AD8571ARMZ [ROCHESTER]

OP-AMP, 10 uV OFFSET-MAX, 1.5 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8;
AD8571ARMZ
型号: AD8571ARMZ
厂家: Rochester Electronics    Rochester Electronics
描述:

OP-AMP, 10 uV OFFSET-MAX, 1.5 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8

放大器 PC 光电二极管
文件: 总25页 (文件大小:1423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Zero-Drift, Single-Supply, Rail-to-Rail  
Input/Output Operational Amplifiers  
AD8571/AD8572/AD8574  
FEATURES  
PIN CONFIGURATIONS  
Low offset voltage: 1 μV  
1
2
3
4
8
7
6
5
NC  
–IN A  
+IN A  
V–  
NC  
AD8571  
Input offset drift: 0.005 μV/°C  
Rail-to-rail input and output swing  
5 V/2.7 V single-supply operation  
High gain: 145 dB typical  
V+  
TOP VIEW  
OUT A  
NC  
(Not to Scale)  
NC = NO CONNECT  
Figure 1. 8-Lead MSOP (RM Suffix)  
CMRR: 140 dB typical  
PSRR: 130 dB typical  
NC  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
NC  
Ultralow input bias current: 10 pA typical  
Low supply current: 750 μA per op amp  
Overload recovery time: 50 μs  
No external capacitors required  
V+  
AD8571  
OUT A  
NC  
TOP VIEW  
(Not to Scale)  
NC = NO CONNECT  
Figure 2. 8-Lead SOIC (R Suffix)  
APPLICATIONS  
1
2
3
4
8
7
6
5
OUT A  
–IN A  
+IN A  
V–  
V+  
Temperature sensors  
Pressure sensors  
Precision current sensing  
Strain gage amplifiers  
Medical instrumentation  
Thermocouple amplifiers  
AD8572  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Figure 3. 8-Lead TSSOP (RU Suffix)  
1
2
3
4
8
7
6
5
OUT A  
–IN A  
+IN A  
V–  
V+  
AD8572  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
GENERAL DESCRIPTION  
Figure 4. 8-Lead SOIC (R Suffix)  
This family of amplifiers has ultralow offset, drift, and bias  
current. The AD8571, AD8572, and AD8574 are single, dual,  
and quad amplifiers, respectively, featuring rail-to-rail input  
and output swings. All are guaranteed to operate from 2.7 V to  
5 V single supply.  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
AD8574  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
The AD857x family provides benefits previously found only in  
expensive auto-zeroing or chopper-stabilized amplifiers. Using  
Analog Devices, Inc., topology, these zero-drift amplifiers  
combine low cost with high accuracy. (No external capacitors  
are required.) Using a patented spread-spectrum, auto-zero  
technique, the AD857x family eliminates the intermodulation  
effects from interaction of the chopping function with the  
signal frequency in ac applications.  
OUT C  
Figure 5. 14-Lead TSSOP (RU Suffix)  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
AD8574  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
OUT C  
With an offset voltage of only 1 μV and drift of 0.005 μV/°C, the  
AD857x family is perfectly suited for applications where error  
sources cannot be tolerated. Position and pressure sensors,  
medical equipment, and strain gage amplifiers benefit greatly  
from nearly zero drift over their operating temperature range.  
Many more systems require the rail-to-rail input and output  
swings provided by the AD857x family.  
Figure 6. 14-Lead SOIC (R Suffix)  
The AD857x family is specified for the extended industrial/  
automotive temperature range (−40°C to +125°C). The AD8571  
single amplifier is available in 8-lead MSOP and narrow SOIC  
packages. The AD8572 dual amplifier is available in 8-lead narrow  
SOIC and surface-mount TSSOP packages. The AD8574 quad  
amplifier is available in 14-lead narrow SOIC and TSSOP packages.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1999–2011 Analog Devices, Inc. All rights reserved.  
 
 
 
AD8571/AD8572/AD8574  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Maximizing Performance Through Proper Layout............... 16  
1/f Noise Characteristics ........................................................... 17  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Electrical Characteristics...................................................... 3  
2.7 V Electrical Characteristics................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Characteristics .............................................................. 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Functional Description.................................................................. 14  
Amplifier Architecture .............................................................. 14  
Basic Auto-Zero Amplifier Theory.......................................... 14  
Auto-Zero Phase......................................................................... 15  
Amplification Phase................................................................... 15  
High Gain, CMRR, and PSRR .................................................. 16  
REVISION HISTORY  
Random Auto-Zero Correction Eliminates Intermodulation  
Distortion .................................................................................... 17  
Broadband and External Resistor Noise Considerations.......... 18  
Output Overdrive Recovery...................................................... 18  
Input Overvoltage Protection................................................... 18  
Output Phase Reversal............................................................... 18  
Capacitive Load Drive ............................................................... 19  
Power-Up Behavior.................................................................... 19  
Applications Information.............................................................. 20  
5 V Precision Strain Gage Circuit ............................................ 20  
3 V Instrumentation Amplifier ................................................ 20  
High Accuracy Thermocouple Amplifier............................... 21  
Precision Current Meter............................................................ 21  
Precision Voltage Comparator.................................................. 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 23  
9/06—Rev. A to Rev. B  
2/11—Rev. D to Rev. E  
Updated Format..................................................................Universal  
Changes to Table 1.............................................................................3  
Changes to Table 2.............................................................................4  
Changes to Figure 50...................................................................... 14  
Changes to Figure 51...................................................................... 15  
Changes to Figure 66...................................................................... 21  
Deleted Figure 69 and SPICE Macro-Model Section ................ 17  
Deleted SPICE Macro-Model for the AD857x Section............. 18  
Updated Outline Dimensions....................................................... 22  
Changes to Ordering Guide.......................................................... 23  
Changes to Figure 66...................................................................... 21  
Updated Outline Dimensions....................................................... 22  
Changes to Ordering Guide .......................................................... 23  
6/08—Rev. C to Rev. D  
Changes to Figure 19 and Figure 20............................................... 8  
Changes to Figure 44...................................................................... 12  
Changes to Figure 38...................................................................... 13  
Moved Figure 50 and Figure 51 .................................................... 14  
Changes to Figure 66, Precision Current Meter Section, Layout,  
Figure 67, Equation 24, and Figure 68......................................... 21  
7/03—Rev. 0 to Rev. A  
5/07—Rev. B to Rev. C  
Renumbered Figures..........................................................Universal  
Changes to Ordering Guide.............................................................4  
Change to Figure 15. ...................................................................... 16  
Updated Outline Dimensions....................................................... 19  
Changes to Features.......................................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Basic Auto-Zero Amplifier Theory Section ........... 14  
Changes to Figure 50...................................................................... 15  
Changes to Figure 55...................................................................... 16  
Changes to Figure 66...................................................................... 21  
Updated Outline Dimensions....................................................... 22  
10/99—Revision 0: Initial Version  
Rev. E | Page 2 of 24  
AD8571/AD8572/AD8574  
SPECIFICATIONS  
5 V ELECTRICAL CHARACTERISTICS  
VS = 5 V, VCM = 2.5 V, VO = 2.5 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
5
μV  
μV  
pA  
nA  
pA  
nA  
pA  
pA  
pA  
pA  
V
−40°C ≤ TA ≤ +125°C  
10  
50  
1.5  
300  
4
70  
200  
150  
400  
5
Input Bias Current  
AD8571/AD8574  
AD8572  
10  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
1.0  
160  
2.5  
20  
150  
30  
Input Offset Current  
AD8571/AD8574  
AD8572  
IOS  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
150  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 5 V  
120  
115  
125  
120  
140  
130  
145  
135  
0.005  
dB  
dB  
dB  
dB  
μV/°C  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 0.3 V to 4.7 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain1  
Offset Voltage Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
∆VOS/∆T  
VOH  
0.04  
RL = 100 kΩ to GND  
RL = 100 kΩ to GND @ −40°C to +125°C  
RL = 10 kΩ to GND  
RL = 10 kΩ to GND @ −40°C to +125°C  
RL = 100 kΩ to V+  
RL = 100 kΩ to V+ @ −40°C to +125°C  
4.99  
4.99  
4.95  
4.95  
4.998  
4.997  
4.98  
4.975  
1
V
V
V
V
mV  
mV  
Output Voltage Low  
VOL  
10  
10  
2
RL = 10 kΩ to V+  
RL = 10 kΩ to V+ @ −40°C to +125°C  
10  
15  
50  
40  
30  
15  
30  
30  
mV  
mV  
mA  
mA  
mA  
mA  
Short-Circuit Limit  
Output Current  
ISC  
IO  
25  
−40°C to +125°C  
−40°C to +125°C  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
−40°C ≤ TA ≤ +125°C  
VO = 0 V  
120  
115  
130  
130  
850  
1000  
dB  
dB  
μA  
μA  
Supply Current per Amplifier  
975  
1075  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Overload Recovery Time  
Gain Bandwidth Product  
NOISE PERFORMANCE  
Voltage Noise  
SR  
RL = 10 kΩ  
0.4  
0.05  
1.5  
V/μs  
ms  
MHz  
0.3  
GBP  
en p-p  
0 Hz to 10 Hz  
0 Hz to 1 Hz  
f = 1 kHz  
1.3  
0.41  
51  
μV p-p  
μV p-p  
nV/√Hz  
fA/√Hz  
Voltage Noise Density  
Current Noise Density  
en  
in  
f = 10 Hz  
2
1 Gain testing is dependent upon test bandwidth.  
Rev. E | Page 3 of 24  
 
