
Figure 37. Programmable Window Detector  
Programmable Current Source  
AD5334/AD5335/  
AD5336/AD5344  
A0  
A1  
A1  
A0  
Figure 38 shows the AD5334/AD5335/AD5336/AD5344 used  
as the control element of a programmable current source. In this  
example, the full-scale current is set to 1 mA. The output volt-  
age from the DAC is applied across the current setting resistor  
of 4.7 kin series with the 470 adjustment potentiometer,  
which gives an adjustment of about 5%. Suitable transistors to  
place in the feedback loop of the amplifier include the BC107  
and the 2N3904, which enable the current source to operate  
from a minimum VSOURCE of 6 V. The operating range is deter-  
mined by the operating characteristics of the transistor. Suitable  
amplifiers include the AD820 and the OP295, both having rail-  
to-rail operation on their outputs. The current for any digital  
input code and resistor value can be calculated as follows:  
HBEN*  
WR  
HBEN  
WR  
DATA  
LDAC  
CLR  
CS  
INPUTS  
LDAC  
CLR  
AD5334/AD5335/  
AD5336/AD5344  
A1  
A0  
HBEN*  
WR  
DATA  
INPUTS  
LDAC  
CLR  
CS  
V
DD  
V
CC  
1G  
1A  
1B  
AD5334/AD5335/  
AD5336/AD5344  
ENABLE  
1Y0  
1Y1  
1Y2  
A1  
A0  
CODED  
ADDRESS  
74HC139  
DGND  
D
HBEN*  
WR  
I = G × VREF  
×
mA  
(2N × R)  
DATA  
INPUTS  
LDAC  
CLR  
CS  
1Y3  
Where:  
G is the gain of the buffer amplifier (1 or 2)  
D is the digital input code  
N is the DAC resolution (8, 10, or 12 bits)  
AD5334/AD5335/  
AD5336/AD5344  
A1  
A0  
R is the sum of the resistor plus adjustment potentiometer in kΩ  
HBEN*  
WR  
DATA  
INPUTS  
LDAC  
CLR  
CS  
V
= 5V  
DD  
*AD5335 ONLY  
10F  
0.1F  
0.1F  
V
SOURCE  
Figure 36. Decoding Multiple DAC Devices  
V
5V  
IN  
LOAD  
V
DD  
AD5334/AD5335/AD5336/AD5344 as a Digitally Programmable  
Window Detector  
A digitally programmable upper/lower limit detector using two  
of the DACs in the AD5334/AD5335/AD5336/AD5344 is  
shown in Figure 37.  
EXT  
REF  
V
*
V
V
*
OUT  
REF  
OUT  
AD820/  
OP295  
AD5334/AD5335/  
AD5336/AD5344  
GND  
AD780/REF192  
WITH V = 5V  
4.7k⍀  
470⍀  
DD  
Any pair of DACs in the device may be used, but for simplicity  
the description will refer to DACs A and B.  
GND  
Care must be taken to connect the correct reference inputs to  
the reference source. The AD5334 and AD5335 have only two  
reference inputs, VREFA/B for DACs A and B and VREFC/D for  
DACs C and D. If DACs A and B are used (for example) then  
only VREFA/B is needed. DACs C and D and VREFC/D may be  
*ONLY ONE CHANNEL OF V  
AND V SHOWN  
OUT  
REF  
Figure 38. Programmable Current Source  
17–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
Coarse and Fine Adjustment Using the AD5334/AD5335/  
AD5336/AD5344  
Power Supply Bypassing and Grounding  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. The printed circuit board on which the  
AD5334/AD5335/AD5336/AD5344 is mounted should be  
designed so that the analog and digital sections are separated,  
and confined to certain areas of the board. If the device is in a  
system where multiple devices require an AGND-to-DGND  
connection, the connection should be made at one point only.  
The star ground point should be established as closely as pos-  
sible to the device. The AD5334/AD5335/AD5336/AD5344  
should have ample supply bypassing of 10 µF in parallel with  
0.1 µF on the supply located as close to the package as possible,  
ideally right up against the device. The 10 µF capacitors are the  
tantalum bead type. The 0.1 µF capacitor should have low  
Effective Series Resistance (ESR) and Effective Series Inductance  
(ESI), like the common ceramic types that provide a low imped-  
ance path to ground at high frequencies to handle transient  
currents due to internal logic switching.  
Two of the DACs in the AD5334/AD5335/AD5336/AD5344 can  
be paired together to form a coarse and fine adjustment function,  
as shown in Figure 39. As with the window comparator previ-  
ously described, the description will refer to DACs A, and B and  
the reference connections will depend on the actual device used.  
DAC A is used to provide the coarse adjustment while DAC B  
provides the fine adjustment. Varying the ratio of R1 and R2 will  
change the relative effect of the coarse and fine adjustments. With  
the resistor values shown the output amplifier has unity gain for  
the DAC A output, so the output range is zero to (VREF – 1 LSB).  