AD8571/AD8572/AD8574  
2.7 V ELECTRICAL CHARACTERISTICS  
VS = 2.7 V, VCM = 1.35 V, VO = 1.35 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
5
10  
50  
1.5  
300  
4
μV  
μV  
pA  
nA  
pA  
nA  
pA  
pA  
pA  
pA  
V
−40°C ≤ TA ≤ +125°C  
Input Bias Current  
AD8571/AD8574  
AD8572  
10  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
1.0  
160  
2.5  
10  
150  
30  
Input Offset Current  
AD8571/AD8574  
AD8572  
IOS  
50  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
200  
150  
400  
2.7  
150  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
115  
110  
110  
105  
130  
130  
140  
130  
0.005  
dB  
dB  
dB  
dB  
ꢀV/°C  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 0.3 V to 2.4 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain1  
Offset Voltage Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
∆VOS/∆T  
VOH  
0.04  
RL = 100 kΩ to GND  
RL = 100 kΩ to GND @ −40°C to +125°C  
RL = 10 kΩ to GND  
RL = 10 kΩ to GND @ −40°C to +125°C  
RL = 100 kΩ to V+  
RL = 100 kΩ to V+ @ −40°C to +125°C  
RL = 10 kΩ to V+  
2.685  
2.685  
2.67  
2.697  
2.696  
2.68  
2.675  
1
2
10  
15  
15  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
2.67  
Output Voltage Low  
VOL  
10  
10  
20  
20  
RL = 10 kΩ to V+ @ −40°C to +125°C  
Short-Circuit Limit  
Output Current  
ISC  
IO  
10  
−40°C to +125°C  
−40°C to +125°C  
10  
10  
5
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
−40°C ≤ TA ≤ +125°C  
VO = 0 V  
120  
115  
130  
130  
750  
950  
dB  
dB  
μA  
μA  
Supply Current per Amplifier  
900  
1000  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Overload Recovery Time  
Gain Bandwidth Product  
NOISE PERFORMANCE  
Voltage Noise  
SR  
RL = 10 kΩ  
0.5  
0.05  
1
V/μs  
ms  
MHz  
GBP  
en p-p  
en  
in  
0 Hz to 10 Hz  
f = 1 kHz  
f = 10 Hz  
2.0  
94  
2
μV p-p  
nV/√Hz  
fA/√Hz  
Voltage Noise Density  
Current Noise Density  
1 Gain testing is dependent upon test bandwidth.  
Rev. E | Page 4 of 24  
 
AD8571/AD8572/AD8574  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational section of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Table 3.  
Parameter  
Supply Voltage  
Input Voltage  
Differential Input Voltage1  
ESD (Human Body Model)  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
Rating  
6 V  
GND to VS + 0.3 V  
5.0 V  
2000 V  
Indefinite  
THERMAL CHARACTERISTICS  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
θJA is specified for the worst-case conditions, that is, θJA is  
specified for a device soldered in a circuit board for SOIC and  
TSSOP packages.  
1 Differential input voltage is limited to 5.0 V or the supply voltage,  
whichever is less.  
Table 4. Thermal Resistance  
Package Type  
θJA  
θJC  
43  
44  
43  
36  
36  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
8-Lead SOIC (R)  
158  
190  
240  
120  
180  
8-Lead MSOP (RM)  
8-Lead TSSOP (RU)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
ESD CAUTION  
Rev. E | Page 5 of 24  
 
 
 
AD8571/AD8572/AD8574  
TYPICAL PERFORMANCE CHARACTERISTICS  
180  
160  
140  
120  
100  
80  
180  
V
V
T
= 5V  
CM  
= 25°C  
V
V
T
= 2.7V  
CM  
= 25°C  
S
S
160  
140  
120  
100  
80  
= 2.5V  
= 1.35V  
A
A
60  
60  
40  
40  
20  
20  
0
–2.5  
0
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
OFFSET VOLTAGE (µV)  
OFFSET VOLTAGE (µV)  
Figure 7. Input Offset Voltage Distribution  
Figure 10. Input Offset Voltage Distribution  
50  
40  
12  
10  
8
V
T
= 5V  
S
A
= –40°C, +25°C, +85°C  
V
V
= 5V  
S
= 2.5V  
CM  
= –40°C TO +125°C  
T
A
30  
+85°C  
20  
10  
6
+25°C  
–40°C  
0
4
–10  
–20  
–30  
2
0
0
1
2
3
4
5
0
1
2
3
4
5
6
INPUT COMMON-MODE VOLTAGE (V)  
INPUT OFFSET DRIFT (nV/°C)  
Figure 11. Input Offset Voltage Drift Distribution  
Figure 8. Input Bias Current vs. Input Common-Mode Voltage  
10k  
1k  
1500  
V
= 5V  
= 125°C  
S
A
V
= 5V  
= 25°C  
S
A
T
T
1000  
500  
0
100  
10  
SOURCE  
–500  
SINK  
–1000  
1
–1500  
–2000  
0.1  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
LOAD CURRENT (mA)  
COMMON-MODE VOLTAGE (V)  
Figure 9. Input Bias Current vs. Common-Mode Voltage  
Figure 12. Output Voltage to Supply Rail vs. Load Current  
Rev. E | Page 6 of 24  
 