For DAC B the amplifier has a gain of 7.6 × 10–3, giving DAC B  
a range equal to 2 LSBs of DAC A.  
The circuit is shown with a 2.5 V reference, but reference volt-  
ages up to VDD may be used. The op amps indicated will allow a  
rail-to-rail output swing.  
V
= 5V  
DD  
R3  
R4  
The power supply lines of the device should use as large a trace  
as possible to provide low impedance paths and reduce the  
effects of glitches on the power supply line. Fast switching sig-  
nals such as clocks should be shielded with digital ground to  
avoid radiating noise to other parts of the board, and should  
never be run near the reference inputs. Avoid crossover of digital  
and analog signals. Traces on opposite sides of the board should  
run at right angles to each other. This reduces the effects of  
feedthrough through the board. A microstrip technique is by  
far the best, but not always possible with a double-sided board.  
In this technique, the component side of the board is dedicated  
to ground plane while signal traces are placed on the solder side.  
51.2k  
390⍀  
10F  
0.1F  
0.1F  
5V  
V
DD  
V
V
OUT  
IN  
V
A
OUT  
EXT  
REF  
R1  
V
V
A
OUT  
REF  
390⍀  
GND  
AD5336/AD5344  
R2  
51.2k⍀  
V
B
OUT  
AD780/REF192  
WITH V = 5V  
V
B
REF  
DD  
GND  
Figure 39. Coarse and Fine Adjustment  
18–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
Table III. Overview of AD53xx Parallel Devices  
Part No.  
Resolution DNL  
VREF Pins  
Settling Time  
Additional Pin Functions  
Package  
Pins  
SINGLES  
AD5330  
AD5331  
AD5340  
AD5341  
BUF  
GAIN  
HBEN  
CLR  
8
0.25  
0.5  
1.0  
1.0  
1
1
1
1
6 µs  
7 µs  
8 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
20  
24  
20  
10  
12  
12  
DUALS  
AD5332  
AD5333  
AD5342  
AD5343  
8
0.25  
0.5  
1.0  
1.0  
2
2
2
1
6 µs  
7 µs  
8 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
24  
28  
20  
10  
12  
12  
QUADS  
AD5334  
AD5335  
AD5336  
AD5344  
8
0.25  
0.5  
0.5  
1.0  
2
2
4
4
6 µs  
7 µs  
7 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
24  
24  
28  
28  
10  
10  
12  
Table IV. Overview of AD53xx Serial Devices  
Part No.  
Resolution  
No. of DACS  
DNL  
Interface  
Settling Time  
Package  
Pins  
SINGLES  
AD5300  
AD5310  
AD5320  
8
10  
12  
1
1
1
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
4 µs  
6 µs  
8 µs  
SOT-23, MicroSOIC  
SOT-23, MicroSOIC  
SOT-23, MicroSOIC  
6, 8  
6, 8  
6, 8  
AD5301  
AD5311  
AD5321  
8
10  
12  
1
1
1
0.25  
0.5  
1.0  
2-Wire  
2-Wire  
2-Wire  
6 µs  
7 µs  
8 µs  
SOT-23, MicroSOIC  
SOT-23, MicroSOIC  
SOT-23, MicroSOIC  
6, 8  
6, 8  
6, 8  
DUALS  
AD5302  
AD5312  
AD5322  
8
10  
12  
2
2
2
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6 µs  
7 µs  
8 µs  
MicroSOIC  
MicroSOIC  
MicroSOIC  
8
8
8
AD5303  
AD5313  
AD5323  
8
10  
12  
2
2
2
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6 µs  
7 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
QUADS  
AD5304  
AD5314  
AD5324  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6 µs  
7 µs  
8 µs  
MicroSOIC  
MicroSOIC  
MicroSOIC  
10  
10  
10  
AD5305  
AD5315  
AD5325  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
2-Wire  
2-Wire  
2-Wire  
6 µs  
7 µs  
8 µs  
MicroSOIC  
MicroSOIC  
MicroSOIC  
10  
10  
10  
AD5306  
AD5316  
AD5326  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
2-Wire  
2-Wire  
2-Wire  
6 µs  
7 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
AD5307  
AD5317  
AD5327  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6 µs  
7 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
Visit our web-page at http://www.analog.com/support/standard_linear/selection_guides/AD53xx.html  
19–  
REV. 0  
AD5334/AD5335/AD5336/AD5344  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
24-Lead Thin Shrink Small Outline Package TSSOP  
(RU-24)  
0.311 (7.90)  
0.303 (7.70)  
24  
13  
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
12  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0256 (0.65) 0.0118 (0.30)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
BSC  
0.0075 (0.19)  
28-Lead Thin Shrink Small Outline Package TSSOP  
(RU-28)  
0.386 (9.80)  
0.378 (9.60)  
28  
15  
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
14  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0256 (0.65) 0.0118 (0.30)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
BSC  
0.0075 (0.19)  
20–  
REV. 0  