 
AD8571/AD8572/AD8574  
10k  
1k  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 2.7V  
= 25°C  
S
A
T
= 25°C  
A
T
100  
10  
SINK  
SOURCE  
1
0.1  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
6
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (V)  
Figure 13. Output Voltage to Supply Rail vs. Load Current  
Figure 16. Supply Current per Amplifier vs. Supply Voltage  
1000  
750  
500  
250  
0
60  
50  
V
= 2.7V  
= 0pF  
S
L
L
V
V
= 2.5V  
CM  
= 5V  
C
R
S
=
40  
0
30  
45  
20  
90  
10  
135  
0
180  
225  
–10  
–20  
–30  
–40  
270  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 14. Input Bias Current vs. Temperature  
Figure 17. Open-Loop Gain and Phase Shift vs. Frequency  
60  
50  
1.0  
0.8  
0.6  
V
= 5V  
S
L
L
C
R
= 0pF  
5V  
=
40  
0
2.7V  
30  
45  
90  
20  
10  
135  
180  
225  
270  
0.4  
0.2  
0
–10  
–20  
–30  
–40  
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 15. Supply Current vs. Temperature  
Figure 18. Open-Loop Gain and Phase Shift vs. Frequency  
Rev. E | Page 7 of 24  
 
AD8571/AD8572/AD8574  
60  
50  
40  
300  
270  
240  
210  
180  
150  
120  
90  
V
= 2.7V  
= 20pF  
= 2k  
S
L
L
V
= 5V  
S
C
R
A
A
= 100  
= 10  
V
V
30  
20  
10  
A
= 100  
V
0
A
= 1  
V
–10  
–20  
–30  
–40  
A
= 10  
V
60  
30  
A
= 1  
V
0
100  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. Closed-Loop Gain vs. Frequency  
Figure 22. Output Impedance vs. Frequency  
60  
50  
V
= 2.7V  
= 300pF  
= 2k  
= 1  
V
= 5V  
= 20pF  
= 2k  
S
S
L
L
C
R
A
C
R
L
L
V
40  
30  
A
A
= 100  
= 10  
V
20  
V
10  
0
A
= 1  
V
–10  
–20  
–30  
–40  
2µs  
500mV  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 20. Closed-Loop Gain vs. Frequency  
Figure 23. Large Signal Transient Response  
300  
270  
240  
210  
180  
150  
120  
90  
V
= 5V  
S
V
= 2.7V  
C
R
A
= 300pF  
= 2kΩ  
= 1  
S
L
L
V
A
= 100  
V
A
= 10  
V
60  
30  
A
= 1  
5µs  
1V  
V
0
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 21. Output Impedance vs. Frequency  
Figure 24. Large Signal Transient Response  
Rev. E | Page 8 of 24  
AD8571/AD8572/AD8574  
45  
V
= ±1.35V  
= 50pF  
S
V
= ±2.5V  
= 2kΩ  
= 25°C  
S
L
C
R
A
L
L
V
R
T
40  
35  
30  
25  
20  
15  
10  
5
=
A
= 1  
+OS  
–OS  
5µs  
50mV  
0
10  
100  
1k  
10k  
CAPACITANCE (pF)  
Figure 25. Small Signal Transient Response  
Figure 28. Small Signal Overshoot vs. Load Capacitance  
V
= ±2.5V  
S
C
R
A
= 50pF  
0V  
L
L
V
=
V
V
= ±2.5V  
S
= 1  
= –200mV p-p  
(RET TO GND)  
= 0pF  
V
IN  
IN  
OUT  
0V  
C
R
A
L
L
V
= 10kΩ  
= –100  
V
20µs  
1V  
5µs  
50mV  
BOTTOM SCALE: 1V/DIV  
TOP SCALE: 200mV/DIV  
Figure 26. Small Signal Transient Response  
Figure 29. Positive Overvoltage Recovery  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= ±1.35V  
= 2kΩ  
= 25°C  
S
L
V
IN  
R
T
A
0V  
V
V
= ±2.5V  
S
= 200mV p-p  
(RET TO GND)  
= 0pF  
IN  
C
R
A
L
L
V
+OS  
= 10k  
= –100  
0V  
–OS  
V
OUT  
20µs  
1V  
0
10  
BOTTOM SCALE: 1V/DIV  
TOP SCALE: 200mV/DIV  
100  
1k  
10k  
CAPACITANCE (pF)  
Figure 27. Small Signal Overshoot vs. Load Capacitance  
Figure 30. Negative Overvoltage Recovery  
Rev. E | Page 9 of 24  
 