相关型号:

AD5336BRUZ

2.5 V to 5.5 V, 500 A, Parallel Interface Quad Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5336BRUZ-REEL7

QUAD, PARALLEL, 8 BITS INPUT LOADING, 7us SETTLING TIME, 10-BIT DAC, PDSO24, TSSOP-28
ROCHESTER

AD5336_15

2.5 V to 5.5 V, 500A, Parallel Interface Quad Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5337

2.5 V to 5.5 V, 250 UA, 2-Wire Interface Dual-Voltage Output, 8-/10-/12-Bit DACs
ADI

AD5337ARM

2.5 V to 5.5 V, 250 UA, 2-Wire Interface Dual-Voltage Output, 8-/10-/12-Bit DACs
ADI

AD5337ARM-REEL7

2.5 V to 5.5 V, 250 UA, 2-Wire Interface Dual-Voltage Output, 8-/10-/12-Bit DACs
ADI

AD5337ARMZ-REEL71

2.5 V to 5.5 V, 250 muA, 2-Wire Interface
ADI

AD5337ARMZ1

2.5 V to 5.5 V, 250 muA, 2-Wire Interface
ADI

AD5337BRM

2.5 V to 5.5 V, 250 UA, 2-Wire Interface Dual-Voltage Output, 8-/10-/12-Bit DACs
ADI

AD5337BRM-REEL

2.5 V to 5.5 V, 250 UA, 2-Wire Interface Dual-Voltage Output, 8-/10-/12-Bit DACs
ADI

AD5337BRM-REEL7

2.5 V to 5.5 V, 250 UA, 2-Wire Interface Dual-Voltage Output, 8-/10-/12-Bit DACs
ADI

AD5337BRMZ

2.5 V to 5.5 V, 250 &#181;A, 2-Wire Interface, Dual Voltage Output, 8-Bit DACs
ADI