 
AD8571/AD8572/AD8574  
140  
120  
100  
80  
V
= ±2.5V  
= 2kΩ  
S
L
V
V
S
= ±1.35V  
R
A
= –100  
V
= 60mV p-p  
IN  
60  
40  
–PSRR  
+PSRR  
20  
0
200µs  
1V  
100  
1k  
10k  
100k  
1M  
10M  
10M  
1M  
FREQUENCY (Hz)  
Figure 31. No Phase Reversal  
Figure 34. PSRR vs. Frequency  
140  
120  
100  
80  
140  
120  
100  
80  
V
= ±2.5V  
V
S
= 2.7V  
S
+PSRR  
60  
60  
–PSRR  
40  
40  
20  
20  
0
0
100  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 32. CMRR vs. Frequency  
Figure 35. PSRR vs. Frequency  
140  
120  
100  
80  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
S
V
= ±1.35V  
= 2k  
= 1  
THD + N < 1%  
= 25°C  
S
L
V
R
A
T
A
60  
40  
20  
0
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 33. CMRR vs. Frequency  
Figure 36. Maximum Output Swing vs. Frequency  
Rev. E | Page 10 of 24  
AD8571/AD8572/AD8574  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
R
A
= ±2.5V  
= 2k  
= 1  
S
L
V
V
R
= 2.7V  
S
364  
= 0Ω  
S
THD + N < 1%  
T
= 25°C  
A
312  
260  
208  
156  
104  
52  
0
0.5  
1.0  
1.5  
2.0  
2.5  
100  
1k  
10k  
100k  
1M  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
Figure 37. Maximum Output Swing vs. Frequency  
Figure 40. Voltage Noise Density from 0 Hz to 2.5 kHz  
V
A
= ±1.35V  
= 120,000  
S
V
R
= 2.7V  
= 0Ω  
S
112  
V
S
96  
80  
0V  
64  
48  
32  
16  
50mV  
1sec  
0
5
10  
15  
20  
25  
FREQUENCY (kHz)  
Figure 38. 0.1 Hz to 10 Hz Noise  
Figure 41. Voltage Noise Density from 0 Hz to 25 kHz  
V
A
= ±2.5V  
= 120,000  
V
R
= 5V  
= 0Ω  
S
S
182  
V
S
156  
130  
104  
78  
52  
26  
50mV  
1sec  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (kHz)  
Figure 39. 0.1 Hz to 10 Hz Noise  
Figure 42. Voltage Noise Density from 0 Hz to 2.5 kHz  
Rev. E | Page 11 of 24  
AD8571/AD8572/AD8574  
150  
145  
140  
135  
130  
125  
V
R
= 5V  
= 0Ω  
S
V
= 2.7V TO 5.5V  
112  
S
S
96  
80  
64  
48  
32  
16  
0
5
10  
15  
20  
25  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 43. Voltage Noise Density from 0 Hz to 25 kHz  
Figure 45. Power Supply Rejection vs. Temperature  
50  
40  
V
R
= 5V  
= 0Ω  
V
= 2.7V  
S
S
210  
S
30  
180  
150  
I
SC–  
20  
10  
120  
90  
0
–10  
–20  
–30  
–40  
–50  
I
SC+  
60  
30  
0
5
10  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 46. Output Short-Circuit Current vs. Temperature  
Figure 44. Voltage Noise Density from 0 Hz to 10 Hz  
Rev. E | Page 12 of 24  
AD8571/AD8572/AD8574  
100  
80  
250  
225  
200  
V
= 5V  
V
= 5V  
S
S
60  
I
SC–  
40  
175  
150  
125  
R
= 1kΩ  
L
20  
0
100  
75  
50  
25  
0
–20  
–40  
–60  
–80  
–100  
I
SC+  
R
= 10kΩ  
L
R
= 100kΩ  
L
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 49. Output Voltage to Supply Rail vs. Temperature  
Figure 47. Output Short-Circuit Current vs. Temperature  
250  
225  
200  
V
= 2.7V  
S
175  
150  
125  
R
= 1kΩ  
L
100  
75  
50  
25  
0
R
0
= 10kΩ  
R
= 100kΩ  
L
L
–75  
–50  
–25  
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
Figure 48. Output Voltage to Supply Rail vs. Temperature  
Rev. E | Page 13 of 24  
AD8571/AD8572/AD8574  
FUNCTIONAL DESCRIPTION  
The AD8571/AD8572/AD8574 are CMOS amplifiers that  
achieve their high degree of precision through random frequency  
auto-zero stabilization. The autocorrection topology allows the  
AD857x to maintain its low offset voltage over a wide temperature  
range, and the randomized auto-zero clock eliminates any inter-  
modulation distortion (IMD) errors at the amplifier output.  
BASIC AUTO-ZERO AMPLIFIER THEORY  
Autocorrection amplifiers are not a new technology. Various IC  
implementations have been available for more than 15 years,  
and some improvements have been made over time. The  
AD857x design offers a number of significant performance  
improvements over older versions while attaining a very  
substantial reduction in device cost. This section offers a  
simplified explanation of how the AD857x is able to offer  
extremely low offset voltages and high open-loop gains.  
The AD857x can run from a single-supply voltage as low as 2.7 V.  
The extremely low offset voltage of 1 μV and no IMD products  
allow the amplifier to be easily configured for high gains without  
risk of excessive output voltage errors, which makes the AD857x  
an ideal amplifier for applications requiring both dc precision  
and low distortion for ac signals. The extremely small temperature  
drift of 5 nV/°C ensures a minimum of offset voltage error over  
its −40°C to +125°C temperature range. These combined features  
make the AD857x an excellent choice for a variety of sensitive  
measurement and automotive applications.  
As noted in the Amplifier Architecture section, each AD857x  
op amp contains two internal amplifiers. One is used as the  
primary amplifier, and the other as an autocorrection, or nulling,  
amplifier. Each amplifier has an associated input offset voltage  
that can be modeled as a dc voltage source in series with the  
noninverting input. In Figure 50 and Figure 51, these are labeled  
as VOSA and VOSB, where A denotes the nulling amplifier and B  
denotes the primary amplifier. The open-loop gain for the +IN  
and −IN inputs of each amplifier is given as AX. Both amplifiers  
also have a third voltage input with an associated open-loop  
gain of BX.  
AMPLIFIER ARCHITECTURE  
Each AD857x op amp consists of two amplifiers: a main amplifier  
and a secondary amplifier that is used to correct the offset voltage  
of the main amplifier. Both consist of a rail-to-rail input stage,  
allowing the input common-mode voltage range to reach both  
supply rails. The input stage consists of an NMOS differential  
pair operating concurrently with a parallel PMOS differential  
pair. The outputs from the differential input stages are combined in  
another gain stage whose output is used to drive a rail-to-rail  
output stage.  
V
OSB  
+
V
V
IN+  
IN–  
A
V
OUT  
B
B
B
ΦB  
V
OA  
C
M2  
V
ΦB  
OSA  
+
ΦA  
1
A
A
V
NB  
The wide voltage swing of the amplifier is achieved by using two  
output transistors in a common-source configuration. The output  
voltage range is limited by the drain-to-source resistance of  
these transistors. As the amplifier is required to source or sink  
more output current, the voltage drop across these transistors  
increases due to their on resistance (RDS). Simply put, the output  
voltage does not swing as close to the rail under heavy output  
current conditions as it does with light output current. This is a  
characteristic of all rail-to-rail output amplifiers. Figure 12 and  
Figure 13 show how close the output voltage can get to the rails  
with a given output current. The output of the AD857x is short-  
circuit protected to approximately 50 mA of current.  
–B  
A
ΦA  
2
C
M1  
V
NA  
Figure 50. Auto-Zero Phase of the Amplifier  
V
OSB  
+
V
V
IN+  
IN–  
A
V
OUT  
B
B
B
ΦB  
V
OA  
C
M2  
V
ΦB  
ΦA  
OSA  
+
A
A
V
NB  
–B  
A
ΦA  
C
M1  
The AD857x amplifiers have exceptional gain, yielding greater  
than 120 dB of open-loop gain with a load of 2 kΩ. Because  
the output transistors are configured in a common-source  
configuration, the gain of the output stage, and thus the open-  
loop gain of the amplifier, is dependent on the load resistance.  
Open-loop gain decreases with smaller load resistances, which  
is another characteristic of rail-to-rail output amplifiers.  
V
NA  
Figure 51. Output Phase of the Amplifier  
There are two modes of operation determined by the action of  
two sets of switches in the amplifier: an auto-zero phase and an  
amplification phase.  
Rev. E | Page 14 of 24  
 
 
 
 
 
 
AD8571/AD8572/AD8574  
For the sake of simplification, it can be assumed that the auto-  
correction frequency is much faster than any potential change  
in VOSA or VOSB. This is a good assumption because changes in  
offset voltage are a function of temperature variation or long-  
term wear time, both of which are much slower than the  
auto-zero clock frequency of the AD857x, which effectively  
makes the VOS time invariant, and Equation 5 can be rewritten as  
AUTO-ZERO PHASE  
In this phase, all ΦAX switches are closed, and all ΦB switches  
are open. Here, the nulling amplifier is taken out of the gain  
loop by shorting its two inputs together. Of course, there is a  
degree of offset voltage, shown as VOSA, inherent in the nulling  
amplifier, that maintains a potential difference between the +IN  
and −IN inputs. The nulling amplifier feedback loop is closed  
through ΦA2, and VOSA appears at the output of the nulling  
amplifier and on CM1, an internal capacitor in the AD857x.  
Mathematically, this can be expressed in the time domain as  
AA  
(
1 + BA  
)
V
OSA AABAVOSA  
VOA  
[t  
]
= AAVIN  
[t  
]
+
(6)  
1 + BA  
or  
V
OA[t] = AAVOSA[t] − BAVOA[t]  
This can also be expressed as  
AAVOSA  
(1)  
VOSA  
VOA  
[t  
]
= AA VIN  
[t  
]
+
(7)  
1 + BA  
[t]  
VOA [t] =  
(2)  
1 + BA  
Here, the auto-zeroing becomes apparent. Note that the VOS  
term is reduced by a factor of 1 + BA, which shows how the  
nulling amplifier has greatly reduced its own offset voltage error  
even before correcting the primary amplifier. Therefore, the  
primary amplifier output voltage is the voltage at the output of the  
AD857x amplifier. It is equal to  
The previous equations show that the offset voltage of the nulling  
amplifier times a gain factor appears at the output of the nulling  
amplifier and thus on the CM1 capacitor.  
AMPLIFICATION PHASE  
V
OUT[t] = AB(VIN[t] + VOSB) + BBVNB  
(8)  
When the ΦB switches close and the ΦAX switches open for  
the amplification phase, the offset voltage remains on CM1 and  
essentially corrects any error from the nulling amplifier. The  
voltage across CM1 is designated as VNA. The potential difference  
between the two inputs to the primary amplifier is designated as  
VIN, or VIN = (VIN+ − VIN−). The output of the nulling amplifier  
can then be expressed as  
In the amplification phase, VOA = VNB, so this can be rewritten as  
VOUT  
[
t
]
=
]
(9)  
VOSA  
1+ BA  
ABVIN  
[
t
+ ABVOSB + BB  
A
VIN  
[t  
]
+
A
VOA[t] = AA(VIN[t] − VOSA[t]) − BAVNA[t]  
(3)  
Combining terms yield  
VOUT  
VIN  
[t] =  
Because ΦAX is now open and there is no place for CM1 to  
discharge, the voltage (VNA) at the present time (t) is equal to  
the voltage at the output of the nulling amp (VOA) at the time when  
ΦAX is closed. If the period of the autocorrection switching  
frequency is designated as TS, the amplifier switches between  
phases every 0.5 × TS. Therefore, in the amplification phase  
AABBVOSA  
1 + BA  
(10)  
[
t
]
(
AB + AABB  
)
+
+ ABVOSB  
The AD857x architecture is optimized in such a way that  
AA = AB, BA = BB, and BA >> 1. In addition, the gain product to  
AABB is much greater than AB. Therefore, Equation 10 can be  
simplified to  
1
2
VNA  
[t  
]
= VNA t TS  
(4)  
V
OUT[t] = VIN[t]AABA + AA(VOSA+ VOSB  
)
(11)  
and substituting Equation 4 and Equation 2 into Equation 3 yields  
Most obvious is the gain product of both the primary and nulling  
amplifiers. This AABA term is what gives the AD857x its extremely  
high open-loop gain. To understand how VOSA and VOSB relate to  
the overall effective input offset voltage of the complete amplifier,  
set up the generic amplifier equation of  
1
AABAVOSA t TS  
2
VOA  
[t  
]
= AAVIN  
[t  
]
+ AAVOSA  
[t  
]
(5)  
1 + BA  
V
OUT = k × (VIN + VOS, EFF  
)
(12)  
where:  
k is the open-loop gain of an amplifier.  
OS, EFF is its effective offset voltage.  
V
Putting Equation 12 into the form of Equation 11 gives  
OUT[t] = VIN[t]AABA + VOS, EFFAABA  
V
(13)  
Rev. E | Page 15 of 24  
 
 
 
AD8571/AD8572/AD8574  
V+  
Therefore,  
R1  
R2  
AD8572  
R2  
R1  
VOSA + VOSB  
V
IN1  
VOS,EFF  
(14)  
V
IN2  
BA  
GUARD  
RING  
GUARD  
RING  
Thus, the offset voltages of both the primary and nulling  
V
REF  
V
amplifiers are reduced by the gain factor BA, which takes a typical  
input offset voltage from several millivolts down to an effective  
input offset voltage of submicrovolts. This autocorrection scheme  
makes the AD857x family of amplifiers extremely precise.  
REF  
V–  
Figure 53. Top View of AD8572 SOIC Layout with Guard Rings  
Other potential sources of offset error are thermoelectric  
voltages on the circuit board. This voltage, also called Seebeck  
voltage, occurs at the junction of two dissimilar metals and is  
proportional to the junction temperature. The most common  
metallic junctions on a circuit board are solder-to-board trace  
and solder-to-component lead. Figure 54 shows a cross-section  
view of the thermal voltage error sources. When the temperature  
of the PCB at one end of the component (TA1) differs from the  
temperature at the other end (TA2), the Seebeck voltages are not  
equal, resulting in a thermal voltage error.  
HIGH GAIN, CMRR, AND PSRR  
Common-mode and power supply rejection are indications of the  
amount of offset voltage an amplifier has as a result of a change in  
its input common-mode or power supply voltages. As shown in  
the Amplification Phase section, the autocorrection architecture  
of the AD857x allows it to effectively minimize offset voltages.  
The technique also corrects for offset errors caused by common-  
mode voltage swings and power supply variations, which results  
in superb CMRR and PSRR figures in excess of 130 dB. Because  
the autocorrection occurs continuously, these figures can be  
maintained across the temperature range of the device (−40°C  
to +125°C).  
This thermocouple error can be reduced by using dummy  
components to match the thermoelectric error source. Placing  
the dummy component as close as possible to its partner ensures  
that both Seebeck voltages are equal, thus canceling the thermo-  
couple error. Maintaining a constant ambient temperature on the  
circuit board further reduces this error. The use of a ground  
plane helps distribute heat throughout the board and also  
reduces EMI noise pickup.  
MAXIMIZING PERFORMANCE THROUGH PROPER  
LAYOUT  
To achieve the maximum performance of the extremely high  
input impedance and low offset voltage of the AD857x, care  
should be taken in the circuit board layout. The PCB surface  
must remain clean and free of moisture to avoid leakage currents  
between adjacent traces. Surface coating of the circuit board  
reduces surface moisture and provides a humidity barrier, reducing  
parasitic resistance on the board. The use of guard rings around  
the amplifier inputs further reduces leakage currents. Figure 52  
shows how the guard ring should be configured, and Figure 53  
shows the top view of how a surface-mount layout can be  
arranged. The guard ring does not need to be a specific width,  
but it should form a continuous loop around both inputs. By  
setting the guard ring voltage equal to the voltage at the non-  
inverting input, parasitic capacitance is minimized as well. For  
further reduction of leakage currents, components can be mounted  
to the PCB using Teflon® standoff insulators.  
COMPONENT  
LEAD  
SOLDER  
V
V
SC2  
+
SC1  
+
SURFACE MOUNT  
COMPONENT  
+
V
V
TS2  
TS1  
+
PC BOARD  
T
T
A2  
A1  
COPPER  
TRACE  
IF T T , THEN  
A1 A2  
V
V
V  
V
TS1 + SC1  
TS2 + SC2  
Figure 54. Mismatch in Seebeck Voltages Causes a Thermoelectric Voltage Error  
R
F
R1  
V
OUT  
V
R
IN  
V
V
OUT  
OUT  
AD8571/AD8572/  
AD8574  
V
IN  
V
R
= R1  
S
IN  
AD8572  
AD8572  
A
= 1 + (R /R1)  
F
V
SHOULD BE PLACED IN CLOSE PROXIMITY AND  
S
ALIGNMENT TO R1 TO BALANCE SEEBECK VOLTAGES  
V
IN  
Figure 55. Using Dummy Components to Cancel Thermoelectric Voltage Errors  
V
OUT  
AD8572  
Figure 52. Guard Ring Layout and Connections to  
Reduce PCB Leakage Currents  
Rev. E | Page 16 of 24  
 
 
 
 
 
AD8571/AD8572/AD8574  
0
–20  
1/f NOISE CHARACTERISTICS  
V
A
= 5V  
S
V
Another advantage of auto-zero amplifiers is their ability to  
cancel flicker noise. Flicker noise, also known as 1/f noise, is  
noise inherent in the physics of semiconductor devices and  
increases 3 dB for every octave decrease in frequency. The 1/f  
corner frequency of an amplifier is the frequency at which the  
flicker noise is equal to the broadband noise of the amplifier.  
At lower frequencies, flicker noise dominates, causing higher  
degrees of error for sub-Hertz frequencies or dc precision  
applications.  
= 60dB  
–40  
–60  
–80  
–100  
–120  
Because the AD857x amplifiers are self-correcting op amps,  
they do not have increasing flicker noise at lower frequencies. In  
essence, low frequency noise is treated as a slowly varying offset  
error and is greatly reduced with autocorrection. The correction  
becomes more effective as the noise frequency approaches dc,  
offsetting the tendency of the noise to increase exponentially as  
frequency decreases, which allows the AD857x to have lower  
noise near dc than standard low noise amplifiers that are  
susceptible to 1/f noise.  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (kHz)  
Figure 57. Spectral Analysis of AD857x Output with 60 dB Gain  
Figure 58 shows the spectral output of an AD8572 configured in  
a high gain (60 dB) with a 1 mV input signal applied. Note the  
absence of any IMD products in the spectrum. The signal-to-  
noise ratio (SNR) of the output signal is better than 60 dB, or 0.1%.  
0
RANDOM AUTO-ZERO CORRECTION ELIMINATES  
INTERMODULATION DISTORTION  
V
= 5V  
S
V
A
= 60dB  
–20  
–40  
The AD857x can be used as a conventional op amp for gains up  
to 1 MHz. The auto-zero correction frequency of the device  
continuously varies, based on a pseudorandom generator with a  
uniform distribution from 2 kHz to 4 kHz. The randomization  
of the autocorrection clock creates a continuous randomization  
of IMD products that show up as simple broadband noise at the  
output of the amplifier. This broadband noise naturally combines  
with the amplifier voltage noise in a root-squared-sum fashion,  
resulting in an output free IMD. Figure 56 shows the spectral  
output of an AD8572 with the amplifier configured for unity  
gain and the input grounded. Figure 57 shows the spectral  
output with the amplifier configured for a gain of 60 dB.  
–60  
–80  
–100  
–120  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (kHz)  
Figure 58. Spectral Analysis of AD8572 in High Gain with an Input Signal  
0
V
= 5V  
= 0dB  
–20  
–40  
S
V
A
–60  
–80  
–100  
–120  
–140  
–160  
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (kHz)  
Figure 56. Spectral Analysis of AD8572 Output in Unity Gain Configuration  
Rev. E | Page 17 of 24  
 
 
 
 
 
AD8571/AD8572/AD8574  
BROADBAND AND EXTERNAL RESISTOR NOISE CONSIDERATIONS  
The total broadband noise output from any amplifier is primarily a  
function of three types of noise: input voltage noise from the  
amplifier, input current noise from the amplifier, and Johnson  
noise from the external resistors used around the amplifier.  
Input voltage noise, or en, is strictly a function of the amplifier  
used. The Johnson noise from a resistor is a function of the  
resistance and the temperature. Input current noise, or in,  
creates an equivalent voltage noise proportional to the resistors  
used around the amplifier. These noise sources are not correlated  
with each other and their combined noise sums in a root-  
squared-sum fashion. The full equation is given as  
2
The output overdrive recovery for an autocorrection amplifier is  
defined as the time it takes for the output to correct to its final  
voltage from an overload state. It is measured by placing the  
amplifier in a high gain configuration with an input signal that  
forces the output voltage to the supply rail. The input voltage is  
then stepped down to the linear region of the amplifier, usually  
to halfway between the supplies. The time from the input signal  
step-down to the output settling to within 100 μV of its final  
value is the overdrive recovery time. Many autocorrection  
amplifiers require a number of auto-zero clock cycles to recover  
from output overdrive, and some can take several milliseconds  
for the output to settle properly.  
e
n, TOTAL = [en + 4kTrs + (inrs)2]1/2  
(15)  
INPUT OVERVOLTAGE PROTECTION  
where:  
Although the AD857x are rail-to-rail input amplifiers, care  
should be taken to ensure that the potential difference between  
the inputs does not exceed 5 V. Under normal operating conditions,  
the amplifier corrects its output to ensure that the two inputs  
are at the same voltage. However, if the device is configured as  
a comparator, or is under some unusual operating condition, the  
input voltages may be forced to different potentials, which could  
cause excessive current to flow through the internal diodes in the  
AD857x used to protect the input stage against overvoltage.  
en is the input voltage noise of the amplifier.  
in is the input current noise of the amplifier.  
rs is the source resistance connected to the noninverting  
terminal.  
k is Boltzmann’s constant (1.38 × 10−23 J/K).  
T is the ambient temperature in Kelvin (K = 273.15 + °C).  
The input voltage noise density, en, of the AD857x is 51 nV/√Hz,  
and the input noise, in, is 2 fA/√Hz. The en, TOTAL is dominated by  
the input voltage noise provided that the source resistance is less  
than 172 kΩ. With source resistance greater than 172 kΩ, the  
overall noise of the system is dominated by the Johnson noise of  
the resistor itself.  
If either input exceeds either supply rail by more than 0.3 V,  
large amounts of current begin to flow through the ESD  
protection diodes in the amplifier. These diodes are connected  
between the inputs and each supply rail to protect the input  
transistors against an electrostatic discharge event and are  
normally reverse-biased. However, if the input voltage exceeds  
the supply voltage, these ESD diodes become forward-biased.  
Without current-limiting, excessive amounts of current can  
flow through these diodes, causing permanent damage to the  
device. If inputs are subject to overvoltage, appropriate series  
resistors should be inserted to limit the diode current to less  
than 2 mA.  
Because the input current noise of the AD857x is very small, in  
does not become a dominant term unless rs > 4 GΩ, which is an  
impractical value of source resistance.  
The total noise, en, TOTAL, is expressed in volts-per-square-root  
Hertz, and the equivalent rms noise over a certain bandwidth  
can be found as  
en = en, TOTAL  
×
BW  
(16)  
where BW is the bandwidth of interest in Hertz.  
OUTPUT PHASE REVERSAL  
Output phase reversal occurs in some amplifiers when the input  
common-mode voltage range is exceeded. As common-mode  
voltage moves outside the common-mode range, the outputs of  
these amplifiers suddenly jump in the opposite direction to  
the supply rail. This is the result of the differential input pair  
shutting down, causing a radical shifting of internal voltages  
that results in the erratic output behavior.  
OUTPUT OVERDRIVE RECOVERY  
The AD857x amplifiers have an excellent overdrive recovery  
of only 200 μs from either supply rail. This characteristic is  
particularly difficult for autocorrection amplifiers because the  
nulling amplifier requires a substantial amount of time to error  
correct the main amplifier back to a valid output. Figure 29 and  
Figure 30 show the positive and negative overdrive recovery  
times for the AD857x.  
The AD857x amplifier has been carefully designed to prevent  
any output phase reversal, provided that both inputs are  
maintained within the supply voltages. If one or both inputs  
exceed either supply voltage, a resistor should be placed in  
series with the input to limit the current to less than 2 mA to  
ensure that the output does not reverse its phase.  
Rev. E | Page 18 of 24  
 
 
 
 
 
AD8571/AD8572/AD8574  
CAPACITIVE LOAD DRIVE  
The optimum value for the resistor and capacitor is a function  
of the load capacitance and is best determined empirically  
because actual CL includes stray capacitances and can differ  
substantially from the nominal capacitive load. Table 5 shows  
some snubber network values that can be used as starting points.  
The AD857x have excellent capacitive load driving capabilities  
and can safely drive up to 10 nF from a single 5 V supply.  
Although the device is stable, capacitive loading limits the  
bandwidth of the amplifier. Capacitive loads also increase the  
amount of overshoot and ringing at the output. The RC snubber  
network shown in Figure 59 can be used to reduce the capacitive  
load ringing and overshoot.  
Table 5. Snubber Network Values for Driving Capacitive Loads  
CL (nF)  
Rx (Ω)  
200  
60  
Cx  
1
4.7  
10  
1 nF  
0.47 ꢀF  
10 ꢀF  
5V  
AD8571/  
AD8572/  
AD8574  
20  
V
OUT  
Rx  
60  
V
IN  
+
C
4.7nF  
L
POWER-UP BEHAVIOR  
200mV p-p  
Cx  
0.47µF  
At power-up, the AD857x settles to a valid output within 5 ꢀs.  
Figure 61 shows an oscilloscope photo of the output of the  
amplifier along with the power supply voltage. Figure 62 shows  
the test circuit. With the amplifier configured for unity gain, the  
device takes approximately 5 μs to settle to its final output  
voltage, hundreds of microseconds faster than many other  
autocorrection amplifiers.  
Figure 59. Snubber Network Configuration for Driving Capacitive Loads  
Although the snubber network does not recover the loss of  
amplifier bandwidth from the load capacitance, it does allow  
the amplifier to drive larger values of capacitance while  
maintaining a minimum of overshoot and ringing. Figure 60  
shows the output of an AD857x driving a 1 nF capacitor with  
and without a snubber network.  
V
10μs  
OUT  
WITH  
SNUBBER  
0V  
V+  
0V  
WITHOUT  
SNUBBER  
5µs  
1V  
BOTTOM TRACE = 2V/DIV  
TOP TRACE = 1V/DIV  
V
= 5V  
= 4.7nF  
S
L
100mV  
C
Figure 61. AD857x Output Behavior at Power-Up  
Figure 60. Overshoot and Ringing Are Substantially Reduced Using  
a Snubber Network  
V
= 0V TO 5V  
SY  
100k  
100kΩ  
V
OUT  
AD8571/  
AD8572/  
AD8574  
Figure 62. AD857x Test Circuit for Power-Up Time  
Rev. E | Page 19 of 24  
 
 
 
 
 
 
 
AD8571/AD8572/AD8574  
APPLICATIONS INFORMATION  
R2  
5 V PRECISION STRAIN GAGE CIRCUIT  
R1  
R3  
The extremely low offset voltage of the AD8572 makes it an ideal  
amplifier for any application requiring accuracy with high gains,  
such as a weigh scale or strain gage. Figure 63 shows a configura-  
tion for a single-supply, precision strain gage measurement system.  
V2  
V1  
V
OUT  
AD8571/  
AD8572/  
AD8574  
R4  
R4  
R3  
R2  
R2  
IF  
=
, THEN V  
=
(V1 – V2)  
OUT  
R1  
R1  
The REF192 provides a 2.5 V precision reference voltage for A2.  
The A2 amplifier boosts this voltage to provide a 4.0 V reference  
for the top of the strain gage resistor bridge. Q1 provides the  
current drive for the 350 Ω bridge network. A1 is used to amplify  
the output of the bridge with the full-scale output voltage equal to  
Figure 64. Using the AD857x as a Difference Amplifier  
In an ideal difference amplifier, the ratio of the resistors is set  
equal to  
R2 R4  
R1 R3  
AV  
=
=
(19)  
2 ×  
(
R1 + R2  
)
(17)  
RB  
Set the output voltage of the system to  
OUT = AV (V1 V2)  
where RB is the resistance of the load cell.  
V
(20)  
Using the values given in Figure 63, the output voltage linearly  
varies from 0 V with no strain to 4 V under full strain.  
Due to finite component tolerance, the ratio between the four  
resistors is not exactly equal, and any mismatch results in a  
reduction of common-mode rejection from the system. Referring  
to Figure 64, the exact common-mode rejection ratio can be  
expressed as  
2
5V  
3
6
2.5V  
REF192  
4
1k  
Q1  
2N2222  
A2  
OR  
AD8572-B  
EQUIVALENT  
R1R4 + 2R2R4 + R2R3  
12kΩ  
20kΩ  
CMRR =  
(21)  
4.0V  
2R1R4 2R2R3  
R2  
R1  
100Ω  
17.4kΩ  
In the 3-op amp instrumentation amplifier configuration shown  
in Figure 65, the output difference amplifier is set to unity gain  
with all four resistors equal in value. If the tolerance of the  
resistors used in the circuit is given as δ, the worst-case CMRR  
of the instrumentation amplifier is  
40mV  
V
A1  
OUT  
FULL-SCALE  
350Ω  
LOAD  
CELL  
0V TO 4V  
AD8572-A  
R4  
R3  
100Ω  
17.4kΩ  
NOTE:  
1
USE 0.1% TOLERANCE RESISTORS.  
CMRRMIN  
=
(22)  
2δ  
Figure 63. 5 V Precision Strain Gage Amplifier  
AD8574-A  
V2  
R
3 V INSTRUMENTATION AMPLIFIER  
The high common-mode rejection, high open-loop gain,  
and operation down to 3 V of the supply voltage make the  
AD857x family an excellent op amp choice for discrete single-  
supply instrumentation amplifiers. The common-mode  
rejection ratio of the AD857x is greater than 120 dB, but the  
CMRR of the system is also a function of the external resistor  
tolerances. The gain of the difference amplifier shown in Figure 64  
is given as  
R
R
R
R
V
R
OUT  
G
AD8574-C  
R
R
TRIM  
V1  
AD8574-B  
2R  
(V1 – V2)  
V
= 1 +  
OUT  
R
G
Figure 65. Discrete Instrumentation Amplifier Configuration  
R4 ⎞⎛  
R1 ⎞  
R2  
R2 ⎞  
R1  
VOUT = V1  
1 +  
V 2  
(18)  
⎟⎜  
Therefore, using 1% tolerance resistors results in a worst-case  
system CMRR of 0.02, or 34 dB. To achieve high common-  
mode rejection, either high precision resistors or an additional  
trimming resistor, as shown in Figure 65, should be used. The  
value of this trimming resistor should be equal to the value of R  
multiplied by its tolerance. For example, using 10 kΩ resistors  
with 1% tolerance would require a series trimming resistor  
equal to 100 Ω.  
R3 + R4  
⎠⎝  
Rev. E | Page 20 of 24  
 
 
 
 
 
 
AD8571/AD8572/AD8574  
Monitor Output = R2 × (RSENSE/R1) × IL  
(23)  
HIGH ACCURACY THERMOCOUPLE AMPLIFIER  
Figure 66 shows a K-type thermocouple amplifier configuration  
with cold-junction compensation. Even from a 5 V supply, the  
AD8571 can provide enough accuracy to achieve a resolution of  
better than 0.02°C from 0°C to 500°C. D1 is used as a tempera-  
ture measuring device to correct the cold-junction error from  
the thermocouple and should be placed as close as possible to  
the two terminating junctions. With the thermocouple measuring  
tip immersed in a 0°C ice bath, R6 should be adjusted until the  
output is at 0 V.  
Using the components shown in Figure 67, the monitor output  
transfer function is 2.49 V/A.  
R
0.1Ω  
SENSE  
I
L
V+  
V+  
0.1µF  
R1  
100Ω  
3
2
8
LOAD  
+
1/2  
1
AD8572  
4
S
G
Using the values shown in Figure 66, the output voltage tracks  
temperature at 10 mV/°C. For a wider range of temperature  
measurement, R9 can be decreased to 62 kꢁ. This creates a  
5 mV/°C change at the output, allowing measurements of up  
to 1000°C.  
M1  
Si9433  
D
MONITOR  
OUTPUT  
R2  
2.49kΩ  
Figure 67. High-Side Load Current Monitor  
REF02EZ  
5V  
2
6
12V  
Figure 68 shows the low-side monitor equivalent. In this circuit,  
the input common-mode voltage to the AD8572 is at or near  
ground. Again, a 0.1 Ω resistor provides a voltage drop propor-  
tional to the return current. The output voltage is given as  
4
0.1µF  
R5  
40.2k  
R9  
124kΩ  
R1  
10.7kΩ  
5V  
1N4148  
D1  
10µF  
R2  
R1  
Monitor Output =V −  
× RSENSE × IL  
(24)  
+
0.1µF  
R2  
R8  
2.74kΩ  
453Ω  
2
3
+
+
7
K-TYPE  
THERMOCOUPLE  
40.7µV/°C  
For the component values shown in Figure 68, the monitor  
output transfer function is V+ − 2.49 V/A.  
6
R6  
200Ω  
AD8571  
4
V+  
0V TO 5V  
(0°C TO 500°C)  
R4  
5.62kΩ  
R3  
53.6Ω  
R2  
2.49kΩ  
MONITOR  
OUTPUT  
Figure 66. Precision K-Type Thermocouple Amplifier  
with Cold-Junction Compensation  
V+  
Q1  
V+  
PRECISION CURRENT METER  
2
3
LOAD  
Because of its low input bias current and superb offset voltage at  
single-supply voltages, the AD857x family is an excellent amplifier  
for precision current monitoring. Its rail-to-rail input allows the  
amplifier to be used as either a high-side or a low-side current  
monitor. Using both amplifiers in the AD8572 provides a simple  
method to monitor both current supply and return paths for  
load or fault detection.  
R1  
100Ω  
1/2 AD8572  
R
0.1Ω  
SENSE  
I
L
Figure 68. Low-Side Load Current Monitor  
PRECISION VOLTAGE COMPARATOR  
The AD857x can be operated open loop and used as a precision  
comparator. The AD857x have less than 50 μV of offset voltage  
when they run in this configuration. The slight increase of  
offset voltage stems from the fact that the autocorrection  
architecture operates with the lowest offset in a closed-loop  
configuration, that is, one with negative feedback. With 50 mV  
of overdrive, the device has a propagation delay of 15 μs on the  
rising edge and 8 μs on the falling edge.  
Figure 67 shows a high-side current monitor configuration.  
Here, the input common-mode voltage of the amplifier is at or  
near the positive supply voltage. The rail-to-rail input of the  
amplifier provides a precise measurement, even with the input  
common-mode voltage at the supply voltage. The CMOS input  
structure does not draw any input bias current, ensuring a  
minimum of measurement error.  
The 0.1 Ω resistor creates a voltage drop to the noninverting  
input of the AD857x. The output of the amplifier is corrected  
until this voltage appears at the inverting input, which creates a  
current through R1 that in turn flows through R2. The monitor  
output is given by  
Care should be taken to ensure that the maximum differential  
voltage of the device is not exceeded. For more information, see  
the Input Overvoltage Protection section.  
Rev. E | Page 21 of 24  
 
 
 
 
 
 
AD8571/AD8572/AD8574  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
3.10  
3.00  
2.90  
8
5
4
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
4.50  
4.40 6.40 BSC  
4.30  
PIN 1  
IDENTIFIER  
1
PIN 1  
0.65 BSC  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
0.15  
0.05  
1.20  
1.10 MAX  
MAX  
8°  
0°  
0.80  
0.55  
0.40  
0.75  
0.60  
0.45  
0.30  
0.19  
0.15  
0.05  
COPLANARITY  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.23  
0.09  
0.20  
0.09  
6°  
0°  
0.40  
0.25  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AA  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 71. 8-Lead Thin Shrink Small Outline Package [TSSOP]  
Figure 69. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
(RU-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
14  
8
7
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
4.50  
4.40  
4.30  
6.40  
BSC  
1
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
PIN 1  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.65 BSC  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.05  
1.00  
0.80  
1.27 (0.0500)  
0.40 (0.0157)  
1.20  
MAX  
0.25 (0.0098)  
0.17 (0.0067)  
0.20  
0.09  
SEATING  
PLANE  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
0.30  
0.19  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 72. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Figure 70. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
Rev. E | Page 22 of 24  
 
AD8571/AD8572/AD8574  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 73. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-14)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
AD8571ARZ  
AD8571ARZ-REEL  
AD8571ARZ-REEL7  
AD8571ARMZ  
AD8571ARMZ-REEL  
AD8572AR  
AD8572AR-REEL  
AD8572AR-REEL7  
AD8572ARZ  
AD8572ARZ-REEL  
AD8572ARZ-REEL7  
AD8572ARUZ  
AD8572ARUZ-REEL  
AD8574AR  
AD8574AR-REEL  
AD8574AR-REEL7  
AD8574ARZ  
Temperature Range  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
Package Option  
R-8  
R-8  
Branding  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
R-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RU-8  
RU-8  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
RU-14  
AJA#  
AJA#  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead TSSOP  
8-Lead TSSOP  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
AD8574ARZ-REEL  
AD8574ARZ-REEL7  
AD8574ARU  
AD8574ARU-REEL  
AD8574ARUZ  
AD8574ARUZ-REEL  
1 Z = RoHS Compliant Part, # denotes RoHS compliant product may be top or bottom marked.  
Rev. E | Page 23 of 24  
 
 
AD8571/AD8572/AD8574  
NOTES  
©1999–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D01104-0-2/11(E)  
Rev. E | Page 24 of 24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY